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University of Zürich, Winterthurerstr 190
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CH-8057 Zürich, Switzerland

(Communicated by Andreas Stein)

Abstract. A generalization of the original Diffie-Hellman key exchange in
(Z/pZ)∗ found a new depth when Miller [27] and Koblitz [16] suggested that
such a protocol could be used with the group over an elliptic curve. In this
paper, we propose a further vast generalization where abelian semigroups act
on finite sets. We define a Diffie-Hellman key exchange in this setting and
we illustrate how to build interesting semigroup actions using finite (simple)
semirings. The practicality of the proposed extensions rely on the orbit sizes of
the semigroup actions and at this point it is an open question how to compute
the sizes of these orbits in general and also if there exists a square root attack
in general.

In Section 5 a concrete practical semigroup action built from simple semi-
rings is presented. It will require further research to analyse this system.

1. Introduction

The (generalized) discrete logarithm problem is the basic ingredient of many
cryptographic protocols. It asks the following question:

Problem 1.1. (see e.g. [26]). Given a finite group G and elements g, h ∈ G, find
an integer n ∈ N such that gn = h.

Problem 1.1 has a solution if and only if h ∈ 〈g〉, the cyclic group generated by
g. If h ∈ 〈g〉 then there is a unique integer n satisfying 1 ≤ n ≤ ord(g) such that
gn = h. We call this unique integer the discrete logarithm of h with base g and we
denote it by logg h.
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Protocols where the discrete logarithm problem plays a significant role are the
Diffie-Hellman key agreement [9], the ElGamal public key cryptosystem [10], the
digital signature algorithm (DSA) and ElGamal’s signature scheme [26].

The Diffie-Hellman protocol [9] allows two parties, say Alice and Bob, to exchange
a secret key over some insecure channel. In order to achieve this goal Alice and Bob
agree on a group G and a common base g ∈ G. Alice chooses a random integer
a ∈ N and Bob chooses a random integer b ∈ N. Alice transmits to Bob ga and Bob
transmits to Alice gb. Their common secret key is k := gab.

It is clear that solving the underlying discrete logarithm problem is sufficient for
breaking the Diffie-Hellman protocol. For this reason researchers have been search-
ing for groups where the discrete logarithm problem is considered a computationally
difficult problem.

In the literature many groups have been proposed as candidates for studying the
discrete logarithm problem. Groups which have been implemented in practice are
the multiplicative group (Z/nZ)∗ of integers modulo n, the multiplicative group
F
∗ = F \ {0} of nonzero elements inside a finite field F and subgroups [19, 31] of

these groups. In recent time there has been intense study of the discrete logarithm
problem in the group over an elliptic curve [3, 16, 27, 26] or more generally the
group over an abelian variety [8, 11, 17].

In this paper, we show how the discrete logarithm problem over a group can be
seen as a special instance of an action by a semigroup. The interesting thing is that
every semigroup action by an abelian semigroup gives rise to a Diffie-Hellman key
exchange. With an additional assumption it is also possible to extend the ElGamal
protocol.

The idea of using (semi)group actions for the purpose of building one-way trap-
door functions is not a new one and it appeared in one way or the other in several
papers. E.g. Yamamura [36] has been considering a group action of Sl2(Z). Black-
burn and Galbraith [2] have been analyzing the system of [36] and they have shown
that it is insecure. The key exchange protocol in our paper differs however from [36]
and the ‘bit by bit’ computation of Blackburn and Galbraith [2] does not apply.
Other papers where special instances of semigroup actions appear are [1, 15, 33, 34]
and we will say more in a moment.

The paper is structured as follows: In the next section we define G-actions on
sets, where G is an arbitrary semigroup. Under the assumption that G is abelian we
define a general Diffie-Hellman protocol. In Section 3 we consider semigroup actions
which can be linearized in the sense that there exists a computable homomorphism
which embeds the semigroup G into Matn(F), the ring of n×n matrices. Section 4
and Section 5 contain the main results of the paper. We show how semirings can
be used to build interesting abelian semigroup actions.

A promising practical example which we are describing in Section 5 consists of
a two sided action. The idea of such an action originates in the 2003 dissertation
of Maze [24]. Later, Shpilrain and Ushakov [33] have described similar two-sided
actions in the context of Thompson groups. The semigroups we are studying in
Section 5 are built from simple semirings. Simple semirings are of importance
as they assure that the induced matrix semiring is simple. In the special case
when the semiring is the ring of integers modulo n Slavin [34] filed a patent for
the described system citing the work of Maze. Neither [33] nor [34] build general
semigroup actions starting from semirings. At this point it is not clear if there exist
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parameter ranges where the described twosided action is simultaneously efficient
and practically secure.

2. The generalized Diffie-Hellman protocol

Consider a semigroup G, i.e., a set that comes with an associative multiplication
‘·’. In particular we do not require that G has either an identity element or that
each element has an inverse. However, without loss of generality, we will always
assume that the semigroup has an identity. We say that the semigroup is abelian if
the multiplication · is commutative.

Let S be a finite set and G a a semigroup. A (left) action of G on S is a map

ϕ : G× S −→ S,

satisfying φ(g · h, s) = φ(g, φ(h, s)). We will refer to such an action as a G-action
on the set S, and when the context is clear, we denote φ(g, s) simply by gs. Right
actions are similarly defined.

We present now the protocols one can define based on semigroup actions:

Protocol 2.1. (Extended Diffie-Hellman Key Exchange) Let S be a finite set,
G be an abelian semigroup, and φ a G−action on S. The Extended Diffie-Hellman
key exchange in (G,S, φ) is the following protocol:

1. Alice and Bob publicly agree on an element s ∈ S.
2. Alice chooses a ∈ G and computes as. Alice’s private key is a, her public key

is as.
3. Bob chooses b ∈ G and computes bs. Bob’s private key is b, his public key is
bs.

