
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 349, Number 8, August 1997, Pages 3401–3408
S 0002-9947(97)01975-2

MATRIX EXTENSIONS AND EIGENVALUE COMPLETIONS,

THE GENERIC CASE

WILLIAM HELTON, JOACHIM ROSENTHAL, AND XIAOCHANG WANG

Abstract. In this paper we provide new necessary and sufficient conditions
for the so-called eigenvalue completion problem.

1. Introduction

Let Matn×n(C) be the set of all n× n matrices having complex entries. In the

sequel we will identify Matn×n with the vector space Cn2

. Let A ∈ Matn×n be a
particular element and let L ⊂ Matn×n be a complex linear subspace. Identify
the set of monic polynomials of degree n in C[n] with the vector space Cn. In this
paper we present new conditions which guarantee that the characteristic map

χA : L −→ Cn, L 7−→ det(sI −A− L) = sn − σ1s
n−1 + · · ·+ (−1)nσn(1.1)

is generically surjective, i.e. we will give conditions which guarantee that the image
of χA contains a nontrivial Zariski open and therefore dense subset. (Recall that
a set in Cn is called Zariski open if its complement is the set of zeros of some
polynomials).

First we would like to remark that there are two obvious necessary conditions:

1. χA is almost onto only if dimL ≥ n.
2. There must be at least one element L ∈ L whose trace tr(L) 6= 0, i.e. L 6⊂ sln.

The main result of this paper states that if both those necessary conditions are
satisfied then for a generic set of matrices in Matn×n the characteristic map χ is
generically surjective.

There exists a large literature about so-called matrix completion problems, ma-
trix extension problems and inverse eigenvalue problems in different areas of math-
ematics. We only mention the linear algebra literature [6], [12], [13], [15], the
operator theory literature [1], [8], and the control literature [2], [3], [10].

For a treatment of many of these topics we recommend the recent book by
Gohberg, Kaashoek and van Schagen [7], which concentrates to a large extent on
eigenvalue completion problems. We now indicate the type of results which we
consider interesting in connection with this paper.

As it turns out, our main result immediately implies classical theorems in a wide
range of situations. We now list some of these.
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In the linear algebra literature probably one of the earliest results is due to
Farahat and Ledermann [5]. The result states that for a matrix whose (n − 1) ×
(n− 1) top left-hand corner is non-derogatory, every characteristic polynomial can
be achieved through the choice of entries in the last row and last column.

In 1977 S. Friedland derived an interesting result involving ‘diagonal perturba-
tions’:

Theorem 1.1. Let A ∈Matn×n be arbitrary and let L = Dn be the set of diagonal
matrices. Then χA is surjective of mapping degree n!, i.e. when counted with
multiplicity

#{χ−1
A (D)} = n! ∀D ∈ Dn.

Both the result of Farahat and Ledermann and that of Friedland belong to the
class of matrix completion problems, i.e. one assumes that certain elements in a
matrix are fixed and other elements can be freely chosen.

For the general problem at hand probably the strongest result is due to Byrnes
and Wang [4], [14]. It covers the situation when L ⊂Matn×n is a Lie subalgebra:

Theorem 1.2. Given a Lie algebra L ⊂ gln. Then χA is onto for all A if and only
if rankL = n and some element of L has distinct eigenvalues.

This result is basically saying that χA is onto for all A if and only if Dn ⊂ L.
So the next natural question would be: When is χA onto (or almost onto) for a
generic matrix A? That is the motivation for this paper.

In the control literature our theorem covers a wide range of so-called pole place-
ment problems, and we would like to mention only the most prominent of them,
namely, the static output pole placement problem. For this one considers a time
invariant system

ẋ = Ax +Bu, y = Cx, A ∈Matn×n, B ∈Matn×m, C ∈Matp×n.
It is the goal to construct for every monic polynomial φ ∈ C[s] a so-called ‘feed-
back compensator’ u = Fy, F ∈ Matm×p, such that the ‘closed loop characteristic
polynomial’

det(sI −A−BFC) = φ.

Note that in this situation L = {BFC | F ∈ Matm×p} is a subspace (even a Lie
subalgebra) of Matn×n of dimension at most mp. The main result of Brockett and
Byrnes [2] states:

Theorem 1.3. If mp = n, then for a generic set of matrices (A,B,C) the map

χA : Cmp −→ Cn, F 7−→ det(sI −A−BFC)

is surjective, and there are

d(m, p) = deg Grass(m,m+ p) =
1!2! · · · (p− 1)!(mp)!

m!(m+ 1)! · · · (m+ p− 1)!
(1.2)

solutions for each characteristic polynomial.

For a more extensive treatment of the class of inverse eigenvalue problems ap-
pearing in the control literature we refer to the survey article by Byrnes [3].

