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Abstract— This paper studies the problem of pole assign-

ment for symmetric and Hamiltonian transfer functions.

A necessary and sufficient condition for pole assignment

by complex symmetric output feedback transformations

is given. Moreover, in the case where the McMillan degree

coincides with the number of parameters appearing in

the symmetric feedback transformations, we derive an

explicit combinatorial formula for the number of pole

assigning symmetric feedback gains. The proof uses in-

tersection theory in projective space as well as a formula

for the degree of the complex Lagrangian Grassmann

manifold.

Index Terms— Output feedback, Pole placement, inverse

eigenvalue problems, Lagrangian Grassmannian, sym-

metric or Hamiltonian realizations , degree of a projective

variety.

I. INTRODUCTION

One of the best known inverse eigenvalue problems

from linear system theory is that of pole assignment,

i.e. to find a static output feedback gain for a given

linear system such that the closed loop poles of the

system coincide with a specified subset of the complex

plane. Moreover, in the case of finitely many solutions,

a formula for the number of pole assigning feed-

back transformations is desirable. Early contributions

on the subject were obtained by e.g. Davison and

Wang [4] and Kimura [10], who derived sufficient

conditions for the solvability. However these conditons

were far from being necessary as well. In a series

of pioneering papers [9], [13], R. Hermann and C.

F. Martin applied tools from algebraic geometry to

obtain necessary and sufficient conditions, valid for

a generic class of systems and for complex feedback

transformations. Their approach was based on the

dominant morphism theorem from complex algebraic

geometry. A second breakthrough was subsequently

made by R. W. Brockett and C. I. Byrnes [1], who

used intersection theoretic arguments and the Schubert

calculus on Grassmann manifolds to count the number

of pole assigning complex feedback transformations.

By refining these algebraic–geometric approaches of

Hermann and Martin, and Brockett and Byrnes, a

number of fundamental contributions on the subject

were made that finally led to a solution of the problem

in the real case, with important contributions due to [5],

[11], [16], [19]; see also [2], [17]. The focus of most of

the investigations has been so far on the unstructured

case, where no underlying symmetries for the involved

transfer function or for the associated feedback trans-

formations are imposed. However, transfer functions

with symmetries occur naturally in various application

areas, such as in network theory or mechanics. For

example, the transfer functions G(s) of linear RLC
- circuits, consisting solely of restistors, capacitors

and inductive elements are symmetric, i.e. they satisfy

G(s)⊤ = G(s). In mechanics, the transfer functions

of linear Hamiltonian systems are characterized by

the symmetry relation G(−s)⊤ = G(s), while second

order mechanical systems of the form

Mẍ = Nx + Bu, y = B⊤x

yield symmetric Hamiltonian transfer functions, satis-

fying

G(s) = H(s2),H(s) = H(s)⊤;

see e.g. [3], [6]. For such structured systems it is

reasonable to restrict the class of admissible feed-

back transformations to those that preserve the sym-

metry properties of the transfer functions. Therefore

the known results on pole placement on unstructured

systems do not apply in these cases and require instead

a new approach.

In this paper we start an investigation of the pole place-

ment problem for n × n symmetric transfer functions

G(s) = G(s)⊤, arising in electrical network theory,

and Hamiltonian transfer functions. For both types of
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systems the natural class of admissible output feedback

tranformations are the symmetric ones F = F⊤,

yielding a symmetric closed loop transfer function

GF (s) := (In − G(s)F )−1G(s).

As the number of free parameters occuring in the sym-

metric feedback matrices F is n(n+1)/2, a necessary

condition for generic solvability of this output feedback

problem is that the McMillan degree δ of the transfer

function G satisfies δ ≥
(

n+1

2

)

in the symmetric

case, and δ ≥ n(n + 1) in the Hamiltonian case. In

fact, we show that generically for complex symmetric

output feedback transformations this condition is also

sufficient. Moreover, for the limit case δ =
(

n+1

2

)

(or

δ = n(n + 1)), we derive an explicit combinatorial

formula for the number of complex symmetric output

feedback gains that place the poles at given points.

Our formula coincides with that of the degree for the

complex Lagrangian manifold, given in [18].

In the real case such complete results can not be

expected. In fact, the symmetry of the transfer functions

then imposes a priori limitations for the possible pole

locations of such systems. This has been observed

in [12], where it is shown for symmetric transfer

functions that – in the special case that the Cauchy

index of G coincides with the McMillan degree –

then generically real symmetric output feedback pole

assignability holds if and only if n ≥ δ. Of course,

in most applications we have n ≤ δ and therefore the

description of the set of poles that can be achieved by

real symmetric output feedback becomes a complicated

and nontrivial task.

