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Abstract. This paper studies a general inverse eigenvalue problem which generalizes many well-
studied pole placement and matrix extension problems. It is shown that the problem corresponds
geometrically to a so-called central projection from some projective variety. The degree of this variety
represents the number of solutions the inverse problem has in the critical dimension. We are able to
compute this degree in many instances, and we provide upper bounds in the general situation.
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1. Introduction and motivational examples. Let K be an arbitrary field
and consider matrices A of size n X n and matrices G, H of size n x m. Let Mat,,xn
be the vector space of all m x n matrices over K, and let £ C Mat,,x» be a linear
subspace of dimension d. This paper will be devoted to the following question.

Problem 1.1. Given an arbitrary monic polynomial ¢(s) € K]s] of degree n, is
there a F' € L such that

(1.1) det[s(I + HF) — (A4 GF)] = p(s)?

We can think of the triple (4, G, H) representing a dynamical system in various
ways, and we will say more about it in a moment. The set of monic polynomials of
degree n can be identified with the vector space K". If Problem 1.1 has a positive
answer for all monic polynomials ¢(s) € K" of degree n, then we will say that the
system (A, G, H) is arbitrarily pole assignable in the class of feedback compensators L.
If for a generic set of monic polynomials ¢(s) € K" of degree n Problem 1.1 has a
positive answer, then we will say that system (A, G, H) is generically pole assignable
in the class of feedback compensators L.

Problem 1.1 covers a large set of “constrained” state and output pole placement
problems. It also covers some important matrix extension problems. The following
three examples will illustrate this.

Ezample 1.2 (constrained state feedback pole placement problem). Consider a
linear system having the following form:

(1.2) t=Ax+ Bu+ Hu, z€C" uveC™
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If a state feedback law of the form v = —Fx is applied, then the closed loop char-
acteristic polynomial has the form det[s( + HF') — (A — BF)] which is exactly the
form of (1.1). Assume that not every feedback law of the form w = —Fz can be
applied, and that a valid feedback matrix must satisfy some linear constraints of its
parameters, i.e., ' € L for some linear subspace L C Mat,,xn- Such constraints
occur, e.g., if the ¢th input channel has to be kept zero all the time. Problem 1.1
covers such situations.

Of course if H = 0 and the feedback laws are unconstrained, then we simply
deal with the classical state feedback problem, and it is well known that this problem
always has a positive solution as soon as rank [B, AB, ... A”_lB] =n.

Ezample 1.3 (constrained output feedback pole placement problem). Consider
the linear system

(1.3) &t =Axr+ Bu, y=Czx, x€C", uveC™, and y € CP.

The problem asks for a static feedback law v = Ky such that the closed loop system
has some desired closed loop characteristic polynomial. Once more assume that the
feedback laws have to satisfy some linear constraints. For this we assume that U C
Mat,, «p is some linear subspace, and we do require that K € &. One immediately
verifies that Problem 1.1 covers this situation if one chooses H := 0, G := B, and
L:={KC|KelU}.

For the unconstrained problem (U = Mat,,«p) the main result in this area of
research was given by Brockett and Byrnes [2]. Tt states the following.

THEOREM 1.4. If U = Mat,,xp and if n < mp = dimlU, then for a generic
set of matrices A, B, C, the system (1.3) is arbitrarily pole assignable. Moreover, if
n = mp, then when counted with multiplicities there are exactly as many solutions as
the degree of the complex Grassmann variety Grass(m, C"™*P) once embedded via the
Pliicker embedding.

The importance of the matrix H becomes apparent if we deal with general proper
systems of the form:

& =Ax+ Bu, y=Cx+ Du, x€C" uweC™, and y € CP.

Assume C has rank p, and let C* be a right inverse of C, i.e., an n X p matrix
such that CC* = I,,. Assume again that the feedback laws are constrained to some
subspace U C Mat,,xp. If we apply the feedback law v = Ky, K € U, then we obtain
the closed loop system:

i =Ax+ BKy, y=Cz+ DKy, € C", and y € CP.
The closed loop characteristic polynomial is therefore computed as
I,— A —BK

-C I, — DK

= det(sl,, — A)det (I, — DK — C(sI,, — A)"'BK)
= det(sI,, — A) det (In —~CT"DKC — (sI,, — A)’IBKC)
= det ((sI,, — A)(I, — CTDKC) — BKC)
= det (s(In ~C"DKC)— (A+ (B — AC’*D)KC’) .

det 5
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If one defines H := —C*D, G := (B — AC™D), and £ := {KC | K € U}
one immediately verifies that the output feedback pole placement problem involving
proper transfer functions is also covered by Problem 1.1 and that in this case it is of
importance to have the matrix H in the formulation of Problem 1.1.