As a word of caution, note that since the dominant morphism theorem (see
Lemma 2.1) is not true over R, this paper does not address classical completion
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problems which involve real subspaces L of Matn×n(R). For example, completion
to self-adjoint matrices is not covered here.

In the next section we will provide the main results of this paper. In Section 3
we will explain in geometric terms some of the main ingredients of the proof of
Theorem 2.4, the major result of this article.

2. Dominant morphism theorem

and the linearization of the characteristic map

Consider once more the characteristic map (1.1):

χA : L −→ Cn, L 7−→ (−σ1(A+ L), . . . , (−1)nσn(A+ L)) ,

where σi(A+L) denotes the ith elementary symmetric function of the eigenvalues
λ1, . . . , λn of A + L. There are classical formulas which express the elementary
symmetric functions σi(A+L) uniquely as a polynomial in the power sum symmetric
functions

pi := λi1 + · · ·+ λin = tr(A+ L)i.

To be precise, one has the formula (see e.g. [11])

σi(A+ L) =
1

n!
det



p1 1 0 . . . 0

p2 p1 2
...

...
. . .

. . .
. . .

...
...

. . . p1 n− 1
pn . . . . . . p2 p1


,

which induces an isomorphism Cn → Cn, (p1, . . . , pn) 7→ (σ1, . . . , σn). Based on
this, we can equally well study the map

ψ : L −→ Cn, L 7−→ (tr(A+ L), . . . , tr(A+ L)n) ,

which we call the trace map for A. The main ingredient of our proof will be a
linearization of ψ. For this we compute the difference quotient

lim
ε 7→0

tr(A+ εL)i − trAi

ε
= i · tr(Ai−1L).

The linearization dψ0 around the origin is therefore given through

dψ0(L) = (tr(L), 2tr(AL) . . . , n · tr(An−1L)).

Lemma 2.1. If for some A ∈ Matn×n and some linear subspace L ⊂ Matn×n the
linearization dψ0 of the trace map of A is onto, then χA is generically surjective,
i.e. Im(χA) contains a Zariski open subset of Cn.

Proof. Direct consequence of the dominant morphism theorem (see e.g. [9]).

In the sequel we will assume that dimL = d ≥ n, and we will identify the set of all

d-dimensional subspaces L ⊂ Matn×n with the Grassmann variety Grass(d,Cn2

).

Note that Grass(d,Cn2

) is an irreducible variety, and a subset U ⊂ Grass(d,Cn2

) is

a generic set if U contains a non-empty Zariski open subset of Grass(d,Cn2

). With
Lemma 2.1 we have:



3404 WILLIAM HELTON, JOACHIM ROSENTHAL, AND XIAOCHANG WANG

Lemma 2.2. If d ≥ n, then for a generic subset of pairs

(A,L) ∈ Cn2 ×Grass(d,Cn2

)

χA is almost onto.

Proof. The set of pairs (A,L) whose linearization dψ0 fails to be surjective is an

algebraic subset in Cn2 × Grass(d,Cn2

). Since the complement is certainly non-
empty, the result readily follows.

In everyday language the lemma states that for almost all matrices and almost

all linear subspaces L ∈ Grass(d,Cn2

) almost all closed characteristic polynomials
can be achieved. The following two theorems strengthen this result.

Theorem 2.3. Let A ∈Matn×n be an arbitrary matrix. Then for a generic set of

subspaces in Grass(n,Cn2

), χA is almost onto.

Proof. The set of subspaces L having the property that dψ0 : Cn → Cn is not sur-

jective is an algebraic subset of Grass(n,Cn2

). By Friedland’s result (Theorem 1.1)
the result follows.

The main result of the paper is now as follows:

Theorem 2.4. Let L ⊂ Matn×n be a linear subspace satisfying dimL ≥ n and
L 6⊂ sln. Then for a generic set of matrices A ∈ Matn×n the characteristic map
χA is almost onto.

The proof of this theorem is not trivial and will require the rest of this section.
In order to facilitate the reasoning we will divide the proof into several lemmas.

Let π : Matn×n −→ Cn be the projection onto the diagonal elements. Let
sln ⊂ Matn×n be the matrices having trace equal to zero and let V := π(sln) be
the hyperplane defined by

V = {(x1, . . . , xn) ∈ Cn|
n∑
i=1

xi = 0}.(2.1)

If {e1, . . . , en} is the standard basis of Cn, then V has a basis consisting of the
vectors {e1 − e2, . . . , en−1 − en}.

Let L ∈ sln be an arbitrary nonzero matrix, and consider the associated poly-
nomial map

ϕL : Gln −→ V, S 7−→ π(SLS−1).

One readily verifies that the Jacobian around the identity is given through

dϕLI : Matn×n −→ V, X 7−→ π([X,L]) = π(XL− LX).

