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In 1975 Dave Forney wrote a paper [4] entitled Minimal Bases of Rational Vector Spaces,
with Applications to Multivariable Linear Systems. This paper had an immense impact in
the mathematical systems theory literature. According to the full citation database of the
Institute for Scientific Information on DIALOG, [4] has been cited 227 times in the period
1976-1999 and it has been the most cited paper by Forney. In this way the paper is a citation
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Abstract

Let F denote the field of rational functions over some base field. Every subspace
V of F™ has a polynomial basis. A polynomial basis having minimal possible degrees
is called a minimal basis of V. It was shown by G.D. Forney [4] that minimal bases
always exist and that these bases are of great importance in multivariable systems

theory and convolutional coding theory.
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Introduction

classic (compare with Table 1 in the Appendix).

In this article we will survey the results of [4]. Paper [4] contains several interesting
contributions. The main theorem (see Theorem 2.2) on minimal polynomial bases of vector
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spaces over the rationals is a purely mathematical result. Its essence has been first derived
by Forney in the context of coding theory [3]. The result connects to some classical work in
algebra and algebraic geometry and in Section 2 we will review this result. In Section 3 we
will relate Theorem 2.2 to a theorem of Grothendieck [8] and a famous classical paper by
Dedekind and Weber [2].

A major contribution of paper [4] was a very clear explanation on how to translate
properties of a system from a polynomial matrix formulation into a state space formulation.
In this way Forney was able to connect the controllability and the observability indices of a
linear system to some minimal indices of a rational vector space. In Section 4 we will review
these results.

One contribution of [4] was a concrete realization algorithm. In Section 5 we will explain
how realization theory can be generalized to accommodate general behavioral systems [21]
which have no predetermined input-output structure. The classical realization theory of a
transfer function then becomes a special instance of this general realization theory.

The author would like to thank Thurston Miller from the University of Notre Dame to
do the citation search for [4].

2 Minimal polynomial bases of rational vector spaces

Let F be an arbitrary field and consider the field F := F(z) of rational functions in the
in-determinant z. Let Flz| be the polynomial ring over F.

Definition 2.1 One says v = (vy,...,v,) € F" is a polynomial vector if v € F*[z]. If v is
a polynomial vector then one defines its degree as degv := max{degv; |[i=1,... ,n}.
Let V C F" be a k-dimensional subspace. A basis B := {v!,... ,v¥} iscalled a polynomial

basis if B C F*[z]. One says that B forms a minimal polynomial basis if the total degree
(order) Z?Zl degv’ is minimal. Tt is clear that a polynomial basis exists. The following is
the main theorem in [4] and it characterizes a minimal polynomial basis:

Theorem 2.2 ([4]) Let V C F™ be a k-dimensional subspace and assume the rows of a
k x n matriz G represent a polynomial basis. Assume the jth row degree is v; and the total
degree (order) isv =3

i=1Vj- Then the following are equivalent.
1. The rows of G form a minimal polynomial basis.

2. G is nonsingular modulo p(z) for all irreducible polynomials p(x) € Flz| and the high
order coefficient matriz |Gy, of G has full rank.

3. The greatest common divisor of the k X k full size minors is 1 and their greatest degree
1S V.



4. If y = G is polynomial then x is polynomial and degy = max;<;<x{degz; + v;}.

5. For d > 0 let Vy; C V be the subset of all polynomial vectors of degree at most d.
Then Vg is a finite F vector space and the indices vq,... ,v, have the property that
dlm]p Vd = Zuj<d(d — l/j).

In coding theory [3, 10] a linear subspace C C F™ defines a convolutional code. If the
rows of a £ X n matrix G represent a F-basis for the code C then one says that G is an

encoder. GG defines the encoding map:
o: FF— F' m(z) — c(z) = m(z)G(x). (2.1)

Minimal polynomial encoder ares of great significance since they describe feed-forward en-
coders having a minimal number of delay elements. We will explain the significance of
minimal polynomial bases in systems theory in Section 4.

