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Abstract

Using techniques from algebraic topology we derive linear inequalities which
relate the spectrum of a set of Hermitian matrices A1, . . . , Ar ∈ Cn×n with the
spectrum of the sum A1 + · · ·+Ar. These extend eigenvalue inequalities due to
Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.

1 Introduction

Consider real n × n diagonal matrices D1, . . . , Dr with diagonal elements λ1(Dl) ≥
λ2(Dl) ≥ . . . ≥ λn(Dl), l = 1, . . . , r. In this paper we are concerned with geometric
properties of the set of possible spectrums of the matrices

{
r∑

l=1

U∗
l DlUl | Ul are unitary}. (1.1)

Equivalently we are interested in the following question:
Given Hermitian matrices A1, . . . , Ar ∈ Cn×n each with a fixed spectrum λ1(Al) ≥

. . . ≥ λn(Al), l = 1, . . . , r and arbitrary else. Is it possible to find then linear inequal-
ities which describe the possible spectrum of the matrix A1 + · · ·+ Ar?

For r = 1 this question is of course trivial. For r = 2 the question is classical and
very well studied (compare with [5, 7, 8, 9, 15, 16, 17, 18]).

An early example of an eigenvalue inequality for a sum of two Hermitian matrices
is that of Weyl [18]. A generalization of the Weyl inequalities to k-fold partial sums
of eigenvalues of Hermitian matrices A,B and A+B is due to Freede and Thompson
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[17]. Still more general is the class of eigenvalue inequalities described by Horn [7]
for sums of two eigenvalues.

In this paper we will present a systematic geometric approach to obtain such eigen-
value inequalities. Although our main results are in the case of two matrices, where
r = 2, the approach works equally well in the case of r-fold sums A1 + · · ·+Ar of Her-
mitian matrices A1, . . . , Ar. Our interest in this problem originates in the observation
by Thompson [15, 16] who indicates that most of the known inequalities for the case
r = 2 can be derived using methods from algebraic topology, i.e. by the Schubert
calculus of complex Grassmann manifolds. As this topological approach is described
only in a rudimentary form in [15, 16] we first present a rigorous development of the
Schubert calculus technique towards eigenvalue inequalities. We then show that it is
also possible to derive with the same method a large set of inequalities for the case
r > 2 as well.

The algebraic topology approach to solving inverse eigenvalue problems is by no
means limited to the task of finding eigenvalue inequalities for sums of Hermitian
matrices. In fact, the technique has been already successfully applied to solve an out-
standing inverse eigenvalue problem arising in control theory, i.e. the pole placement
problem for multivariable linear systems by static output feedback. For this we refer
to e.g. [2, 12].

The paper is structured as follows: In the next section the minmax principles of
Wielandt and Hersch-Zwahlen are reviewed, which characterize in geometric terms
partial sums of eigenvalues of a Hermitian matrix. In Section 3 we review the relevant
results from the Schubert calculus of Grassmann manifolds. In Section 4 we apply
the technique and state the main results. In Section 5 we show how the inequali-
ties of Weyl [18], [9] and Freede-Thompson [17] follow from the main theorem. In
the last section we describe a large set of nonzero products in the cohomology ring
H∗(Gk(C

n),Z) of the Grassmann manifold, leading to a new class of inequalities for
sums of eigenvalues of Hermitian matrices A1, . . . , Ar.

2 Min-Max-Principles and Rayleigh quotients

Let A ∈ Cn×n be a complex Hermitian matrix with eigenvalues

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A). (2.1)

The classical Courant-Fischer minmax principle then asserts that (compare e.g. [1]):

Theorem 2.1 For 1 ≤ i ≤ n:

λi(A) = max
dim V =i

min
x∈V
||x||=1

tr(Axx∗) (2.2)

= min
dim W=n−i+1

max
x∈W
||x||=1

tr(Axx∗) (2.3)

2



A more general version of the minmax principle is due to Wielandt [19] and Hersch-
Zwahlen [5] and characterizes partial sums of eigenvalues via flags of subspaces of Cn.
To state their result we first recall some basic notions and definitions from geometry:

The complex projective space CIPn is defined as the set of all one-dimensional
complex subspaces of Cn+1, i.e. as the set of all complex lines passing through the
origin 0 ∈ Cn+1. More generally, the complex Grassmann manifold Gk(C

n) is defined
as the set of all k-dimensional complex linear subspaces of Cn. In particular for k = 1
one has the complex projective space G1(C

n) = CIPn−1. The Grassmannian is a
smooth, compact manifold of real dimension 2k(n− k).

Equivalently, the Grassmannian Gk(C
n) may be defined as the set of all Hermitian

projection operators P : Cn → Cn of rank k. A Hermitian projection operator of Cn

is a Hermitian matrix P ∈ Cn×n satisfying

P ∗ = P, P 2 = P, and rankP = k. (2.4)

For any k-dimensional complex linear subspace L ⊂ Cn let PL : Cn → Cn be the
uniquely determined projection operator satisfying

im(PL) = L, ker(PL) = L⊥, (2.5)

where L⊥ denotes the orthogonal complement of L in Cn with respect of the standard
Hermitian inner product. Thus PL is the orthogonal projection of Cn onto L along
L⊥. If X ∈ Cn×k is any full rank matrix whose columns form a basis of L, then one
has

PL = X(X∗X)−1X∗. (2.6)

Conversely, for any full rank matrix X ∈ Cn×k, the operator defined by (2.6) is a
rank k Hermitian projection operator on Cn. Thus the map L 7→ PL is a bijection of
Gk(C

n) onto the set

{P ∈ Cn×n | P ∗ = P, P 2 = P, and rankP = k}.

