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Abstract—We present a tree-based construction of low-density
parity-check (LDPC) codes that have minimum pseudocodeword
weight equal to or almost equal to the minimum distance, and per-
form well with iterative decoding. The construction involves enu-
merating a d-regular tree for a fixed number of layers and em-
ploying a connection algorithm based on permutations or mutu-
ally orthogonal Latin squares to close the tree. Methods are pre-
sented for degrees d = ps and d = ps + 1, for p a prime. One class
corresponds to the well-known finite-geometry and finite general-
ized quadrangle LDPC codes; the other codes presented are new.
We also present some bounds on pseudocodeword weight for p-ary
LDPC codes. Treating these codes as p-ary LDPC codes rather
than binary LDPC codes improves their rates, minimum distances,
and pseudocodeword weights, thereby giving a new importance to
the finite-geometry LDPC codes where p > 2.

Index Terms—Iterative decoding, low-density parity-check
(LDPC) codes, min-sum iterative decoding, p-ary pseudoweight,
pseudocodewords.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes are widely
acknowledged to be good codes due to their near

Shannon-limit performance when decoded iteratively. How-
ever, many structure-based constructions of LDPC codes fail to
achieve this level of performance, and are often outperformed
by random constructions. (Exceptions include the finite-ge-
ometry-based LDPC codes (FG-LDPC) of [12], which were
later generalized in [19].) Moreover, there are discrepancies
between iterative and maximum-likelihood (ML) decoding
performance of short-to-moderate block length LDPC codes.
This behavior has recently been attributed to the presence of
so-called pseudocodewords of the LDPC constraint graphs
(or, Tanner graphs), which are valid solutions of the iterative
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decoder which may or may not be optimal [11]. Analogous to
the role of minimum Hamming distance , in ML decoding,
the minimum pseudocodeword weight 1 has been shown
to be a leading predictor of performance in iterative decoding
[26]. Furthermore, the error floor performance of iterative
decoding is dominated by minimum-weight pseudocodewords.
Although there exist pseudocodewords with weight larger than

that have adverse effects on decoding, it has been observed
that pseudocodewords with weight are especially
problematic [9].

Most methods for designing LDPC codes are based on
random design techniques. However, the lack of structure
implied by this randomness presents serious disadvantages in
terms of storing and accessing a large parity-check matrix,
encoding data, and analyzing code performance. Therefore, by
designing codes algebraically, some of these problems can be
overcome. In the recent literature, several algebraic methods
for constructing LDPC codes have been proposed [24], [12],
[22], [8]. These constructions are geared toward optimizing a
specific parameter in the design of Tanner graphs—namely,
either girth, expansion, diameter, or more recently, stopping
sets. In this paper, we consider a more fundamental parameter
for designing LDPC codes—namely, pseudocodewords of the
corresponding Tanner graphs. While pseudocodewords are
essentially stopping sets on the binary erasure channel (BEC)
and have been well studied on the BEC in [5], [8], [23], [7],
they have received little attention in the context of designing
LDPC codes for other channels. The constructions presented
in this paper are geared toward maximizing the minimum
pseudocodeword weight of the corresponding LDPC Tanner
graphs.

The Type I-A construction and certain cases of the Type II
construction presented in this paper are designed so that the
resulting codes have minimum pseudocodeword weight equal
to or almost equal to the minimum distance of the code, and
consequently, the problematic low-weight pseudocodewords are
avoided. Some of the resulting codes have minimum distance
which meets the lower tree bound originally presented in [20].
Since shares the same lower bound [9], [10], and is upper-
bounded by , these constructions have . It is
worth noting that this property is also a characteristic of some
of the FG -LDPC codes [19], and indeed, the projective-geom-
etry-based codes of [12] arise as special cases of our Type II
construction. It is worth noting, however, that the tree construc-
tion technique is simpler than that described in [12]. Further-
more, the Type I-B construction presented here yields a family

1Note that the minimum pseudocodeword weight is specific to the LDPC
graph representation of the LDPC code.

0018-9448/$25.00 © 2007 IEEE



KELLEY et al.: TREE-BASED CONSTRUCTION OF LDPC CODES HAVING GOOD PSEUDOCODEWORD WEIGHTS 1461

of codes with a wide range of rates and block lengths that are
comparable to those obtained from finite geometries. This new
family of codes has tree bound in most cases.

Both min-sum and sum-product iterative decoding perfor-
mance of the tree-based constructions are comparable to, if not,
better than, that of random LDPC codes of similar rates and
block lengths. We now present the tree bound on derived
in [10].

Definition 1.1: The tree bound of a left (variable node)
regular bipartite LDPC constraint graph with girth is defined
as shown in (1) at the bottom of the page.

Theorem 1.2: Let be a bipartite LDPC constraint graph
with smallest left (variable node) degree and girth . Then the
minimum pseudocodeword weight (for the additive white
Gaussion noise/binary-symmetric (AWGN/BSC) channels) is
lower-bounded by

This bound is also the tree bound on the minimum distance
established by Tanner in [20]. And since the set of pseudocode-
words includes all codewords, we have .

We derive a pseudocodeword weight definition for the -ary
symmetric channel (PSC), and extend the tree lower bound
on for the PSC. The tree-based code constructions are
then analyzed as -ary LDPC codes. Interpreting the tree-based
codes as -ary LDPC codes when the degree is or

yields codes with rates and good distances.
The interpretation is also meaningful for the FG-LDPC codes of
[12], since the projective geometry codes with
have rate if treated as binary codes and rate if treated
as -ary LDPC codes.

The paper is organized as follows. The following section in-
troduces permutations and mutually orthogonal Latin squares.
The Type I constructions are presented in Section III and prop-
erties of the resulting codes are discussed. Section IV presents
the Type II construction with two variations and the resulting
codes are compared with codes arising from finite geometries
and finite generalized quadrangles. In Section V, we provide
simulation results of the codes on the AWGN channel and on
the -ary symmetric channel. The paper is concluded in Sec-
tion VI.