It follows from the last conditions of Theorem 2.2 that the indices v, ... , v, are invariants
of the subspace V' C F™. These indices are of crucial importance both in convolutional coding
theory [3, 10] and in systems theory and we follow McEliece [16] and call them the Forney
indices of V. Without loss of generality one can assume that they are ordered v; > --- > v.

In [4, Remark 1] Forney questioned if Theorem 2.2 has not already been derived earlier
since the Theorem spells out merely important properties of a subspace V' C F™. Today it is
clear that Theorem 2.2 was new at the time but that it is closely connected to some interesting
results in mathematics. It has been recognized (compare with [5]), that minimal polynomial
bases appeared already in 1908 by Plemelj [17] who did give a solution to Riemann’s problem
on functions with a given monodromic group. In the next section we show a connection to
Grothendieck’s Theorem [8] and to a classical paper by Dedekind and Weber [2].

3 Grothendieck’s Theorem and the work of Dedekind
and Weber

In [8] Grothendieck provided a complete classification of vector bundles over the Riemann
sphere. For this let C denote the complex numbers and let

PL:={¢C C?|diml=1}={(x,1) |z € C} U{(1,0)}
denote the projective line over C, i.e. the Riemann sphere. Then one has:

Theorem 3.1 ([8]) If £ is a holomorphic vector bundle over Pg then & decomposes as a
sum of line bundles:

§=0() & - ®O0(w),
where vy, ... , v are the multiplicities of the line bundles. The nonnegative integers vy, ... , v
depend up to order only on &.



The indices vy, . .. , 1 are sometimes referred to as the Grothendieck indices of £&. The integer
v= Zle v; is called the degree of . The relation to the Forney indices is now as follows:
Consider the Grassmann manifold

Grass(k,C") :={W c C" | dim W = k}

parameterizing all k-dimensional linear subspaces of C*. Grass(k, C") is a smooth, compact
manifold of complex dimension k(n — k). Consider a k-dimensional linear subspace V' C F™
and assume that G is a k X n matrix over F such that rowspace G = V. Consider the map:

h: Pz — Grass(k,C"), z — rowspacecG(2). (3.1)

A priori h is not defined if rank G(zp) < k or if an entry of G' has a pole at a number
29 The map is also not defined at z = oco. Each singularity is however isolated and it is a
well known result of complex analysis that each singularity is removable since Grass(k, C")
is compact. The map h extends therefore to a holomorphic map defined on all of Pg. In this
way every subspace V' C F" describes a holomorphic map h and vice versa every holomorphic
map h from P to Grass(k, C") defines a linear subspace V C F™.

The Grassmann manifold is equipped with a natural vector bundle called the universal
bundle U. Let U* be its dual. The following theorem is due to Martin and Hermann [15]:

Theorem 3.2 Let £ be the pull back of the bundle U* under the holomorphic map h. Then
the Grothendieck indices vy, . .. , v, of & are up to order equal to the Forney indices of V. C F™.

Moreover the degree v =%

j=1Vj of & is equal to the topological degree of the map h.

The computation of a minimal polynomial basis works over an arbitrary base field F. It
is also known that Grothendieck’s theorem and Theorem 3.2 are valid over an arbitrary base
field. A simple proof of Grothendieck’s theorem over a general field can be found in [9, 13].

In the situation of a general field, a morphism h : P, — Grass(k, ") is given through
a map

(s,t) —> rowspacepP (s, t),

where

fii(s,t) fia(s,t) oo frmap(s )

fa1(s,t)  far(s,t) ... fomip(s,t)

P(s,t) = (3.2)

fp1(57 t) fp2(57 t) T fpym-HD(S’ t)
is a k x n matrix whose entries f;;(s,t) € F[s,t] are homogeneous polynomials of degree
vy, Zzl, ,k‘.
For any base field F the Grassmannian Grass(k,F") is a smooth projective variety of
dimension k(n — k). Moreover the set of all morphisms of the form h: Py — Grass(k,F")
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having total degree v = E?ﬂ

v; forms itself a smooth projective variety of dimension vn +
k(n—k). In the algebraic geometry literature this variety is sometimes referred to as a Quot
scheme and we refer to [18] for details.