4. Their common secret key is then

a(bs) = (a · b)s = (b · a)s = b(as).

As in the situation of the discrete logarithm problem it is possible to construct
ElGamal one-way trapdoor functions which are based on group actions. The inter-
ested reader finds more details in [25, 28].
One would build a cryptosystem based on a semigroup action only if the following
problem is hard:

Problem 2.2. (Semigroup Action Problem (SAP)): Given a semigroup G
acting on a set S and elements x ∈ S and y ∈ Gx, find g ∈ G such that gx = y.

If an attacker, Eve, can find an α ∈ G such that αs = as, then Eve may find the
shared secret by computing α(bs) = (α · b)s = b(αs) = b(as).

Although the semigroup G need not be finite, the finiteness of S is sufficient
in order to provide a bound for the size of the data during the communication.
Nevertheless, if the action preserves the “size” of s with respect to some fixed
representation, finiteness of S is not necessary.

Remark 2.3. The traditional Diffie-Hellman key exchange is a special instance of
Protocol 2.1. For this let:

• G be the semigroup (Z, ·) of integers.
• S be a cyclic group H where the discrete logarithm problem is believed to be

difficult.
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• s is a generator of the group H and the action is defined by

ϕ : Z ×H −→ H

(n, s) 7−→ sn.

The identity sab = (sa)
b

simply says that ϕ is a commutative G-action and the
reader readily verifies that Protocol 2.1 reduces to the traditional protocol in this
case.

Of course, there is an analogue version of the Diffie-Hellman Problem stated in
terms of semigroup.

Problem 2.4. (The Diffie-Hellman Semigroup Problem) Given a finite abelian
semigroup G acting on a finite set S and elements x, y, z ∈ S with y = g · x and
z = h · x for some g, h ∈ G, find (gh) · x ∈ S.

The security of Protocol 2.1 is equivalent to this problem. The only way we know
how to attack Problem 2.4 is to solve SAP. It is unknown if SAP and Problem 2.4
are equivalent.

2.1. Generic attacks on the SAP. First, we should examine the brute force
attack. Suppose Eve intercepts as and bs through an insecure channel and wants
to decode the ciphertext a(bs) = b(as). She may want to try the brute force attack
to solve Problem 2.2: she computes gs for all possible g ∈ G until she finds some α
with αs = as. She is then able to break the system as explained above. To avoid
this attack, Bob and Alice must choose G and S sufficiently large and select a good
candidate for s. Namely, if

GEve = {α ∈ G |αs = as}
then the different parameters G, S, s must be chosen such that the size of GEve is
small with respect to the size of G.

If G has the structure of a group (and not just a semigroup) then GEve is simply
a left coset of the stabilizer group

Stab(s) = {g ∈ G | gs = s}
and in this case we are requiring that the quotient group G/Stab(s) is large.

For a general abelian semigroupG we observe that Stab(s) is still a sub-semigroup
of G and every element α ∈ a Stab(s) has the property that α ∈ GEve, i.e.,
a Stab(s) ⊂ GEve. Again in this case we require that Stab(s) is small in comparison
to G.

Note also that every sub-semigroup H of G gives rise to an equivalence relation
on S. If one has the ability to efficiently compute canonical representatives for
the equivalence classes (among other things), this could potentially be used to an
attacker’s advantage. But as we will see in Section 4, this is not always an easy
task.

It is of course an interesting question if a square root attack exists for general
semigroup actions. In the following we explain that for special cases this is possible.
In general we do not know how to adapt the known algorithms like e.g. baby step
giant step, or the algorithms Pollard rho or Pollard Kangaroo.

Consider an arbitrary instance of the SAP, where one is given a semigroup G (say
as a subset of {0, 1}N , with N not too much larger than log2 |G|), a set X (say as a
subset of {0, 1}M , with M not too much larger than log2 |X |) and ‘black-box’ type
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functions π and α for quickly computing the semigroup product and the action,
respectively:

π : G×G −→ G, α : G×X −→ X.

In addition, one is given x ∈ X and an element y ∈ Gx in the orbit of x. It is also
reasonable to assume the availability of oracles for producing elements of G and X
uniformly at random. The goal then is to find a g ∈ G for which α(g, x) = gx = y.

We do not know a method for solving such an arbitrary instance with O(
√

|G|)
operations, except in some special cases.

Situation I: Suppose an element g ∈ G is known for which gkx = y for some k ≥ 1.
In this case, one first determines the period and preperiod of g by a method similar
to Pollard’s rho method, which needs O(

√

ord(p)) = O(
√

|G|) operations, where
ord(p) is the period plus the preperiod of g (see the definition in Section 5). Then
the baby-step giant-step method can be applied in an obvious way to find k with
another O(

√

ord(p)) = O(
√

|G|) operations. Note: this applies immediately to the
case where G is a cyclic group.

Situation II: G is a group, but not cyclic. For typical groups, inverses are easily
computable, but in any case, one may always find inverses with O(

√

|G|) group

operations, so it suffices to solve g1x = g2y, from which one obtains (g−1
2 g1)x = y.

For this, a randomized baby-step giant-step is possible. Compute and store a set
A = {h1x, . . . , hmx} for randomly chosen hi ∈ G and m ≈

√

|G|. With clever
hashing techniques (or, in the worst case, sorting A) it is possible to quickly test
if a given element of X is in the set A. One then chooses random values of h ∈ G
until one is found with hy ∈ A. If hy ∈ A, we then have hy = hix for some i, and
so g = h−1hi.

If the semigroup is neither a group nor the set-theoretic union of a small number
of cyclic sub-semigroups we do not know how to adapt the algorithms known for
the DLP of abelian groups (see e.g. [4]). In contrast to the DLP problem actions
of a semigroup G on a set X can result in a G-orbit Gs, s ∈ X , consisting of many
ultimately periodic orbits {gks | k ∈ N}, g ∈ G. We have observed such phenomena
in the action described in Section 5. It is an open research question to come up
with a possible square root attack or to show that under certain conditions a square
root attack cannot exist for general semigroup actions on sets.