Given any k-dimensional linear subspace L ⊂ Cn let PL : Cn → Cn denote the
associated Hermitian projection operator. We then define

tr(A |L) := tr(PLAPL)

= tr(APL)

= tr(AX(X∗X)−1X∗), (2.7)

where X ∈ Cn×k is any full rank matrix whose columns form a basis of L. Note that
tr(A |L) is the trace of a Hermitian operator and therefore a real number.
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Definition 2.2 The smooth map

RA : Gk(C
n) −→ IR
L 7−→ tr(A |L)

(2.8)

is called the Rayleigh quotient of A on Gk(C
n).

If k = 1 the map RA coincides with the classical Rayleigh quotient

RA(x) =
< Ax, x >

< x, x >
. (2.9)

The extremal principles for the partial sums of eigenvalues of a Hermitian matrix A
of Wielandt, Hersch-Zwahlen and Riddel are now stated as follows:

Theorem 2.3 (Wielandt [19]) For 1 ≤ i1 < . . . < ik ≤ n:

λi1(A) + · · ·+ λik(A) = max
V1⊂...⊂Vk

dim Vj=ij

min
L∈Gk(Cn)

dim(L∩Vj)≥j

tr(A |L) (2.10)

= min
W1⊃...⊃Wk

dim Wj=n−ij+1

max
L∈Gk(Cn)

dim(L∩Wj)≥j

tr(A |L). (2.11)

In particular, for k = 1, Theorem 2.3 specializes to the Courant-Fischer minmax
principle as formulated in Theorem 2.1.

Remark 2.4 It can be shown (see Bhatia [1, page 43]) that the maximal value
of (2.10) is assumed at a “partial flag of eigenspaces”, i.e. at a flag (V1, . . . , Vk)
having the property that

dim(Vj) = ij and Vj ⊂ ker(λ1I − A)⊕ · · · ⊕ ker(λijI − A), for j = 1, . . . , k.

We conclude this section with the following result from Hersch-Zwahlen [5]:

Theorem 2.5 Let A be a Hermitian matrix with eigenvalues λ1(A) ≥ . . . ≥ λn(A)
and a corresponding orthogonal set of eigenvectors v1, . . . , vn. Denote with

Vm := span(v1, . . . , vm) , m = 1, . . . , n. (2.12)

Let 1 ≤ i1 < . . . < ik ≤ n. Then one has:

λi1(A)+ · · ·+λik(A) = min
L∈Gk(Cn)

{tr(A |L) | dim(L∩Vij) ≥ j, j = 1, . . . , k}. (2.13)

Thus the result of Hersch-Zwahlen just says that the sum of eigenvalues λi1(A) +
· · ·+λik(A) is characterized as the minimal value of the trace function tr(A |L) when
evaluated on a Schubert subvariety of Gk(C

n).
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3 Schubert Calculus

Consider again the Grassmann manifold Gk(C
n) consisting of k-dimensional linear

subspaces of the vector space Cn. Using the Plücker embedding Gk(C
n) can be

embedded into the projective space CIPN of dimension N = n!
k!(n−k)!

− 1. Under this

embedding Gk(C
n) is a projective variety described by a famous set of quadratic

relations (see e.g. [4]).

Definition 3.1 A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = Cn (3.1)

where we assume that dimVi = i for i = 1, . . . , n.

Let i = (i1, . . . , ik) denote a sequence of numbers having the property that

1 ≤ i1 < . . . < ik ≤ n. (3.2)

Definition 3.2 For each flag F and each multiindex i define:

C(i;F) := {W ∈ Gk(C
n) | dim(W

⋂
Vis) = s}

is called a Schubert cell and

S(i;F) := {W ∈ Gk(C
n) | dim(W

⋂
Vis) ≥ s}

is called a Schubert variety.

We emphasize that the Schubert cell C(i;F) is indeed a cell, i.e. isomorphic to the
affine space CN where N :=

∑k
j=1 ij−j is the dimension of the cell C(i;F). (Compare

with [4].) Moreover the Zariski closure of the cell C(i;F) is the variety S(i;F), which
is a projective algebraic subvariety of Gk(C

n).
The following results are well known and we refer e.g. to [3, 4].

Theorem 3.3 For every fixed flag F the Schubert cells C(i;F) decompose the Grass-
mann variety Gk(C

n) into a finite cellular CW–complex. The integral homology
H2m(Gk(C

n),Z) has no torsion and is freely generated by the fundamental classes
of the Schubert varieties S(i;F) of real dimension 2m.