II. PRELIMINARIES

A. Permutations

A permutation on set of integers modulo
is a bijective map of the form

A permutation is commonly denoted either as

or as

where
for all .

As an example, suppose is a permutation on the set
given by .

Then is denoted as

in the former representation, and as in the latter repre-
sentation.

B. Mutually Orthogonal Latin Squares (MOLS)

Let GF be a finite field of order and let denote
the corresponding multiplicative group, i.e., . For
every , we define a array having entries in by the
following linear map

where “ ” and “ ” are the corresponding field operations. The
above set of maps define mutually orthogonal Latin squares
(MOLS) [21, pp. 182–199]. The map can be written as a
matrix where the rows and columns of the matrix are in-
dexed by the elements of and the th entry of the matrix
is . By introducing another map defined in the fol-
lowing manner:

we obtain an additional array which is orthogonal to the
above family of MOLS. However, note that is not
a Latin square. We use this set of arrays in the subsequent
tree-based constructions. As an example, let
be the finite field with four elements, where represents the
primitive element. Then, from the above set of maps, we obtain
the following four orthogonal squares:

odd

even.
(1)
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Fig. 1. Type I-A LDPC constraint graph having degree d = 3 and girth g = 10.

III. TREE-BASED CONSTRUCTION: TYPE I

In the Type I construction, first a -regular tree of alternating
“variable” and “constraint” node layers is enumerated down-
wards from a root variable node (layer ) for layers. (The
variable nodes and constraint nodes in this tree are merely two
different types of vertices that give rise to a bipartition in the
graph.) If is odd (respectively, even), the final layer is
composed of variable (respectively, constraint) nodes. Call this
tree . The tree is then reflected across an imaginary hori-
zontal axis to yield another tree , and the variable and con-
straint nodes are reversed. That is, if layer in is composed
of variable nodes, then the reflection of , call it , is com-
posed of constraint nodes in the reflected tree . The union of
these two trees, along with edges connecting the nodes in layers

and according to a connection algorithm that is de-
scribed next, comprise the graph representing a Type I LDPC
code. We now present two connection schemes that can be used
in this Type I model, and discuss the resulting codes.

A. Type I-A

Fig. 1 shows a -regular girth Type I-A LDPC constraint
graph. For , the Type I-A construction yields a -regular
LDPC constraint graph having

variable and constraint nodes, and girth . The tree has
layers. To connect the nodes in to , first label the
variable (respectively, constraint) nodes in (respectively,

) when is odd (and vice versa when is even), as

(respectively, ). The nodes
form the zeroth class , the nodes
form the first class , and the nodes
form the second class ; classify the constraint

nodes into and in a similar manner. In addition,
define four permutations of the set

and connect the nodes in to as
follows. For

1) the variable node is connected to nodes and
;

2) the variable node is connected to nodes
and ;

3) the variable node is connected to nodes
and .
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TABLE I
PERMUTATIONS FOR TYPE I-A CONSTRUCTION

The permutations for the cases are given
in Table I. For , these permutations yield girths

, respectively, i.e., . It is clear that the
girth of these graphs is upper-bounded by . What is inter-
esting is that there exist permutations that achieve
this upper bound when . However, when extending this
particular construction to layers, there are no permu-
tations that yield a girth graph. (This was
verified by an exhaustive computer search and computing the
girths of the resulting graphs using MAGMA [13].) The above
algorithm to connect the nodes in layers and is rather
restrictive, and we need to examine other connection algorithms
that may possibly yield a girth- bipartite graph. However, the
smallest known -regular graph with girth has 384 vertices
[1]. For , the graph of the Type I-A construction has a total
of 380 nodes (i.e., 190 variable nodes and 190 constraint nodes),
and there are permutations and , that only result in a
girth– (bipartite) graph.

When , the minimum distance of the resulting code
meets the tree bound, and hence, . When ,
the minimum distance is strictly larger than the tree bound;
in fact, is more than the tree bound by . However,

for as well.

Remark 3.1: The Type I-A LDPC codes have
, for , and

, for .

B. Type I-B

Fig. 2 provides a specific example of a Type I-B LDPC
constraint graph with . For , a prime
power, the Type I-B construction yields a -regular LDPC
constraint graph having variable and con-
straint nodes, and girth at least . The tree has three layers

and . The tree is reflected to yield another tree
and the variable and constraint nodes in are interchanged.
Let be a primitive element in the field GF . (Note
that GF is the set .) The layer

(respectively, ) contains constraint nodes labeled
(respectively, variable nodes

labeled ). The layer (respec-
tively, ) is composed of sets
of variable (respectively, constraint) nodes in each
set. Note that we index the sets by an element of the field
GF . Each set corresponds to the children of one of the
branches of the root node. (The “ ” in the labeling refers to
nodes in the tree and the subscript “ ” refers to constraint
nodes.) Let (respectively, ) contain the variable nodes

(respectively, constraint nodes

Fig. 2. Type I-B LDPC constraint graph having degree d = 4 and girth

). To use MOLS of order in
the connection algorithm, an imaginary node, variable node

(respectively, constraint node ) is temporarily
introduced into each set (respectively, ). The connection
algorithm proceeds as follows.

1) For and ,
connect the variable node in layer to the constraint
nodes

in layer . (Observe that in these connections, every vari-
able node in the set is mapped to exactly one constraint
node in each set , for , using the
array defined in Section II-B.)

2) Delete all imaginary nodes
and the edges incident on them.

3) For , delete the edge-connecting variable
node to constraint node .

The resulting -regular constraint graph represents the Type I-B
LDPC code.

The Type I-B algorithm yields LDPC codes having a wide
range of rates and block lengths that are comparable to, but dif-
ferent from, the two-dimensional LDPC codes from finite Eu-
clidean geometries [12], [19]. The Type I-B LDPC codes are

-regular with girth at least , block length , and
distance . For degrees of the form , the re-
sulting binary Type I-B LDPC codes have very good rates, above

, and perform well with iterative decoding. (See Table IV.)

