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sUniversity of Notre DameNotre Dame, IN 46556May 1992Abstra
tIt is a 
lassi
al result of Clark that the spa
e of all proper or stri
tly properp�m transfer fun
tions of a �xed M
Millan degree d has in a natural way thestru
ture of a non-
ompa
t, smooth manifold. There is a natural embeddingof this spa
e into the set of all p � (m + p) autoregressive systems of degreeat most d. Extending the topology in a natural way we will show that thisenlarged topologi
al spa
e is 
ompa
t. Finally we des
ribe a homogenizationpro
ess whi
h produ
es a smooth 
ompa
ti�
ation.1 Introdu
tionLet G(s) be a proper p � m transfer fun
tion. As is well known, there exists arealization in the time domain given through�x = Ax +Bu; y = Cx +Du: (1.1)Here � denotes either the shift operator or the di�erentiation operator depending onwhether one studies dis
rete time or 
ontinuous time problems.If the realization 1.1 of the transfer fun
tion G(s) = C(sI � A)�1B +D has theproperty that the dimension d of the state ve
tor x is minimal among all possiblerealizations one says that G(s) has M
Millan degree d. In this paper we will studytopologi
al properties of the spa
e of all transfer fun
tions with a �xed M
Millandegree. 1



As shown by Clark [2℄ the set of all real (or 
omplex) proper p � m transferfun
tions of �xed M
Millan degree d has in a natural way the stru
ture of a real(
omplex) manifold of dimension d(m+ p) +mp, whi
h we denote by Sdp;m.Many physi
al systems, whi
h are linear in their nature, 
annot be modeled by adynami
al system of the form 1.1. Due to this reason, re
ently there has been a greatinterest in the study of singular systems, i.e. systems des
ribed by�Ex = Ax +Bu; y = Cx +Du; (1.2)where the square matrix E is not ne
essarily invertible. Examples of singular dynam-i
al systems arise for example, in the theory of 
ir
uit systems or if one studies 
ertainfeedba
k 
on�gurations involving high gain 
ompensators. Moreover as was alreadypointed out by Hazewinkel [5℄, it is possible for a system of type 1.1 to degenerate toa singular system of type 1.2 under parameter disturban
es.In the frequen
y domain, the 
lass of singular systems 
orresponds to the 
lass ofimproper transfer fun
tions and more generally to the 
lass of autoregressive systemsof the form R1(�)u+R2(�)y = 0: (1.3)For questions 
on
erning the state spa
e realization of systems of autoregressive equa-tions and improper transfer fun
tions we refer the interested reader to the re
ent paperof Kuijper and S
huma
her [8℄ and to the dissertation of Gl�using-L�uer�en [4℄ wheremore referen
es to the literature 
an be found.Let Grass(p; jCk) denote the Grassmann manifold 
onsisting of all p-dimensionalsubspa
es of the ve
tor spa
e jCk. As shown by Hermann and Martin [11℄ every p�mtransfer fun
tion G(s) with entries in the �eld jC(s) and M
Millan degree d des
ribes aholomorphi
 map of degree d from the Riemann sphere IP1(jC) into the GrassmannianGrass(p; jCm+p).Let Ratd;p;m denote the spa
e of all base point preserving holomorphi
 maps fromIP1(jC) to Grass(p; jCm+p) of degree d. Under the Hermann-Martin identi�
ation thespa
e of stri
tly proper p�m transfer fun
tions of degree d 
orresponds to Ratd;p;m, amanifold that has been well studied in the literature. (See e.g. [10℄.) It is not diÆ
ultto show that the spa
e Sdp;m of proper p � m transfer fun
tions of M
Millan degreed 
orresponds to the trivial bundle jCmp � Ratd;p;m and the spa
e of all irredu
iblep� (m + p) autoregressive systems of degree d is a �bre bundle over Grass(p; jCm+p)with �bres isomorphi
 to Ratd;p;m. In parti
ular, both those spa
es are (non-
ompa
t)manifolds as well. (Compare with [4, 10, 14℄.)2



Although homologi
al properties of the above manifolds are important we believethat for many questions in systems theory it is even more important to have a goodmetri
 on those spa
es and to have a good understanding of the boundary stru
tureof those manifolds as well. Indeed, most 
ontrol design questions 
an be viewed asan interse
tion problem in the spa
e of possible 
ompensators whi
h is preferably a
ompa
t manifold. Due to this reason we were interested in a good 
ompa
ti�
ationof the manifold Sdp;m.As we will explain in this paper, one 
an view the transition from the spa
e ofproper transfer fun
tions to the 
lass of improper transfer fun
tions and eventually,to the 
lass of autoregressive systems as a 
ompa
ti�
ation pro
ess of the manifoldSdp;m. We will show in this paper that the set of all autoregressive systems of M
Millandegree at most d has in a natural way the stru
ture of a 
ompa
t topologi
al spa
e.Using a homogenization pro
ess we will 
onstru
t a smooth manifold, whi
h we denoteby ~Kdp;m and whi
h 
ontains the manifold Sdp;m as a dense submanifold.The 
ompa
ti�
ation we present here was �rst 
onstru
ted by Stromme in [16℄, inan attempt to understand maps of a �xed degree from the proje
tive line into a Grass-mannian. This 
ompa
ti�
ation was also dis
overed by Lomadze in [9℄. Lomadze'snotation for our spa
e was S
od;m. Both Stromme and Lomadze use te
hniques fromalgebrai
 geometry and Grothendie
k's 
onstru
tion of Quot s
hemes. In this paperwe give, what we believe to be, a more elementary exposition of the 
onstru
tion ofthis spa
e. However, we have not been able to avoid all use of algebrai
 geometry. Inparti
ular, our proof that ~Kdp;m is 
ompa
t, uses some ideas from algebrai
 geometry,though we feel that even here our methods are more elementary. Stromme also showsthat ~Kdp;m is smooth. Our proof of smoothness is new and 
ompletely elementary,though it is long. From a systems theoreti
 point of view however we believe thatthis proof is very appealing be
ause it involves the 
onstru
tion of an expli
it set of
harts.Stromme obtains more information on ~Kdp;m, in parti
ular on its 
ohomologygroups. We intend to dis
uss the system theoreti
 impli
ations of this in our sub-sequent work. We feel that [16℄ is a virtual gold mine of information on the spa
e~Kdp;m.The paper is stru
tured as follows: The next se
tion des
ribes the main resultsof the paper. In se
tion 3 we will prove those results and �nally in the last se
tionwe will 
ompare our 
ompa
ti�
ation with other 
ompa
ti�
ations existing in theliterature. 3