Consider a fixed Schubert variety S(i;F). Its homology class is independent of
the choice of the flag F and therefore depends only on the numbers i1, . . . , ik. We
will use the symbol (i1, . . . , ik) to denote this homology class. The Poincaré-dual of
the class (i1, . . . , ik) will be denoted by

{µ1, . . . , µk} := {n− k − i1 + 1, n− k − i2 + 2, . . . , n− ik} ∈ H∗(Gk(C
n),Z). (3.3)
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At this point we want to mention that our notation was already used by Schubert
(compare with the book of Fulton [3, page 271]) and is slightly different to the one
used in [4, 6]. The cohomology ring

H∗(Gk(C
n),Z) :=

k(n−k)⊕
m=0

H2m(Gk(C
n),Z) (3.4)

has in a natural way the structure of a graded ring. From Poincaré-duality and
Theorem 3.3 it follows in particular that each graded component H2m(Gk(C

n),Z) is
a free Z-module with basis the set of Schubert cocycles {µ1, . . . , µk} where n − k ≥
µ1 ≥ . . . ≥ µk ≥ 0 and

∑k
j=1 µj = m.

Before we describe the multiplicative structure of this ring we formulate the fol-
lowing proposition which establishes the crucial link between geometric intersection
properties of Schubert varieties and algebraic properties of the ring H∗(Gk(C

n),Z).
A proof of this as well as more general theorems can be found e.g. in [3, 4].

Proposition 3.4 Consider r Schubert varieties S(il;Fl), l = 1, . . . , r. If

r+1∏
l=1

{n− k − i1l + 1, . . . , n− ikl} 6= 0, (3.5)

then the intersection
r⋂

l=1

S(il;Fl) 6= ∅. (3.6)

The multiplicative structure of H∗(Gk(C
n),Z) is described by the classical for-

mulas of Pieri and Giambelli. For this denote with

σj := {j, 0, . . . , . . . , 0} j = 1, . . . , n− k. (3.7)

In fact σj is the j-th Chern class of the universal (classifying) bundle over Gk(C
n).

In the following we describe the formulas of Pieri and Giambelli. Giambelli’s
formula expresses a general Schubert cocycle {µ1, . . . , µk} as a polynomial in the
special Schubert cocycle σj and Pieri’s formula expresses the product of a general
Schubert cocycle with a special Schubert cocycle.

Pieri’s formula:

{µ1, . . . , µk} · σj =
∑

µi−1≥νi≥µi∑k

i=1
νi=(

∑k

i=1
µi)+j

{ν1, . . . , νk} (3.8)

Giambelli’s formula:

{µ1, . . . , µk} = det(σµi+j−i) = det


σµ1 σµ1+1 . . . σµ1+k−1

σµ2−1 σµ2

...
...

. . .
...

σµk−k+1 . . . σµk

 (3.9)
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Note that Giambelli’s formula implies that the Chern classes σj generate the ring
H∗(Gk(C

n),Z).
There is a deep relationship between the ring H∗(Gk(C

n),Z) and the ring of
symmetric functions Z[x1, . . . , xk]

Sk , where Sk denotes the group of permutations,
acting on k letters. To explain this relationship we consider a special set of symmetric
functions called Schur functions. (See e.g. [10, 14]). For this let µ := (µ1, . . . , µk) and
define

sµ :=
det[x

µj+k−j
i ]

det[xk−j
i ]

; i, j = 1, . . . , k. (3.10)

Note that sµ is the quotient of two alternating functions and therefore a symmetric
function, called a Schur function. As explained in detail in [10] the set of Schur
functions

{sµ | µ1 ≥ µ2 ≥ . . . ≥ µk > 0 and
∑

µi = q} (3.11)

is an additive basis of the space of symmetric functions of degree q. As explained
in [6, 12, 14] one has a ring epimorphism

ψ : Z[x1, . . . , xk]
Sk −→ H∗(Gk(C

n),Z)
sµ 7−→ {µ1, . . . , µk}.

(3.12)

The kernel of this map has as an additive basis the set of Schur functions sµ with
µ1 > n− k.

Using this epimorphism any calculation in the ring H∗(Gk(C
n),Z) can be for-

mally done in the ring Z[x1, . . . , xk]
Sk . In particular we want to mention the rule

of Littlewood and Richardson which explains how to additively expand a product of
Schur functions in terms of Schur functions:

Consider two Schur functions sµ and sν . The product sµsν is a symmetric function
of degree

∑
µi +

∑
νi and has therefore an expansion in terms of Schur functions:

sµsν =
∑
λ

cλµ,νsλ. (3.13)

The appearing coordinates cλµ,ν are usually called the Littlewood Richardson coeffi-
cients [10, 13, 14]. In order to give a combinatorial characterization of those coef-
ficients let µ = (µ1, . . . , µk) be a partition of n representing the Schur function sµ.
In other words we assume that n − k ≥ µ1 ≥ µ2 ≥ . . . ≥ µk ≥ 0 and

∑k
i=1 µi = n.

If the integer µi is repeated ri–times in the partition µ, the abbreviated notation
µ = (µr1

1 , . . . , µ
rt
t ) will be used. The number |µ| :=

∑k
i=1 µi is sometimes called the

weight of the partition µ and the numbers µi are called the parts of the partition.
It is usual to present a partition by a left based array of boxes which has exactly

µi boxes in the i–th row. Such an array is sometimes called a tableau.
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Example 3.5 Two partitions with corresponding diagrams are illustrated:

(3, 2, 1) ↔ (32, 1) ↔

Let λ = (λ1, . . . , λk) be a second partition. One writes λ ≥ µ if λi ≥ µi, i = 1, . . . , k.
If λ ≥ µ one defines the skew tableau λ/µ as the tableau obtained from the tableau
λ by removing the first µi boxes in the row i of the tableau λ.