Theorem 3.2: The Type I-B LDPC constraint graphs have a
girth of at least .

Proof: We need to show that there are no -cycles in the
graph. By construction, it is clear that there are no -cycles that
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involve the nodes in layers and . This is because
no two nodes, say, variable nodes and in a particular
class are connected to the same node in some class ;
otherwise, it would mean that . But this is
only true for . Therefore, suppose there is a -cycle in the
graph, then let us assume that variable nodes and ,
for , are each connected to constraint nodes and

. By construction, this means that
and . However, then

, thereby implying that . When , we also
have . Thus, .
Therefore, there are no -cycles in the Type I-B LDPC graphs.

Theorem 3.3: The Type I-B LDPC constraint graphs with
degree and girth have

for

for

Proof: When is an odd prime, the assertion follows im-
mediately. Consider the following active variable nodes to be
part of a codeword: variable nodes
in , and all but the first variable node in the middle
layer of the reflected tree : i.e., variable nodes

in . Clearly, all the con-
straints in are either connected to none or exactly two of
these active variable nodes. The root node in is connected
to (an even number) active variable nodes and the first
constraint node in of is also connected to active
variable nodes. Hence, these active variable nodes
form a codeword. This fact along with Theorems 1.2 and 3.2
prove that .

When , consider the following active variable nodes
to be part of a codeword: the root node, variable nodes

in , variable node from
, for , and the first two variable nodes

in the middle layer of (i.e., variable nodes ). Since
is odd. We need to show that all the constraints

are satisfied for this choice of active variable nodes. Each con-
straint node in the layer of has an even number of active
variable node neighbors: has active neighbors, and ,
for , has two, the root node and variable
node . It remains to check the constraint nodes in .

In order to examine the constraints in layer of , observe
that the variable node , for , is con-
nected to constraint nodes

and the variable node , for , is
connected to constraint nodes

Therefore, the constraint nodes , for
, in of are connected to exactly one active variable

node from layer , i.e., variable node ; the other active
variable node neighbor is variable node in the middle layer
of . Thus, all constraints in are satisfied.

The constraint nodes , for , in
are each connected to exactly one active variable node from
, i.e., variable node from . This is because, all the

remaining active variable nodes in connect to the
imaginary node in (since
when the characteristic of the field GF is ). Thus, all
constraint nodes in have two active variable node neighbors,
the other active neighbor being the variable node in the
middle layer of .

Now, let us consider the constraint nodes in , for
. The active variable nodes , for

are connected to the following constraint
nodes:

respectively, in class . Since for
, the variable nodes , for ,

connect to distinct nodes in . Hence, each constraint node in
has exactly two active variable node neighbors—one from

and the other from the set .
Finally, we note that the root (constraint) node in is con-

nected to two active variable nodes, and . The total
number of active variable nodes is

. This proves that the set of active variable nodes
forms a codeword, thereby proving the desired bound.

When , the upper bound on minimum distance
(and possibly also ) was met among all the cases of

the Type I-B construction we examined. We conjecture that in
fact for the Type I-B LDPC codes of degree

when . Since is lower-bounded by ,
we have that is close, if not equal, to .

C. -ary LDPC Codes

Let be a parity-check matrix representing a -ary LDPC
code . The corresponding LDPC constraint graph that rep-
resents is an incidence graph of the parity-check matrix as
in the binary case. However, each edge of is now assigned a
weight which is the value of the corresponding nonzero entry
in . (In [3], [4] , LDPC codes over GF are considered for
transmission over binary modulated channels, whereas in [18],
LDPC codes over integer rings are considered for higher order
modulation signal sets.)

For convenience, we consider the special case where each
of these edge weights are equal to one. This is the case when
the parity-check matrix has only zeros and ones. Furthermore,
whenever the LDPC graphs have edge weights of unity for all
the edges, we refer to such a graph as a binary LDPC constraint
graph representing a -ary LDPC code .

We first show that if the LDPC graph corresponding to
is -left (variable-node) regular, then the same tree bound of
Theorem 1.2 holds. That is we have the following.

Lemma 3.4: If is a -left regular bipartite LDPC constraint
graph with girth and represents a -ary LDPC code , then, the
minimum distance of the -ary LDPC code is lower-bounded
as
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Proof: The proof is essentially the same as in the binary
case. Enumerate the graph as a tree starting at an arbitrary vari-
able node. Furthermore, assume that a codeword in contains
the root node in its support. The root variable node (at layer

of the tree) connects to constraint nodes in the next layer
(layer ) of the tree. These constraint nodes are each connected
to some sets of variable nodes in layer , and so on. Since the
graph has girth , the nodes enumerated up to layer when

is odd (respectively, when is even) are all distinct.
Since the root node belongs to a codeword, say , it assumes
a nonzero value in . Since the constraints must be satisfied at
the nodes in layer , at least one node in layer for each
constraint node in must assume a nonzero value in . (This
is under the assumption that an edge weight times a (nonzero)
value, assigned to the corresponding variable node, is not zero
in the code alphabet. Since we have chosen the edge weights to
be unity, such a case will not arise here. But also more generally,
such cases will not arise when the alphabet and the arithmetic
operations are that of a finite field. However, when working over
other structures, such as finite integer rings and more general
groups, such cases could arise.) Under the above assumption,
that there are at least variable nodes (i.e., at least one for each
node in layer ) in layer that are nonzero in . Continuing
this argument, it is easy to see that the number of nonzero com-
ponents in is at least when

is odd, and
when is even. Thus, the desired lower bound holds.

We note here that in general this lower bound is not met and
typically -ary LDPC codes that have the above graph repre-
sentation have minimum distances larger than the above lower
bound.