For semigroup actions where a square root attack exists and no other attack is
known (like e.g. the DLP over an elliptic curve) it is generally accepted that an
orbit size having 160 bits is sufficient for practical security. For cases where no
square root attack is known orbit sizes of 80 bits could be sufficient for practical
security.

3. Linear abelian semigroup actions over fields

This section is about linearity in the sense that there is a way to see the semigroup
action as a matrix action on some vector space. We show that if the correspondence
between the two approaches is computationally feasible, then the Diffie-Hellman
semigroup problem and the semigroup action problem may be solved easily. Two
examples of such action are presented at the end of the section.

Let us describe the situation more specifically. Let F = Fq be the field with q
elements. Suppose we are given an action G × S −→ S, with G a finite abelian
semigroup and S a finite set, a semigroup homomorphism ρ : G −→ Matn(F) (with
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multiplication as operation) and an embedding ψ : S −→ F
n such that for all

g ∈ G, s ∈ S one has

ψ(g · s) = ρ(g)ψ(s).

So ρ(G) is a commutative sub-semigroup of Matn(F). Let F[G] be the commutative
subalgebra of Matn(F) generated by the elements of ρ(G).

Suppose there exist polynomial time algorithms that compute the semigroup
operation, the semigroup action, the values of the maps ρ and ψ and polynomial
time algorithms that compute ρ−1(M) for each M ∈ ρ(G) and ψ−1(v) for each
v ∈ ψ(S). The next theorem does not take in consideration the speed of these
algorithms. It only describes what can be done at the level of the linear algebra
without taking consideration of the reduction itself. We also suppose we have access
to an oracle Λ that allow us to randomly chose elements in F[G]. This assumption
takes into account the desire to capture the situations were the semigroup G is close
to a real matrix algebra.

Theorem 3.1. Let G, S, ψ be arbitrary parameters as above and let k = dimF F[G].
Then:

1. There exists a probabilistic polynomial time reduction of the Diffie-Hellman

semigroup problem to a linear algebra problem over F that can be solved in an

expected O(k2n+ n3) number of field operations.

2. Let N = |F[G]|/|G|. There exists a probabilistic polynomial time reduction of

the SAP to a linear algebra problem over F that can be solved in an expected

O(N(k2n+ n3)) number of field operations.

The above O-constants come from the cost of standard linear algebra problems and

bounded expected values.

Proof. Let x, y = g·x and z = h·x be three elements of S with u,v and w their images
in F

n. We consider the semigroup action problem instance with parameters x and
y and the Diffie-Hellman semigroup problem instance with additional parameter z.

1. Suppose we have chosen randomly k different elements M1, ..., Mk in F[G] ⊂
Matn(F) with k call to the oracle Λ. The probability that this family is in
fact a basis of the vector space F[G] over F is equal to the probability P that
a random matrix chosen in Matk(F) is invertible, which satisfies

P = Prob (M1, ...,Mk is a basis of F[G])

=
|GLk(F)|
|Matk(F)|

=
(qk − 1)(qk − q)...(qk − qk−1)

qk2

=

(

1 − 1

q

)(

1 − 1

q2

)

..

(

1 − 1

qk

)

>
∏

n>1

(

1 − 1

2n

)

> 0.28 > 1/4.(1)

See [20] for the cardinality of GLk(F). Suppose for the moment that B =
{M1, ...,Mk} is a basis of F[G]. If k > n we extract a sub-family of cardinality
n say Mi1 , ...,Min

of M1, ...,Mk such that

SpanFn{Mi1u, ...,Min
u} = SpanFn{M1u, ...,Mku}.
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Note that this is always possible and can be done in O(k2n) field operations
(see [7]). If k < n then we may simply complete B with enough zero matrices
to have a family of cardinality n. Let us consider the following equations with
unknown a1, ..., an ∈ F and b1, ..., bn ∈ F:

(a1Mi1 + ...+ anMin
) u = v

and (b1Mi1 + ...+ bnMin
) u = w.(2)

If B is a basis, then both possess at least one solution because of the prop-
erty of the family Mi1 , ...M1n

. If a = [a1, ..., an]t and b = [b1, ..., bn]t then
Equations (2) are equivalent to the following :

[Mi1u | ... |Min
u]a = v

and [Mi1u | ... |Min
u] b = w,

and therefore both possess a solution that can be found by solving an n× n
system of linear equations in F. If the previous systems do not each have a
solution, then we choose another family M1, ...,Mk and restart the process;
the number of trials is expected to be less than 4 by Inequality 1. Therefore
we can find the vectors a and b in O(n3) field operations.

The matrices

Mg = (a1Mi1 + ...+ anMin
)

and Mh = (b1Mi1 + ...+ bnMin
)

satisfy

MgMh = MhMg , Mgu = v and Mhu = w.

Let σ = MgMhu = MhMgu. Since Mgu = ρ(g)u and Mhu = ρ(h)u, we have

σ = MgMhu = ρ(g)ρ(h)u = ψ((gh) · x) =⇒ ψ−1(σ) = (gh) · x

which shows that the Diffie-Hellman semigroup problem instance can be solved
after a resolution of a family of problems that take O(k2n + n3) operations
over F.

2. The matrix Mg above belongs to ρ(G) with probability 1/N . Therefore the
number of trials before reaching this state is O(N). If Mg ∈ ρ(G), then
g̃ = ρ−1(Mg) is a solution to the semigroup action problem since ψ(y) =
Mgψ(x) = ψ(g̃ · x).

