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Abstract

It is a classical result of Clark that the space of all proper or strictly proper
p x m transfer functions of a fixed McMillan degree d has in a natural way the
structure of a non-compact, smooth manifold. There is a natural embedding
of this space into the set of all p X (m + p) autoregressive systems of degree
at most d. Extending the topology in a natural way we will show that this
enlarged topological space is compact. Finally we describe a homogenization
process which produces a smooth compactification.

1 Introduction

Let G(s) be a proper p x m transfer function. As is well known, there exists a
realization in the time domain given through

or = Ax + Bu, y=Cx+ Du. (1.1)

Here o denotes either the shift operator or the differentiation operator depending on
whether one studies discrete time or continuous time problems.

If the realization 1.1 of the transfer function G(s) = C(sI — A)"'B + D has the
property that the dimension d of the state vector x is minimal among all possible
realizations one says that G(s) has McMillan degree d. In this paper we will study
topological properties of the space of all transfer functions with a fixed McMillan

degree.



As shown by Clark [2] the set of all real (or complex) proper p x m transfer
functions of fixed McMillan degree d has in a natural way the structure of a real
(complex) manifold of dimension d(m + p) + mp, which we denote by Sg’m.

Many physical systems, which are linear in their nature, cannot be modeled by a
dynamical system of the form 1.1. Due to this reason, recently there has been a great

interest in the study of singular systems, i.e. systems described by
oFEx = Ax + Bu, y=Cux+ Du, (1.2)

where the square matrix E is not necessarily invertible. Examples of singular dynam-
ical systems arise for example, in the theory of circuit systems or if one studies certain
feedback configurations involving high gain compensators. Moreover as was already
pointed out by Hazewinkel [5], it is possible for a system of type 1.1 to degenerate to
a singular system of type 1.2 under parameter disturbances.

In the frequency domain, the class of singular systems corresponds to the class of
improper transfer functions and more generally to the class of autoregressive systems
of the form

Ri(0)u+ Ry(o)y = 0. (1.3)

For questions concerning the state space realization of systems of autoregressive equa-
tions and improper transfer functions we refer the interested reader to the recent paper
of Kuijper and Schumacher [8] and to the dissertation of Gliising-Liierfien [4] where
more references to the literature can be found.

Let Grass(p,Ck) denote the Grassmann manifold consisting of all p-dimensional
subspaces of the vector space C*. As shown by Hermann and Martin [11] every p x m
transfer function G(s) with entries in the field C(s) and McMillan degree d describes a
holomorphic map of degree d from the Riemann sphere IP'(C) into the Grassmannian
Grass(p,C™P).

Let Ratgy . denote the space of all base point preserving holomorphic maps from
IP'(C) to Grass(p,C™?) of degree d. Under the Hermann-Martin identification the
space of strictly proper p x m transfer functions of degree d corresponds to Ratgy ., a
manifold that has been well studied in the literature. (See e.g. [10].) It is not difficult
to show that the space Sg,m of proper p x m transfer functions of McMillan degree
d corresponds to the trivial bundle C™ x Ratg, ,, and the space of all irreducible
p X (m + p) autoregressive systems of degree d is a fibre bundle over Grass(p,C™*?)
with fibres isomorphic to Raty, . In particular, both those spaces are (non-compact)
manifolds as well. (Compare with [4, 10, 14].)



Although homological properties of the above manifolds are important we believe
that for many questions in systems theory it is even more important to have a good
metric on those spaces and to have a good understanding of the boundary structure
of those manifolds as well. Indeed, most control design questions can be viewed as
an intersection problem in the space of possible compensators which is preferably a
compact manifold. Due to this reason we were interested in a good compactification
of the manifold Sg’m.

As we will explain in this paper, one can view the transition from the space of
proper transfer functions to the class of improper transfer functions and eventually,
to the class of autoregressive systems as a compactification process of the manifold
Sg,m. We will show in this paper that the set of all autoregressive systems of McMillan
degree at most d has in a natural way the structure of a compact topological space.
Using a homogenization process we will construct a smooth manifold, which we denote
by f(;l’m and which contains the manifold Sg’m as a dense submanifold.

The compactification we present here was first constructed by Stromme in [16], in
an attempt to understand maps of a fixed degree from the projective line into a Grass-

mannian. This compactification was also discovered by Lomadze in [9]. Lomadze’s

co
d,m*

algebraic geometry and Grothendieck’s construction of Quot schemes. In this paper

notation for our space was Both Stromme and Lomadze use techniques from
we give, what we believe to be, a more elementary exposition of the construction of
this space. However, we have not been able to avoid all use of algebraic geometry. In
particular, our proof that f(g’m is compact, uses some ideas from algebraic geometry,
though we feel that even here our methods are more elementary. Stromme also shows
that f(l‘f’m is smooth. Our proof of smoothness is new and completely elementary,
though it is long. From a systems theoretic point of view however we believe that
this proof is very appealing because it involves the construction of an explicit set of
charts.

Stromme obtains more information on K%

pms i particular on its cohomology

groups. We intend to discuss the system theoretic implications of this in our sub-
sequent work. We feel that [16] is a virtual gold mine of information on the space
i

The paper is structured as follows: The next section describes the main results
of the paper. In section 3 we will prove those results and finally in the last section
we will compare our compactification with other compactifications existing in the

literature.