Example 3.6 λ = (5, 4, 2, 2), µ = (3, 2, 1) then λ/µ is given:

We are now in a position to formulate the theorem of Littlewood and Richardson.
The following formulation as well as the subsequent example can be found in the
article of Stanley [14].

Theorem 3.7 Let sµ and sν be two Schur functions represented by two partitions
µ, ν. Then the Littlewood Richardson coefficient cλµ,ν of sλ in the expansion of the
product sµsν is zero unless λ ≥ µ. In this case the coefficient is equal to the number
of ways of inserting ν1 1’s, ν2 2’s, ν3 3’s, . . . into the skew tableau λ/µ subject to the
conditions:

1. The numbers are weakly increasing in each row and strictly increasing in each
column.

2. If α1, α2, . . . is the set of numbers obtained when reading of the numbers inserted
in λ/µ from right to left then for any i, j the numbers of i’s among α1, α2, . . . , αj

is not less than the number (i+ 1)’s among the numbers α1, α2, . . . , αj.

The following example given in [14] illustrates the method:

Example 3.8 Let λ = (5, 4, 2, 2), µ = (3, 2, 1) and ν = (4, 2, 1). Then the following
skew diagrams λ/µ are the only ones which satisfy 1. and 2. In particular the
coefficient of sλ in the expansion of the product sµsν is equal to 3.

1 1
1 2

1
2 3

1 1
2 2

1
1 3

1 1
1 2

2
1 3
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Using the Littlewood Richardson rule together with the description of the ring
H∗(Gk(C

n),Z) as given in (3.12) we are in a position to multiply arbitrary cocycles
in H∗(Gk(C

n),Z). The following example illustrates the procedure:

Example 3.9 Consider the elements {3, 2, 0} and {2, 1, 0} in H∗(G3(C
6),Z). Then

{3, 2, 0}{2, 1, 0} = {5, 3, 0}+ {5, 2, 1}+ {4, 4, 0}+ 2{4, 3, 1}
+{4, 2, 2}+ {3, 3, 2} (3.14)

We conclude this section with the Poincaré duality theorem of cocycles. For this
consider a cocycle {µ1, . . . , µk}. The dual cocycle in H∗(Gk(C

n),Z) is defined as the
cocycle ν := {n− k − µk, . . . , n− k − µ1}. Using this notation one has:

Theorem 3.10

{µ1, . . . , µk}{ν1, . . . , νk} = {n− k, . . . , n− k}

Proof: Apply Theorem 3.7 of Littlewood and Richardson together with the description
of H∗(Gk(C

n),Z) induced by the representation (3.12).

4 Main Results

In order to derive our main result we will use the following simple lemma, the trivial
proof of it is omitted.

Lemma 4.1 Suppose the eigenvalues of a Hermitian n× n matrix A are ordered as
λ1(A) ≥ . . . ≥ λn(A). Then for any 1 ≤ i1 < . . . < ik ≤ n one has:

λi1(−A) + · · ·+ λik(−A) = −
k∑

j=1

λn−ij+1(A). (4.1)

In the following we will consider Hermitian matrices A1, . . . , Ar+1 ∈ Cn×n with
corresponding eigenvalues

λ1(Al) ≥ . . . ≥ λn(Al), l = 1, . . . , r + 1 (4.2)

and corresponding orthogonal sets of eigenvectors v1l, . . . , vnl. Assume that

Ar+1 = A1 + · · ·+ Ar. (4.3)

For each Hermitian operator Al, l = 1, . . . , r + 1 construct a flag of eigenspaces

Fl : {0} ⊂ V1l ⊂ V2l ⊂ . . . ⊂ Vnl = Cn (4.4)
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defined through the property:

Vml := span(v1l, . . . , vml) m = 1, . . . , n. (4.5)

The following result, which has been first proved by Thompson [17] for the case
r = 2, establishes the crucial relationship between matrix spectral inequalities and
the Schubert calculus.

Lemma 4.2 Let A1, . . . , Ar be complex Hermitian n × n matrices and denote with
F1, . . . ,Fr+1 the corresponding flags of eigenspaces defined by (4.5). Assume Ar+1 =
A1 + · · ·+ Ar. and let il = (i1l, . . . , ikl) be r + 1 sequences of integers satisfying

1 ≤ i1l < . . . < ikl ≤ n, l = 1, . . . , r + 1. (4.6)

Suppose the intersection of the r + 1 Schubert subvarieties of Gk(C
n) is nonempty,

i.e.:
S(i1;F1)

⋂
. . .

⋂
S(ir+1;Fr+1) 6= ∅. (4.7)

Then the following matrix eigenvalue inequalities hold:

k∑
j=1

λn−ij,r+1+1(A1 + · · ·+ Ar) ≥
r∑

l=1

k∑
j=1

λijl
(Al) (4.8)

k∑
j=1

λij,r+1
(A1 + · · ·+ Ar) ≤

r∑
l=1

k∑
j=1

λn−ijl+1(Al). (4.9)

Proof: Consider L ∈ Gk(C
n) with

L ∈
r+1⋂
l=1

S(il;Fl) 6= ∅. (4.10)

Then, by using the Hersch-Zwahlen extremal principle (Theorem 2.5) one has:

0 = tr((A1 + · · ·+ Ar − Ar+1) |L) (4.11)

=
r∑

l=1

tr(Al |L)− tr(Ar+1 |L) (4.12)

≥
r∑

l=1

min{tr(Al |L) | L ∈ S(il;Fl)}

+ min{tr(−Ar+1 |L) | L ∈ S(ir+1;Fr+1)} (4.13)

=
r∑

l=1

k∑
j=1

λijl
(Al) +

k∑
j=1

λij,r+1
(−Ar+1). (4.14)
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Thus by Lemma 4.1 one has:

k∑
j=1

λn−ij,r+1+1(Ar+1) ≥
r∑

l=1

k∑
j=1

λijl
(Al) (4.15)

which proves (4.8). The inequality (4.9) follows from (4.8) by replacing the matrices
Al by −Al, l = 1, . . . , r+ 1 and using Lemma 4.1. This completes the proof.