Here are some examples where the previous theorem holds or can be used:

Example 3.2. Let M be an n × n matrix with entries in F = Fq and G = F[M ]
acting on F

n. If the minimal polynomial of M is m(x) then F[M ] ∼= F[x]/(m(x))
(with this isomorphism being efficiently computable) and the latter is a vector
space of dimension k = deg m 6 n. In such a situation, both the semigroup action
problem and Diffie-Hellman semigroup problem are trivial.

Example 3.3. This example comes from invariant theory (see e.g. [35] for an
introduction to this classical subject). We will consider a contragradient matrix
action on the ring of polynomials. Fix a finite field F = Fq, an integer d and
an abelian sub-semigroup G of Matn(F). Let Vd be the vector space over F of
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polynomials in F[x1, ..., xn] of total degree less or equal to d. The action we are
considering is

G× Vd −→ Vd

(A, f(x)) 7−→ A · f = f((Ax)t)

where x = [x1, ..., xn]t and Ax is the usual matrix multiplication. This action is
linear since A · (f + g) = A · f +A · g. If r = dimF Vd then we can naturally embed
Vd in F

r after having chosen the basis B = {xe1

1 ...x
en

n |
∑

ei 6 d} of Vd. This
makes the map ψ easy to compute and to invert. For sake of clarity, we suppose
that B = {v1 = x1, ..., vn = xn, vn+1, ..., vr}. We define the map ρ : G −→ Matr(F)
as follows:

ρ(A)ij = (A · vj)i =

(

r
∏

k=1

(

n
∑

l=1

aklxl

)ek
)

i

where vj = xe1

1 ...x
en

n . So ρ gives the matrix representation of the linear map induced
by the action since the jth column of ρ(A) is the image of the jth basis vector vj .
Since all the polynomials have degree less or equal to d, the right-hand-side can
be computed in O(rnd log d) field operations (see [32, Chapter 1]). Note that if
M ∈ ρ(G), then we can easily find A such that ρ(A) = M since the ith row of A is
contained in the n first components of the ith column of M . Indeed, if 1 6 i 6 n
then

ith column of M = A · vi =

n
∑

j=1

aijxj =

n
∑

j=1

aijvj .

Once again the previous theorem holds and makes the Diffie-Hellman semigroup
problem as hard as the linear algebra problem in F

r. However note that in that
case the semigroup action problem may still be difficult since the ratio |G|/|F[G]|
may take very small values because of the big dimension expansion from n to r.

4. Linear actions of abelian semirings on semi-modules

In this section we construct semigroup actions on finite sets starting from a
semimodule defined over a semiring. The setup is general enough that it includes
the Diffie-Hellman protocol over a general finite group as a special case. It provides
on the other hand the flexibility to construct new protocols where some of the
known attacks against the discrete logarithm problem in a finite group do not work
anymore.

Let R be a semiring, not necessarily finite. This means that R is a semigroup
with respect to both addition and multiplication and the distributive laws hold.
It is understood that the semiring is commutative with respect to addition. Some
authors assume that a semiring has a neutral element with respect to addition. We
will not assume that R has either a zero or a one.

Let M be a finite semimodule over R. With this we mean that M has the
structure of a finite semigroup and there is an action:

R×M −→ M

such that

r(sm) = (rs)m, (r + s)m = rm+ sm and r(m+ n) = rm+ rn

for all r, s ∈ R and m,n ∈M .
The semigroup action problem in this setting then asks:

“Given elements m,n ∈M find an element r ∈ R such that rm = n”.
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Before we proceed we would like to explain some of the difficulties in order to
derive at a square root algorithm which solves the SAP. For this note that many
square root attacks seek in this situation a “collision”, e.g. in Pollard’s rho method
elements r1, . . . , r4 ∈ R are sought such that

(3) r1m+ r2n = r3m+ r4n.

If the semiring is a ring then this results in

(r1 − r3)m = (r4 − r2)n

and maybe under benign conditions the semigroup action problem can be solved.
If the semiring (like e.g. the ones we describe in the next section) have in general
no additive inverses this simple reduction from Equation (3) is not possible. The
situation is even worse when R has only a semigroup structure andM is an arbitrary
set since in such a situation no addition is at disposal at all.

We proceed now and show how to derive at an abelian semigroup action starting
from a semimodule whose coefficient ring is not necessarily multiplicatively com-
mutative.

Let Matn(R) be the set of all n×n matrices with entries in the semiring R. The
semiring structure on R induces a semiring structure on Matn(R). Moreover the
semimodule structure on M lifts to a semimodule structure on Mn via the matrix
multiplication:

Matn(R) ×Mn −→ Mn(4)

(A, x) 7−→ Ax.

The action (4) forms a semigroup-action of the multiplicative semigroup of Matn(R)
on the set Mn. In general Matn(R) is not commutative with respect to matrix mul-
tiplication. However we can easily define a commutative subgroup as follows:

Let C ⊂ R be the center of R i.e., the subset of R consisting of elements that com-
mute with any other elements. Let C[t] be the polynomial ring in the indeterminant
t and let A ∈ Matn(R) be a fixed matrix. If

p(t) = r0 + r1t+ · · · + rkt
k ∈ C[t]

then we define in the usual way p(A) = r0In + r1A+ · · · + rkA
k, where r0In is the

n× n diagonal matrix with entry r0 in each diagonal element.
Consider the semigroup

G := C[A] := {p(A) | p(t) ∈ C[t]}.

Clearly C[A] has the structure of an abelian semigroup. Protocol 2.1 then simply
requires that Alice and Bob agree on a vector s ∈Mn. Then Alice chooses a matrix
X ∈ C[A] and sends to Bob the vector Xs, an element of the module Mn. Bob
chooses a matrix Y ∈ C[A] and sends to Alice the vector Y s. The common key is
then the vector XY s which both can compute since X and Y commute.

In the special case when R = M = F is a finite field one readily reduces the
problem to a simple linear algebra problem over the finite field F.