2 The topology of the space of autoregressive sys-
tems

Let IK be an arbitrary field and let IK[s] denote the polynomial ring in the indeter-
minate s. Consider a p x k matrix P(s) = (fi;j(s)) whose entries are elements of
the ring IK[s]. Over the real or over the complex numbers P(s) induces a system of

autoregressive equations given by:

P(%)w(t) ~0. (2.1)

Clearly a change in the row space of P(s) does not change the solution set, so the
behavior of the system 2.1 in the sense of Willems [17] remains the same. Moreover
the behavior of two systems of autoregressive equations represented by P(s), Q(s) is
different if the matrices P(s), Q(s) are not row equivalent.

Based on this observation we say P(s) and P(s) are externally equivalent or row
equivalent if there is a unimodular p x p matrix U(s) with P(s) = U(s)P(s). Using

this equivalence relation we define:

Definition 2.1 An equivalence class of p x k polynomial matrices is called an au-

toregressive system.

The set of autoregressive systems generalizes the set of transfer functions in the
following way:

Assume G(s) is an arbitrary proper or improper transfer function describing the
input-output relation between an input v and an output y in the frequency domain
through:

y = G(s)u. (2.2)

If D(s)"'N(s) = G(s) is a left coprime factorization of the rational matrix G(s)
one can rewrite Equation 2.2 in form of a system of autoregressive equations given
through:

v o) (1)) ) = o (2.3

Moreover, if D(s) ' N(s) = G(s) is another left coprime factorization then the poly-

nomial matrices (N(s) D(s)) and (N(s) D(s)) are row equivalent and define therefore

the same autoregressive system. Note finally that the assignment
s — rowsp(N(s) D(s)) (2.4)

4



describes exactly the Hermann-Martin map [11] associated to the transfer function
G(s).
The following definition extends the notion of McMillan degree to the class of

autoregressive systems:

Definition 2.2 ([14]) The degree of an autoregressive system P(s) is given by the

maximal degree of the full size minors of P(s).

Clearly row equivalent polynomial matrices have the same degree. Moreover if
D~'(s)N(s) is a left coprime factorization of the transfer function G(s) then the
degree of (N(s) D(s)) coincides with the McMillan degree of G(s) which itself is
equal to the topological degree of the associated Hermann-Martin curve [11].

Without loss of generality assume in the following that P(s) is row reduced with
row indices equal to d; > dy > ... > d,. Note that these row indices are different
from the minimal indices defined by Forney [3] if the polynomial matrix P(s) is not of
full rank for some value s € IK. However if P(s) has full rank for all s € K, i.e. P(s)
is irreducible, then the two sets of indices coincide. Also, if G(s) = D~ '(s)N(s) is a
left coprime factorization of a transfer function G(s), then (N(s) D(s)) is irreducible
and the row indices of (N(s) D(s)) coincide with the observability indices of G(s) [3].

Motivated by the fact that the Hermann-Martin map can be extended to oc, i.e. is
a map defined on the whole projective line IP! we homogenize the polynomial matrix
P(s), which we assume to have row indices d; > dy > ... > d,, in the following way:

Denote by f;(s) the i-th row-vector of the polynomial matrix P(s). In other
words using earlier notation one has fi(s) = (fiu(s),..., fit(s)) and the degree of
fi(s) is given by max{deg f;;(s) | j =1,...,k} = d;. The homogenization of the i-th
row-vector f;(s) is then defined by:

fils,t) = tdifi(i). (2.5)

Using this homogenization process we can associate to each autoregressive system

P(s) the homogeneous system

~

fuls.t) folsit) o fuals.t)
fgl(S, t) fQQ(S, t) e ka(S, t)

P(s.t) == (2.6)

fpl(sat) fp?(sat) fpk(sat)



In the class of homogeneous systems we say two systems P(s,t) and P(s,t) are
equivalent if they have the same row-degrees and if there is a unimodular matrix
U(s,t), whose entries are homogeneous polynomials, such that P = UP. A more
precise formulation will be given in Definition 3.9. Again we call an equivalence class
of homogeneous systems a homogeneous autoregressive system.

Note that P(s,1) = P(s) and the matrix P(1,0) describes the behavior at infinity.
The degree of a homogeneous autoregressive system is now defined in the obvious way,
namely through the sum of the row-degrees.

The following set will now be the main interest in our studies:

Definition 2.3 f(z‘f’m denotes the set of all homogeneous autoregressive systems of

degree d.

We are now in a position to formulate one of the main results of this paper. The

proof of this result will occupy all of the next section.

Theorem 2.4 Kg’m 1 a smooth projective variety containing the manifold Sg’m as a

Zariski dense subset.

Note that this result establishes a smooth compactification of the variety Sg’m, a
result sought after in systems theory for a long time. There are several other com-
pactifications of this space published in the literature. We are aware of the following
compactifications: [1, 5, 7,9, 12, 13]. We will compare these compactifications in the
last section of this paper.