Recall from [9], [11], that a pseudocodeword of an LDPC
constraint graph is a valid codeword in some finite cover of

. To define a pseudocodeword for a -ary LDPC code, we will
restrict the discussion to LDPC constraint graphs that have edge
weights of unity among all their edges—in other words, binary
LDPC constraint graphs that represent -ary LDPC codes. A fi-
nite cover of a graph is defined in a natural way as in [11], where
all edges in the finite cover also have an edge weight of unity.
For the rest of this section, let be an LDPC constraint graph
of a -ary LDPC code of block length , and let the weights
on every edge of be unity. We define a pseudocodeword of

as an matrix of the form

...
...

...
...

...

where the pseudocodeword forms a valid codeword in a
finite cover of and is the fraction of variable nodes in

Fig. 3. A p-ary symmetric channel.

the th variable cloud, for , of that have the
assignment (or, value) equal to , for , in .

A -ary symmetric channel is shown in Fig. 3. The input and
the output of the channel are random variables belonging to a

-ary alphabet that can be denoted as . An
error occurs with probability , which is parameterized by the
channel, and in the case of an error, it is equally probable for an
input symbol to be altered to any one of the remaining symbols.

Following the definition of pseudoweight for the BSC [6],
we provide the following definition for the weight of a pseu-
docodeword on the -ary symmetric channel. For a pseudocode-
word , let be the submatrix obtained by removing the first
column in . (Note that the first column in contains the entries

.) Then the weight of a pseudocode-
word on the -ary symmetric channel is defined as follows.

Definition 3.5: Let be a number such that the
sum of the largest components in the matrix , say,

, exceeds . Then
the weight of on the -ary symmetric channel is defined as
shown at the bottom of the page.

Note that in the definition at the bottom of the page, none
of the ’s, for , are equal to zero, and all the

’s, for , are distinct. That is, we choose at
most one component in every row of when picking the
largest components. (See the Appendix for an explanation on
the above definition of “weight.”) Observe that for a codeword,
the above weight definition reduces to the Hamming weight.
If represents a codeword , then exactly , the
Hamming weight of , rows in contain the entry in some
column, and the remaining entries in are . Furthermore, the
matrix has the entry in the first column of these rows
and has the entry in the first column of the remaining rows.
Therefore, from the weight definition of , and the
weight of is .

We define the -ary minimum pseudocodeword weight of
(or, minimum pseudoweight) as in the binary case, i.e., as the
minimum weight of a pseudocodeword among all finite covers
of , and denote this as or when it is clear that
we are referring to the graph .

if
if
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Lemma 3.6: Let be a -left regular bipartite graph with
girth that represents a -ary LDPC code . Then the minimum
pseudocodeword weight on the -ary symmetric channel
is lower bounded as shown at the bottom of the page.

The proof of this result is moved to the Appendix. We note
that, in general, this bound is rather loose. (The inequality in (3),
in the proof of Lemma 3.6, is typically not tight.) Moreover, we
expect that -ary LDPC codes to have larger minimum pseu-
docodeword weights than corresponding binary LDPC codes.
By corresponding binary LDPC codes we mean the codes ob-
tained by interpreting the given LDPC constraint graph as one
representing a binary LDPC code.

D. -ary Type I-B LDPC Codes

Theorem 3.7: For degree , the resulting Type I-B
LDPC constraint graphs of girth that represent -ary LDPC
codes have minimum distance and minimum pseudocodeword
weight

Proof: Consider as active variable nodes the root node, all
the variable nodes in , the variable nodes , for

, the first variable node in the middle layer
of , and one other variable node , that we will ascertain
later, in the middle layer of .

Since the code is -ary (and ), assign the value to
the root variable node and to all the active variable nodes in .
Assign the value to the remaining active variable nodes
in (i.e., nodes ). Assign the
value for the variable node in the middle layer of and
assign the value for the variable node in the middle
layer of . We choose in the following manner.

The variable nodes , for , are
connected to the following constraint nodes:

respectively, in class . Either the above set of constraint
nodes are all distinct, or they are all equal to . This is
because, if and only if either, or

. So there is only one , for
which , and for that value of , we set .

From the proof of Theorem 3.3 and the above assignment, it
is easily verified that each constraint node has value zero when
the sum of the incoming active nodes is taken modulo . Thus,
the set of active variable nodes forms a codeword, and
therefore, . Hence, from Lemmas 3.4 and 3.6,
we have .

It is also observed that if the codes resulting from the Type I-B
construction are treated as -ary codes rather than binary codes
when the corresponding degree in the LDPC graph is ,

then the rates obtained are also (see Table IV). We also be-
lieve that the minimum pseudocodeword weights (on the -ary
symmetric channel) are much closer to the minimum distances
for these -ary LDPC codes.

IV. TREE-BASED CONSTRUCTION: TYPE II

In the Type II construction, first a -regular tree of alter-
nating variable and constraint node layers is enumerated from
a root variable node (layer ) for layers ,
as in Type I. The tree is not reflected; rather, a single layer
of nodes is added to form layer . If is odd
(respectively, even), this layer is composed of constraint (re-
spectively, variable) nodes. The union of and , along with
edges connecting the nodes in layers and according
to a connection algorithm that is described next, comprise the
graph representing a Type II LDPC code. We present the con-
nection scheme that is used for this Type II model, and discuss
the resulting codes. First, we state this rather simple observation
without proof:

The girth of a Type II LDPC graph for layers is at most .

The connection algorithm for and , wherein this
upper bound on girth is in fact achieved, is as follows.

A.

Fig. 4 provides an example of a Type II LDPC constraint
graph for layers, with degree and
girth . For , where is prime and a pos-
itive integer, a -regular tree is enumerated from a root (vari-
able) node for layers . Let be a primitive
element in the field GF . The constraint nodes in are
labeled to represent the
branches stemming from the root node. Note that the first con-
straint node is denoted as and the remaining constraint
nodes are indexed by the elements of the field GF . The

variable nodes in the third layer are labeled as fol-
lows: the variable nodes descending from constraint node
form the class and are labeled ,
and the variable nodes descending from constraint node ,
for , form the class and are labeled

.
A final layer of constraint nodes

is added. The constraint nodes in are labeled

(Note that the “ ” in the labeling refers to nodes in that are not
in the tree and the subscript “ ” refers to constraint nodes.)