The situation becomes slightly more interesting if we take as a ring R = Z, the
integers and as module any finite abelian groupM = H . The groupH is a Z module
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and Matn(Z) operates on S := Hn = H × . . .×H via the formal multiplication:

(5)







g1
...
gn






7−→







a11 . . . a1n

...
...

an1 . . . ann













g1
...
gn






.

If l = lcm {|g1|, . . . , |gn|}, and C ∈ Matn(Z) is a matrix with all entries congruent to
zero modulo l, then (A + C)g = Ag for all A ∈ Matn(Z). Whence, we may simply
consider the action of Matn(Z/lZ) on S.

This problem reduces to a combination of a linear algebra problem and a series
of discrete logarithm problems in H as soon as all the elements {g1, . . . , gn} ⊂ H
lie in a common cyclic subgroup of H . Such an attack is even possible when the
Z-action on the abelian group is more complicated and we refer to the recent system
introduced by Climent et. al. [5] and its cryptanalysis [6].

The situation becomes quite a bit more interesting if we consider general finite
semirings acting on general semi-modules. In the next section we explain an instance
where we do not know how to efficiently attack such a system.

5. A two-sided abelian action based on simple semirings

In this section we describe a particular semigroup action, where we do not know
how to solve the SAP once the parameters have been chosen large enough. The
idea of such an action originates in the dissertation of Maze [24]. Shpilrain and
Ushakov [33] have described a similar two-sided action in the context of Thompson
groups and Slavin [34] filed a patent based on such ideas.

Let us fix a finite semiring R, not embeddable in a field and not necessarily
commutative. Given such a semiring, consider C, the center of R. Throughout
this section, we let n denote an arbitrary positive integer. For M ∈ Matn(R) we
denote by C[M ] the abelian sub-semiring generated by M , i.e., the semiring of
polynomials in M with coefficients in C. Let M1,M2 ∈ Matn(R) and consider the
following action:

(C[M1] × C[M2]) × Matn(R) −→ Matn(R)
((p(M1), q(M2)), X) 7−→ p(M1) ·X · q(M2).

This action is linear since

p(M1) · (A+B) · q(M2) = p(M1) · A · q(M2) + p(M1) · B · q(M2).

Because of this linearity, we avoid the case when R is a finite field (see Theorem 3.1)
even if the initial SAP instance related to this semigroup action looks difficult.

The key-exchange algorithm that results from using this semigroup action in
Protocol 2.1 explicitly reads as follows.

Protocol 5.1. (Diffie-Hellman with two-sided matrix semiring action)

1. Alice and Bob agree on a finite semiring R with nonempty center C, not
embeddable into a field. They choose a positive integer n and matrices
M1,M2, S ∈ Matn(R).

2. Alice chooses polynomials pa, qa ∈ C[t] and computes A = pa(M1) ·S ·qa(M2).
She sends A to Bob.

3. Bob chooses polynomials pb, qb ∈ C[t] and computes B = pb(M1) · S · qb(M2).
He sends B to Alice.
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4. Their common secret key is then

pa(M1)Bqa(M2) = pa(M1)pb(M1)Sqb(M2)qa(M2) = pb(M1)Aqb(M2).

The corresponding SAP that should be hard is: given M1,M2, S ∈ Matn(R) and
T ∈ C[M1]SC[M2] find U1 ∈ C[M1] and U2 ∈ C[M2] so that T = U1SU2. We do
not know if it is necessary for an attacker to solve this problem, but it certainly is
sufficient.

The remainder of this section is devoted to describing some necessary conditions
on R for this problem to be difficult, and the existence of semirings meeting these
necessary conditions.

Definition 5.2. A congruence relation on a semiring R is an equivalence relation
∼ such that a ∼ b implies that ac ∼ bc, ca ∼ cb, a+ c ∼ b+ c and c+ a ∼ c+ b for
all possible choice of a, b and c. A semiring R is congruence-free, or simple, if the
only congruence relations are R×R and {(a, a) | a ∈ R}.

Any congruence relation induces a natural semiring structure on the set R/∼ and
the quotient map R −→ R/∼ is a semiring homomorphism. It is also clear that a
congruence relation on R induces a congruence relation on Matn(R) for any n ∈ N.

For cryptographic purposes it is important that the involved semirings are sim-
ple to avoid a Pohlig-Hellman type reduction of the SAP. Indeed any congruence
relation on R yields a projection of the SAP instance onto a quotient semiring,
from which one may gain information about the solution to the original instance.
Just as we prefer to work in groups of prime orders to avoid a Pohlig-Hellman at-
tack, we would like to work in simple semirings to avoid such a reduction. Let us
mention that Monico [29] provided a partial classification of finite simple semirings
in 2002 and that Zumbrägel recently provided in [37] a total classification of non-
trivial finite simple semirings together with a method for explicitly constructing
such objects. For this we first define:

Definition 5.3. A zero of a semiring R is an element ‘0’ such that a+0 = 0+a = a
and a · 0 = 0 · a = 0 for all a ∈ R. A one of a semiring R is an element ‘1’ such that
a · 1 = 1 · a = a for all a ∈ R.

Next we show how to build large simple semirings from small simple semirings.
We start with a technical lemma:

Lemma 5.4. Let R be an additively commutative semiring with 1 and 0 and let ∼
be a congruence relation on Matn(R). Then there exists a congruence relation ∼0

on R such that

A ∼ B ∈ MatnR ⇐⇒ aij ∼0 bij , ∀ 0 6 i, j 6 n.