We now explain the relation with the space of (inhomogeneous) autoregressive
systems. Denote with A;‘f}m the set of all p x (m + p) autoregressive systems of degree

d and with .,
d ._ '
A = A4 . (2.7)
i=0
This notation is the same as the one used in [14]. One has a natural projection

T f(g,m — A;’Z1 (2.8)

P(s,t) +— P(s,1)

which is generically one-one. The map 7 induces on A;fn a topology, namely the
quotient topology. Using this topology the set A;fn becomes a compact topological
space. Moreover it is immediate that the set Sg’m of proper transfer functions is dense

in A=d
in AXC.



Before we go over to the proof of Theorem 2.4 in the next section we like to

conclude this section with two examples.

Example 2.5 Consider the case of a “single output”, i.e. p = 1. It is immediate
that in this case K¢

1.m 18 a projective space and the projection 7 is an isomorphism.

To be precise one has
K{, = A7 = P(K™ @ K™) = pramt (2.9)

We want to mention at this point that in the case p = 1, the compactification f(f’m

is the same as the one given in [1, 13|, but different from the ones presented in [7, 12|

Example 2.6 The set of 2 x 2 homogeneous systems K21,0 of degree 1 is isomorphic
to P! x IP'. For this assume that a, b, ¢, d, e, f € IK. Then an explicit isomorphism is

given through:
¢ Ky — P xP' (2.10)

(as c T dt) (e ). (af — ce,de — bf)

3 Proof of the main theorem and further results

Let d, m and p be fixed positive integers. Set & = m + p. Sy will denote the
vector space of homogeneous polynomials of degree d in two variables s and ¢ with
coefficients in a field IK. We do not assume that IK is algebraically closed or that
it has characteristic zero. S, is a IK-vector space of dimension d + 1. The standard

ordered basis that we will use for Sy is {s4, s 1¢,..., 4},

Definition 3.1 Let X be the set of all p x k& matrices

fll f12 flk fl
A= f21 f22 f2k — f2 (31)
fpl fp2 fpk fp

where f;; € Sy, is a homogeneous polynomial of degree d;. We assume that Y7, d; = d
and that at least one of the maximal minors of the matrix is a nonzero polynomial,

necessarily of degree d.



We allow the row-degrees (di,...,d,) to vary subject to the restriction that their
sum is d. The condition on the non-vanishing of a maximal minor is equivalent to
assuming that as a matrix of polynomials, A is “generically surjective”. We define
a =k(d+1) and f = pd — d + p. We shall now define a map ¢ from X to Mpg,,
the set of all # x o matrices with constant entries. With the notation for A € X as

above, let
di+1

fl] = Z aideiiH—ltlil. (32)

=1
We set aéj = 0 for [ > d; and also for [ < 0 and for all j. In order to describe the
image of A we define first the matrices

J J
C’ﬁ111 e a{lkl
- j-
all - e alk
j—d-+d j—d+d
aj; T e
j al a
Al = o1 ok : (3.3)
j—d-+ds j—d+ds
al, Coady
j—d+dy j-d+dy
ay Gy

Using this notation the image ¢(A) is given as follows:
B(A4) = (A1 42 .| A™+) (3.4)

So ¢(A) is made up of (d+ 1) vertical blocks of k& columns each and m horizontal
blocks. The ¢-th horizontal block has d — d; + 1 rows.

Before proceeding any further, we wish to describe this map ¢ intrinsically . Let
Vi and V,, be IK-vector spaces of dimension £ and p respectively. Choose ordered bases
(ur,ug,...,ux) and (vy,...,v,) for Vi, and V,, respectively. The matrix A defines a

map, pu from W, = @"_, Sy 4, - vi to Wy = @F_, S, - u; as follows:

p
pa(d_ givi) = (91: 92, - - gp) - A (3.5)
1

Now, choose the ordered IK-basis {s%-uy, s uy, ... s uy, s& -y, ... 1% uy} for Wy

and the ordered IK-basis {s? 9 - vy, s N gy 470y oo sy, ey )
for W,. Then ¢(A) is the matrix of p4 as a map of vector spaces, with the bases for

W, and W}, chosen above.



Remark 3.2 Since our descriptions of ¢ depends on the choice of the bases for W
and W, we wish to point out that there are two group actions on the image ¢(X) in
Mﬂ’ai

1. The group PGL(2) acts on IP' by changing coordinates (s, t) to (s',#'). Each el-
ement of PGL(2) induces a bijective map between ¢(X) in these two coordinate

systems.

2. The group GL(V}) acts on Vi in the natural way. If ¢ €GL(Vj), then there is
an « X « matrix B, which is the matrix of the isomorphism induced by ¢ on
Wy with respect to the canonical bases chosen. Post multiplication by B sets
up a bijection between the matrices ¢p(A) and ¢'(A) defined with these different

bases on V.