Ezample 1.5 (matrix extension problems). Let m =n, H =0, and G = I,,. In
this case Problem 1.1 asks for conditions which guarantee that the characteristic map

(1.4) xa: L— K", Fr—det(sI+A+F),

is surjective or at least “generically” surjective. This general matrix extension problem
itself contains many of the matrix completion problems as they were studied in [1, 4,
5, 7).

The main result in the situation of Example 1.5 has been derived in [11]. It states
the following.

THEOREM 1.6. If the base field K is algebraically closed, then for a generic set of
matrices A € Maty, «n, the characteristic map (1.4) is dominant (generically surjective)
if and only if

1. dim £ > n;
2. there must be at least one element L € L whose trace tr(L) # 0, i.e., L ¢ sl,.

The main results of this paper will show that if K is algebraically closed, then for
a generic set of matrices (A, G, H) Problem 1.1 is solvable in a projective closure of £
for every ¢(s) if and only if dim £ > n (Theorem 2.7), and if dim £ = n, then there
are at most min(m,n)™ solutions for each ¢(s) for each subspace £ (Theorems 2.8,
4.3, and 4.8).

The paper is structured as follows: In section 2 we will introduce a natural com-
pactification of the linear space £ which we will denote by £. In order to prove the
main theorems we will show that one has a characteristic map x defined on a Zariski
open set of the variety £. Geometrically x describes a central projection from the
variety £ to the projective space P". As a consequence the number of solutions in
the critical dimension, i.e., in the situation where dim £ = n, is equal to deg £ when
counted with multiplicities and when some possible “infinite solutions” are taken into
account. The results in section 2 generalize mathematical ideas which have been de-
veloped for the static pole placement problem by Brockett and Byrnes [2] and for the
dynamic pole placement problem by Ravi, Rosenthal, and Wang [14], Rosenthal [15],
and Rosenthal and Wang [16].

The degree of the variety £ is of crucial importance for the understanding of
the characteristic map x. In section 3 we compute the degree of £ in many special
cases. As a corollary we will rediscover several matrix completion results as they were
derived earlier in [3, 4, 5, 7].

In section 4 we will be concerned with the value of the “generic degree”; this is
the largest possible degree a variety £ of a fixed dimension can have. We determine
an upper bound for the generic degree in the case when d = n and prove that this
bound is reached when m =n < 5.

2. Compactification of the problem. The inverse eigenvalue problem formu-
lated in Problem 1.1 describes an intersection problem in the linear variety £. In
order to invoke results from intersection theory [6] it is important to understand the
intersection at the “boundary” of £. What is needed is a good compactification of
L. It turns out that Problem 1.1 induces in a natural way a compactification, and we
will explain this in what follows.
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Recall [8, 9] that the Grassmannian Grass(m,K?), m < g, is the set of all m-
dimensional subspaces in K?. For each X € Grass(m,K9), let X = span {aq,...,an};
then

ar ANag N\ - N\ Qyy
is a vector in the exterior product A"K9 = K("?L), and
span {aq, ...,y =span {f1,...,0m}
if and only if
g AN Ay = k(B A+ A Bm)

for some k # 0 in K. Therefore, by considering the components of oy A --+ A oy, as
homogeneous coordinates of a point in ]P’(fn)*l, we have an embedding

Grass(m,K?) Cc P(A™KY) = IP’(ffz,)_l7

which is called Pliicker embedding, and a; A --- A a,, are called Pliicker coordi-
nates of X € Grass(m,K?). If {a;} are row vectors, then the Pliicker coordinates of
span {ai,...,an,} are given by all the full size minors of the m x ¢ matrix

g

A
The closed loop characteristic polynomial can be written as

I F]

(2.1) det[s(]—i—HF)—(A—l—GF)]:det[ —sH+G sI—A

Following an idea introduced by Brockett and Byrnes [2] for the static output pole
placement problem we will identify rowsp [I,, F] with an element of Grass(m, K™*™).
In this way we have natural embeddings

L C Grass(m,K™*") c P (A"K™") =PV, N = (m + n) —1.
m
DEFINITION 2.1. Let L be the projective closure of L. -
By definition £ is a projective variety of dimension dim£ = dim£ = d. The
remainder of the paper will be devoted to a large extent to the study of this variety.
In order to have a general idea of how the projective closure of L is defined, we start

with an illustrative example.
Ezxample 2.2. Let m =n=d =3, and let £L C Matsx3 be defined by

a b 0
(2.2) L= c a b ,
0 ¢ a

where a, b, ¢ € K are arbitrary elements. Then for fixed a, b, ¢

1 0 0 a b O
(2.3) rowsp | 0 1 0 ¢ a b
0 01 0 ¢ a
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is a point in Grass(3,K®). Let z;;, be the full size minor of (2.3) consisting of the
ith, jth, kth columns. Then {z;j;} are the Pliicker coordinates of Grass(3,K°) in

p(s)-1 = p19, L is defined by 6 linear equations of its entries. In terms of the Pliicker
coordinates, they become

(2.4) 2934 = —Z135, 2234 = 2126, 2235 = —Z136,
2125 = —2134, 2124 =0, z236 = 0.