In general it will be difficult to verify the intersection property (4.7) as it assumes
the knowledge of the eigenspaces of A1, . . . , Ar and of Ar+1 = A1 + · · · + Ar. By
combining Lemma 4.2 with the intersection theoretic result of Proposition 3.4 we
obtain a result with a more easily verifiable hypothesis.

Theorem 4.3 Let il = (i1l, . . . , ikl) be r + 1 sequences of integers satisfying

1 ≤ i1l < . . . < ikl ≤ n, l = 1, . . . , r + 1. (4.16)

Let {n−k−i1l+1, . . . , n−ikl} ∈ H∗(Gk(C
n),Z) denote the Schubert cocycle that is the

Poincaré dual of the fundamental homology class of the Schubert variety S(il;Fl) for
l = 1, . . . , r+ 1. If the (r+ 1)-fold product of the Schubert cocycles in H∗(Gk(C

n),Z)

r+1∏
l=1

{n− k − i1l + 1, . . . , n− ikl} 6= 0, (4.17)

then the eigenvalue inequality (4.8) and (4.9) holds for any set of Hermitian matrices
A1, . . . , Ar ∈ Cn×n.

Proof: Immediate consequence of Lemma 4.2 and Proposition 3.4.

Corollary 4.4 Let i := (i1, . . . , ik), j := (j1, . . . , jk), p := (p1, . . . , pk), be sequences
satisfying 1 ≤ i1 < . . . < ik ≤ n, 1 ≤ j1 < . . . < jk ≤ n and 1 ≤ p1 < . . . < pk ≤ n. If
the triple product

{n−k−i1+1, . . . , n−ik}{n−k−j1+1, . . . , n−jk}{n−k−p1+1, . . . , n−pk} 6= 0, (4.18)

is nonzero then for any pair of complex Hermitian matrices A,B ∈ Cn×n the following
eigenvalue inequalities hold:

k∑
ν=1

λn−pν+1(A+B) ≥
k∑

ν=1

λiν (A) +
k∑

ν=1

λjν (B) (4.19)

k∑
ν=1

λpν (A+B) ≤
k∑

ν=1

λn−iν+1(A) +
k∑

ν=1

λn−jν+1(B). (4.20)

11



We conclude this section with a simple example.

Example 4.5 In H∗(G2(C
4),Z) the following nonzero products exist:

{1, 0}{1, 0}{2, 0} = {2, 2} (4.21)

{1, 0}{1, 0}{1, 1} = {2, 2} (4.22)

{1, 0}{1, 0}{1, 0}{1, 0} = 2{2, 2}. (4.23)

By Theorem 4.3 and Corollary 4.4 the following eigenvalue inequalities hold for
arbitrary 4× 4 Hermitian matrices:

λ1(A+B) + λ4(A+B) ≤ λ1(A) + λ3(A) + λ1(B) + λ3(B) (4.24)

λ2(A+B) + λ3(A+B) ≤ λ1(A) + λ3(A) + λ1(B) + λ3(B), (4.25)

λ2(A+B+C)+λ4(A+B+C) ≤ λ1(A)+λ3(A)+λ1(B)+λ3(B)+λ1(C)+λ3(C). (4.26)

5 Corollaries and Consequences

We apply the preceding results to verify some classical eigenvalue inequalities. The
first inequality is given in [18].

5.1 Weyl inequality [18]:

For any indices 1 ≤ i, j ≤ n with 1 ≤ i + j − 1 ≤ n and any Hermitian matrices
A,B ∈ Cn×n one has:

λi+j−1(A+B) ≤ λi(A) + λj(B). (5.1)

Proof: Here k = 1, G1(C
n) = CIPn−1 and H∗(CIPn−1),Z) = Z[x]/(xn) is a trun-

cated polynomial ring. Using this classical description of the cohomology ring of the
projective space, the Schubert cocycles are

{i} = xi, i = 0, . . . , n− 1. (5.2)

Let i1, j1 and p1 defined by:

i1 := n− i+ 1, j1 := n− j + 1, p1 := i+ j − 1. (5.3)

Then (4.18) reduces to

{i− 1}{j − 1}{n− i− j + 1} = {n− 1}. (5.4)

But since xn−1 generates H2(n−1)(CIPn−1),Z) ≡ Z one has {n − 1} 6= 0. Thus the
Weyl inequality follows immediately from Corollary 4.4.
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5.2 Lidskii inequality:

For 1 ≤ a1 < . . . < ak ≤ n and for any Hermitian matrices A,B ∈ Cn×n one has the
matrix eigenvalue inequality:

k∑
j=1

λaj
(A+B) ≤

k∑
j=1

λaj
(A) +

k∑
j=1

λj(B). (5.5)

Proof: Consider i := (n−ak+1, . . . , n−a1+1), j := (n−k+1, . . . , n), p := (a1, . . . , ak).
Then the product in condition (4.18) of Corollary 4.4 is given by

{ak − k, . . . , a1 − 1}{0, . . . , 0}{n− k − a1 + 1, . . . , n− ak}. (5.6)

Since {0, . . . , 0} = 1 ∈ H∗(Gk(C
n),Z) and {n − k − a1 + 1, . . . , n − ak} is Poincaré

dual to {ak − k, . . . , a1 − 1} the above triple product is equal to {n − k, . . . , n − k}
and hence nonzero. This completes the proof of the Lidskii inequality.