Proof. First, given such a semiring R, and M ∈ Matn(R), if M ′ is obtained from
M by a permutation of rows and columns, we prove there exist two invertible
matrices S, P ∈ Matn(R) such that M ′ = SMP . Indeed, the statement is true if
one consider matrices with entries in Z and the usual multiplication, i.e., there exist
two permutation matrices (therefore with entries in {0, 1}) such that M ′ = S ·M ·P
with · being the usual matrix multiplication. It is then straightforward to verify
that the same is true with the operation in R because of the properties of 0 and 1.
Let us now prove the stated result. Let f : R −→ Matn(R) be the map that sends
a ∈ R to the diagonal matrix with first diagonal element a and zeros everywhere
else. The map f is a semiring homomorphism. Let ∼0 be the relation on R defined
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by a ∼0 b in R if and only if f(a) ∼ f(b) in Matn(R). Observe that ∼0 is a
congruence relation on R. We prove now that the statement of the lemma is true
for ∼0. Let A,B ∈ Matn(R) and J = f(1). Let 0 6 i, j 6 n and Sij , Pij ∈ Matn(R)
be permutation matrices such that

(SijAPij)11 = aij and (SijBPij)11 = bij .

Note that the matrices Sij and Pij exists in Matn(R) by the previous remark.
Therefore JSijAPijJ = f(aij) and JSijBPijJ = f(bij).
‘=⇒’: If A ∼ B then JSijAPijJ ∼ JSijBPijJ and therefore aij ∼0 bij .
‘⇐=’: Clearly

A =
∑

i,j

S−1
ij f(aij)P

−1
ij and B =

∑

i,j

S−1
ij f(bij)P

−1
ij

and since f(aij) ∼ f(bij), A ∼ B.

As an immediate consequence of this lemma, we have the following theorem
which provides arbitrarily large, finite, simple semirings.

Theorem 5.5. Let R be an additively commutative semiring with 1 and 0 and let

n ∈ N. Then R is simple if and only if Matn(R) is simple.

With the help of this Theorem we can readily build large finite simple semirings
with 0,1 which are not rings and not embeddable into fields. The following provides
several explicit examples of some small finite simple semirings with 0,1 which are
not rings and not embeddable into fields.

Example 5.6. Consider the set S = {0, 1} with the operations max and min
for addition and multiplication respectively. One readily verifies that S has the
structure of a finite simple semiring. Note that several polynomial time problems
over Z, such as polynomial factorization, have been found to be NP-hard when
considered over this semiring S [14].

The following example was found by computer search.

Example 5.7. Consider the set S6,1 = {0, 1, 2, 3, 4, 5} satisfying the following ad-
dition and multiplication rules.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 1 1 1 1 5
2 2 1 2 1 2 5
3 3 1 1 3 3 5
4 4 1 2 3 4 5
5 5 5 5 5 5 5

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 0 5
3 0 3 4 3 4 3
4 0 4 4 0 0 3
5 0 5 2 5 2 5

S6,1 is a finite simple semiring with 6 elements. This is up to isomorphism the only
simple semiring of order 6. This result follows from [29, 37].

Example 5.8. Using the classification of J. Zumbrägel derived in [37] it is possible
to derive for many orders addition and multiplication tables. We are grateful to
J. Zumbrägel for providing us with the following recently found simple semiring
having order 20. Details on how to construct the addition and multiplication table
can be found in [37]. Again one can show that this is up to isomorphism the only
simple semiring of order 20.
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+ 0 a b c d e f g h i j k l m n o p q r 1
0 0 a b c d e f g h i j k l m n o p q r 1
a a a b c d e f g h i j k l m n o p q r 1
b b b b c e e f g h i k k l m n o p q r 1
c c c c c f f f h h i l l l 1 n p p q r 1
d d d e f d e f g h i j k l m n o p q r 1
e e e e f e e f g h i k k l m n o p q r 1
f f f f f f f f h h i l l l 1 n p p q r 1
g g g g h g g h g h i m m 1 m n o p q r 1
h h h h h h h h h h i 1 1 1 1 n p p q r 1
i i i i i i i i i i i n n n n n q q q r n
j j j k l j k l m 1 n j k l m n o p q r 1
k k k k l k k l m 1 n k k l m n o p q r 1
l l l l l l l l 1 1 n l l l 1 n p p q r 1
m m m m 1 m m 1 m 1 n m m 1 m n o p q r 1
n n n n n n n n n n n n n n n n q q q r n
o o o o p o o p o p q o o p o q o p q r p
p p p p p p p p p p q p p p p q p p q r p
q q q q q q q q q q q q q q q q q q q r q
r r r r r r r r r r r r r r r r r r r r r
1 1 1 1 1 1 1 1 1 1 n 1 1 1 1 n p p q r 1

· 0 a b c d e f g h i j k l m n o p q r 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 a a a a a b b b c a
b 0 0 0 0 a a a b b c a a a b c b b c c b
c 0 a b c a b c b c c a b c b c b c c c c
d 0 0 0 0 0 0 0 0 0 0 d d d d d g g g i d
e 0 0 0 0 a a a b b c d d d e f g g h i e
f 0 a b c a b c b c c d e f e f g h h i f
g 0 0 0 0 d d d g g i d d d g i g g i i g
h 0 a b c d e f g h i d e f g i g h i i h
i 0 d g i d g i g i i d g i g i g i i i i
j 0 0 0 0 0 0 0 0 0 0 j j j j j o o o r j
k 0 0 0 0 a a a b b c j j j k l o o p r k
l 0 a b c a b c b c c j k l k l o p p r l
m 0 0 0 0 d d d g g i j j j m n o o q r m
n 0 d g i d g i g i i j m n m n o q q r n
o 0 0 0 0 j j j o o r j j j o r o o r r o
p 0 a b c j k l o p r j k l o r o p r r p
q 0 d g i j m n o q r j m n o r o q r r q
r 0 j o r j o r o r r j o r o r o r r r r
1 0 a b c d e f g h i j k l m n o p q r 1

In order that the two-sided semigroup action described in the beginning of this
section is difficult we would like that the sets C[M1] and C[M2] are large with
regard to the matrix size n. The orders of the matrices M1 and M2 chosen to
act on the matrix A on the left and on the right are of prime importance. Indeed
the cardinality of the commutative semiring C[M ] directly depends on the order
of M . We study the “sizes” of the orbit of powers of elements in Matn(S) where
S = {{0, 1},max,min}. We will see that these orders give lower bounds for the
maximum orders of elements in any semiring with 0 and 1. Note that since the
semiring Matn(S) is finite any sequence {Mk}k∈N will eventually repeat, i.e., create

a collision of the form Mk = Mk′

with k 6= k′. Computer experiments also showed
that in general the set C[M ] is much larger than the set Mk = Mk′

.