Definition 3.3 Fix positive integers 3; < 85... < 3, such that }_ 3; = 3. Let 7 =0
and let v; = 3! B fori =1,...,p. We say that a matrix A € Mg, is in canonical
(Biy...,3,) form, if A= (A'A?%]...|A%") and for B, < j < Bi41 we have A7 in the

following form:

J J J J
any e ay 0 0 0 a1 p1 . ayy
j J j j
a3 e @y 0 0 0 a3 pi1 . Wy,
J J J J
Cytjp oo @y45,0 10 ...0 Wytiptr o0 Otk
j _ . . . . . .
Al = | | Do | | (3.6)
J j j J
Uy y1+5,1 Uy oy +gl41 01 ...00 Uy g1 +5p+1 Uy +iok
J J J J
a7l+]p+]‘:1 T a’n+p]fj,l+1 0 0 T a71+]p+jap+1 e (]I’YH»;‘F]‘;IC
g ag 00 ... 0 ag,y Uap

Proposition 3.4 Let A € X have row-degreesd, > dy > ... > d,. Let 3; = d—d;+1.
Then after an appropriate change of coordinates on P* and a change of basis for Vi,

B(A) is row equivalent to a matriz that is in canonical (B, ..., B,) form.

Proof: Firstly, by changing basis on Vj, we can assume that the determinant of the

first p columns of A is non-zero. Further, by changing coordinates on P!, we can



assume that the coefficient of s¢ in this determinant is non-zero. Let

1 ody 1 ody 1 ody
18 (195 Ay gS
ab, s al,s® cLab s
21 22 2.k .
A= ' + terms of lower degree in s. (3.7)
1 od 1 od 1 .d
R Y G N .
Let
1 1 1 1 1 1
A Qg a1k ayp Qg A1p
1 1 1 1 1 1
a a a a a a
21 Q22 2,k 21 OG99 2,p
A[] = and Agp = . . . (38)
1 1 1 1 1 1
Apr Opo Up,k Upr Gpa --- Gpyp

By our choice of coordinates, A, is an invertible matrix.

of the basis of Vi, we can assume that for j =1,...

1 1
aj; - Qj, x %
: is row equivalent to :
1 1
App - Ay %
Now ) )
all DRI alk
0 0
1 1
(]/21 DY (112k
0 0
Al =
1 1
Ay Ay
0 0
0 0

1 0 ... 0 % ... «x

0 0 0 0

n 0 1 0 = *
0 0 1 * *

0 0 .00 0

10

After a further reordering

, p, the matrix

Iy jn (3.9)
(3.10)
(3.11)



We perform these row operations on all of ¢(A). We observe that these row operations
do not effect a row [, if I # ~; for any i. Now, in A2, the p rows v;+1,fori=1,...,p
form the matrix Agp,. As in the first step, we can perform row operations on ¢(A) to
get A% in canonical (fy,...,[3,) form. Again the row operations performed on ¢(A)
so far, do not affect row [, so long as [ # ; and [ # ~; + 1 for any 1.

Hence, the procedure above can be repeated, inductively, until A%, For 3, < j <
32, the matrix A7 contains the last (p—1) rows of Ag,. Again, we can do row operations
on ¢(A), that will row reduce it to a matrix, where A7 is in (f3,...,[3,) canonical
form. We continue this sequence of row operations, until we reach the block A%, The

resulting matrix ¢(A) is in (fy, ..., ;) canonical form. Q.e.d.

Corollary 3.5 For each A € X, the matriz ¢(A) has full rank f = pd — d + p.
Therefore, ¢ defines a map ¢ : X — Grass(3, W) obtained by mapping a matriz A
in X to the row space of the matriz ¢(A).

Proof: By the previous Proposition, we know that if A € X then there exist invert-
ible matrices C' and D such that CAD = B where B is in (f,...,[,) canonical
form. Therefore the rank of A is the same as the rank of B, which is clearly f.

Q.e.d.

Remark 3.6 We would like to note for future reference that the group actions spec-
ified in Remark 3.2 on ¢(X) arise from the action of a subgroup of GL(W}) on the

Grassmannian.

We now have a map from our space X to the Grassmannian of [-dimensional
planes in W, = V, ® S;. First of all we want to identify the image of X in the
Grassmannian through this map. Secondly, we wish to show that the map ¢ is one-
to-one on certain equivalence classes of matrices in X. To achieve the first objective,
we introduce a map ¢ from our Grassmannian into the space of (23) x («+k) matrices
with constant entries. Let W € Grass((, W) be a 8 plane. Recall that we have a

canonical basis for W;. Choose matrices

J J
apy ...y
j J
. a21 - .. a2k
Al = (3.12)
J J
agy .. Qg



such that the  x a matrix

(AL} A2 d+1
Ay = (A A% .. |A") (3.13)
has row space equal to W. We set a,?j = a%ﬂ = 0 for all 7 and 7 and define:
1 G+l j+1
j j J
0/111 (1,121 e a’lkl
Jj+ J+ J+
. a a ceea
J+1) 21 22 2k
A6+ . i ] . (3.14)
azp Uy ... Uy
J J J
ag  Apy ... gy

The image of the map ¢ is now defined through:
P(Aw) = (AOD]AT2)] AldFLdr2)y (3.15)

The map v depends on the choice of the representative Ay, for the plane W, but if
we choose another representation By for W, then it is easy to see that ¢(Ay ) is row

equivalent to ¢ (Byy). Therefore, the following definition makes sense.

Definition 3.7 Let

K = {W € Grass(3, W;) | rank of ¢)(Aw) = 5+ p}. (3.16)
This subset of the Grassmannian is the main object of study in this paper.
Theorem 3.8 K = ¢(X).