II. MAIN RESULT

We now rigorously formulate the main technical results

of this paper. For a complete presentation including

proofs we refer to the full paper version [8]. Let

G(s) be an n × n complex symmetric or Hamiltonian

transfer function, i.e. G(s)⊤ = G(s) or G(−s)⊤ =
G(s), respectively. Assume that G(s) is strictly proper

and has McMillan degree δ. The complex symmetric

eigenvalue assignment problem then asks the following

question:

Problem 2.1: Given an arbitrary monic polynomial

ϕ(s) ∈ C[s] of degree δ (ϕ(s) = ϕ(−s) is assumed

even in the Hamiltonian case). Is there an n × n
complex symmetric matrix F such that the closed loop

transfer function

GF (s) := (In − G(s)F )−1G(s)

has characteristic polynomial ϕ(s), i.e. the poles of

GF (s) are the zeroes of ϕ(s)?

If for a particular symmetric (Hamiltonian) transfer

function G(s) Problem 2.1 has an affirmative answer

we will say that G(s) is pole assignable in the

class of complex symmetric (Hamiltonian) feedback

compensators. We say that G(s) is generically pole

assignable, if the problem is solvable for a generic

choice of admissible polynomials ϕ(s).

Similar to the situation of the static pole placement

problem [1], [19] and the dynamic pole placement

problem [15], Problem 2.1 turns out to be highly

nonlinear and techniques from algebraic geometry will

be required to study the problem. The first main result

is in the spirit of Hermann and Martin, by deriving

a generic necessary and sufficient condition via the

dominant morphism theorem.

Theorem 2.1: If G(s) is a symmetric (or Hamiltonian)

transfer function of McMillan degree δ >
(

n+1

2

)

(or

δ > n(n + 1)), then G(s) is not pole assignable

in the class of (real or) complex symmetric feedback

compensators.

When δ ≤
(

n+1

2

)

(or δ ≤ n(n + 1)), then there is

a generic set of n × n symmetric (or Hamiltonian)

transfer functions of degree δ which are generically

pole assignable via complex symmetric feedback com-

pensators.

Proof: We only give a sketch of the proof, as the

arguments based on the dominant morphism theorem

are well known from [9], [13]. Note, however, that

there is serious gap in the proof of [13] for the pole

placement result on Hamiltonian systems because it is

not proved that the set of generically pole assignable

Hamiltonian systems is non empty. In fact, a construc-

tion of such an example is not completely trivial and

appears in the full paper version [8].

The first claim follows immediately from a standard

dimension argument, as the vector space Sym(n) of

complex n × n symmetric matrices has dimension
(

n+1

2

)

. For the second claim we note that the set

of generically pole assignable systems is a Zariski

open subset of the nonsingular, irreducible quasi-affine

variety of symmetric or Hamiltonian transfer functions,

respectively. Therefore we only need to show that this

Zariski open subset is nonempty. By the Dominant

Morphism Theorem, it suffices to find one system

whose Jacobian of the pole placement map at one point

is onto. This can be done; we refer to [8] for details.
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The second main theorem in this paper deals with the

limit case δ =
(

n+1

2

)

, where we can prove a more

precise statement.

Theorem 2.2: Let δ =
(

n+1

2

)

in the symmetric case,

and δ = n(n + 1) for Hamiltonian systems. Then for a

generic set of n×n symmetric (or Hamiltonian) transfer

functions of degree δ the number of pole assigning

complex symmetric feedback compensators is finite and

when counted with multiplicities there are exactly

d(n) := 2(n

2
)
(

n+1

2

)

! 1! 2! · · · (n − 1)!

1! 3! · · · (2n − 1)!
(1)

many symmetric compensators as solution.

The complete proof of this result is more complicated

and uses some nontrivial techniques from complex

algebraic geometry. In this short paper only some

indications towards the complete proof from [8] can

be given.

First, we note that d(1) = 1, d(2) = 2, d(3) = 24,

d(4) = 3 ·28, d(5) = 11 ·13 ·211 and d(6) = 13 ·17 ·19 ·
218. As it can be seen from this sequence, d(n) appears

to be even, except for n = 1. In fact, one can show

that d(n) is always even. This is related to the fact, that

the symmetric output feedback pole placement problem

is not generically solvable over the reals; see [12] for

preliminary results on the real case. For the context of

this paper it will be more important that d(n) is equal

to the the degree of the Lagrangian Grassmannian, the

projective variety of all maximal isotropic subspaces in

a complex vector space of dimension 2n and this has

been recently established by Totaro [18].

In order to explain how our main result follows from

Totaro’s computation, we need to introduce some stan-

dard terminology on Lagrangian Grassmann manifolds.