Thus both the Weyl and the Lidskii inequality are direct consequences of the
Poincaré duality of the projective space CIPn−1 and of the Grassmannian Gk(C

n)
respectively. A proof of the next inequality requires a more subtle topological argu-
ment.

5.3 Freede-Thompson inequality [17]:

For any 1 ≤ a1 < . . . < ak ≤ n, 1 ≤ b1 < . . . < bk ≤ n with ak + bk − k ≤ n and
Hermitian matrices A,B ∈ Cn×n one has:

k∑
ν=1

λaν+bν−ν(A+B) ≤
k∑

ν=1

λaν (A) +
k∑

ν=1

λbν (B). (5.7)

Proof: Consider i := (n − ak + 1, . . . , n − a1 + 1), j := (n − bk + 1, . . . , n − b1 + 1),
p := (a1+b1−1, . . . , ak+bk−k). Then the product in condition (4.18) of Corollary 4.4
is given by

{ak−k, . . . , a1−1}{bk−k, . . . , b1−1}{n−k−a1− b1 +2, . . . , n+k−ak− bk}. (5.8)

By assumption one has ak + bk − 2k ≤ n − k. From the Littlewood Richardson rule
it follows that the product of the first two factors is of the form:

{ak−k, . . . , a1−1}{bk−k, . . . , b1−1} = {ak+bk−2k, . . . , a1+b1−2}+
∑
λ

cλµ,ν{λ}, (5.9)

where cλµ,ν are again the Littlewood Richardson coefficients and the sum is taken over
all partitions λ, λ 6= {ak + bk − 2k, . . . , a1 + b1 − 2}. Now the result follows from
the observation that the cocycle {ak + bk − 2k, . . . , a1 + b1 − 2} is (compare with
Theorem 3.10) dual to the cocycle {n− k− a1 − b1 + 2, . . . , n+ k− ak − bk}, i.e. the
product (5.8) is nonzero and Theorem 4.3 applies.
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6 Nonzero Products in H∗(Gk(C
n),Z)

It is a consequence of Theorem 4.3 that any nonzero product inH∗(Gk(C
n),Z) implies

an eigenvalue inequality of the form (4.8) and an inequality of the form (4.9). In this
section we describe a large class of nonzero products. In particular we will describe
all maximal nonzero products in H∗(G2(C

n),Z) and we will describe all maximal
nonzero products in H∗(Gk(C

n),Z) consisting of 3 factors. The following lemmas
prepare for those results.

Lemma 6.1 Assume µ := {µ1, . . . , µk} and ν := {ν1, . . . , νk} are two cocycles in
H∗(Gk(C

n),Z) which are complimentary in dimension, i.e. there weights satisfy
|µ|+ |ν| = k(n− k). Then µν 6= 0 if, and only if µ and ν are dual to each other, i.e.
ν = {n− k − µk, . . . , n− k − µ1}.

Proof: See also [4, p.198] for a different proof based on Poincaré-duality. From
the description of H∗(Gk(C

n),Z) in (3.12) it is clear that µν 6= 0 exactly when the
coefficient of {(n−k)k} = {n−k, . . . , n−k} in the expansion µν is nonzero. Applying
the rule of Littlewood and Richardson to the skew tableau (n − k)k/µ one verifies
that there is only one possibility to fill this tableau with ν1 1’s, ν2 2’s, . . ., νk k’s, and
in this case one necessarily has ν1 = n− k − µk, . . . , νk = n− k − µ1.

Lemma 6.2 Assume µl = {µ1l, . . . , µkl}, l = 1, . . . , r, are cocycles with
∑r

l=1 µ1l ≤
n− k. Then the following identity holds in H∗(Gk(C

n),Z):

{n− k −
r∑

l=1

µkl, . . . , n− k −
r∑

l=1

µ1l}
r∏

l=1

{µ1l, . . . , µkl} = {n− k, . . . , n− k}. (6.1)

Proof: Using inductively Littlewood Richardson’s rule it follows that

r∏
l=1

{µ1l, . . . , µkl} = {
r∑

l=1

µ1l, . . . ,
r∑

l=1

µkl}+
∑
µ

cµ{µ1, . . . , µk}. (6.2)

(Compare with (5.9)). Because {n−k−∑r
l=1 µkl, . . . , n−k−

∑r
l=1 µ1l} is the Poincaré

dual of the first term after the equality sign the result follows from the previous
Lemma.

In the next Lemma we will identify the Schubert symbol {x1, x2} ∈ H∗(G2(C
n),Z)

with zero for x1 > n− 2.