Definition 5.9. Let a = {ak}k∈N be a sequence in a finite set such that an =
am =⇒ an+1 = am+1. The order ord(a) of a is the least positive integer m for
which there exists k < m with ak = am. The preperiod pr(a) of a is the largest non-
negative integer m such that for all k > m we have ak 6= am. The period per(a) of
a is the least positive integer m for which there exists an integer N with am+k = ak
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for all k > N . If g is an element of a semigroup, then we set ord(g) = ord({gn}n∈N),
per(g) = per({gn}n∈N) and pr(g) = pr({gn}n∈N).

Clearly ord(a) = per(a) + pr(a). Returning to the situation of the multiplicative
semigroup of Matn(S), we study the question “How large can the order of M ∈
Matn(S) be?”. There already exist some results in this direction. To describe
them, we recall that for a given oriented graph G, a strongly connected component

(written SCC) of G is a sub-graph H of G inside which any two vertices i and j
belong to a common oriented cycle andH is a maximal sub-graph with this property.
Such a SCC is written H ⊆SCC G. The period of a strongly connected component
is the maximum between the gcd of the length of its cycles and 1. We refer the
reader to [21] for the details.

Proposition 5.10. Let M ∈ Matn(S) and G be the directed graph whose adjacency

matrix is M . Then

1. per(M) = lcm {period of H | H is a SCC of G},
2. The numbers per(M), pr(M) and ord(M) can be computed in O(n3) time.

This proposition is essentially in [12]. The algorithm given there computes
per(M) in O(n3) time and an easy modification of it allows to computes pr(M)
and therefore ord(M).

We introduce now a function that play a crucial role: Landau’s function g. It is
defined by

g(n) = max{ord(σ) | σ ∈ Sn}
= max{lcm {a1, ..., am} | ai > 0, a1 + ...+ am = n}.

It was first studied by Landau [18] in 1903 who proved that

(6) ln(g(n)) ∼
√

n ln(n) as n −→ ∞.

In 1984, Massias [22] showed that for sufficiently large n,

(7)
√

n ln(n) 6 ln(g(n)) 6
√

n ln(n)

(

1 +
ln ln(n)

2 ln(n)

)

,

the second inequality in 7 being true for all n. Clearly, the function g is increasing.
In any case, we have

max{lcm {a1, .., am} : |a1| + ...+ |am| = n} = exp
(

(1 + o(1))
√
n lnn

)

.

On the other hand, the period of any SCC H ⊂ G is less or equal to |H | and
∑

H⊆SCCG

|H | 6 n.

Since the function g is increasing, Proposition 5.10 and Equation (6) give

per(M) 6 g





∑

H⊆SCCG

|H |



 6 g(n) = exp
(

(1 + o(1))n1/2 ln1/2 n
)

.

Further, it is not difficult to see that there always exists an oriented graph G with
period g(n). Indeed if g(n) is reached by a partition a1 + ... + am = n, then a
graph G built out of cyclic SCCs of order ai satisfies per(M) = g(n). Such a matrix
M ∈ Matn(S) that reaches this bound is in fact a permutation matrix, and as such,
it can be seen as an element of any semirings with 0 and 1. In other words, in any
such semiring, the previous bound is reached:
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Proposition 5.11. Let n ∈ N and R be a semiring with 0 and 1. Then

max{per(M) |M ∈ Matn(R)} ≥ g(n) = exp
(

(1 + o(1))n1/2 ln1/2 n
)

.

If R = S = {{0, 1},max,min}, then the above inequality is an equality.

The exact computation of g(n), or more precisely, of the partition a1+...+am = n
that yields the maximum g(n), is necessary in order to build explicitly a matrix
M ∈ Matn(S) such that per(M) = g(n). Indeed, the integer g(n) is always a

product of primes less or equal to 2.86
√

n ln(n), c.f. [23]. Therefore the factorization
of g(n) can be found in polynomial time in n. It is also known that the partition
of n that gives the maximum lcm has parts that are all prime powers, c.f. [13],
and therefore the factorization of g(n) gives the expected partition directly. The
algorithm given in [30] allows one to compute g(n) for large integers n, up to
n = 32, 000, so the exact determination of the matrix M is not a problem. See
Table 5.1 for a list of values of g(n) with the associated partition.

Table 1. Some values of Landau’s function g

n g(n) Associated partition
256 4243057729190280 8, 9, 5, 7, 11, 13, 17, 19, 23,

29, 31, 41, 43
512 70373028815644182 \ 1, 1, 1, 4, 9, 5, 7, 11, 13, 17,

5899620 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61

1024 855674708268439827 \ 1, 1, 1, 16, 27, 25, 7, 11, 13,
7434193536488991600 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79,
83, 89

For a given matrix M ∈ Matn(S), since S[M ] ⊃ {Mk}k∈N, we have

|S[M ]| > ord(M) > per(M),

and the last inequality can give |S[M ]| > g(n) for a wisely chosen M .
The following corollary shows that the size of the sets C[M ] grows exponentially

in n for suitable matrices M as soon as the center C contains the elements 0, 1 of
a semiring. Such matrices can even be constructed in an efficient way.