L has 9 minors of size 2 x 2, but there are only 6 monomials of degree 2 of a, b, c:
a?,b%,¢?, ab, ac, be.

So there are 3 linear relations among the 2 x 2 minors. In terms of the Pliicker
coordinates, they are

(25) 2146 = —R2245, 345 = 2156, <346 — —2256-

The monomials a2, b2, ¢2, ab, ac, bc are not algebraically independent; they satisfy the
relation

a’> ab ac a
(2.6) rank | ab b® bc | =rank | b [[a b c] <L
ac bec c

i.e., all the 2 x 2 minors of (2.6) are zero, which induce 6 quadratic relations among
the 2 x 2 minors of L:

2 _ 2 _
2346 + 22462356 = 0, 2746 + 22462145 = 0,
2
(2.7) (2246 + 2345)° — 23562145 = 0, 2246 (2246 + Z345) — 23462146 = 0,

2346(2246 + 2345) + 23562146 = 0,  2146(2246 + 2345) + 21452346 = 0.

Every point in Grass(3,K°) defined by 2123 = 0 and (2.4), (2.5), (2.7) is indeed a limit
point of (2.3); therefore £ is defined by (2.4), (2.5), and (2.7) in Grass(3,K®) c P19.

Note that every element in £ can be simply represented by a subspace of the
form rowsp [F} F»], where the m X m matrix F} is not necessarily invertible. Row
span [F} F3] describes an element of £ if and only if Fy is invertible. Note that a
characteristic equation is even defined if F} is singular unless the polynomial in (2.1)
is the zero polynomial.

Let f;, i =0,..., N, be the Pliicker coordinates of rowsp [F} F3]. In terms of the
Pliicker coordinates the characteristic equation can then be written as

P P N
1 2 _Z -
(2.8) det[ —-sH+G s[—A ] - —~ fipi(s),

where the p;(s) is the cofactor of f; in the determinant (2.8).
Let Z C PV be the linear subspace defined by

(2.9) Z= {zE]P’NZpi(s)zizo}.
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Following [14, 15, 18] we identify a closed loop characteristic polynomial ¢(s) with a
point in P™. In analogy to the situation of the static pole placement problem consid-
ered in [2, 18] (compare also with [15, section 5]) one has a well-defined characteristic
map

X : L—-2 — P

2.10 a
(2.10) rowsp [F} Fy] — Z fipi(s)-
i=0

It will turn out that surjectiveness of the map y will imply the generic pole assignabil-
ity of system (A, G, H) in the class of compensators L.

Recall the notion of degree of a variety [10, Chapter I, section 7] and the notion
of a central projection (see [17, Chapter I, section 4]). The geometric properties of
the map x are as follows.

THEOREM 2.3. The map x defines a central projection. In particular, if ZNL = ()
and dim £ = n, then x is surjective, and there are deg L many preimages (counted
with multiplicity) for each point in P™, where deg L is the degree of the projective
variety L in PN,

The proof for this theorem is identical to the one given in [14, 18]. In the algebraic
geometry literature (see, e.g., [9, 13, 17]) x is sometimes referred to as a projection
of L from the center Z to P™, and Z N L is sometimes referred to as the base locus.
Of course the interesting part of the theorem occurs when Z N £ = () since in this
situation very specific information on the number of solutions is provided. If ZNL = ()
and dim £ = n, then one says that x describes a finite morphism from the projective
variety £ onto the projective space P".

In analogy to the situation of the static pole placement problem [2, 18] and the
dynamic pole placement problem [15] we introduce a definition for this important
situation.

DEFINITION 2.4. A particular system (A, G, H) is called £L-nondegenerate if Z N
L = 0. A system which is not L-nondegenerate will be called L-degenerate.

In general it will always happen that certain systems A, G, H are L-degenerate.
We first make a definition.

DEFINITION 2.5. Let X be an arbitrary (affine or projective) variety. A subset
S C X is called a generic set of X if it contains a nonempty Zariski open set of X.

The next theorem shows that if the dimension of £ is not too large, then the set
of systems A, G, H which are £-degenerate are contained in a proper algebraic subset
when viewed as a subset in the vector space K(n*+2mn)

LEMMA 2.6. Assume the base field K is algebraically closed. If dim £ > n, then
every system A,G,H is L-degenerate. If dim L < n, then a generic set of systems
A, G, H is L-nondegenerate.