2 The topology of the spa
e of autoregressive sys-temsLet IK be an arbitrary �eld and let IK[s℄ denote the polynomial ring in the indeter-minate s. Consider a p � k matrix P (s) = (fij(s)) whose entries are elements ofthe ring IK[s℄. Over the real or over the 
omplex numbers P (s) indu
es a system ofautoregressive equations given by: P ( ddt)w(t) = 0: (2.1)Clearly a 
hange in the row spa
e of P (s) does not 
hange the solution set, so thebehavior of the system 2.1 in the sense of Willems [17℄ remains the same. Moreoverthe behavior of two systems of autoregressive equations represented by P (s); Q(s) isdi�erent if the matri
es P (s); Q(s) are not row equivalent.Based on this observation we say P (s) and ~P (s) are externally equivalent or rowequivalent if there is a unimodular p � p matrix U(s) with ~P (s) = U(s)P (s). Usingthis equivalen
e relation we de�ne:De�nition 2.1 An equivalen
e 
lass of p � k polynomial matri
es is 
alled an au-toregressive system.The set of autoregressive systems generalizes the set of transfer fun
tions in thefollowing way:Assume G(s) is an arbitrary proper or improper transfer fun
tion des
ribing theinput-output relation between an input u and an output y in the frequen
y domainthrough: y = G(s)u: (2.2)If D(s)�1N(s) = G(s) is a left 
oprime fa
torization of the rational matrix G(s)one 
an rewrite Equation 2.2 in form of a system of autoregressive equations giventhrough: (N(s) D(s)) �  u�y! (s) = 0: (2.3)Moreover, if ~D(s)�1 ~N(s) = G(s) is another left 
oprime fa
torization then the poly-nomial matri
es (N(s)D(s)) and ( ~N(s) ~D(s)) are row equivalent and de�ne thereforethe same autoregressive system. Note �nally that the assignments 7�! rowsp(N(s)D(s)) (2.4)4



des
ribes exa
tly the Hermann-Martin map [11℄ asso
iated to the transfer fun
tionG(s).The following de�nition extends the notion of M
Millan degree to the 
lass ofautoregressive systems:De�nition 2.2 ([14℄) The degree of an autoregressive system P (s) is given by themaximal degree of the full size minors of P (s).Clearly row equivalent polynomial matri
es have the same degree. Moreover ifD�1(s)N(s) is a left 
oprime fa
torization of the transfer fun
tion G(s) then thedegree of (N(s)D(s)) 
oin
ides with the M
Millan degree of G(s) whi
h itself isequal to the topologi
al degree of the asso
iated Hermann-Martin 
urve [11℄.Without loss of generality assume in the following that P (s) is row redu
ed withrow indi
es equal to d1 � d2 � : : : � dp. Note that these row indi
es are di�erentfrom the minimal indi
es de�ned by Forney [3℄ if the polynomial matrix P (s) is not offull rank for some value s 2 �IK. However if P (s) has full rank for all s 2 �IK, i.e. P (s)is irredu
ible, then the two sets of indi
es 
oin
ide. Also, if G(s) = D�1(s)N(s) is aleft 
oprime fa
torization of a transfer fun
tion G(s), then (N(s)D(s)) is irredu
ibleand the row indi
es of (N(s)D(s)) 
oin
ide with the observability indi
es of G(s) [3℄.Motivated by the fa
t that the Hermann-Martin map 
an be extended to1, i.e. isa map de�ned on the whole proje
tive line IP1 we homogenize the polynomial matrixP (s), whi
h we assume to have row indi
es d1 � d2 � : : : � dp, in the following way:Denote by fi(s) the i-th row-ve
tor of the polynomial matrix P (s). In otherwords using earlier notation one has fi(s) = (fi1(s); : : : ; fik(s)) and the degree offi(s) is given by maxfdeg fij(s) j j = 1; : : : ; kg = di. The homogenization of the i-throw-ve
tor fi(s) is then de�ned by:̂fi(s; t) := tdifi(st ): (2.5)Using this homogenization pro
ess we 
an asso
iate to ea
h autoregressive systemP (s) the homogeneous systemP (s; t) := 0BBBBB� f̂11(s; t) f̂12(s; t) : : : f̂1k(s; t)f̂21(s; t) f̂22(s; t) : : : f̂2k(s; t)... ... ...f̂p1(s; t) f̂p2(s; t) : : : f̂pk(s; t)
1CCCCCA : (2.6)
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In the 
lass of homogeneous systems we say two systems P (s; t) and ~P (s; t) areequivalent if they have the same row-degrees and if there is a unimodular matrixU(s; t), whose entries are homogeneous polynomials, su
h that ~P = UP . A morepre
ise formulation will be given in De�nition 3.9. Again we 
all an equivalen
e 
lassof homogeneous systems a homogeneous autoregressive system.Note that P (s; 1) = P (s) and the matrix P (1; 0) des
ribes the behavior at in�nity.The degree of a homogeneous autoregressive system is now de�ned in the obvious way,namely through the sum of the row-degrees.The following set will now be the main interest in our studies:De�nition 2.3 ~Kdp;m denotes the set of all homogeneous autoregressive systems ofdegree d.We are now in a position to formulate one of the main results of this paper. Theproof of this result will o

upy all of the next se
tion.Theorem 2.4 ~Kdp;m is a smooth proje
tive variety 
ontaining the manifold Sdp;m as aZariski dense subset.Note that this result establishes a smooth 
ompa
ti�
ation of the variety Sdp;m, aresult sought after in systems theory for a long time. There are several other 
om-pa
ti�
ations of this spa
e published in the literature. We are aware of the following
ompa
ti�
ations: [1, 5, 7, 9, 12, 13℄. We will 
ompare these 
ompa
ti�
ations in thelast se
tion of this paper.We now explain the relation with the spa
e of (inhomogeneous) autoregressivesystems. Denote with Adp;m the set of all p� (m+ p) autoregressive systems of degreed and with A�dp;m := d[i=0Aip;m: (2.7)This notation is the same as the one used in [14℄. One has a natural proje
tion� : ~Kdp;m �! A�dp;m (2.8)P (s; t) 7�! P (s; 1)whi
h is generi
ally one-one. The map � indu
es on A�dp;m a topology, namely thequotient topology. Using this topology the set A�dp;m be
omes a 
ompa
t topologi
alspa
e. Moreover it is immediate that the set Sdp;m of proper transfer fun
tions is densein A�dp;m. 6