Proof: To show that ¢(X) is contained in K, it suffices to observe that each matrix

A in X gives rise to a map

k
é Sa1-d; - Vi dagy @ Sar1 - U (3.17)
i=1 i=1
The row space of (¢(A)) is the image of the map Agzy1. As in 3.5, this map is
injective. Therefore the rank of 1 (¢(A)) is the sum of the dimensions of Sy1 4
which is § + p.
The other inclusion is somewhat harder and we will use some techniques from
algebraic geometry in the proof. Let W € K. So W C V, ® S;. Consider the

12



subsheaf £ of Vi, ® Op1(d) defined as follows:

0

i}
0 - My — W ® Op: —

1
(Vi®S) ®@0pr — Ve®Opi(d) — 0

- 0 (3.18)

— <+ O

Here My is just defined to be the kernel of the middle right map. Observe that both
L and My are locally free sheaves on PP'. Therefore, My, = @7} Opi(—a;) and
L= @ézl Op1(b;) and X a; = > b; = d. Further, since £ is generated by sections and
since it is a subsheaf of V, ® Op1(d), we have that 0 < b; < d. Taking cohomologies,
on the top row of 3.18, we get

0 — H°(P', M) > W — H(L) — H'(P*, My)) — 0 (3.19)

The map o is injective by construction. Therefore, H°(IP', Myy) = 0. Hence a; > 1.
On twisting the middle row of 3.18 by Op:(1) and taking cohomologies again, one
gets:

0 — H'P', Mp(1)) - WeHP,Op(1) — HO(IP', L(1))
Vi ® HO(IPl,iOlpl(d +1))
(3.20)
The composition indicated is the map whose matrix is /(A ). Since W is in K, the
image of ¢ has rank +p. Therefore the dimension of H*(IP', Myy(1)) = 28—3—p =
B—p. Thus the rank of My, = 3—1> B—pand [ < p. Also, Dim H°(IP', L) = [ +6.

From the sequence 3.19 one has,

Dim H'(IP', M,y) Dim H°(IP', £) — 3

= I4+5-0
= 1406~ (pd—d+p) (3:21)
< 0if 1 <p.
Therefore, | =p, d = 3 —p and L ~ @, Op1(h;). So we have:
P

i=1

The map 7 is given by a p x k matrix A whose, i-th row consists of homogeneous

polynomials of degree d; = d — b;, where Y} d, = d. So A € X and the row space

13



of p(A) is H'(IP',£) = W. Thus each W € K arises as ¢(A) for some A € X.
Q.e.d.
We now introduce an equivalence relation on the space of matrices X. Let d; >

dy ... > d, be nonnegative integers and let

G = {U(s,t) = (pij(s,t)) | U(s, t) is unimodular i.e. det U(s,t) € IK*

and p;;(s,t) is homogeneous of degree d; — d;}. (3:23)

It is clear that G is a subgroup of the unimodular group acting transitively on the set
of matrices with row-degrees d; > d,... > d,. Indeed this group was of crucial im-
portance in the paper [14]. Using this group we define on X the following equivalence

relation:

Definition 3.9 Two matrices A and A’ in X are equivalent if after a possible re-
ordering of the rows they have the same row-degrees d; > dy... > d, and if there
exists a U(s,t) € G with A" = U(s,t)A.

Note that the set of equivalence classes in X is exactly the space f(;l,m of homogeneous
autoregressive systems as introduced in Definition 2.3.

It is easy to see from our description of the map ¢, that if A and A’ are equivalent,
then ¢(A) and ¢(A’) define the same plane in the Grassmannian.

Proposition 3.10 ¢ : X — Grass(, W) gives a one-to-one map on equivalence
classes of matrices in X. Therefore ¢ : f(gm — K C Grass(3, Wy) is a bijection.

Proof: From the remarks preceding the statement, we only need to verify that if
¢(A) = ¢(A") = W, then A and A’ are equivalent. From the proof of the Theorem 3.8,
it is clear that W = H(IP', £), where L is the subsheaf generated by W. Now, A
and A’ are two matrix representations of the inclusion map of sheaves £ — V, ® Op1.
Two such representations differ by an isomorphism of the sheaf @ _; Op1(b;) to itself.
All isomorphisms of this sheaf are given by matrices in the group G defined above.
Thus A and A’ are equivalent in X. Q.e.d.

Theorem 3.11 K is a smooth, connected, algebraic subvariety of Grass(3, Wy).

Corollary 3.12 f(l‘,{m has the structure of a smooth, connected and compact mani-

fold.

Before we give the proof of Theorem 3.11 we reinterpret Example 2.6.

14



Example 3.13 The set IN(Ql,O is embedded through ¢ in Grass(3, K*) = IP? as follows:

¢ : f(210 —  Grass(3, K" (3.24)
as + bt cs+dt a ¢ b d
f — e f 0 0
¢ : 00 e f

Using Pliicker coordinates one verifies that the image of ¢ is P! x IP! under the Segre

embedding.