Proof. If dim£ > n, then Z N L is nonempty by the (projective) dimension
theorem (see, e.g., [10, Chapter I, Theorem 7.2]) and the fact that dim Z > N —n—1.

Assume now that dim £ < n. Consider
1, F }

(2.11) det —sH+G sE—A

and identify the set of matrices E, A, G, H with the vector space K2"("+") In analogy
to the proof of [15, Lemma 5.3] we compute the dimension of the coincidence set

5 F; F:
L . 2n(m+n) 1 2 o
S-{(F17F2; EaA)G,H)EEXK |det|: —SH+G SE_A :| O}'
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Using the same arguments as in [15] one computes
dimS = dim £ + 2n(m +n) —n — 1.

Since L is projective the projection onto the second factor (namely, Kzn(m“‘)) is
an algebraic set by the main theorem of elimination theory (see, e.g., [13]). This
projection can result in an algebraic set of dimension at most dimS < 2n(m+mn). So
for generic matrices F, A, G, H, we have det ¥ # 0 and

Fy Fy
det| mrq  sp—a |70

for all [} Fy] in £. For such matrices {E, A, G, H}, the systems A = E~1A,G =
E-'G,H = E~'H are L-nondegenerate, and the claim therefore follows. 0

We are now in a position to state one of the main theorems of this paper.

THEOREM 2.7. Assume the base field K is algebraically closed. Let L C Mat,,xn
be a fixed subspace. Then the map x introduced in (2.10) is surjective for a generic
set of matrices A, G, H if and only if dim £ > n. If dim £ = n, then for a generic set
of matrices A, G, H the intersection Z N L = and there are deg L many preimages
(counted with multiplicity) for each point in P™.

Proof. If dim £ < n, then a simple dimension argument shows that x cannot be
surjective. The result for dim £ = n follows from Lemma 2.6 and Theorem 2.3. If
dim £ > n, we can always choose a subspace of L of dimension n. It follows that x is
surjective as soon as dim £ > n. |

Theorem 2.7 gives a partial answer to Problem 1.1. The following result makes
this clear.

THEOREM 2.8. Let L C Mat,,xn be a fired subspace, and assume that K is
algebraically closed. If dim £ < n, then for almost all monic polynomials v(s) € K]s|
of degree n there does not exist a F € L such that (1.1) holds true.

If dim £ > n, then for a generic set of matrices A,G,H and a generic set of
monic polynomials ©(s) of degree n Problem 1.1 has a solution.

Finally, if dim £ = n, then for a generic set of matrices A,G, H and a generic
set of polynomials the number of solutions is always finite, and when counted with
multiplicities there are exactly deg L solutions.

Proof. The only statement which does not immediately follow from Theorem 2.7
is the claim about the number of solutions in the critical dimension. We therefore
assume that dim£ = n. Consider the characteristic map x introduced in (2.10).
According to Theorem 2.7, y is a finite morphism of degree £. For a generic set of
polynomials ¢(s) € K™ C P the inverse image x~*(¢(s)) contains deg (£) different
solutions, and all these solutions are contained in £ C L. 1]

Theorems 2.7 and 2.8 assume that the field is algebraically closed. For general
fields it is often possible to deduce some results by considering the corresponding
question over the algebraic closure. The following result is of this sort.

COROLLARY 2.9. If the degree of the variety L defined over the complex numbers
C is odd and if dim L > n, then x is also surjective over the real numbers R for a
generic set of real matrices A,G, H.

Proof. We will view a triple of complex matrices A, G, H as a point in C™(2m+7),
If d := dim £ = n, then x represents a finite morphism for a generic set of complex
matrices A, G, H by Theorem 2.7. Since the subset of real matrices inside C"*(2m+n)
is not contained in any algebraic set, x is even a finite morphism for a generic set
of real matrices A, G, H. Over the complex numbers the inverse image x~'(y) C L



POLE PLACEMENT AND MATRIX EXTENSION PROBLEMS 2085

represents a finite set of complex conjugate points for every real point y € P”; in
particular, x ~!(y) contains a real point for a generic set of real matrices A, G, H.

If d < n we follow the reasoning in the proof of [14, Theorem 2.14]: for a generic
set of real matrices A, G, H one has

dmZnNnL=dimlL-n—-1=d—n—1.

If this dimension formula holds choose a subspace H C PV having codimension d — n
inside PV and having the property that

(2.12) LNZNH=.