1) By this labeling, the constraint nodes in are grouped
into classes of nodes in each

odd

even.
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Fig. 4. Type II LDPC constraint graph having degree d = 4 and girth g = 6.

class. Similarly, the variable nodes in are grouped
into classes of nodes in
each class. (That is, the th class of constraint nodes is

.)
2) The variable nodes descending from constraint node

are connected to the constraint nodes in as follows. Con-
nect the variable node , for , to the
constraint nodes

3) The remaining variable nodes in layer are connected
to the nodes in as follows: Connect the variable node

, for , , to
the constraint nodes

Observe that in these connections, each variable node
is connected to exactly one constraint node within each
class, using the array defined in Section II-B.

In the example illustrated in Fig. 4, the arrays used for con-
structing the Type II LDPC constraint graph are2

The ratio of minimum distance to block length of the resulting
codes is at least , and the girth is . For degrees of

2Note that in this example, GF (3) = f0; 1; 2g, “2” being the primitive ele-
ment of the field.

the form , the tree bound of Theorem 1.2 on min-
imum distance and minimum pseudocodeword weight [20], [10]
is met, i.e., , for the Type II, , LDPC
codes. For , the resulting binary LDPC codes are repetition
codes of the form , i.e., and the
rate is . However, if we interpret the Type II graphs, that
have degree , as the LDPC constraint graph of a -ary
LDPC code, then the rates of the resulting codes are very good
and the minimum distances come close to (but are not equal to)
the tree bound in Lemma 3.4 (see also [17]). In summary, we
state the following results.

• The rate of a -ary Type II, LDPC code is

[14].
• The rate of a binary Type II, LDPC code is for

.
Note that binary codes with are a special case of -ary

LDPC codes. Moreover, the rate expression for -ary LDPC
codes is meaningful for a wide variety of ’s and ’s. The rate
expression for binary codes with can be seen by observing
that any rows of the corresponding parity-check matrix is
linearly independent if . Since the parity-check matrix
is equivalent to one obtainable from cyclic difference sets, this
can be proven by showing that for any , there exists a set
of consecutive positions in the first row of that has an odd
number of ones.

B. Relation to Finite-Geometry Codes

The codes that result from this construction corre-
spond to the two-dimensional projective-geometry-based LDPC
(PG-LDPC) codes of [19]. We state the equivalence of the tree
construction and the finite projective geometry based LDPC
codes in the following.

Theorem 4.1: The LDPC constraint graph obtained from the
Type II tree construction for degree is equiva-
lent to the incidence graph of the finite projective plane over the
field GF .
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It has been proved by Bose [2] that a finite projective plane
(in other words, a two-dimensional finite projective geometry)
of order exists if and only if a complete family of orthogonal

Latin squares exists. The proof of this result, as presented
in [16], gives a constructive algorithm to design a finite projec-
tive plane of order from a complete family of MOLS.
It is well known that a complete family of MOLS exists when

, a power of a prime, and we have described one such
family in Section II. Hence, the constructive algorithm in [16]
generates the incidence graph of the projective plane PG
from the set of MOLS of order . The only remaining
step is to verify that the incidence matrix of points over lines
of this projective plane is the same as the parity-check matrix
of variable nodes over constraint nodes of the tree-based LDPC
constraint graph of the tree construction. This step is easy to
verify as the constructive algorithm in [16] is analogous to the
tree construction presented in this paper.

The Type II graphs therefore correspond to the two-di-
mensional PG-LDPC codes of [12]. With a little modification
of the Type II construction, we can also obtain the two-dimen-
sional Euclidean-geometry-based LDPC (EG-LDPC) codes of
[12], [19]. Since a two-dimensional Euclidean geometry may
be obtained by deleting certain points and line(s) of a two-di-
mensional projective geometry, the graph of a two-dimensional
EG-LDPC code [19] may be obtained by performing the fol-
lowing operations on the Type II, graph.

1) In the tree , the root node along with its neighbors, i.e.,
the constraint nodes in layer , are deleted.

2) Consequently, the edges from the constraint nodes
to layer are also deleted.

3) At this stage, the remaining variable nodes have degree ,
and the remaining constraint nodes have degree .
Now, a constraint node from layer is chosen, say, con-
straint node . This node and its neighboring variable
nodes and the edges incident on them are deleted. Doing so
removes exactly one variable node from each class of ,
and the degrees of the remaining constraint nodes in are
lessened by one. Thus, the resulting graph is now -reg-
ular with a girth of , has constraint and variable
nodes, and corresponds to the two-dimensional EG-LDPC
code EG of [19].

Theorem 4.2: The Type II LDPC constraint graphs
have girth and diameter .

Proof: We need to show is that there are no -cycles in
the graph. As in the proof of Theorem 3.2, by construction,
there are no -cycles that involve the nodes in layers and

. This is because, first, no two variable nodes in the first class
are connected to the same

constraint node. Next, if two variable nodes, say, and
in the th class , for some , are connected to a constraint
node , then it would mean that .
But this is only true for . Hence, there is no -cycle of
the form . Therefore,
suppose there is a -cycle in the graph, then let us consider two
cases as follows. Case 1: Assume that variable nodes and

, for and , are each connected to con-
straint nodes and . By construction, this means that

and . This implies
that , thereby implying that .
Consequently, we also have . Thus,

. Case 2: Assume that two variable nodes, one
in , say, , and the other in (for ), say, ,
are connected to constraint nodes and . Then this
would mean that . But since connects to exactly
one constraint node whose first index is , this case is not pos-
sible. Thus, there are no -cycles in the Type II- LDPC
graphs.

To show that the girth is exactly , we see that the following
nodes form a -cycle in the graph: the root-node, the first two
constraint nodes and in layer , variable nodes

and in layer , and the constraint node in
layer .