Proof of Theorem 3.11: By Theorem 3.8, each point W € K is »(A) for some
matrix A € X. Further, by Proposition 3.4 and remark 3.6, there is an isomorphism
g €GL(W}) of the Grassmannian, and there exist positive integers 5; < ... < 3, such
that a matrix representation of g(W) is in canonical (4, ..., 3,) form. From here on
we replace W by g(W). Let U = Ug, ... 5,) be the set of all matrices in Mg, which
are in canonical (£, ..., ,) form. U can be naturally identified with an affine open
subset of the Grassmannian. We shall parametrize K N and show that this is a
smooth affine subset of U.

Let A€ U. P(A) = (ATO|AGD)| | Ad+LA+2)) where for () < j < (i1 we have:

j+1 j+1 j+1 j+1
ay S.oay 0 0 0 a1 pi1 Sy

j J J J
qul e qul 0 0 0 alapf'l e a‘lk1
j+ j+ j+ j+
7y coe Gy 00 0 Wy p1 e Uy

j J j J

@, o y; 0 0 0 a9 pi1 o oy,

AUIHYD — : : :

J+1 J+1 J+1 J+1
a’w]#rjfl,l R AN 0 ... 0 a,ﬂnjﬂ;lyp+1 e a‘wjﬂ'*l,k
@it o Oyggy 10 0 @ypjprn - Gy
J J J J
ap ag 00 ... 0 g pi1 app,

(3.25)
So (A) is a (26) x (« + k) matrix. We perform the following row operations on
P(A): fori=1,...,p,and 1 < j < ;11 — 1, subtract the (2v; + 2j) -row from the
(27; 4+ 25 + 1)-row of (A).
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After these row operations the matrix 1(A) = (A0 A02)]

for i < j < Biyr, AGTHY is given by:

+1 H+1
I Vas 0

an ay 0...0 a1pp1
J J J
@y, ay, 00...0 aj pi
i+ 1 it
a1 R Ty, ) 00...0 a3 i )
J J+ J JF J J+
a1 — Ay, Coe (I Oy 00...0 A9 pr1 — O p1
H JH 1
R
i B A -
Wyl — Dygag -+ By Gyl 00...0 Cyrgprt — Gypg-1,p11
J J J
g ag 00...0 a5 p11

This matrix has 3 standard unit vectors as columns.

| Ald+1.d+2)) where

al,
alt!
a‘%k - ”'%41;1

7+
i1,k
JH

J — .
Ok Y1,k

(3.26)

Let B be the submatrix of

A obtained by deleting the rows that contain the non-zero entry in these standard

column vectors. B = (BOV|B0-2)| | Bld+1.4+2)) where:
1 1
a2 py1 Aok
1 1
43.p+1 43.p+1
1 1
a eeoa
71,p+1 71,k
B = 0 0 (3.27)
al
71+1,p+1
0 : 0
2 1 2
0 0 a3y =, ayp = Ay
0 0 a —a a? a
3.p+1 2,p+1 3.,p+1 2,k
B2 = , : (3.28)
1 1
0 0 g @
For, 1 <7 <p,
Bit it _ G Bitl _ i
Qo 0 0 agyyr — a1y Ugp,  — Ay,
Bi+1 Bi+1 Bi Bi+1 _Bi
(B it D) Ay 1 0 . 0 Ay p+1 — Qy—1,p41 Uyl Oy —1k
iOitl) i i
BV = 11 0 0 nyy pt1 (o (3.29)
af;iQ,l 0 0 * *
Bi Bi
0 0 ... 0 a5 pi1 g},
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We observe that the rank of 1)(A) is § plus the rank of B. Consider the p x p
submatrix of B obtained by choosing the rows 7,...,v, and the i-th column of

BWBi+1)  This is a p x p identity matrix. Hence rank of B is at least p. Thus

KnU = {AelU | o(A) has rank § + p} (3.30)
= {AelU | ¢(A) hasrank <+ p}. (3.31)

The second subset is defined by setting all the minors of order greater than p to be
zero. Hence, K NU is clearly an algebraic subset of U. Since each point of K has
a neighborhood U in G for which K N is an algebraic subvariety, K itself is an
algebraic subvariety of Grass(f3, Wy). Before starting the proof of the smoothness of

K, we need to introduce some more notation.

S:{aiq | either dist. =~ andg>p+1andj> 3 +1

org<pand j=p,+1and [ >~,+1}. (3-32)
Also, for 1 <i<pand j<d+1, we let
Al ={al, |y +1<s<myandl<t<k}. (3.33)

Let A e KNU. Let 1 <[l < @and [ # v for any i. Let p+1 < ¢q < k. Let
1 < i < p. Consider the (p+ 1) x (p+ 1) submatrix of B obtained by adding the I-th
row and the g-th column to the identity submatrix. This submatrix is of the form:

* *
I; x ... %

0 ... 0 a},q . (3.34)

: D S

0 ... 0 =«

Since A € K NU, B®Y = (. Further, for all i > 1 aj, =0forp+1<¢q<Fkand
I # v+ 1.