Such a subspace H exists by [13, Corollary (2.29)]. Let 71 : £ — P? be the central
projection with center ZN H, and let 7o : P? — 71 (Z) — P™ be the central projection
with center 71(Z). Then 7 is a finite morphism which is surjective over C. 5 is a
linear map, it is surjective as well, and

X = T2 0Ty,

If the degree of £ is odd, then 7 is surjective over the reals, and the claim fol-
lows. O

3. The degree of £ in some special situations. From Theorems 2.7 and 2.8
it became clear that deg £ is equal to the number of solutions for Problem 1.1 in the
critical dimension, at least generically. In this and in the next section we will compute
deg £ in many situations.

For the rest of the paper we will assume that K is an algebraically closed field
of characteristic zero. We will show in a moment that the compactification £ is, in
many cases, isomorphic to the product of some Schubert varieties. This will allow us
to compute the degree of £ C PV in these cases.

For the convenience of the reader we summarize the basic notions. More details
can be found in [12, 16] and [6, Chapter 14].

Consider a flag of linear subspaces

F: {0}CV1CV2C"‘CVm+n:Km+n7

where we assume that dimV; =g for ¢ =1,...,m+n. Let v = (11,...,v) be an
ordered index set satisfying

1< < <y <m+n.
With respect to the flag F one defines the Schubert variety

(3.1)
SWi,... ,vm) == {W € Grass(m, K™*") | dim(WﬂVl,k) >k fork=1,...,m}
and the Schubert cell
(3.2)
Cwi,y ..o vm) :={W € S(v1,...,vm) |dim(WﬂVyk,1) =k—1fork=1,...,m}.

The closure of the Schubert cell C(v1,...,v,,) inside the variety Grass(m, K™") C
PY is equal to the Schubert variety S(v1,...,vm). By definition, S(vi,...,vy,) is



2086 M. KIM, J. ROSENTHAL, AND X. A. WANG

a projective variety. There is a well-known formula for the degree of a Schubert
variety [12, Chapter XIV, section 6, equation (7)]:

degS(l/l, .. .,I/k) = <Z(VZ — Z)) ‘M

Let B := {v1,...,Vmin}t C K™ " be a basis which is compatible with the flag F.
In other words this basis has the property that V; = span(vy,...,v;). With respect
to the basis B one can represent the Schubert cell C(vy,...,vy) as the set of all
m-dimensional subspaces in K" which are the rowspaces of a matrix of the form

« -« x 10 - 00 -0 -~ 000 --- 0
%« -+ % 0 % -+ % 1 - 0 - 000 --- 0
where the 1’s are in the columns vy, ..., Vp,.
The cell C(vy, ..., vy) is isomorphic to K¢, where d = >t o(vi—i). In particular,
the cell C'(v1,...,vy) is isomorphic to every subspace £ C Mat, x», having dimension
dim £ = d. In general it is not true that the closures S(v1,...,v,) C PY and £ c PV¥

are isomorphic. This happens, however, in the following situation.
Let E; ; be the m x n matrix whose 4, j-entry is 1 and all the other entries are 0.
Let = (u1,- .., tm) be an ordered index set satisfying

0<pm < <pm <

DEFINITION 3.1. £ C Mat,xy, s called a lower left filled linear space of type u
if L is spanned by the matrices

E;; for j<p, i=1,...,m.

LEMMA 3.2. If L C Mat,xr is a lower left filled linear space of type u, then L
is isomorphic to the Schubert variety S(py + 1, o + 2, .., o, +m).

Proof. Let v; := p; + 1,4 = 1,...,m. There is a fixed (m + n) x (m + n)
permutation matrix P such that the set

{Im FIP|FeL}C Matmx(ern)

is equal to the cell C(vy,...,vy,) described in (3.3). The linear transformation P €
Glyyrn extends to a linear transformation in P (A™K™*") = PV and this linear
transformation maps £ isomorphically onto S(v1,. .., V). 0

The proof of the lemma shows in particular that permutations of the columns
inside Mat,,x, result in isomorphic compactifications. The following lemma shows
that a broader range of transformations do not change the topological properties of
the compactification.

LEMMA 3.3. Assume there are subspaces L1,Lo C Maty,xrn. If there are linear
transformations S € Gl,, and T € Gl,, such that Lo = SL, T, then there exists
an automorphism of PN which maps the compactification L, isomorphically onto the
compactification Ls.

Proof.

0 71!

(I SLiT'] =S (I L] { st 0 ]
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The matrix to the right, an element of GL,,4, induces a linear transformation on
the projective space P (A™K™+") = PN which maps £; onto Ls. |

THEOREM 3.4. Assume there are linear transformations S € Gl,, and T € Gl,
such that

£y 0 0
scrt=1 o . o |,
0 0 Ly

where each L£1,1 =1,...,k, is the space of my x n; lower left filled matrices of type pi':
0<pb < <pl, <m.
Then L is isomorphic to the product of Schubert varieties
S(’U& +17:u%+27a:u"}n1 +Tnl) X X S(ullc+la:u‘]2€+277ulﬁn,k +mk)
and
( ) )
% r p’z
degE: Zﬂi 'zl>l

1 HM1+Z—1
il

)

Proof. The closure of [I,,, £;] in the Grassmann variety Grass(m;, K™ ") is the
Schubert variety S(pf +1,...,ul, +my), and £ is a product of Schubert varieties.