Before we go over to the proof of Theorem 2.4 in the next se
tion we like to
on
lude this se
tion with two examples.Example 2.5 Consider the 
ase of a \single output", i.e. p = 1. It is immediatethat in this 
ase ~Kd1;m is a proje
tive spa
e and the proje
tion � is an isomorphism.To be pre
ise one has~Kd1;m �= A�d1;m �= IP(IKd+1 
 IKm+1) = IPmd+m+d (2.9)We want to mention at this point that in the 
ase p = 1, the 
ompa
ti�
ation ~Kd1;mis the same as the one given in [1, 13℄, but di�erent from the ones presented in [7, 12℄Example 2.6 The set of 2� 2 homogeneous systems ~K12;0 of degree 1 is isomorphi
to IP1� IP1. For this assume that a; b; 
; d; e; f 2 IK. Then an expli
it isomorphism isgiven through: ' : ~K12;0 �! IP1 � IP1 (2.10) as + bt 
s + dte f ! 7�! (e; f); (af � 
e; de� bf)3 Proof of the main theorem and further resultsLet d, m and p be �xed positive integers. Set k = m + p. Sd will denote theve
tor spa
e of homogeneous polynomials of degree d in two variables s and t with
oeÆ
ients in a �eld IK. We do not assume that IK is algebrai
ally 
losed or thatit has 
hara
teristi
 zero. Sd is a IK-ve
tor spa
e of dimension d + 1. The standardordered basis that we will use for Sd is fsd; sd�1t; : : : ; tdg.De�nition 3.1 Let X be the set of all p� k matri
esA = 0BBBB� f11 f12 : : : f1kf21 f22 : : : f2k... ... ...fp1 fp2 : : : fpk 1CCCCA := 0BBBB� f1f2...fp 1CCCCA (3.1)where fij 2 Sdi is a homogeneous polynomial of degree di. We assume thatPpi=1 di = dand that at least one of the maximal minors of the matrix is a nonzero polynomial,ne
essarily of degree d. 7



We allow the row-degrees (d1; : : : ; dp) to vary subje
t to the restri
tion that theirsum is d. The 
ondition on the non-vanishing of a maximal minor is equivalent toassuming that as a matrix of polynomials, A is \generi
ally surje
tive". We de�ne� = k(d + 1) and � = pd � d + p. We shall now de�ne a map � from X to IM�;�,the set of all � � � matri
es with 
onstant entries. With the notation for A 2 X asabove, let fij = di+1Xl=1 alijsdi�l+1tl�1: (3.2)We set alij = 0 for l > di and also for l � 0 and for all j. In order to des
ribe theimage of A we de�ne �rst the matri
es
Aj =

0BBBBBBBBBBBBBBBBBBB�
aj11 : : : aj1kaj�111 : : : aj�11k... ...aj�d+d111 : : : aj�d+d11kaj21 : : : aj2k... ...aj�d+d221 : : : aj�d+d22k... ...aj�d+dpp1 : : : aj�d+dppk

1CCCCCCCCCCCCCCCCCCCA : (3.3)
Using this notation the image �(A) is given as follows:�(A) = (A1jA2j : : : jAd+1) (3.4)So �(A) is made up of (d+1) verti
al blo
ks of k 
olumns ea
h and m horizontalblo
ks. The i-th horizontal blo
k has d� di + 1 rows.Before pro
eeding any further, we wish to des
ribe this map � intrinsi
ally . LetVk and Vp be IK-ve
tor spa
es of dimension k and p respe
tively. Choose ordered bases(u1; u2; : : : ; uk) and (v1; : : : ; vp) for Vk and Vm respe
tively. The matrix A de�nes amap, �A from Wp = Lpi=1 Sd�di � vi to Wk =Lki=1 Sd � ui as follows:�A( pX1 givi) = (g1; g2; : : : ; gp) � A: (3.5)Now, 
hoose the ordered IK-basis fsd �u1; sd �u2; : : : sd �uk; sd�1t �u1; : : : td �ukg for Wkand the ordered IK-basis fsd�d1 � v1; sd�d1�1t � v1; : : : td�d1 � v1; : : : ; sd�dpvp; : : : ; td�dpvpgfor Wp. Then �(A) is the matrix of �A as a map of ve
tor spa
es, with the bases forWp and Wk 
hosen above. 8



Remark 3.2 Sin
e our des
riptions of � depends on the 
hoi
e of the bases for Wkand Wp, we wish to point out that there are two group a
tions on the image �(X) inIM�;�:1. The group PGL(2) a
ts on IP1 by 
hanging 
oordinates (s; t) to (s0; t0). Ea
h el-ement of PGL(2) indu
es a bije
tive map between �(X) in these two 
oordinatesystems.2. The group GL(Vk) a
ts on Vk in the natural way. If g 2GL(Vk), then there isan � � � matrix B, whi
h is the matrix of the isomorphism indu
ed by g onWk with respe
t to the 
anoni
al bases 
hosen. Post multipli
ation by B setsup a bije
tion between the matri
es �(A) and �0(A) de�ned with these di�erentbases on Vk.De�nition 3.3 Fix positive integers �1 � �2 : : : � �p su
h thatP�i = �. Let 
0 = 0and let 
i = Pi1 �j for i = 1; : : : ; p. We say that a matrix A 2 IM�;� is in 
anoni
al(�1; : : : ; �p) form, if A = (A1jA2j : : : jAd+1) and for �l < j � �l+1 we have Aj in thefollowing form:
Aj =