The Lagrangian–Grassmann manifold is a compacti-

fication of the vector space Sym(n) of n × n com-

plex symmetric matrices. For this identify the rowspan

rowsp [F In] of any complex symmetric matrix F with

an element of the Grassmann variety Grass (n, C2n);
see e.g. [7] for a description of Grass (n, C2n) and its

basic algebraic-geometric properties. Using the well-

known Plücker embedding

Grass (n, C2n) −→ P
(

∧n
C

2n
)

= P
N, N =

(

2n

n

)

−1

we can then identify Sym(n) with a quasi-projective

subset of the complex projective variety P
N .

Definition 2.1: The algebraic closure of the subset

{rowsp [F In] | F ∈ Sym(n)} ⊂ Grass (n, C2n)

is called the complex Lagrangian Grassmann manifold.

It is denoted by LG(n).

The elements of LG(n) are thus exactly the Lagrangian

subspaces of C
2n. It is well known that LG(n) is a

smooth projective variety of of dimension
(

n+1

2

)

, the

dimension of Sym(n). Totaro’s result now reads as

follows.

Theorem 2.3 (Totaro [18]): The degree of the complex

Lagrangian Grassmann manifold LG(n) is exactly

d(n).

The proof of our main result now proceeds in sev-

eral steps. First, we need to identify symmetric trans-

fer functions with rational curves in the Langrangian

Grassmann manifold. This step is now relatively well

understood, thanks to the pioneering work by Brockett

and Byrnes [1]. Consider a left coprime factorization

D−1(s)N(s) = G(s) of the symmetric or Hamiltonian

transfer function G(s). Let F ∈ Sym(n) be an n × n
complex symmetric matrix. When the feedback law

y = −Fu + v is applied then up to a constant factor

the characteristic polynomial ϕ(s) is also equal to

det

[

D(s) N(s)
F In

]

. (2)

Note that every element in LG(n) can be simply

represented by a subspace of the form rowsp [F1 F2],
where F1(F2)

⊤ is a symmetric matrix, i.e. F1(F2)
⊤ =

F2(F1)
⊤. The subspace rowsp [F1 F2] coincides with

the subspace rowsp [F In] associated with an element

F of Sym(n) if and only if F2 is invertible. Moreover,

then F = (F2)
−1F1. When F2 is singular one can still

define a characteristic polynomial through

ϕ(s) := det

[

D(s) N(s)
F1 F2

]

. (3)

Let fi, i = 0, . . . ,N be the Plücker coordinates of

the Lagrangian subspace rowsp [F1 F2]. In terms of

the Plücker coordinates the characteristic equation can

then be written as:

det

[

D(s) N(s)
F1 F2

]

=
N

∑

i=0

pi(s)fi, (4)

where pi(s) is the cofactor of fi in the determinant (4).

Let Z ⊂ P
N be the linear subspace defined by

Z = {z ∈ P
N |

N
∑

i=0

pi(s)zi = 0}. (5)

Following [14], [15], [19] we identify a closed loop

characteristic polynomial ϕ(s) with a point in P
δ. In
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analogy to the situation of the static pole placement

problem considered in [1], [19] (compare also with [15,

Section 5]) one has a well defined characteristic map

χ : LG(n) −Z −→ P
δ

rowsp [F1 F2] 7−→
∑

N

i=0
fipi(s).

(6)

in the complex symmetric case; a similar construction

works for the Hamiltonian case.

Our pole-placement result now has the geometrically

appealing form of stating when this map is surjective.

However, such a situation is much simpler if it were

known when the so-called base locus Z ∩ LG(n) is

empty. If Z ∩ LG(n) = ∅ and
(

n+1

2

)

= δ then

one says that χ describes a finite morphism from the

projective variety LG(n) onto the projective space P
δ.

This last situation is most desirable and this motivates

the following definition.

Definition 2.2: A particular symmetric transfer func-

tion G(s) is called nondegenerate if Z ∩ LG(n) = ∅.

A system which is not nondegenerate will be called

degenerate.

In terms of matrices a symmetric transfer function

G(s) = D(s)−1N(s) is degenerate as soon as there is

a Lagrangian subspace rowsp [F1 F2] ∈ LG(n), such

that

det

[

D(s) N(s)
F1 F2

]

= 0.

The actual existence of nondegenerate curves should

not be taken for granted; for the proof of the subse-

quent results it depends on the explicit construction

of symmetric transfer functions with the requested

nondegeneracy condition.

Lemma 2.1: (a) If δ <
(

n+1

2

)

= dim LG(n) then

every n × n symmetric transfer function of McMillan

degree δ is degenerate. Similarly, any n×n Hamiltonian

transfer function of McMillan degree δ is degenerate,

if δ < n(n + 1) = 2dim LG(n).
(b) If δ =

(

n+1

2

)

= dim LG(n) (or δ = n(n + 1)),
then a generic set of n×n symmetric (or Hamiltonian)

transfer function of McMillan degree δ is nondegener-

ate.

Using this basic lemma and Totaro’s degree computa-

tion one can complete the proof of Theorem 2.2; again

we refer to [8] for full details.
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