To prove the diameter, we first observe that the root node is
at distance of at most from any other node. Similarly, it is also
clear that the nodes in layer are at a distance of at most
from any other node. Therefore, it is only necessary to show
that any two nodes in layer are at most distance apart and
similarly show that any two nodes in are at most distance
apart. Consider two nodes and in . If , then
clearly, there is a path of length via the parent node . If

and , then by the property of a complete family
of orthogonal Latin squares there is a node in such
that . This implies that and
are connected by a distance– path via . We can similarly
show that if and , then the node in

connects to both and . A similar argument shows
that any two nodes in are distance two apart. This completes
the proof.

Theorem 4.3: For degrees , the resulting Type II
LDPC constraint graphs have

For degrees , when the resulting Type II
LDPC constraint graphs represent -ary linear codes, the cor-
responding minimum distance and minimum pseudocodeword
weight satisfy

Proof: Let us first consider the case . We will show
that the following set of active variable nodes in the Type II

LDPC constraint graph form a minimum-weight codeword:
the root (variable) node, variable nodes

in layer .
It is clear from this choice that there is exactly one active vari-

able node from each class in layer . Therefore, all the con-
straint nodes at layer are satisfied. The constraint nodes in
the first class of are . The
constraint node is connected to and , and the
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constraint node , for , is connected
to variable nodes and . Thus, all constraint
nodes in are satisfied. Let us consider the constraint nodes in
class , for . The variable node
connects to the constraint node in . The variable
node connects to the constraint node

in , and in general, for , the
variable node connects to the constraint node

in . So enumerating all the constraint
nodes in , with multiplicities that are connected to an active
variable node in , we obtain

Simplifying the exponents and rewriting this list,
we see that, when is odd, the constraint nodes are

. (When is even, the constraint
nodes are

.) (Note
that for GF when the characteristic of the
field GF is two (i.e., ).)

Observe that each of the constraint nodes in the above list
appears exactly twice. Therefore, each constraint node in the
list is connected to two active variable nodes in , and hence,
all the constraints in are satisfied. So we have that the set of

active variable nodes forms a codeword. Furthermore,
they must form a minimum-weight codeword since

by the tree bound of Theorem 1.2. This also
proves that for .

Now let us consider the case . The resulting codes
are treated as -ary codes. Consider the following set of active
variable nodes: the root node, all but one of the nodes , for
an appropriately chosen , in class , and the nodes ,
for . We have chosen active variable
nodes in all.

The variable nodes are
connected to constraint nodes

respectively, in class of constraint nodes in layer .
These nodes are either all distinct or all equal to
since if and only if either
or . Since is zero for exactly one value
of , we have that the variable nodes

, for , are connected to distinct
constraint nodes in all but one class and that, in , they
are all connected to the constraint node . (Note that

satisfies .) We let . Therefore, the set of
active variable nodes includes all nodes of the form , for

, excluding node .
Since the code is -ary, assign the following values to the

chosen set of active variable nodes: assign the value to the root
variable node and to all the active variable nodes in class ,
and assign the value to the active variable nodes ,
for . It is now easy to verify that all the
constraints are satisfied. Thus, . From Theorem 4.2
and Lemmas 3.4 and 3.6, we have

.

For degrees , treating the Type II
LDPC constraint graphs as binary LDPC codes, yields
repetition codes, where , and di-
mension is . However, when the Type II LDPC constraint
graphs, for degrees , are treated as -ary LDPC
codes, we believe that the distance , and that this
bound is in fact tight. We also suspect that the minimum pseu-
docodeword weights (on the -ary symmetric channel) are much
closer to the minimum distances for these -ary LDPC codes.

C.

Fig. 5 provides an example of a Type II LDPC con-
straint graph with degree and girth . For

a prime and a positive integer, a regular tree
is enumerated from a root (variable) node for layers

.
1) The nodes in and labeled as in the case.

The constraint nodes in are labeled as follows: The
constraint nodes descending from variable node , for

, are labeled

the constraint nodes descending from variable node ,
for , are labeled

2) A final layer of variable nodes
is introduced. The variable nodes in are labeled as

(Note that the “ ” in the labeling refers to nodes that are
not in the tree and the subscript “ ” refers to constraint
nodes.)

3) For , connect the constraint
node to the variable nodes
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Fig. 5. Type II LDPC constraint graph having degree d = 3 and girth g = 8. (Shaded nodes highlight a minimum-weight codeword.)g = 6.

4) To connect the remaining constraint nodes in to the
variable nodes in , we first define a function . For

let

be an appropriately chosen function, that we will define
later for some specific cases of the Type II con-
struction. Then, for , connect
the constraint node in to the following vari-
able nodes in :

(Observe that the second index corresponds to the linear
map defined by the array defined in Section II-B. Fur-
ther, note that if , then the re-
sulting graphs obtained from the above set of connections
have girth at least . However, there are other functions

for which the resulting graphs have girth ex-
actly , which is the best possible when in this con-
struction. At this point, we do not have a closed-form ex-
pression for the function and we only provide details for
specific cases below. (These cases were verified using the
MAGMA software [13].)

The Type II, , LDPC codes have girth , minimum dis-
tance , and block length .
(We believe that the tree bound on the minimum distance is met
for most of the Type II, , codes, i.e.,

.) For , the Type II, , LDPC constraint
graph as shown in Fig. 5 corresponds to the -finite-gen-
eralized-quadrangles-based LDPC (FGQ-LDPC) code of [25];

TABLE II
THE FUNCTION f FOR THE TYPE II ` = 4 CONSTRUCTION

the function used in constructing this example is defined by
, i.e., the map defined by the array

. The orthogonal arrays used for constructing this code are

We now state some results concerning the choice of the func-
tion .

1) The Type II construction results in incidence graphs
of finite generalized quadrangles for appropriately chosen
functions . These graphs have girth and diameter .

2) For some specific cases, examples of the function
that resulted in a girth- graph is given in

Table II. (Note that for the second entry in the table, the
function GF GF is defined by the following
maps: and .) We have
not been able to find a general relation or a closed-form
expression for yet.