0BBBBBBBBBBBBBBBBBBB�
aj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj21 : : : aj2l 0 0 : : : 0 aj2;p+1 : : : aj2k... ... ... ... ... ...aj
l+j;1 : : : aj
l+j;l 1 0 : : : 0 aj
l+j;p+1 : : : aj
l+j;k... ... ... ... ... ...aj
l+1+j;1 : : : aj
l+1+j;l+1 0 1 : : : 0 aj
l+1+j;p+1 : : : aj
l+1+j;k... ... ... ... ...aj
l+p+j;1 : : : aj
l+p+j;l+1 0 0 : : : 1 aj
l+p+j;p+1 : : : aj
l+p+j;kaj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCCA : (3.6)
Proposition 3.4 Let A 2 X have row-degrees d1 � d2 � : : : � dp. Let �i = d�di+1.Then after an appropriate 
hange of 
oordinates on IP1 and a 
hange of basis for Vk,�(A) is row equivalent to a matrix that is in 
anoni
al (�1; : : : ; �p) form.Proof: Firstly, by 
hanging basis on Vk, we 
an assume that the determinant of the�rst p 
olumns of A is non-zero. Further, by 
hanging 
oordinates on IP1, we 
an

9



assume that the 
oeÆ
ient of sd in this determinant is non-zero. LetA = 0BBBB� a111sd1 a112sd1 : : : a11;ksd1a121sd2 a122sd2 : : : a12;ksd2... ...... ...a1p1sdp a1p2sdp : : : a1p;ksdp 1CCCCA+ terms of lower degree in s. (3.7)Let A0 = 0BBBB� a111 a112 : : : a11;ka121 a122 : : : a12;k... ...... ...a1p1 a1p2 : : : a1p;k 1CCCCA and A0p = 0BBBB� a111 a112 : : : a11;pa121 a122 : : : a12;p... ... . . . ...a1p1 a1p2 : : : a1p;p 1CCCCA (3.8)By our 
hoi
e of 
oordinates, A0p is an invertible matrix. After a further reorderingof the basis of Vk, we 
an assume that for j = 1; : : : ; p, the matrix0BB� a1j1 : : : a1jp... ...a1p1 : : : a1pp 1CCA is row equivalent to 0BB� � � � : : : �... ... Ip�j+1� � 1CCA : (3.9)Now
A1 =

0BBBBBBBBBBBBBBBBBBBB�
a111 : : : a11k0 : : : 0... ...a121 : : : a12k0 : : : 0... ...a1p1 : : : a1pk0 : : : 0... ...0 : : : 0

1CCCCCCCCCCCCCCCCCCCCA : (3.10)
By our assumption on A0p, we 
an row redu
e the matrix A1 to:

A1 =
0BBBBBBBBBBBBBBBB�

1 0 : : : 0 � : : : �0 0 : : : 0 0 : : : 0... ... ... ... ...0 1 : : : 0 � : : : �... ... ... ... ...0 0 : : : 1 � : : : �... ... ... ... ...0 0 : : : 0 0 : : : 0
1CCCCCCCCCCCCCCCCA : (3.11)
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We perform these row operations on all of �(A). We observe that these row operationsdo not e�e
t a row l, if l 6= 
i for any i. Now, in A2, the p rows 
i+1, for i = 1; : : : ; pform the matrix A0p. As in the �rst step, we 
an perform row operations on �(A) toget A2 in 
anoni
al (�1; : : : ; �p) form. Again the row operations performed on �(A)so far, do not a�e
t row l, so long as l 6= 
i and l 6= 
i + 1 for any i.Hen
e, the pro
edure above 
an be repeated, indu
tively, until A�1 . For �1 < j ��2, the matrixAj 
ontains the last (p�1) rows ofA0p. Again, we 
an do row operationson �(A), that will row redu
e it to a matrix, where Aj is in (�1; : : : ; �p) 
anoni
alform. We 
ontinue this sequen
e of row operations, until we rea
h the blo
k A�p. Theresulting matrix �(A) is in (�1; : : : ; �p) 
anoni
al form. Q.e.d.Corollary 3.5 For ea
h A 2 X, the matrix �(A) has full rank � = pd � d + p.Therefore, � de�nes a map � : X ! Grass(�;Wk) obtained by mapping a matrix Ain X to the row spa
e of the matrix �(A).Proof: By the previous Proposition, we know that if A 2 X then there exist invert-ible matri
es C and D su
h that CAD = B where B is in (�1; : : : ; �p) 
anoni
alform. Therefore the rank of A is the same as the rank of B, whi
h is 
learly �.Q.e.d.Remark 3.6 We would like to note for future referen
e that the group a
tions spe
-i�ed in Remark 3.2 on �(X) arise from the a
tion of a subgroup of GL(Wk) on theGrassmannian.We now have a map from our spa
e X to the Grassmannian of �-dimensionalplanes in Wk = Vk 
 Sd. First of all we want to identify the image of X in theGrassmannian through this map. Se
ondly, we wish to show that the map � is one-to-one on 
ertain equivalen
e 
lasses of matri
es in X. To a
hieve the �rst obje
tive,we introdu
e a map  from our Grassmannian into the spa
e of (2�)�(�+k) matri
eswith 
onstant entries. Let W 2 Grass(�;Wk) be a � plane. Re
all that we have a
anoni
al basis for Wk. Choose matri
esAj = 0BBBBB� aj11 : : : aj1kaj21 : : : aj2k... ...aj�1 : : : aj�k
1CCCCCA (3.12)
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su
h that the � � � matrix AW := (A1jA2j : : : jAd+1) (3.13)has row spa
e equal to W . We set a0ij = ad+2ij = 0 for all i and j and de�ne:
A(j;j+1) := 0BBBBBBBBBB�

aj+111 aj+112 : : : aj+11kaj11 aj12 : : : aj1kaj+121 aj+122 : : : aj+12kaj21 aj22 : : : aj2k... ... ...aj�1 aj�2 : : : aj�k
1CCCCCCCCCCA : (3.14)