Grothendieck did derive Theorem 3.1 using general results from the theory of holomorphic
vector bundles like Serre duality and splitting theorems for subbundles. He was not aware
that his result is also a straight forward consequence of some results by Dedekind and
Weber [2]. The way on how one can derive Grothendieck’s theorem from [2] was shown by
Geyer [7]. In the last part of this section we outline this connection.

Dedekind and Weber consider a field extension 2 O F having transcendental degree 1.
Let z € Q2 be an element which is not algebraic over F and consider the ring R := F[z] and
its quotient field F = F(z). © D F is then a finite field extension of degree k := [Q2 : F|.
Let Ry be the ring of proper rational functions of the form r(z) = %, deg q(z) > degp(x).
We define a vector bundle as a pair (M, My,), where M is a R-submodule of €2 and M, is
a R.-submodule of €.

In [2, §22] Dedekind and Weber define a norm for each x € M. They show how to itera-

tively construct a “Normalbasis” Ay, ..., Ay of M having minimal norm rq, ... , ;. Moreover
the elements A, ..., \; have the properties that

A Ak

ZTI’ ey ZTk

form a normal basis of M. Geyer [7] explains, how Grothendieck’s Theorem 3.1 is an imme-
diate consequence once the existence of a normal basis of M has been shown. One finds sim-
ilar arguments by Lomadze [13] who also shows how Theorem 2.2 relates to Grothendieck’s
theorem.

It is interesting to remark that Dedekind and Weber used in their paper already elements
from valuation theory and maybe this paper started the development of valuation theory.
The importance of valuation theory was stressed by Forney in [4] where he remarked that
Theorem 2.2 might generalize to a broader context. For a historic account on the paper by
Dedekind and Weber we refer to Geyer [7] and Strobl [20].

4 Applications to systems theory

The theory of minimal polynomial bases is key for understanding the relation between a state
space description of a linear system and the corresponding transfer function (respectively
matrix polynomial) description. In the sequel we just summarize some of these results. The
reader who is not familiar with these results is advised to read Forney’s article [4] or to have
a look at the standard textbook [11].

Let G(s) be a p x m proper transfer function. It is well known that the input-output



map 7(s) = G(s)u(s) has a minimal state space realization of the form:
iz =Ax+ Bu, y=Cz+ Du. (4.1)

The size of the matrix A is called the McMillan degree of the transfer function G(s) =
C(sI — A) !B + D (respectively system (4.1)) and the left Kronecker indices of the pencil

[Slg A} are called the observability indices of the transfer function G(s) (respectively

system (4.1)). See [11, page 413] for details. Similarly one defines the controllability indices
of G(s) as the right Kronecker indices of the pencil [s] — A | B].
Consider the F-vector space

V := rowspacex I, | G(s)] € F™'P.

Assume the rows of [D(s) | N(s)] form a minimal polynomial basis of V' having ordered
P
j=1

Theorem 4.1 ([4]) 1. D7Y(s)N(s) = G(s) forms a left coprime factorization.

Forney indices v; > --- > v, and total degree v = vj. Then one has:

2. det D(s) is equal to the characteristic polynomial of the transfer function G(s), in
particular v = deg det D(s) is equal to the McMillan degree of G(s).

3. The indices v; are equal to the observability indices of G(s).

The last Theorem did relate the observability indices of G(s) to the Forney indices of
some subspace V' C F™t?, Combining this result with Theorem 3.2 we obtain a corollary
due to Martin and Hermann [15]:

Corollary 4.2 Let & be the pull back of the bundle U* under the Hermann-Martin map
h: Pg — Grass(p, C™*?), z — rowspacecG|(2). (4.2)
Then the Grothendieck indices of & are up to order equal to the observability indices of G(s).
A minimal basis for the m-dimensional vector space
V := rowspaces [I,, | G(s)'] ¢ F™*P
results into the controllability indices of G(s). In analogy to Theorem 4.1 one has:

Theorem 4.3 Assume Q(s) is a m x m polynomial matriz and the rows of [Q(s) | R(s)]
form a minimal polynomial basis of V having ordered Forney indices Ky > -+ > kpy and
total degree k =Y | k;. Then

1. RY(s)(QY)~'(s) = G(s) forms a right coprime factorization.

2. det Q(s) is equal to the characteristic polynomial of the transfer function G(s), in
particular k = deg det Q(s) is equal to the McMillan degree of G(s).