Lemma 6.3 If {a1, a2}, {b1, b2} are two cocycles in H∗(G2(C
n),Z) and

m := min{(a1 − a2), (b1 − b2)} (6.3)

then one has

{a1, a2}{b1, b2} =
m∑

i=0

{a1 + b1 − i, a2 + b2 + i}. (6.4)
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Proof: Direct consequence of the Littlewood Richardson rule. (Compare with [13].)

For the following Lemma let [x] denote the largest integer smaller or equal to x.

Lemma 6.4 If {a1l, a2l} ∈ H∗(G2(C
n),Z), l = 1, . . . , r, are r Schubert cocycles with

a11 − a21 ≥ · · · ≥ a1r − a2r (6.5)

and

m := min{[1
2

r∑
l=1

(a1l − a2l)],
r∑

l=2

(a1l − a2l)} (6.6)

then there are positive nonzero integers ci such that

r∏
l=1

{a1l, a2l} =
m∑

i=0

ci{
r∑

l=1

a1l − i,
r∑

l=1

a2l + i}. (6.7)

In particular if
∑r

l=1 a1l ≤ m+ n− 2 at least one summand is nonzero and therefore
the whole product is nonzero.

Proof: Let α ∈ {2, . . . , r} be the largest integer with the property that

(a11 − a21) ≥
α∑

l=2

(a1l − a2l). (6.8)

Denote with m̃ :=
∑α

l=2(a1l − a2l). Using inductively Lemma 6.3 one sees that

α∏
l=1

{a1l, a2l} =
m̃∑

i=0

c̃i{
α∑

l=1

a1l − i,
α∑

l=1

a2l + i} (6.9)

with positive, nonzero constants c̃i. In particular if α = r thenm = m̃ and the result is
proven. If α < r then (a11−a21) <

∑r
l=2(a1l−a2l) and thereforem = [1

2

∑r
l=1(a1l−a2l)].

Multiplying inductively expression (6.9) with the factors {a1l, a2l}, l = α + 1, . . . , r
one deduces also in this case, using the fact that all Littlewood Richardson coefficients
are positive, that

∏r
l=1{a1l, a2l} =

∑m
i=0 ci{xi, yi}, where

r∑
l=1

a1l −m ≤ xi ≤
r∑

l=1

a1l and
r∑

l=1

a2l ≤ yi ≤
r∑

l=1

a2l +m. (6.10)

In particular, if
∑r

l=1 a1l −m ≤ n − 2, the product is nonzero, which completes the
proof.

As a direct consequence of this Lemma we obtain a description of all maximal
nonzero products in H∗(G2(C

n),Z).
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Theorem 6.5 Assume {a1l, a2l} ∈ H∗(G2(C
n),Z), l = 1, . . . , r, are r cocycles with

r∑
l=1

(a1l + a2l) = 2(n− 2). (6.11)

Then
∏r

l=1{a1l, a2l} 6= 0 if, and only if

(a1j − a2j) ≤
∑

l∈{1,...,j−1,j+1,...,r}
(a1l − a2l), j = 1, . . . , r. (6.12)

Proof: After a possible reindexing we can assume that

a11 − a21 ≥ · · · ≥ a1r − a2r. (6.13)

Because of assumption (6.12), m = [1
2

∑r
l=1(a1l − a2l)]. Because of the description

of H∗(G2(C
n),Z) in (3.12) it is clear that the product is nonzero if, and only if the

coefficient of {n−2, n−2} ∈ H2(n−2)(G2(C
n),Z) in the product expansion is nonzero.

By the last Lemma this is the case iff
∑r

l=1 a1l ≤ m+n−2. Moreover because of (6.11)
the number 1

2

∑r
l=1(a1l−a2l) is an integer. But then

∑r
l=1 a1l ≤ m+n−2 is equivalent

to
∑r

l=1(a1l + a2l) ≤ 2(n− 2) which is true by assumption (6.11).

Remark 6.6 If
∑r

l=1(a1l + a2l) < 2(n − 2) then it follows from the last proof that
assumption (6.12) is still sufficient for the product

∏r
l=1{a1l, a2l} to be nonzero.

Combining Theorem 6.5 with Theorem 4.3 one finally has:

Theorem 6.7 Let (i1l, i2l) be r + 1 pairs of integers with:

1 ≤ i1l < i2l ≤ n, l = 1, . . . , r + 1 (6.14)

r(2n− 1) + 3 ≤
r+1∑
l=1

(i1l + i2l) (6.15)

i2j − i1j ≤ 1− r +
∑

l∈{1,...,j−1,j+1,...,r+1}
(i2l − i1l), j = 1, . . . , r + 1. (6.16)

Then for any set of Hermitian matrices A1, . . . , Ar+1 ∈ Cn×n satisfying the relation
Ar+1 = A1 + · · ·+ Ar the following eigenvalue inequalities hold:

λn−i1,r+1+1(Ar+1) + λn−i2,r+1+1(Ar+1) ≥
r∑

l=1

(λi1l
(Al) + λi2l

(Al)) (6.17)

λi1,r+1(Ar+1) + λi2,r+1(Ar+1) ≤
r∑

l=1

(λn−i1l+1(Al) + λn−i2l+1(Al)). (6.18)
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Proof: Denote with a1l = n − i1l − 1 and a2l = n − i2l. Then condition (6.15)
is equivalent to the condition

∑r+1
l=1 (a1l + a2l) ≤ 2(n − 2) and condition (6.16) is

equivalent to inequality (6.12). By Remark 6.6 the product
∏r+1

l=1 {n− i1l − 1, n− i2l}
is nonzero and the result follows once again from Theorem 4.3.