The image of the map  is now de�ned through: (AW ) := (A(0;1)jA(1;2)j : : : jA(d+1;d+2)): (3.15)The map  depends on the 
hoi
e of the representative AW for the plane W , but ifwe 
hoose another representation BW for W , then it is easy to see that  (AW ) is rowequivalent to  (BW ). Therefore, the following de�nition makes sense.De�nition 3.7 Let~K = fW 2 Grass(�;Wk) j rank of  (AW ) = � + pg: (3.16)This subset of the Grassmannian is the main obje
t of study in this paper.Theorem 3.8 ~K = �(X).Proof: To show that �(X) is 
ontained in ~K, it suÆ
es to observe that ea
h matrixA in X gives rise to a map pMi=1 Sd+1�di � vi Ad+1�! kMi=1 Sd+1 � ui: (3.17)The row spa
e of  (�(A)) is the image of the map Ad+1. As in 3.5, this map isinje
tive. Therefore the rank of  (�(A)) is the sum of the dimensions of Sd+1�diwhi
h is � + p.The other in
lusion is somewhat harder and we will use some te
hniques fromalgebrai
 geometry in the proof. Let W 2 ~K. So W � Vk 
 Sd. Consider the12



subsheaf L of Vk 
 OIP1(d) de�ned as follows:0 0# #0 ! MW ! W 
 OIP1 ! L ! 0# #(Vk 
 Sd)
 OIP1 ! Vk 
 OIP1(d) ! 0 (3.18)HereMW is just de�ned to be the kernel of the middle right map. Observe that bothL and MW are lo
ally free sheaves on IP1. Therefore, MW = L��li=1 OIP1(�ai) andL = Lli=1OIP1(bi) and P ai = P bi = Æ: Further, sin
e L is generated by se
tions andsin
e it is a subsheaf of Vk 
 OIP1(d), we have that 0 � bi � d. Taking 
ohomologies,on the top row of 3.18, we get0! H0(IP1;MW) �!W ! H0(L)! H1(IP1;MW)! 0 (3.19)The map � is inje
tive by 
onstru
tion. Therefore, H0(IP1;MW) = 0. Hen
e ai � 1.On twisting the middle row of 3.18 by OIP1(1) and taking 
ohomologies again, onegets:0 ! H0(IP1;MW(1)) ! W 
H0(IP1; OIP1(1)) ! H0(IP1;L(1))#Vk 
H0(IP1; OIP1(d+ 1))(3.20)The 
omposition indi
ated is the map whose matrix is  (AW ). Sin
e W is in ~K, theimage of  has rank �+p. Therefore the dimension of H0(IP1;MW(1)) = 2����p =��p. Thus the rank ofMW = �� l � ��p and l � p. Also, Dim H0(IP1;L) = l+Æ.From the sequen
e 3.19 one has,DimH1(IP1;MW) = DimH0(IP1;L)� �= l + Æ � �= l + Æ � (pd� d+ p)� 0 if l � p: (3.21)Therefore, l = p, Æ = � � p and L ' Lpi=1OIP1(bi). So we have:0! pMi=1OIP1(bi � d) �! Vk 
OIP1 : (3.22)The map � is given by a p � k matrix A whose, i-th row 
onsists of homogeneouspolynomials of degree di = d � bi, where P di = d. So A 2 X and the row spa
e13



of �(A) is H0(IP1;L) = W . Thus ea
h W 2 ~K arises as �(A) for some A 2 X.Q.e.d.We now introdu
e an equivalen
e relation on the spa
e of matri
es X. Let d1 �d2 : : : � dp be nonnegative integers and letG = fU(s; t) = (pij(s; t)) j U(s; t) is unimodular i.e. det U(s; t) 2 IK�and pij(s; t) is homogeneous of degree di � djg: (3.23)It is 
lear that G is a subgroup of the unimodular group a
ting transitively on the setof matri
es with row-degrees d1 � d2 : : : � dp. Indeed this group was of 
ru
ial im-portan
e in the paper [14℄. Using this group we de�ne on X the following equivalen
erelation:De�nition 3.9 Two matri
es A and A0 in X are equivalent if after a possible re-ordering of the rows they have the same row-degrees d1 � d2 : : : � dp and if thereexists a U(s; t) 2 G with A0 = U(s; t)A.Note that the set of equivalen
e 
lasses inX is exa
tly the spa
e ~Kdp;m of homogeneousautoregressive systems as introdu
ed in De�nition 2.3.It is easy to see from our des
ription of the map �, that if A and A0 are equivalent,then �(A) and �(A0) de�ne the same plane in the Grassmannian.Proposition 3.10 � : X ! Grass(�;Wk) gives a one-to-one map on equivalen
e
lasses of matri
es in X. Therefore � : ~Kdp;m ! ~K � Grass(�;Wk) is a bije
tion.Proof: From the remarks pre
eding the statement, we only need to verify that if�(A) = �(A0) =W , then A and A0 are equivalent. From the proof of the Theorem 3.8,it is 
lear that W = H0(IP1;L), where L is the subsheaf generated by W . Now, Aand A0 are two matrix representations of the in
lusion map of sheaves L ,! Vk
OIP1 .Two su
h representations di�er by an isomorphism of the sheaf Lpi=1OIP1(bi) to itself.All isomorphisms of this sheaf are given by matri
es in the group G de�ned above.Thus A and A0 are equivalent in X. Q.e.d.Theorem 3.11 ~K is a smooth, 
onne
ted, algebrai
 subvariety of Grass(�;Wk).Corollary 3.12 ~Kdp;m has the stru
ture of a smooth, 
onne
ted and 
ompa
t mani-fold.Before we give the proof of Theorem 3.11 we reinterpret Example 2.6.14



Example 3.13 The set ~K12;0 is embedded through � in Grass(3; IK4) �= IP3 as follows:� : ~K12;0 �! Grass(3; IK4) (3.24) as+ bt 
s+ dte f ! 7�! 0B�a 
 b de f 0 00 0 e f1CAUsing Pl�u
ker 
oordinates one veri�es that the image of � is IP1� IP1 under the Segreembedding.Proof of Theorem 3.11: By Theorem 3.8, ea
h point W 2 ~K is �(A) for somematrix A 2 X. Further, by Proposition 3.4 and remark 3.6, there is an isomorphismg 2GL(Wk) of the Grassmannian, and there exist positive integers �1 � : : : � �p su
hthat a matrix representation of g(W ) is in 
anoni
al (�1; : : : ; �p) form. From here onwe repla
e W by g(W ). Let U = U(�1;:::;�p) be the set of all matri
es in IM��� whi
hare in 
anoni
al (�1; : : : ; �p) form. U 
an be naturally identi�ed with an aÆne opensubset of the Grassmannian. We shall parametrize ~K \ U and show that this is asmooth aÆne subset of U .Let A 2 U .  (A) = (A(1;0)jA(1;2)j : : : jA(d+1;d+2)) where for �l � j � �l+1 we have:
A(j;j+1) =