3. The indices k; are equal to the controllability indices of G(s).



5 Behaviors and generalized first order representations

The last section did show how one can transform results formulated in a state space formu-
lation into results formulated in a polynomial formulation. [4] provided also an algorithm on
how to compute a minimal state space realization from a polynomial description [D(s) | N(s)]
of the system. At the time of writing of [4] there were several algorithms known for comput-
ing a state space realization of the form (4.1) from a transfer function respectively polynomial
description and we refer to [1, 6, 22].

In this section we will take a slightly more modern (and general) point of view and we will
show how it is possible to rewrite linear time invariant behaviors given through a polynomial
formulation into a generalized first order form. We follow in the sequel mainly [19].

Let P(s) be a p X (m + p) polynomial matrix with entries in the polynomial ring R[s].
The smooth behavior associated with P(s) is defined by

B(P) = {we C®R;R™?) | P(L)w = 0}. (5.1)
The following lemma is well known:

Lemma 5.1 Assume P(s) and P(s) are both full rank polynomial matrices of the same
size. Then B(P) = B(P) if and only if there is a unimodular matriz U(s) such that P(s) =
U(s)P(s).

Based on this lemma we can identify a smooth behavior with the row-module of a polynomial
matrix. There are classical canonical forms describing the row-module of a polynomial matrix
such as Hermite’s normal form and we refer to [11, 14]. In the sequel we will simply assume
that the polynomial matrix P(s) has been row reduced using unimodular operations only
and that the row degrees of P(s) are ordered in non-increasing manner: v; > --- > v,

The indices vy,...,v, are in general different from the Forney indices of the rational
row-space of P(s) and they are often referred to as the Kronecker indices of the row-module
of P(s). Clearly equivalent polynomial matrices P(s) and P(s) have the same rational
row-space. The converse is however in general not true. One has however the following:

Lemma 5.2 Assume the rows of P(s) and P(s) form both a minimal polynomial basis of
the same rational subspace V. C F™. Then there is a unimodular matriz U(s) such that
P(s) =U(s)P(s).

This lemma allows one in particular to derive canonical forms (such as the Hermite normal
form) for minimal polynomial bases, a subject which is also treated in [4].

Consider now a triple of real matrices (F, G, H), where F' and G have size n x (n + m)
and H has size (m + p) x (n +m). This triple defines a smooth behavior through:

B(F,G,H) ={w € C®(R;R™?) | 32 € C*°(R;R""™) : Gz = Fz, w = Hz}.
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One says that (F, G, H) forms a generalized first order representation (or simply a realization)
of B(P) if B(F,G,H) = B(P). If (F,G,H) is a realization of P(s) and S and T are
nonsingular matrices of appropriate size then (SFT~!, SGT !, HT™!) forms a realization of
B(P) as well.

The following theorem can be found in [12, Theorem 4.3] and it provides the conditions
of minimality for a realization (F, G, H) of a behavior B(F, G, H) = B(P).

Theorem 5.3 (F,G, H) forms a minimal realization of the behavior B(P) if and only if:

(i) G has full row rank.

(ii) [g} has full column rank.

(iii) [SGI_; F} has full column rank for all s € C.

The question now arises how to compute efficiently a minimal realization. The following
lemma gives a way to compute a realization, not necessarily a minimal one.