Corollary 5.12. Let n ∈ N and R be a semiring with 0 and 1 and center C. Then

there is an n × n matrix M with entries in R such that the order of M is larger

than g(n) in particular the size of C[M ] is larger than g(n) as well.

We conclude the Section with an example to illustrate how finite simple semirings
could be used to build a practical semigroup action problem.

Example 5.13. Consider the semiring R = S6,1 as defined above. The elements
{0, 1} form the center C of R. We will consider the matrix ring Matn(R) with
n = 20. In this situation the key size is 400 · lg 6 ∼= 1033 bits and the value
of Laudau’s g function is g(20) = 1 · 4 · 3 · 5 · 7 = 420. By the last corollary
Matn(R) contains elements M whose multiplicative order ord(M) is at least 420.
For such an element M the abelian semigroup C[M ] contains all elements of the
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form
∑k

i=0 riM
i with ri ∈ {0, 1}. The size of the set C[M ] is upper bounded by

2k+1, where k = ord(M).
The matrices M1 and M2 below are chosen to be close to permutation matrices

such that the orders are actually more than 420. The matrix S is also chosen sparse
as computer experiments with the particular ring S6,1 showed that this leads to
maximal possible size of the possible matrices

C[M1] · S · C[M2].

Upon using these parameters in Protocol 5.1, Alice chooses polynomials p, q ∈ C[t]
and computes

A := p(M1) · S · q(M2)

p, q ∈ C[t] were chosen as private keys by Alice in Protocol 5.1.
It is clear that she has more than 2420 choices to choose a polynomial p ∈ C[t]

and for such a polynomial p(M1) can be computed with at most 420 matrix mul-
tiplication and addition. - Of course Alice can restrict herself to polynomials of
smaller degree, say e.g. k < 50 which leaves still 250 choices for p and for q and
which reduces the number of matrix multiplications and additions to 100, a task
quite easy for an average PC.

Assume Alice has chosen the matrices in the following particular way:

M1 =















































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0















































M2 =















































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0















































S =















































0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1
0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0















































A=















































0 1 2 2 2 0 2 4 0 2 2 2 2 4 2 4 0 2 0 0
1 2 1 1 2 1 1 1 1 1 1 1 1 4 2 1 1 2 1 4
1 2 1 1 2 1 1 1 1 1 1 1 1 4 2 1 1 2 1 4
1 2 1 1 2 1 1 1 1 1 1 1 1 4 2 1 1 2 1 4
1 2 1 1 2 1 1 1 1 1 1 1 1 4 2 1 1 2 1 4
1 2 2 1 1 1 2 1 0 2 2 2 5 1 2 1 1 1 1 1
1 2 1 1 1 1 1 2 0 2 2 1 5 1 1 2 1 1 1 1
1 2 1 1 1 1 1 2 0 2 2 2 1 4 1 1 1 1 1 1
0 2 2 2 2 4 2 4 2 2 1 1 2 0 2 0 0 2 0 0
0 2 2 2 2 4 2 4 2 2 2 1 2 0 2 2 0 2 0 0
0 2 2 2 2 0 2 0 2 2 2 2 2 0 2 2 0 2 0 0
0 2 2 1 2 4 2 4 0 1 1 1 1 4 2 1 0 2 0 0
0 2 2 2 2 4 2 4 2 1 1 1 2 4 2 1 0 2 0 0
1 2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 2 1 1 5 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1 5 1 2 1 1 1 1 1
1 2 1 1 1 1 1 4 0 2 2 1 5 1 1 4 1 1 1 1
1 2 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 0 2 2 1 5 1 1 1 1 1 1 1
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

The only way we know for an attacker to break this system would be to find
polynomials p̃ and q̃ such that p̃(M1)Sq̃(M2) = A (or, to solve a similar problem in
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terms of the matrix B Bob computes). If the degrees of p, q are in the range of 50
a brute force search will depend on the size of the set:

S := {p(M1) · S · q(M2) | deg p < 50, deg q < 50}.
An immediate upper bound for the size of the set S is 2100. We did run extensive
computations and could show that S has size at least 225, not sufficient to be used
as a practical system. It will require further research to estimate better the size of
S and to understand how the sizes grow as we increase both the matrices involved
and the simple semirings. E.g. one could run the protocol with the semiring of
Example 5.8 and leave the size of the matrices the same.

In order to describe the efficiency of the system assume that Alice and Bob agree
on matrices of size n, polynomials p, q of degree at most k and a simple semiring
R of cardinality |R| = θ. Then the public key and the data to be transmitted
has O(n2 lg θ) bits. The number of required bit operations during encryption is
O(kn3(lg θ)) and the computation of the common secret key requires O(n3(lg θ))

bit operations. If θ̃ denotes the cardinality of the center C of R then an upper
bound for the size of the set S is θ̃2k.

These complexity estimates suggest that the system should be further analysed
in particular when the sizes of the matrices are small and the sizes of the ring R is
large.

6. Conclusion

An abelian group can be viewed in a natural way as Z-module. In this paper we
consider the situation when an arbitrary semigroup (instead of just the integers)
act on an arbitrary finite set. The generalization of the discrete logarithm problem
results in the semigroup action problem which we study in this paper. In the
situation when the semigroup is abelian one has a natural Diffie-Hellman secret
key exchange and a sufficient condition to break the key exchange is to solve the
semigroup action problem.

In the later part of the paper we concentrate on a particular semigroup action.
We consider the situation where a simple semiring acts on a semimodule. This
generalizes the group situation where G is a cyclic group of prime order p, i.e.
where the simple ring Z/pZ is acting on G via exponentiation.

Simplicity of the involved semirings is important in order to avoid Pohlig-Hellman
type attacks. Using a recently found simple semiring of order 6 we illustrate the
techniques in an example. It will require further research to assess the security of
such systems.
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