0BBBBBBBBBBBBBBBBBB�
aj+111 : : : aj+11l 0 0 : : : 0 aj+11;p+1 : : : aj+11kaj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj+121 : : : aj+12l 0 0 : : : 0 aj+12;p+1 : : : aj+12kaj21 : : : aj2l 0 0 : : : 0 aj2;p+1 : : : aj2k... ... ... ... ... ...aj+1
l+j�1;1 : : : aj+1
l+j�1;l 1 0 : : : 0 aj+1
l+j�1;p+1 : : : aj+1
l+j�1;kaj
l+j;1 : : : aj
l+j;l 1 0 : : : 0 aj
l+j;p+1 : : : aj
l+j;k... ... ... ... ... ...aj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCA :(3.25)So  (A) is a (2�) � (� + k) matrix. We perform the following row operations on (A): for i = 1; : : : ; p, and 1 � j � �i+1 � 1, subtra
t the (2
i + 2j) -row from the(2
i + 2j + 1)-row of  (A).
15



After these row operations the matrix  (A) = (A(1;0)jA(1;2)j : : : jA(d+1;d+2)) wherefor �l � j � �l+1, A(j;j+1) is given by:0BBBBBBBBBBBBBBBBBB�
aj+111 : : : aj+11l 0 0 : : : 0 aj+11;p+1 : : : aj+11kaj11 : : : aj1l 0 0 : : : 0 aj1;p+1 : : : aj1kaj+121 : : : aj+12l 0 0 : : : 0 aj+12;p+1 : : : aj+12kaj21�aj+121 : : : aj2l�aj+12l 0 0 : : : 0 aj2;p+1�aj+12;p+1 : : : aj2k�aj+12k... ... ... ... ... ...aj+1
l+j�1;1 : : : aj+1
l+j�1;l 1 0 : : : 0 aj+1
l+j�1;p+1 : : : aj+1
l+j�1;kaj
l+j;1�aj+1
l+j�1;1 : : : aj
l+j;l�aj+1
l+j�1;l 0 0 : : : 0 aj
l+j;p+1�aj+1
l+j�1;p+1 : : : aj
l+j;k�aj+1
l+j�1;k... ... ... ... ... ...aj�1 : : : aj�l 0 0 : : : 0 aj�;p+1 : : : aj�k

1CCCCCCCCCCCCCCCCCCA :(3.26)This matrix has � standard unit ve
tors as 
olumns. Let B be the submatrix ofA obtained by deleting the rows that 
ontain the non-zero entry in these standard
olumn ve
tors. B = (B(0;1)jB(1;2)j : : : jB(d+1;d+2)) where:
B(0;1) =

0BBBBBBBBBBBBBBBB�
a12;p+1 : : : a12ka13;p+1 : : : a13;p+1... ...a1
1;p+1 : : : a1
1;k0 : : : 0a1
1+1;p+1 : : :... ...0 ... 0

1CCCCCCCCCCCCCCCCA : (3.27)
B(1;2) = 0BBBB� 0 : : : 0 a22;p+1 � a11;p+1 : : : a22;k � a11;k0 : : : 0 a23;p+1 � a12;p+1 : : : a23;p+1 � a12;k... ...0 : : : 0 a1�;p+1 : : : a1�k 1CCCCA : (3.28)For, 1 � i � p,

B(�i;�i+1) = 0BBBBBBBBBBBBB�
a�i+121 0 : : : 0 a�i+12;p+1 � a�i1;p+1 : : : a�i+12k � a�i1k... ... ... ... ...a�i+1
1 ;1 0 : : : 0 a�i+1
1;p+1 � a�i
�1;p+1 : : : a�i+1
1k a�i
1�1k1 0 : : : 0 a�i
1;p+1 : : : a�i
1ka�i+1
1+2;1 0 : : : 0 � : : : �... ... ... ... ...0 0 : : : 0 a�i�;p+1 : : : a�i�k

1CCCCCCCCCCCCCA : (3.29)
16



We observe that the rank of  (A) is � plus the rank of B. Consider the p � psubmatrix of B obtained by 
hoosing the rows 
1; : : : ; 
p and the i-th 
olumn ofB(�i;�i+1). This is a p� p identity matrix. Hen
e rank of B is at least p. Thus~K \ U = fA 2 U j  (A) has rank � + pg (3.30)= fA 2 U j  (A) has rank � � + pg: (3.31)The se
ond subset is de�ned by setting all the minors of order greater than p to bezero. Hen
e, ~K \ U is 
learly an algebrai
 subset of U . Sin
e ea
h point of ~K hasa neighborhood U in G for whi
h ~K \ U is an algebrai
 subvariety, ~K itself is analgebrai
 subvariety of Grass(�;Wk). Before starting the proof of the smoothness of~K, we need to introdu
e some more notation.S = fajl;q j either 9i s.t. l = 
i and q � p+ 1 and j � �i + 1or q � p and j = �q + 1 and l � 
q + 1g: (3.32)Also, for 1 � i � p and j � d+ 1, we letAji = fajst j
i�1 + 1 � s � 
i and 1 � t � kg: (3.33)Let A 2 ~K \ U . Let 1 � l � � and l 6= 
i for any i. Let p + 1 � q � k. Let1 � i � p. Consider the (p+1)� (p+1) submatrix of B obtained by adding the l-throw and the q-th 
olumn to the identity submatrix. This submatrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 a1l;q... ... � Ip�i0 : : : 0 �
1CCCCCCCA : (3.34)Sin
e A 2 ~K \ U , B(0;1) = 0. Further, for all i � 1 a1l;q = 0 for p + 1 � q � k andl 6= 
i + 1.For 0 � j � �1 � 2 and r � j, we assume by indu
tion on j that B(r;r+1) = 0for all r � j and that ar+1l;q = 0 for 
i�1 + r + 1 � l � 
i. We 
an also assume thatfor 
i � r � 1 � l � 
i�1, arl;q is a fun
tion of A(j+1)i for all r � j. We 
onsider the(p+1)� (p+1) submatrix of B obtained by adding the l-th row and the q-th 
olumn

17



of the B(j+1;j+2) blo
k to the identity submatrix of B. This matrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 a(j+2)l+1;q � a(j+1)l;q... ... a(j+1)
1;q = 0 Ip�i0 : : : 0 a(j+1)
p;q = 0
1CCCCCCCA : (3.35)