3) For the above set of functions, the resulting Type II
LDPC constraint graphs have minimum distance meeting
the tree bound, when , i.e., .
We conjecture that, in general, for degrees ,
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Fig. 6. Performance of Type I-B versus random LDPC codes on the BIAWGNC with sum-product iterative decoding.

the Type II girth- LDPC constraint graphs have
.

4) For degrees , we expect the corre-
sponding -ary LDPC codes from this construction to have
minimum distances either equal or very close to the
tree bound. Hence, we also expect the corresponding min-
imum pseudocodeword weight to be close to .

The above results were verified using MAGMA and computer
simulations.

D. Remarks

It is well known in the literature that finite generalized poly-
gons (or -gons) of order exist [15]. A finite generalized

-gon is a nonempty point-line geometry, and consists of a set
of points and a set of lines such that the incidence graph

of this geometry is a bipartite graph of diameter and girth
. Moreover, when each point is incident on lines and

each line contains points, the order of the -gon is said
be to . The Type II and constructions yield fi-
nite generalized -gons and -gons, respectively, of order .
These are essentially finite projective planes and finite general-
ized quadrangles. The Type II construction can be similarly ex-
tended to larger . We believe that finding the right connections
for connecting the nodes between the last layer in and the final
layer will yield incidence graphs of these other finite generalized
polygons. For instance, for and , the construction
can yield finite generalized hexagons and finite generalized oc-
tagons, respectively. We conjecture that the incidence graphs
of generalized -gons yield LDPC codes with minimum pseu-
docodeword weight very close to the corresponding min-
imum distance and particularly, for generalized -gons of
order , the LDPC codes have .

V. SIMULATION RESULTS

A. Performance of Type I-B and Type II LDPC Codes With
Sum-Product Iterative Decoding

Figs. 6–8 show the performance of the Type I-B, Type II
, and Type II , respectively, LDPC codes over the bi-

nary-input AWGN channel (BIAWGNC) with sum-product it-
erative decoding, as a function of the channel signal-to-noise
ratio (SNR) . The performance of regular or semi-reg-
ular randomly constructed LDPC codes of comparable rates and
block lengths are also shown. (All of the random LDPC codes
compared in this paper have a variable node degree of three and
are constructed from the online LDPC software available at http
://www.cs.toronto.edu/~radford/ldpc.software. html.) The per-
formance is shown only for a few codes from each construc-
tion. The main observation from these performance curves is
that the the tree-based LDPC codes perform relatively much
better than random LDPC codes of comparable parameters. A
maximum of 200 decoding iterations were performed for block
lengths below and 20 decoding iterations were performed
for longer block lengths.

In Fig. 6, we observe that the Type I-B LDPC codes perform
comparably to, if not better than, random LDPC codes for all
the block lengths simulated. In Fig. 7, we observe that the Type
II LDPC codes perform relatively much better than their
random counterparts for block lengths below , whereas at
the longer block lengths, the random codes perform better than
the Type II codes in the waterfall region. Fig. 8 shows a similar
trend in performance of Type II (girth- ) LDPC codes.

Note that the simulation results for sum-product decoding
correspond to the case when the LDPC codes resulting from
constructions Type I and Type II are treated as binary LDPC
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Fig. 7. Performance of Type II ` = 3 versus random LDPC codes on the BIAWGNC with sum-product iterative decoding.

Fig. 8. Performance of Type II ` = 4 versus random LDPC codes on the BIAWGNC with sum-product iterative decoding.

codes for all choices of degree or . We
will now examine the performance when the codes are treated
as -ary codes if the corresponding degree in the LDPC con-
straint graph is (for Type I-B) or (for Type
II). (Note that this will affect only the performances of those
codes for which is not equal to .)

B. Performance of -ary Type I-B and Type II LDPC Codes
Over the -ary Symmetric Channel

We examine the performance of the -ary LDPC codes
obtained from the Type I-B and Type II constructions on the

-ary symmetric channel instead of the AWGN channel. The
-ary symmetric channel is shown in Fig. 3. An error occurs

with probability , the channel transition probability. Figs. 9–11
show the performance of Type I-B, Type II and Type II

, -ary LDPC codes, respectively, on the -ary-symmetric
channel with sum-product iterative decoding. A maximum
of 200 sum-product decoding iterations were performed. The
parity-check matrices resulting from the the Type I-B and Type
II constructions are considered to be matrices over the field
GF and sum-product iterative decoding is implemented as
outlined in [3]. The corresponding plots show the information
symbol error rate as a function of the channel transition prob-
ability . In Fig. 9, the performance of -ary Type I-B LDPC
codes obtained for degrees and , is
shown and compared with the performance of random -ary
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Fig. 9. Performance of Type I-B versus random 3-ary LDPC codes on the 3-ary symmetric channel with sum-product iterative decoding.

LDPC codes of comparable rates and block lengths. (To make
a fair comparison, the random LDPC codes also have only
zeros and ones as entries in their parity-check matrices. It has
been observed in [3] that choosing the nonzero entries in the
parity-check matrices of nonbinary codes cleverly can yield
some performance gain, but this avenue was not explored
in these simulations.) In Fig. 10, the performance of -ary
Type II (girth six) LDPC codes obtained for degrees

and , is shown and compared
with random -ary LDPC codes. Fig. 11 shows the analogous
performance of -ary Type II (girth- ) LDPC codes ob-
tained for degrees and . In all these plots,
it is seen that the tree-based constructions perform comparably
or better than random LDPC codes of similar rates and block
lengths. (In some cases, the performance of the tree-based
constructions is significantly better than that of random LDPC
codes (example, Fig. 11).)

The simulation results show that the tree-based constructions
yield LDPC codes with a wide range of rates and block lengths
that perform very well with iterative decoding.