The degree formula of a product of projective varieties under the Segre embed-
ding [19, Proposition 2.1] is given by

dim Z;)
deg Z1 X -+ X Zy = Zdlmz |HdegZ

Combining these formulas gives the result. 0
COROLLARY 3.5. When pr = = u}nl =mny and pt = 0 for | > 1, then the
compactification £ = Grass(my, K™ ") and its degree is

nl!(nl + 1)' s (TLl +mq — 1)'

Using Lemma 3.3 and Corollary 3.5 we can deduce Theorem 1.4, the result of
Brockett and Byrnes. For this assume that H = 0, G = I, and £ = {BFC |
F € Mat,,xp}. Without loss of generality we can assume that B, C have full rank,
rank B = m, and rank C' = p. (Theorem 1.4 assumes genericity!) There are invertible
matrices S, T such that SB = [I(’)”] and CT~! = [Ié’} It follows that

S[:T_l == {|: 1(; 8 :| S Matnxn | F € MathP} :

According to Lemma 3.3 and Corollary 3.5 the compactification is isomorphic to the
Grassmannian Grass(m, K™*P) as predicted by Theorem 1.4. In order to fully prove
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Theorem 1.4 it remains to be shown that for a generic set of matrices A € Mat,, xn
the system is L£-nondegenerate as soon as n = mp.

COROLLARY 3.6. When m; =n; =1 and p’ =1 for all I, then £ = [[}_, P! =
P! x --- x P! and its degree is

nl.

Corollary 3.6 covers a result first studied by Friedland [4, 5]. Indeed the subspaces
L C Mat,«, correspond in this case exactly to the set of diagonal matrices. By
Theorem 2.7 we know that for a generic set of matrices A, G, H the characteristic
map X is a finite morphism of mapping degree n!. Friedland [4, 5] and Byrnes and
Wang [3] did show that the set of all matrices of the form A, I,,,0 belongs to this
generic set. We therefore have the following result.

THEOREM 3.7 (see [3, 4, 5]). Let L C Mat,xy be the set of all diagonal matrices
defined over an algebraically closed field K. If A € Mat,«, is an arbitrary matric
and ¢ € K[s] is an arbitrary monic polynomial of degree n, then there are exactly n!
diagonal matrices F' € L (when counted with multiplicity) such that the matriz A+ F
has characteristic polynomial p(s).

4. The degree of L in the generic situation. In the previous section we
computed the degree of the variety £ in many special cases. The set of all subspaces
L C Mat,,«, having the property that dim £ = d can be identified with the Grass-
mannian variety Grass(d, K™"). The degree in our concern attains its maximal value
on a Zariski open subset of Grass(d, K™"). This largest possible degree is sometimes
referred to as the generic degree. In other words, the generic degree is obtained by
algebraic perturbation of the subvariety £ in the ambient space, K”". In this section
we determine an upper bound of the generic degree in the case when d = n and prove
that this upper is reached when m = n < 5. Let K be an algebraically closed field.

LEMMA 4.1. Let Hy,...,Hy, k < n, be hypersurfaces in P" of degrees d, ..., dx,
respectively, and let Z1, ..., Zy, be the irreducible components of ﬂle H; (not neces-
sarily the same dimensions). Then

m k
> degZ; <[] d-
j=1 i=1

Proof. Tt is sufficient to prove that for any [-dimensional projective variety Z of
degree d, [ > 0, and for any hypersurface H of degree ¢, the sum of the degrees of the
irreducible components of Z N H is at most dq.

If ZC H,then ZNH = Z and deg Z = d < dg. On the other hand, if Z ¢ H,
then each irreducible component of Z N H has dimension ! — 1 (see the proof of [10,
Chapter 1, Proposition 7.1]), and by Bézout’s theorem [9, Theorem 18.4, p. 228],
the sum of the degrees of the irreducible components of Z N H is dg counted with
multiplicity. 0

LEMMA 4.2. Let p;(x) € K[zq,...,z,] be polynomials of degree d;, i = 1,...,k,
k < n. Then the number of irreducible components of

{zr eK" | pi(z)=0,i=1,...,k}

is at most Hle d;.
Proof. Let p;(z) be the homogenization of p(z), i.e.,

pi(z) = Zgip(zl/z()a ey Zn/20)-
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Then p;(z) defines a hypersurface of degree d; in P*. Lemma 4.1 implies that the
number of irreducible components of

{zeP"pi(2) =0,i=1,...,k}
is at most Hle d;. So is the number of irreducible components of
{zr e K" | pi(z) =0,i=1,...,k}. O

THEOREM 4.3. Let K be an algebraically closed field. The generic degree of
L C P(A™K™) = PV s at most min(m,n)". When m = n the sharper bound
n(n —1)""1 even holds.