Again on ~K\U , we get thatB(j+1;j+2) = 0. Further, for 
i�1+j+2 � l � 
i; a(j+1)l;q = 0and for 
i � (j + 1)� 1 � l � 
i � 1; a(j+1)l;q is a fun
tion of A(j+2)i .So by indu
tion on j, we have that B(j;j+1) = 0 for all j � �1 � 1. Also Aji iseither 0 or 
an be expressed as a fun
tion of A�1i and a�1l;q = 0 for 
i + �1 � l � 
i+1.We now subtra
t (a�1+1l;1 ) times the 
1-row of B from the l-th row, for l � 
1 + 1and l 6= 
i for any i. We shall 
all the resulting matrix B as well. Thus for j � �1and l as above, we haveb(j;j+1)l;q = aj+1l+1;q � ajl;q � aj
1;q � a�1+1l+1;1 for q = 1; p+ 1; p+ 2; : : : ; k: (3.36)= aj+1l+1;q � ajl;q + a fun
tion of the variables in S: (3.37)Now, let i � 2 and let q = 1 or p + 1 � q � k. Let �1 � j � �2 � 1. Considerthe submatrix of B obtained by adding the l-th row of B and the q-th 
olumn of theB(j;j+1) to the identity submatrix. This submatrix is of the form:0BBBBBB� 1 � � : : : �0 b(j;j+1)l;q � : : : �0 �0 � Ip�10 �
1CCCCCCA : (3.38)Hen
e B(j;j+1)i = 0. We 
onsider two ranges for l.1. Let 
i+1 � 1 � l � 
i + j + 1. By indu
tion on j we 
an assume that we haveajl;q = f jl;q(S) as a fun
tion of the variables in S. Thus, b(j;j+1)l;q = 0 implies thataj+1l+1;q = f j+1l+1;q(S), for l in this range.2. Let 
i + j � l � 
i�1 + 1. Here, we pro
eed by des
ending indu
tion on j.We 
an assume that aj+1l+1;q = f j+1l+1;q(S;A�2i ). Now, b(j;j+1)l;q = 0 implies thatajl;q = f jl;q(S;A�2i ). 18



Thus, for i � 1, b(j;j+1)l;q = 0 for l � 
i + 1 and 1 � j � �2 � 1. Further,ajl;q = ( f jl;q(S) if 
i+1 � 1 � l � 
i + j + 1f(S;A�2i ) if 
i + j � l � 
i�1 + 1 (3.39)Also, a�2l;q = f�2l;q (S) if 
i + �2 � l � 
i+1 � 1.Indu
tive step for i: Let 1 � i � p � 1. Let 1 � q � i or p + 1 � q � k. Lett � i + 1.By indu
tion on i, we 
an assume that b(j;j+1)l;q = 0 for j � �i � 1 andl � 
i + 1. Further, we 
an assume that, for j � �i,ajl;q = ( f jl;q(S) if 
t+1 � 1 � l � 
t + j + 1f(S;A�it ) if 
t + j � l � 
t�1 + 1 (3.40)Also, a�il;q = f�il;q(S) if 
t + �i � l � 
t+1 � 1.For, l � 
i+1 and l 6= 
t for any t, we subtra
t (a�i+1l;i ) times the row 
i of B fromthe l-th row. We 
all this matrix B again. Note thatbj;j+1l;q = aj+1l+1;q � ajlq � some fun
tion of S: (3.41)Let �i � j � �i+1 � 1. Consider the submatrix of B obtained by adding the l-th rowof B and the q-th 
olumn of the B(j;j+1). This submatrix is of the form:0BBBBBBB� � : : : �Ii � : : : �0 : : : 0 b(j;j+1)lq... ... � Ip�i0 : : : 0 �
1CCCCCCCA : (3.42)

Again, on ~K \ U , b(j;j+1)l;q = 0 for l � 
i + 1 and 0 � j � �i+1 � 1. As before, todetermine the values of a, we 
onsider two ranges for l.1. Let 
t � 1 � l � 
t + j + 1. By an as
ending indu
tion on j, we 
an assumethat ajl;q = f jl;q(S). Now, bj;j+1l;q = 0 implies that aj+1l+1;q = f j+1l+1;q(S) is a fun
tionof S.2. Let 
t + j � l � 
t�1 + 1. Pro
eeding by a downward indu
tion on j, we
an assume that aj+1l+1;q = f j+1l+1;q(S;A�i+1t ). So bj;j+1l;q = 0 implies that ajl;q =f jl;q(S;A�i+1t ). 19



Thus, one is eventually left with a matrix B su
h that b(j;j+1)l;q = 0 for 1 � p and
t�1 + 1 � l � 
t � 1 and j � �i � 1. Also, for j and l in this range, eitherajl;q = f jl;q(S) or ajl;q = f jl;q(S;A�i;i). Sin
e this is true for all t � i+1, this �nishes theproof for the indu
tive step for i.We next perform the following row operations on B. For i = 1; : : : ; p and 
i�1+1 �l � 
i � 1, subtra
t (a�i+1l;i ) times the row 
i from the l-th row. As usual, we will
all the resulting matrix also B. The i-th 
olumn of the (�i; �i + 1) blo
k of B is astandard unit ve
tor with a 1 in the row 
i. Hen
e if A 2 ~K \ U , then b(j;j+1)l;q = 0 ifl 6= 
i for any i between 1 and p. Also, for �i � j � d+ 1 and 
i�1 + 1 � l � 
i � 1,b(j;j+1) = aj+1l+1;q � ajl;q � pXr=1 a�r+1l+1;r � ar
r;q: (3.43)For j = d + 1; a(j+1)l;q = 0. We now pro
eed by des
ending indu
tion on j. We
an assume that aj+1l;q = f j+1l;q (S).Thus b(j;j+1) = 0 implies that we 
an solve forajl;q = f jl;q(S). So we have that if A 2 ~K \U , then ajl;q = f jl;q(S) for all indi
es j; l andq. Conversely, 
onsider a matrix A 2 U , given by f jl;q(S), where these are the fun
-tions found above. Let B be the matrix 
onstru
ted from  (A) as before. Due to the
hoi
e of the fun
tions f jl;q, we see that B(j;j+1) = 0 for j � �1 � 1.Applying the same sequen
e of row operations as before, we see that B is rowequivalent to a matrix C that has m standard unit 
olumn ve
tors and if l 6= 
i, thenall the entries in the row l are zero. So  (A) has rank � + p and A 2 ~K. So ea
hmatrix A 2 ~K \ U 
an be parameterized as A = (f jl;q(S)). Thus ~K \ U is isomorphi
to IKs, where s is the 
ardinality of the set S.s = (Ppi=1m(d+ 1� �i)) + p(m+ p)(d� �p) +Ppi=1(p� i)(�p � �i))= (m + p)d+mp: (3.44)Noti
e that s is independent of the 
hoi
e of the p-tuple (�1; : : : ; �p). Thus ea
hpoint W 2 ~K has a neighborhood U = g�1(U(�1;:::;�p)) in Grass(�;Wk) su
h that~K \ U ' IKs. Thus ~K is a nonsingular variety, rational variety of dimension s.To see that ~K is 
onne
ted, let W1 and W2 be two points in ~K. There exist aÆneopen sets, Ui 3 Wi and ~K \Ui ' IKs. Now, U1 \U2 6= �. Let W 2 ~K \U1 \U2. Thenthere is a path 
1 from W1 to W in U1 and a path 
2 from W to W2 in U2. Thus ~Kis 
onne
ted. Q.e.d.20