In the sequel we will derive an algebraic criterion which guarantees that the
Jacobian dϕLI is surjective. For this we will associate to a matrix L = (lij) a
graph G(L) which consists of n vertices v1, . . . , vn with edges between the ith and
jth vertex whenever either lij or lji is nonzero. In terms of the matrix L we can
identify the vertex vi with the ith diagonal element, with the obvious meaning for
the edges.

Recall that a graph with n vertices is called connected provided any two vertices
can be joined by some path in the graph. If G is not connected, then there exist a
permutation σ of n elements and r integers 1 ≤ i1 < · · · < ir ≤ n with the property
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that vσ(1), . . . , vσ(i1) represents the first connected component, vσ(i1+1), . . . , vσ(i2)

represents the second connected component and so on.
Corresponding to the permutation σ there is a permutation matrix Pσ having

the property that PσLP
−1
σ is a block diagonal matrix diag(L1, . . . , Lr) whose ith

block Li has an associated connected graph G(Li).

Lemma 2.5. For any L ∈ Matn×n the Jacobian dϕLI is surjective if and only if
the associated graph G(L) is connected.

Proof. First assume that G(L) is not connected. Following the remark before the
lemma, there is a permutation matrix P such that

L̃ := PLP−1 =

(
L1 0
0 L2

)
is block diagonal, where we assume that L1 is a k × k matrix with 1 ≤ k < n.

Clearly the sum of the first k diagonal elements of the matrix
(
XL̃− L̃X

)
is

always zero. It follows that dϕL̃I and therefore also dϕLI are both not surjective.

In order to prove the other direction, assume that G(L) is connected. Let Eij ∈
Matn×n be the matrix whose ijth entry is 1, and all the other entries are zero.
Then

π(EijL− LEij) =

{
lji(ei − ej) if i 6= j,
0 if i = j,

(2.2)

where {e1, . . . , en} is the standard basis of Cn as introduced earlier. Since the
vertex vi is connected with the vertex vi+1 for i = 1, . . . , n−1, it follows that there
is a path

vi = vi1 ↔ vi2 ↔ · · · ↔ vis = vi+1

connecting the vertices vi and vi+1. From the identity (2.2) it follows that the
vectors ei1 − ei2 , ei2 − ei3 , ... , eis−1 − eis are all in the image of dϕLI . In particular

the vector ei − ei+1 is also in the image of dϕLI . This completes the proof.

Lemma 2.6. Let L ∈Matn×n be a nonzero matrix having the property that π(L) =
0. Then there exists a matrix X such that for all ε 6= 0 the matrix

L̂(ε) := (In + εX)L(In + εX)−1

has the properties:

1. dϕ
L̂(ε)
I (Matn×n) = V ,

2. π(L̂(ε)) = 0.

Proof. If the graph of L is connected the result is trivially fulfilled by using X = 0.
If L is not connected there exists a permutation matrix P such that

L̃ := PLP−1 =

(
L1 0
0 L2

)
has the properties that the entry l̃2,1 of L̃ is nonzero and the graph of the k × k

submatrix L1 is connected. Let X̃ := E1,(k+1) + · · ·+ E1,n. Then

I + εX̃ =

(
Ik εB
0 In−k

)
,

where the first row of B is (1, . . . , 1) and all the other rows are zero.
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From the identity

(In + εX̃)L̃(In + εX̃)−1 = (In + εX̃)L̃(In − εX̃) =

(
L1 ε(BL2 − L1B)
0 L2

)
it follows that for all ε one has

0 = π(L̃) = π
(
(In + εX̃)L̃(In + εX̃)−1

)
= π

(
(In + εP−1X̃P )L(In + εP−1X̃P )−1

)
.

Let X := P−1X̃P . By the last expression we have that π(L̂(ε)) = π(L), and since

the second row of BL2 − L1B is l̃2,1(1, . . . , 1), the graph of L̂(ε) is connected for
all ε 6= 0, i.e. by Lemma 2.5,

dϕ
L̂(ε)
I (Matn×n) = V

for all ε 6= 0.

Remark 2.7. It can be shown easily that the same is true for any L 6= λI, but we
will not need this result.

Lemma 2.8. Let L ⊂Matn×n be a linear subspace of dimension n, L 6⊂ sln. (I.e.,
L contains an element with nonzero trace.) Then there exists an S ∈ Gln such that
π |SLS−1 is one-one, i.e. the projection of SLS−1 onto the diagonal elements is
one to one and onto.

Proof. Let {L1, L2, . . . , Ln} be a basis of L having the property that L1 6∈ sln, Li ∈
sln for i = 2, 3, . . . , n. Furthermore we will assume that π(L1), . . . , π(Lk) are lin-
early independent. If k < n and if π(Lk+1) depends linearly on π(L1), . . . , π(Lk),
we will show the existence of some S ∈ Gln such that

π(SL1S
−1), . . . , π(SLkS

−1), π(SLk+1S
−1)

are linearly independent. The proof of the theorem will then follow from this claim
by induction over k.