Proof. For a generic (N — n)-dimensional projective subspace H C PV, the
intersection H N £ contains exactly deg £ many points, and all of them are in £. Let

(4.1) > alen Ao ne,)

be the homogeneous coordinates of the points in A™K™*" where {e;} is the standard
basis of K™*". Then each (N — n)-dimensional projective subspace H is defined by
n linear equations in {z,}. Let £ =span {Fi,..., F,}, and define

(4.2) Fla)=x1F1 + - -+ z,F,.

Consider the Pliicker coordinates z, for the row space of [I,,, F(z)]. There are now
two cases. When m < n, then the coordinates z, have degree at most m when
viewed as polynomials of K[z1, ..., z,]. Intersecting with the subspace H results in n
polynomial equations in n variables having degree at most m. By the previous lemma
the number of solutions is at most m™.

When m > n, then the z, have degree at most n, and we get the upper bound
n™. When m = n we get the sharpened upper bound as follows: In order to describe
the generic plane H we can always choose a set of equations such that at most one
of them contains the last Pliicker coordinate z(y,41,... 2,y Which is equal to det F'(z), a
polynomial of degree n at most. All other polynomials z, have degree n — 1 at most.
Therefore deg £ equals the number of solutions of one polynomial equation of degree
at most n and n—1 of polynomial equations of degrees at most n—1. By Lemma 4.2,
if the number of solutions is finite, then it is at most n(n — 1)"~!, and hence deg L is
at most n(n — 1)"~! when m = n. d

The reader may wonder how good the bound of the degree in Theorem 4.3 is. It
is readily shown that the bound is sharp when min(m,n) = 1. In the following two
pages we show that the degree is n(n — 1)"~! for m =n < 5.

Note that the Pliicker coordinate z, = z(,, .. ., defined by (4.1) is the full size

minor consisting of the vy, ..., v, columns of [F}, F5] € Grass(n,2n). Define
n
ZEDIZET)
i=1

and partial order v < p if v; < p; for all &. Under the standard flag (i.e., the flag
spanned by the ordered standard basis), the Schubert variety (3.1) is defined by

S(v) = S(v1,...,v;) = {z € Grass(n,K*") | z, = 0 for u £ v},
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and the Schubert cell (3.2) is defined by
C(v) :=C(vi,...,v;) = {z € Grass(n,K*") | z, = 0 for u £ v and z, # 0},

and dim S(v) = dim C(v) = |v|.
LEMMA 4.4. Let

fe(2) = 2,

lv|=k

and let Zy, be the algebraic subset of Grass(n, K?"*) defined by fri1(2) =0, fria(z) =
0,..., fn2(2) =0. Then

Zy=J Sw).
|

v|=k

Proof. Clearly U, |, S(v) C Zy. Let z € Zy. If 2 ¢ |, S(v), then z must be in
a Schubert cell C(p) for some p with |g| > k. Then it implies that z, = 0 for all v such
that |v| = |u| and v # p. From one of the defining equations, fj,(z) = 0, we derive
a contradiction: z, = 0. Therefore z € |, S(v) and Zy =, =, S(v). 0

We call a coordinate z, type 4 if exactly i of the indices {v1,...,v,} are in the
set {n +1,...,2n}. For example, z(,41,. 2n) is type n, and z(1 3, nnt1) is type 1.
Let

Matpwy = {[In, F]| F € Matyxn}.

Then M@n is an open set of Grass(n, K?") which is isomorphic to Mat, x,. In
Mat, «,, a type k coordinate is a homogeneous polynomial of degree k of the entries
of F.

LEMMA 4.5. Let k > 0 and Z be a k-dimensional subvariety of Grass(n, K?")
such that it is not completely contained in the hypersurface

Hy := {z € Grass(n, KQ")\Z(LQWW) =0}.

Then each irreducible component of Z N H has dimension k — 1 for generic hypersur-
faces H defined by linear equations of type 1 coordinates.