4 A 
omparative study of di�erent 
ompa
ti�
a-tionsIt was Hazewinkel [5, Theorem 2.22℄ who �rst showed that any sequen
e of timeinvariant linear systems of M
Millan degree at most n naturally 
onverges to a singularsystem of the form _x = Ax +Bu; y = Cx +D( ddt)u: (4.1)Moreover if one de�nes the M
Millan degree for 4.1 as the sum of the M
Millan degreesof C(sI �A)�1B and D(s�1) then this M
Millan degree is ne
essarily at most n andany system of type 4.1 having M
Millan degree at most n 
an be obtained as thelimit of a sequen
e of time invariant linear systems of M
Millan degree n.Probably the �rst expli
it 
ompa
ti�
ation of the spa
e of proper transfer fun
-tions was introdu
ed by Byrnes [1℄ who introdu
ed this spa
e in order to study thedynami
 pole pla
ement problem. The 
ompa
ti�
ation of Byrnes was done 
om-pletely in the frequen
y domain. The idea behind the 
ompa
ti�
ation of Byrnes isan embedding of the set of all transfer fun
tions in a large dimensional Grassmannvariety and the 
losure serves as a 
ompa
ti�
ation.We are aware of two 
ompa
ti�
ations whi
h were derived in the time domain.One 
ompa
ti�
ation was derived by the se
ond author as the 
ategori
al quotientobtained from an a
tion of a redu
tive group on a proje
tive variety and details aregiven in [12℄.Re
ently Helmke [7℄ proposed a 
ompa
ti�
ation, whi
h was partially derivedby geometri
 invariant theory as well and whi
h is based on earlier results derivedtogether with Shayman [6℄. This 
ompa
t spa
e 
ontains the 
lass of 
ontrollablesingular systems of the form E _x = Ax + Bu; Fy = Cx + Du where the regularity
onditions det(�E � �A) 6= 0 and rank(F;C;D) = p are satis�ed. Helmke shows thesurprising result that the 
ategori
al quotient of this extended 
lass of systems underan extended group a
tion is 
ompa
t and smooth.It is interesting to 
ompare the above three 
ompa
ti�
ations in the 
ase m = p =d = 1, i.e. in the 
ase of one-input, one-output and M
Millan degree 1. In this 
asethe 
ompa
ti�
ation of Byrnes [1℄ (as well as the 
ompa
ti�
ations we will des
ribein a moment [9, 13, 16℄) are equal to IP3 whereas the 
ompa
ti�
ation in [12℄ in this
ase is equal to IP1� IP1� IP1 and the 
ompa
ti�
ation in [7℄ has the same homotopytype as IP1 � IP2. In parti
ular they are all di�erent.In [9℄ Lomadze 
onsiders a more general 
lass of linear systems. In terms of21



his de�nition [9, De�nition 1, Se
tion 2℄, our spa
e ~Kdp;m 
oresponds to the spa
eof all 
ompletely observable systems of M
Millan degree d, input number m andoutput number p. He shows that this spa
e is 
ompa
t using some te
hniques fromGrothendie
k's 
onstru
tion of Quot s
hemes. The smoothness of the spa
e is notshown in [9℄.Closely related to the 
ompa
ti�
ation 
onstru
ted in this paper is the one ob-tained by the se
ond author in [13℄, denoted by Kdp;m there. For the pole pla
ementproblem with dynami
 
ompensators this 
ompa
ti�
ation is of interest. On one handone 
an identify this 
ompa
t spa
e with the set of all autoregressive systems of orderat most n and size p� (m+ p). On the other hand the pole pla
ement map with dy-nami
 
ompensators 
an be viewed as a 
entral proje
tion from this proje
tive varietyto the spa
e of 
losed loop polynomials. In the following we establish the relationbetween the 
ompa
ti�
ation Kdp;m and the 
ompa
ti�
ation ~Kdp;m presented in thispaper.Proposition 4.1 There is a surje
tive map � : ~Kdp;m ! Kdp;m su
h that � is anisomorphism on an open subset of Kdp;m. In other words, ~Kdp;m is desingularization ofKdp;m.Proof: Let x 2 ~Kdp;m. So x 2 Grass(�;Wk) 
orresponds to an equivalen
e 
lass ofmatri
es in X. Choose a representative matrix A for x. Let �(A) = (f1; : : : fN ) bethe ordered maximal minors of A. So ea
h fi 2 Sd. If A0 is another matrix thatrepresents x, then �(A0) is obtained by multiplying �(A) by a s
alar in IK. Thus �de�nes a map � : ~Kdp;m ! IP(LN1 Sd) where IP(LN1 Sd) is the proje
tive spa
e of alllines in the IK ve
tor spa
e LN1 Sd. The spa
e Kdp;m is, by de�nition the 
losure of�(X) in IP(LN1 Sd). Sin
e ~Kdp;m is 
ompa
t, � is surje
tive.To see that � is an isomorphism on an open subset, let X 0 be the subset of allmatri
es A in X su
h that, the minors �(A) = (f1; : : : fN ) do not have any 
ommonfa
tors. Then as is shown in [13℄, the map � restri
ted to �(X 0) � ~Kdp;m is anisomorphism.Referen
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