Lemma 5.4 ([19]) Let a polynomial matriz P(s) € RP*(™*P)[s] and a triple of constant
matrices (F,G,H) (F and G in RP>(+m) - H jp RO"P)X(+m) ) be given. If there exists a
polynomial matriz X (s) € RP*"[s]| such that the rows [X(s) | P(s)] form a minimal polyno-
mial basis and the equality

(5.2)

kerg(s) [X(s) | P(s)] = img(s) [SG ' F]

H
holds, then B(P) = B(F,G, H), so (F,G, H) is a realization of P(s).

In order to compute a minimal realization it is best to choose a particular polynomial matrix
X (s) such that (F, G, H) satisfying property (5.2) is most easily computed. For this assume
that P(s) is row reduced with Kronecker indices v;4 > --- > v,. Define:

1 s --. g7t o ... ... 0
0 -+ --- 0 1 .. g2l (g ... ... 0

Xo(s) = |, Lo . (5.3)
0 0 1 sl

With this particular choice one has:
Theorem 5.5 ([19]) Let P(s), X,(s) be as above. Then:

1. A minimal polynomial basis of kerg) [X,(s) | P(s)] is of the form imgy) [SGI;F} and
B(F,G, H) forms a minimal realization of B(P).
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2. If the Kronecker indices of P(s) have the property that vy > --- > v, > 1 then
kerr(s) [Xu(s) | P(s)] can be computed simply ‘by inspection’ this means by simply
rearranging the entries of the polynomial matriz P(s).

We can now specialize Theorem 5.5 to the situation treated by Forney [4]. For this
assume that P(s) is partitioned into P(s) = [D(s) | N(s)]. Correspondingly partition the
vector w into y and u. We are now seeking a first order realization of the form

[SG—F] sI—A B
% = C D
0 I

which then describes a classical behavior of the form © = Az + Bu, y = Cz + Du.

Assume the rows of [D(s) | N(s)] form a minimal basis of rowspaceg,)[I, | G(s)]. For
simplicity assume that D~!(s)N(s) = G(s) is strictly proper. Assume that the Forney indices
satisfy vy > -+ > v, > 1 and assume that the high order coefficient matrix of [D(s) | N(s)]
is of the form [I, | 0]. For¢,j =1,...,p let

di,]'(S) = Z dﬁj Sk
k=0
denote the polynomial entries of D(s). Similarly let
ni(s) = Z nk sk
k=0

denote the i-th row of N(s). Define for i = 1,...,p matrices of sizes v; X v;, v; X m and
1 X v; respectively:

-~ L
Aig = [0 1 : , Bi:= S
: 0 : vie1
n.:
|0 ... 0 1 —dfit Z
Ci = [0, cee ,—1].
Finally for 4,j = 1,... ,p, i # j define matrices of size v; x v;:
0 ... 0 _d,?’]
: -
Aij=| T
0 0 —dyi

Note that the matrices A;;, A;;, B; and C; were simply computed ‘by inspection’ from the
data [D(s) | N(s)].



Theorem 5.6 ([4, 19, 22]) In the situation discussed above

[ Apg o Ay By
a(t) = cooes =@+ | | u(),
| Ap,l T A;D,p Bp
(5.4)
e 0
yt) = - x(t)
| 0 Cp
represents a (classical) minimal state space realization of the system
D(&)y(t) + N(&)u(t) = 0. (5.5)

In particular one has C(sI — A)™'B = G(s).

6 Conclusion

In this paper we provided a survey about one of the most influential papers in systems theory.
We showed how the result on minimal polynomial bases relates to some very classical results
in mathematics. We also did show how the results on the relation between state space
description of a system and polynomial description of a system can be treated in the broader
context of behavioral theory.

Appendix
Table 1: Citations of [4] in the period 1976-1999:

Year | Cite’s || Year | Cite’s || Year | Cite’s || Year | Cite’s
1976 4 1982 3 1988 7 1994 14
1977 6 1983 11 1989 10 1995 7
1978 15 1984 12 1990 8 1996 8
1979 18 1985 7 1991 10 1997 10
1980 14 1986 10 1992 7 1998 7
1981 19 1987 6 1993 5 1999 9
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