Proof. For any H, either Z C H or each irreducible component of Z N H has
dimension k —1 (see the proof of [10, Chapter 1, Proposition 7.1]). Therefore we need
only to show that Z ¢ H for generic H’s. Since the set of all such H’s form a Zariski
open set, we need only to show that it is nonempty. Since dimZ > 0 and Z ¢ H,
we can always find a point [I,,, F] € Z with F' # 0. Let z, be the type 1 Pliicker
coordinate corresponding to a nonzero entry of F. Then Z is not contained in the
hypersurface defined by z, = 0. O

LEMMA 4.6 (see [5]). Let p1(z),...,pn(z) be polynomials on K™ of degrees
di,...,dy, respectively, and let pf(m) be the homogeneous part of p;(x) of the highest
degree (degree d;). If ph(x) = 0,...,pl(x) = 0 have only zero solutions, then the
system of polynomial equations

pl(x) = b1>

has [1i—, di solutions counted with multiplicity for any (by,...,b,) € K™.
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Proof. Let (1,z1,...,x,) = (1,21/20,---,2n/20). Then K™ can be considered as
an open subset of P™ defined by 2o # 0. Let h;(2) be the homogenization of p;(x) — b;;
ie., hi(z) = 20 (pi(21/20, - - -, 2n/20) — bi). hi(z) defines a hypersurface H; of degree
d; in P™. Let Hy be the hyperplane in P™ defined by zg = 0. The condition implies
that the system of equations zp = 0 and h;(z) = 0, for ¢ = 1,...,n, has only zero
solution z; = 0, ¢ = 0,...,n; Le., in P*, NP H; = 0. By the projective dimension
theorem, dim N}, H; = 0, and by Bézout’s theorem, N}'_, H; contains exactly H?zl d;
points counted with multiplicity and again by the given condition, all of them are in
K™, |

THEOREM 4.7. The generic degree of L is n(n — 1)"~! for m =n < 5.

Proof. By Theorem 4.3, we need only to find one £ such that deg £ = n(n—1)""1.
From Lemma 4.4 we know that

{z € Grass(n,K2”) | fr2(2) =0, frz_1(2) = 0,..., an—n+1(Z) =0} = U S(v).

By repeatedly using Lemma 4.5 we can find n? — n linear equations
I1(2)=0,...,01,2_,(2)=0

of type 1 coordinates such that each irreducible component of

Z:=<(z€ U SW) | 11(2) =0,...,l,2_,(2)=0

lv|=n2—n

either is contained completely in Hy or has dimension 0.
Note that for n < 5, fu2_1(2) = 0,..., fn2_n11(2) = 0 are linear equations of

type n — 1 coordinates, and in mn = {[I,, F]} they are homogeneous equations
of degree n — 1 of the entries of F. Therefore if [I,,, F]is in Z, then [I,, tF] are also

in Z for all ¢t. Since dim Z N ]\Et;n = 0, we must have

(4.3) dim Z N Matyxp = {[In, 0]}.
On M@n, I1(2) =0,...,l,2_,(2) =0 are linear equations of the entries of matrices

F € Mat, «,. Let £ be the n-dimensional linear subspace of Mat,, «,, defined by these
linear equations, and let F'(x) be defined as in (4.2). Then in terms of z, the equation
0 = fn2(2) = det F(z) is a homogeneous equation of degree n, and the equations

fnz_1(2) = 0,..., fuz_ny1(2) = 0 are homogeneous equations of degree n — 1, and
(4.3) implies that the system of these equations has only zero solution. Therefore, by
Lemma 4.6, the system f,2(2) = b1,..., fa2_ni1(2) = by has n(n — 1)"~! solutions

counted with multiplicity in £, which means that the linear system of the Pliicker
coordinates

fn2 (Z) = b12(1,2,...,n)a

fn2—n+1 (2’) = an(1,2,...,n)

has n(n—1)""1 solutions in £ counted with multiplicity, i.e., deg £ = n(n—1)""1. d
Theorem 2.8 showed the existence of solutions over an algebraically closed field
when d > n. In the critical dimension (d = n) we already know that the number of
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solutions is finite generically. Theorem 4.3 gives the following upper bound for the
number of solutions in Problem 1.1.

THEOREM 4.8. Let K be an arbitrary field. Let L C Mat,,«, be a subspace
of dimension n, let A,G,H be a “generic set of matrices,” and let o(s) € K" be
an arbitrary monic polynomial ¢(s) € Kls] of degree n. Then there exist at most
min(m,n)" different feedback laws F € L such that (1.1) holds. If, in addition,
m = n, then the number of solutions is bounded by n(n — 1)"~ 1.

Proof. Consider the problem over the algebraic closure K of K. By Theorem 2.7
there are for every monic polynomial ((s) of degree n exactly deg £ many feedback
laws [Fy Fy] € L (when counted with multiplicity) such that

F Ey

det | g sra | TG

Therefore, there are at most deg £ many feedback laws F' € £ whose coefficients are
in the base field K. deg L is always less than the generic degree. By Theorem 4.3 the
generic degree is at most min(m,n)" (respectively, n(n — 1)"~! when m = n). |
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