In order to illustrate the theorem in the case r = 2, let A = A1, B = A2 and let

(i1,1, i2,1) = (n− a2 + 1, n− a1 + 1), (6.19)

(i1,2, i2,2) = (n− b2 + 1, n− b1 + 1), (6.20)

(i1,3, i2,3) = (c1, c2). (6.21)

Then we obtain

Corollary 6.8 Let 1 ≤ a1 < a2 ≤ n, 1 ≤ b1 < b2 ≤ n and 1 ≤ c1 < c2 ≤ n satisfy
the system of linear inequalities

a1 + a2 + b1 + b2 ≤ c1 + c2 + 3 (6.22)

a2 − a1 ≤ b2 − b1 + c2 − c1 − 1 (6.23)

b2 − b1 ≤ a2 − a1 + c2 − c1 − 1 (6.24)

c2 − c1 ≤ a2 − a1 + b2 − b1 − 1. (6.25)

Then the eigenvalue inequality

λc1(A+B) + λc2(A+B) ≤ λa1(A) + λa2(A) + λb1(B) + λb2(B) (6.26)

holds for any pair of Hermitian n× n matrices A,B.

We would like to remark that the assumptions in Corollary 6.8 imply the as-
sumptions in Theorem 8 of Horn [7]. In particular it is also possible to derive the
inequality (6.26) by the methods developed in [7].

In the last part of this section we describe all maximal nonzero products of
H∗(Gk(C

n),Z) consisting of 3 factors. The results are based on a description of
the Littlewood Richardson coefficients as given by Schlosser in [13].

In the following we explain his description and simultaneously adapt the notation
for our purposes.

Let µ := (µ1, . . . , µk), ν := (ν1, . . . , νk) and λ := (λ1, . . . , λk) be partitions. We are
interested in conditions when the Littlewood Richardson coefficient cλµ,ν is nonzero.

We will use the combinatorial description of cλµ,ν as given in Theorem 3.7 and the
following parameterization by Schlosser [13].

Consider the tableau λ and denote with phi the number of boxes in the skew
tableau λ/µ with label i in the h-th row. This gives us the following description for
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the tableau λ:
row
1 µ1 p11 λ1

2 µ2 p21 p22 λ2
...

...
...

...
. . .

...
k µk pk1 pk2 . . . pkk λk

|µ| ν1 ν2 . . . νk total

(6.27)

Of course not all configurations of numbers phi will result in a filling compatible
with the rule of Littlewood and Richardson. On the other hand, as shown in [13], one
can iteratively fill the skew tableau λ/µ, starting with pk1 and proceeding inductively
with

phi, h = k, . . . , i+ 1, i = 1, . . . , k − 1,

subject to the following inequalities:

Max(h, i; (ν)) ≤ phi ≤ Min(h, i; (ν), (µ)) (6.28)

where

Max(h, i; (ν)) := max{0, νi − νi−1 −
k∑

j=h+1

pji +
k∑

j=h−1

pj,i−1}

Min(h, i; (ν), (µ)) := min{µh−1 − µh +
i−1∑
j=1

(ph−1,j − ph,j), νi −
k∑

j=h+1

pji}

and

pii = νh −
k∑

h=i+1

phi, i = 1, . . . , k (6.29)

In this iterative scheme we assume that

ν0 = 0, p0,j = 0, ph,0 = 0. (6.30)

For our purposes the main result, which is stated in similar form in [13, Theorem 1],
is:

Theorem 6.9 Let µ, ν be partitions and let phi be iteratively described through (6.28)
and (6.29). Denote with

λh := µh +
h∑

i=1

phi, h = 1, . . . , k. (6.31)

Then λ := (λ1, . . . , λk) describes a tableau and the Littlewood Richardson coefficient
cλµ,ν is nonzero.
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Corollary 6.10 Let µ, ν be partitions and let λ satisfy the inequalities induced by the
iterative scheme (6.28) and (6.29). Then

{µ}{ν}{n− k − λk, . . . , n− k − λ1} 6= 0. (6.32)

Proof: The cocycle {n−k−λk, . . . , n−k−λ1} is the Poincaré dual of the cocycle {λ}
and because the Littlewood Richardson coefficient cλµ,ν is nonzero the results follows
from Lemma 6.1.

Corollary 6.11 Let A,B be complex Hermitian n×n matrices. Let µ, ν be partitions
and let λ satisfy the inequalities induced by (6.28) and (6.29). Let

a1 := µk + 1, . . . , ak := µ1 + k (6.33)

b1 := νk + 1, . . . , bk := ν1 + k (6.34)

c1 := λk + 1, . . . , ck := λ1 + k (6.35)

Then
k∑

ν=1

λcν (A+B) ≤
k∑

ν=1

λaν (A) +
k∑

ν=1

λbν (B). (6.36)

Proof: Direct consequence of equation (6.32) and Theorem 4.3.

Remark 6.12 The inequalities of Freede and Thompson (5.7) are in the following
way a special case of this Corollary. Choose in the iterative scheme (6.28) and (6.29)
phi = 0 for h 6= i and phh = νh. Then λ = µ + ν and the nonzero product (6.32)
reduces to the product (5.8).
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