VI. CONCLUSION

The Type I construction yields a family of LDPC codes
that, to the best of our knowledge, do not correspond to any
of the LDPC codes obtained from finite geometries or other
geometrical objects. It would be interesting to extend the

Type II construction to more layers as described at the end of
Section V, and to extend the Type I-A construction by relaxing
the girth condition. In addition, these codes may be amenable
to efficient tree-based encoding procedures. A definition for
the pseudocodeword weight of -ary LDPC codes on the -ary
symmetric channel was also derived, and an extension of the
tree bound in [9] was obtained. This led to a useful interpreta-
tion of the tree-based codes, including the projective geometry
LDPC codes, for . The tree-based constructions presented
in this paper yield a wide range of codes that perform well when
decoded iteratively, largely due to the maximized minimum
pseudocodeword weight. While the tree-based constructions are
based on pseudocodewords that arise from the graph-cover’s
polytope of [11] and aim to maximize the minimum pseu-
docodeword weight of pseudocodewords in this set, they do not
consider all pseudocodewords arising on the iterative decoder’s
computation tree [26]. Nonetheless, having a large minimal
pseudocodeword weight in this set necessarily brings the per-
formance of iterative decoding of the tree-based codes closer to
the ML performance. However, it would be interesting to find
other design criteria that account for pseudocodewords arising
on the decoder’s computation tree.

Furthermore, since the tree-based constructions have the
minimum pseudocodeword weight and the minimum distance
close to the tree bound, the overall minimum distance of these
codes is relatively small. While this is a first step in con-
structing LDPC codes having the minimum pseudocodeword
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Fig. 10. Performance of Type II ` = 3 versus random 3-ary LDPC codes on the 3-ary symmetric channel with sum-product iterative decoding.

weight equal/almost equal to the minimum distance ,
constructing codes with larger minimum distance, while still
maintaining , remains a challenging problem.

APPENDIX

A. Pseudocodeword Weight for -ary LDPC Codes on the
-ary Symmetric Channel

Suppose the all-zero codeword is sent across a -ary sym-
metric channel and the vector is re-
ceived. Then errors occur in positions where . Let

and let . The distance between
and a pseudocodeword is defined as

(2)

where is an indicator function that is equal to if the
proposition is true and is equal to otherwise.

The distance between and the all-zero codeword is

which is the Hamming weight of and can be obtained
from (2).

The iterative decoder chooses in favor of instead of the
all-zero codeword when . That is, if

The condition for choosing over the all-zero codeword re-
duces to

Hence, we define the weight of a pseudocodeword in the fol-
lowing manner.

Let be a number such that the sum of the largest com-
ponents in the matrix , say, , exceeds

. Then the weight of on the -ary
symmetric channel is defined as shown at the bottom of the
following page. Note that in the definition at the bottom of
the following page, none of the ’s, for ,
are equal to zero, and all the ’s, for , are
distinct. That is, we choose at most one component in every
row of when picking the largest components. The re-
ceived vector that has the following
components: , for

, will cause the decoder to make an error
and choose over the all-zero codeword.
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Fig. 11. Performance of Type II ` = 4 versus random 3-ary LDPC codes on the 3-ary symmetric channel with sum-product iterative decoding.

Fig. 12. Single constraint code. (1� f ) � (1� f ).

B. Proof of Lemma 3.6

Proof: Case: odd. Consider a single constraint node with
variable node neighbors as shown in Fig. 12. Then, for

and , the following inequality
holds:

where the middle summation is over all possible assignments
to the variable nodes such that
, i.e., this is a valid assignment for the

Fig. 13. Local tree structure for a d-left regular graph. d(1 � f ) �

(1� f ); d(d� 1)(1� f ) � (1� f ).

constraint node. The innermost summation in the denominator
is over all .

if
if
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TABLE III
SUMMARY OF TYPE I-A CODE PARAMETERS

TABLE IV
SUMMARY OF TYPE I-B CODE PARAMETERS

However, for , the following (weaker)
inequality also holds:

(3)

Now let us consider a -left regular LDPC constraint graph
representing a -ary LDPC code. We will enumerate the LDPC
constraint graph as a tree from an arbitrary root variable node,
as shown in Fig. 13. Let be a pseudocodeword matrix for this
graph. Without loss of generality, let us assume that the compo-
nent corresponding to the root node is the maximum
among all over all .

Applying the inequality in (3) at every constraint node in first
constraint node layer of the tree, we obtain

where corresponds to variable nodes in first level of the tree.
Subsequent application of the inequality in (3) to the second
layer of constraint nodes in the tree yields

Continuing this process until layer , we obtain

Since the LDPC graph has girth , the variable nodes up to
level are all distinct. The above inequalities yield

(4)
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TABLE V
SUMMARY OF TYPE II, ` = 3, CODE PARAMETERS

TABLE VI
SUMMARY OF TYPE II, ` = 4, CODE PARAMETERS

Let be the smallest number such that there are maximal
components , for all
distinct and , in (the sub-
matrix of excluding the first column in ) such that

Then, since none of the ’s, , are zero, we
clearly have

Hence, we have that

We can then lower-bound this further using the inequality in
(4) as

Since we assumed that is the maximum among
over all , we have

This yields the desired bound

Since the pseudocodeword was arbitrary, we also have
. The case

even is treated similarly.



1478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 4, APRIL 2007

C. Tables of Code Parameters

The code parameters resulting from the tree-based construc-
tions are summarized in Tables III–VI. Note that indicates an
upper bound instead of the exact minimum distance (or min-
imum pseudocodeword weight) since it was computationally
hard to find the distance (or pseudoweight) for those cases.
Similarly, for cases where it was computationally hard to get
any reasonable bound the minimum pseudocodeword weight,
the corresponding entry in the table is left empty. The lower
bound on seen in the tables corresponds to the tree bound
(Theorem 1.2). It is observed that when the codes resulting
from the con- struction are treated as -ary codes rather than bi-
nary codes when the corresponding degree in the LDPC graph
is (for Type I-B) or (for Type II), the re-
sulting rates obtained are much better; we also believe that the
minimum pseudocodeword weights (on the -ary symmetric
channel) are much closer to the minimum distances for these

-ary LDPC codes.
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