By assumption there are numbers a1, . . . , ak having the property that

π(Lk+1) = a1π(L1) + · · ·+ akπ(Lk).

By possibly replacing Lk+1 through Lk+1 − a1L1 − · · · akLk we can assume that
π(Lk+1) = 0. Since Lk+1 is not a diagonal matrix, it follows from Lemma 2.6 that
there exist a matrix X1 and a number ε1 such that the matrices

L̃i := (In + ε1X1)Li(In + ε1X1)
−1, i = 1, . . . , k + 1

have the properties that π(L̃1), . . . , π(L̃k) are linearly independent, π(L̃k+1) = 0,

and dϕ
L̃k+1

I (Matn×n) = V . Since dϕ
L̃k+1

I is surjective, there exists a matrix X such
that

dϕ
L̃k+1

I (X) = π([X, L̃k+1]) 6∈ span{π(L̃1), . . . , π(L̃k)}.
Consider the Taylor series expansions

π((In + εX)L̃i(In + εX)−1) = π(L̃i) + βi(ε), i = 1, . . . , k,

and

π((In + εX)L̃k+1(In + εX)−1) = επ([X, L̃k+1]) + αk+1(ε),
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where the vectors βi(ε) and αk+1(ε) satisfy

lim
ε→0

βi(ε) = 0, i = 1, . . . , k, and lim
ε→0

1

ε
αk+1(ε) = 0.

For a sufficiently small ε > 0,

{π(L̃1) + βi(ε), . . . , π(L̃k) + βi(ε), π([X, L̃k+1]) +
1

ε
αk+1(ε)}

are linearly independent, i.e.

{π((In + εX)L̃i(In + εX)−1)|i = 1, . . . , k + 1}
are linearly independent. This completes the induction step and therefore the proof
of the lemma.

Proof of Theorem 2.4. Let L ⊂ Matn×n be given. By possibly restricting to a

subspace L̃ ⊂ L we will be able to assume that dimL = n. The set of matrices
A ∈ Matn×n whose trace map has has surjective linearization dψ0 forms a Zariski

open subset of Cn2

. In order to prove the theorem it is therefore enough to show
the existence of one matrix Â whose trace map has surjective linearization.

By the last lemma there exists a S ∈ Gln such that π |SLS−1 is one to one and
onto. Let D be the diagonal matrix

D :=


1

2
. . .

n

 .

Then

L −→ Cn, L 7−→ (tr(SLS−1), tr(DSLS−1), . . . , tr(Dn−1SLS−1))

is surjective. Let Â := S−1DS. Since tr(DiSLS−1) = tr(ÂiL) for i = 0, . . . , n− 1,
it follows that

L −→ Cn, L 7−→ (tr(L), tr(ÂL), . . . , tr(Ân−1L))

is surjective. This shows the existence of the desired matrix Â and completes the
proof.

3. Some geometric remarks

The main technical result of this paper is Lemma 2.8. In this section we do some
geometric interpretation of this result.

Consider once more the Grassmannian Grass(n,Cn2

). The similarity transfor-
mation on Matn×n induces a group action

φ : Gln ×Grass(n,Cn2

) −→ Grass(n,Cn2

),(3.1)

(S,L) 7−→ SLS−1.

Inside Grass(n,Cn2

) there are two natural Schubert subvarieties:

S1 := {L ∈ Grass(n,Cn2

) | π|L is not surjective},(3.2)

S2 := {L ∈ Grass(n,Cn2

) | L ⊂ sln}.(3.3)

One readily verifies that S2 is isomorphic to a sub-Grassmann variety, S2 ⊂ S1, and
S1 is a Schubert hypersurface, i.e. a codimension one Schubert subvariety. Note
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that S2 is Gln invariant. Lemma 2.8 now states that if X ∈ S1, then the whole Gln
orbit Gln(X) ⊂ S1 if and only if X ∈ S2.

Consider now the canonical Hermitian inner product on Cn2 'Matn×n. This in-

ner product induces an isomorphism between Grass(n,Cn2

) and Grass(n2−n,Cn2

).

Let S⊥1 and S⊥2 be the subvarieties in Grass(n2 − n,Cn2

) corresponding to S1,S2.
One readily verifies that

S⊥1 := {W ∈ Grass(n2 − n,Cn2

) | Dn ∩W 6= {0}},(3.4)

S⊥2 := {W ∈ Grass(n2 − n,Cn2

) | In ∈ W}.(3.5)

Translating Lemma 2.8 into this dual version, we immediately have:

Lemma 3.1. Let W ⊂ Matn×n be a linear subspace of dimension n2 − n which
does not contain the identity matrix In. Then there exists an S ∈ Gln having the
property that SWS−1 contains no diagonal matrix.
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