For 0 < j < i — 2 and r < j, we assume by induction on j that Br7+1) = 0
for all » < j and that alr:;l =0forv +r+1<1< . We can also assume that
for v, —r—1 <1 <4, aj, is a function of AEHU for all » < j. We consider the

(p+1) x (p+1) submatrix of B obtained by adding the I-th row and the ¢-th column
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of the BU+13+2) block to the identity submatrix of B. This matrix is of the form:

I; * AU 1
0 ... 0 al(leq) — al(]qH) _ (3.35)
: : 0(71;1) =0 I,
0 ... 0 ai—o

'Ypr

Again on KNU, we get that BUT13+2) = 0. Further, for y,_1+j+2 < | < ~;, al(]qH) =0
and for 3, — (j+1) =1 <1< v — 1, al(]Jr )is a function of AVY?).
So by induction on j, we have that BUJ*1) = ( for all j < 3, — 1. Also Ag is
either 0 or can be expressed as a function of Aiﬁ1 and afjl =0 for 3+ 31 <1 < vy1.
We now subtract (alﬂllﬂ) times the y;-row of B from the [-th row, for I > ~; + 1
and [ # v; for any 7. We shall call the resulting matrix B as well. Thus for j > 3,

and [ as above, we have

bl(,];z’j+1) = agillq o (I{q o a']yl q alﬂj»1+1 for q= 1ap + 1ap + 25 ceey k. (336)
= a{illq — (I,l’q + a function of the variables in S. (3.37)

Now, let i > 2andlet g =1orp+1<q < k. Let §; <7< By — 1. Consider
the submatrix of B obtained by adding the [-th row of B and the ¢-th column of the
Bt to the identity submatrix. This submatrix is of the form:

1 * * ... *

0 B s L

0 * ) (3.38)
0 * Ip,1

0 *

Hence B( 2D = (. We consider two ranges for [.

1. Let 7541 —1 > 1> v+ 7+ 1. By induction on j we can assume that we have

a{q = fqu( ) as a function of the variables in S. Thus, b ’]H) = ( implies that
aﬁllq lfllq(S), for [ in this range.

2. Let v +7 > 1 > 71+ 1. Here, we proceed by descending induction on j.
We can assume that a{illyq = fljJ:Lll’q(S; Afb). Now, b ’]H = 0 implies that
al, = f1,(S: A7),
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Thus, for s > 1, bl(il’jﬂ) =0forl>~+1and1<j <G, — 1. Further,

j 08 iy —1>1>y+5+1
Jo= AT . (3.39)
L FSAT) iy 2>y + ]
Also, aﬂz—f 2(S)if v+ o <1<y — 1.
Inductive step for i: Let 1 < i < p—1. Let 1 <g<iorp+1<gq <k Let
t > 1 + 1.By induction on 7, we can assume that b( D — 0 for j < f; —1 and
[ > v; + 1. Further, we can assume that, for j < j3;,
ol = fz]q(sg f vy —120>y+75+1 (3.40)
o fOS;3 A7) fy+i>1>y 1 +1

Also, aﬁi = q(S) if v+ 06; <1l <yqq— 1.
For, I > ~v;+1 and [ # ~, for any ¢, we subtract (al i ) times the row v; of B from
the [-th row. We call this matrix B again. Note that

bt = alfl —al, — some function of S. (3.41)

Let 8; < j < ;11 — 1. Consider the submatrix of B obtained by adding the /-th row
of B and the ¢-th column of the BU*1_ This submatrix is of the form:

* *
I; * AU 3

0 ... 0 b7y _ (3.42)

: : * I,

0 .0 *

Again, on KﬁZ/{ b ’]H =0forl >~v+1and 0 < j < #;y1 — 1. As before, to

determine the Values of a, we consider two ranges for [.

1. Let v —1 >1> v+ 7+ 1. By an ascending induction on j, we can assume
that a{yq = flj;q(S). Now, b{:g“ = 0 implies that a{i’llq fﬂ:llq( ) is a function

of S.

2. Let vy +7 > 1 > v-1+ 1. Proceeding by a downward induction on j, we

JHU _ pitl (@l APt J,J+1 ; ; A
can assume that aj, , = fi5 (S; A7), So byy™ = 0 implies that aj, =

(S AJH.
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Thus, one is eventually left with a matrix B such that bl(il’jﬂ) =0 for 1 < p and
w1+ 1 <1l <y—1Tand j < B — 1. Also, for j and [ in this range, either
a,{’q = fl]q(S) or (L{,q = flj;q(S; Ag, ;). Since this is true for all £ > i+ 1, this finishes the
proof for the inductive step for 7.

We next perform the following row operationson B. Fort=1,... ,pand v, 1+1 <
[ < 7 — 1, subtract (a,lﬂfl) times the row v; from the [-th row. As usual, we will
call the resulting matrix also B. The i-th column of the (f;, 5; + 1) block of B is a
standard unit vector with a 1 in the row ;. Hence if A € K NU, then bl(il’jﬂ) =0 if
[ # ~; for any i between 1 and p. Also, for ; < j<d+1land v 1+1<[ <~ —1,

p

Gdt1) — g+l _ G N~ Bt

b = Uiy1,9 — Ug RS WA (3.43)
r=1

For j =d+1, (J,l(i;rl) = 0. We now proceed by descending induction on j. We

can assume that (I,{j;l = l{;l(S).Thus b+ = 0 implies that we can solve for
aj, = f7,(S). So we have that if A € K NU, then af , = f/ (S) for all indices j,I and
q.

Conversely, consider a matrix A € U, given by fl]"q(S), where these are the func-
tions found above. Let B be the matrix constructed from ¢ (A) as before. Due to the
choice of the functions fl];q, we see that BU7t1) =0 for j < B — 1.

Applying the same sequence of row operations as before, we see that B is row
equivalent to a matrix C' that has m standard unit column vectors and if [ # ;, then
all the entries in the row [ are zero. So ¢/(A) has rank §+p and A € K. So each
matrix A € K NU can be parameterized as A = (fl]q(S)) Thus K NU is isomorphic

to IK®, where s is the cardinality of the set S.

s = (Zimm(d+1=05)) +p(m+p)(d—5) + X (p — )5 — 5i))
= (m+p)d+mp. (3.44)

Notice that s is independent of the choice of the p-tuple (fi,...,0,). Thus each
point W € K has a neighborhood U = ¢ '(Ug,.. 5,)) in Grass(8, Wy) such that
KNU ~IK*. Thus K is a nonsingular variety, rational variety of dimension s.

To see that K is connected, let W; and W, be two points in K. There exist affine
open sets, U; > W, and KN ~ K>, Now, Uy NUy # ¢. Let W € K NUy NUy. Then
there is a path v, from Wy to W in U, and a path ~y from W to W5 in Uy. Thus K

is connected. Q.e.d.
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4 A comparative study of different compactifica-
tions

It was Hazewinkel [5, Theorem 2.22] who first showed that any sequence of time
invariant linear systems of McMillan degree at most n naturally converges to a singular

system of the form

d
& =Ar+ Bu, y= Cm—l—D(E)u. (4.1)

Moreover if one defines the McMillan degree for 4.1 as the sum of the McMillan degrees
of C(sI — A)"'B and D(s™") then this McMillan degree is necessarily at most n and
any system of type 4.1 having McMillan degree at most n can be obtained as the
limit of a sequence of time invariant linear systems of McMillan degree n.

Probably the first explicit compactification of the space of proper transfer func-
tions was introduced by Byrnes [1] who introduced this space in order to study the
dynamic pole placement problem. The compactification of Byrnes was done com-
pletely in the frequency domain. The idea behind the compactification of Byrnes is
an embedding of the set of all transfer functions in a large dimensional Grassmann
variety and the closure serves as a compactification.

We are aware of two compactifications which were derived in the time domain.

One compactification was derived by the second author as the categorical quotient
obtained from an action of a reductive group on a projective variety and details are
given in [12].

Recently Helmke [7] proposed a compactification, which was partially derived
by geometric invariant theory as well and which is based on earlier results derived
together with Shayman [6]. This compact space contains the class of controllable
singular systems of the form Ex = Ax + Bu; Fy = Cx 4+ Du where the regularity
conditions det(AE — pA) # 0 and rank(F, C, D) = p are satisfied. Helmke shows the
surprising result that the categorical quotient of this extended class of systems under
an extended group action is compact and smooth.

It is interesting to compare the above three compactifications in the case m = p =
d =1, i.e. in the case of one-input, one-output and McMillan degree 1. In this case
the compactification of Byrnes [1] (as well as the compactifications we will describe
in a moment [9, 13, 16]) are equal to IP? whereas the compactification in [12] in this
case is equal to IP' x P! x P! and the compactification in [7] has the same homotopy
type as IP' x IP?. In particular they are all different.

In [9] Lomadze considers a more general class of linear systems. In terms of
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his definition [9, Definition 1, Section 2], our space f(g,m coresponds to the space
of all completely observable systems of McMillan degree d, input number m and
output number p. He shows that this space is compact using some techniques from
Grothendieck’s construction of Quot schemes. The smoothness of the space is not
shown in [9].

Closely related to the compactification constructed in this paper is the one ob-
tained by the second author in [13], denoted by K;l,m there. For the pole placement
problem with dynamic compensators this compactification is of interest. On one hand
one can identify this compact space with the set of all autoregressive systems of order
at most n and size p x (m+ p). On the other hand the pole placement map with dy-
namic compensators can be viewed as a central projection from this projective variety
to the space of closed loop polynomials. In the following we establish the relation
between the compactification K¢ and the compactification f(z‘f’m presented in this

p!m
paper.

Proposition 4.1 There is a surjective map 7 : K;lm — K;lm such that m is an

1somorphism on an open subset of Kgm. In other words, Kl‘f 15 desingularization of

d
K o

,m

Proof: Let x € f(gm So x € Grass(f, W) corresponds to an equivalence class of
matrices in X. Choose a representative matrix A for x. Let w(A) = (fi,... fx) be
the ordered maximal minors of A. So each f; € S;. If A’ is another matrix that
represents z, then 7(A’) is obtained by multiplying 7(A) by a scalar in IK. Thus 7
defines a map = : f(;l,m — P(®Y Sy) where P(@Y Sy) is the projective space of all
lines in the K vector space @V S;. The space Kz‘im is, by definition the closure of
7(X) in P(®Y Sa). Since K2, is compact, 7 is surjective.

To see that 7 is an isomorphism on an open subset, let X’ be the subset of all
matrices A in X such that, the minors 7(A) = (f1,... fy) do not have any common
factors. Then as is shown in [13], the map 7 restricted to ¢(X') C f(z‘f’m is an

isomorphism.
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