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Abstract. Let M be an n×n square matrix and let p(λ) be a monic polynomial of degree n. Let
Z be a set of n×n matrices. The multiplicative inverse eigenvalue problem asks for the construction
of a matrix Z ∈ Z such that the product matrix MZ has characteristic polynomial p(λ).

In this paper we provide new necessary and sufficient conditions when Z is an affine variety over
an algebraically closed field.
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1. Introduction. Inverse eigenvalue problems involving partially specified ma-
trices have drawn the attention of many researchers. The problems are of significance
both from a theoretical point of view and from an applications point of view. For
background material we refer to the monograph by Gohberg, Kaashoek, and van
Schagen [8], the recent book by Xu [15], and the survey article by Chu [3].

The multiplicative eigenvalue problem asks for conditions which guarantee that
the spectrum of a certain matrixM can be made arbitrarily through premultiplication
by a matrix from a certain set. To be precise, let F be an arbitrary field. Let Matn×n

be the space of all n×nmatrices defined over the field F. We will identifyMatn×n with

the vector space F
n2

. Let Z ⊂ Matn×n be an arbitrary subset and let M ∈ Matn×n

be a fixed matrix. Then the (right) multiplicative inverse eigenvalue problem in its
general form asks the following.
Problem 1.1. Given a monic polynomial p(λ) of degree n, is there an n × n

matrix Z ∈ Z such that MZ has characteristic polynomial

det(λI −MZ) = p(λ)?

The formulation of the left multiplicative inverse eigenvalue problem is analogous,
seeking a matrix Z ∈ Z such that ZM has characteristic polynomial p(λ). The left
and the right multiplicative inverse eigenvalue problems are equivalent to each other
because of the identity

det(λI − ZA) = det(λI −AtZt).

In its general form Problem 1.1 is an “open end problem” and until this point
only very particular situations are well understood; e.g., we would like to mention
the well-known result by Friedland [7], who considered the set Z = D of diagonal
matrices. Friedland did show in this case by topological methods that Problem 1.1
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has an affirmative answer if the base field F consists of the complex numbers C. This
diagonal perturbation result was later generalized by Dias da Silva [5] to situations
where the base field can be any algebraically closed field.

The result which we are going to derive in this paper can be viewed as a large
generalization of Friedland’s result. Specifically we will deal with the situation where
Z ⊂ Matn×n represents an arbitrary affine variety over an arbitrary algebraically
closed field F. Under these assumptions we will derive necessary and sufficient con-
ditions (Theorem 3.1) which will guarantee that Problem 1.1 has a positive answer
for a “generic set” of matrices M and a “generic set” of monic polynomials p(λ) of
degree n.

The techniques which we use in this paper have been developed by the authors in
the context of the additive inverse eigenvalue problem [2, 10, 13] and in the context
of the pole placement problem [12].

The major tool from algebraic geometry which we will use is the “dominant
morphism theorem” (see Theorem 2.1). This powerful theorem necessitates that the
base field is algebraically closed. The situation over a nonalgebraically closed field
seems to be much more complicated. Some new techniques applicable over the real
numbers have been recently reported by Drew et al. [6].

2. Preliminaries. For the convenience of the reader we provide a summary of
results which will be needed to establish the new results of this paper.

Denote by σi(M) the ith elementary symmetric function in the eigenvalues of M ,
i.e., σi(M) denotes up to sign the ith coefficient of the characteristic polynomial of
M . Crucial for our purposes will be the eigenvalue assignment map

ψ : Z −→ F
n, Z �−→ (−σ1(MZ), . . . , (−1)nσn(MZ)).(2.1)

ψ is a morphism in the sense of algebraic geometry. By identifying a monic polynomial
λn + b1λ

n−1 + · · ·+ bn with the point (b1, . . . bn) ∈ F
n we can also write

ψ(Z) = det(λI −MZ).(2.2)

Crucial for the proof of the main result (Theorem 3.1) will be the dominant mor-
phism theorem. The following version can be immediately deduced from [1, Chapter
AG, section 17, Theorem 17.3].
Proposition 2.1. Let f : Z → Y be a morphism of affine varieties over an

algebraically closed field. Then the image of f contains a nonempty Zariski open set
of Y if and only if the Jacobian df

Z
: T

Z,Z → T
f(Z),Y is onto at some smooth point Z

of Z, where T
X,X is the tangent space of X at the point X.

There are classical formulas, sometimes referred to as Newton formulas, which
express the elementary symmetric functions σi(M) uniquely as a polynomial in the
power sum symmetric functions

pi := λi1 + · · ·+ λin = tr(M)i.

To be precise one has the formula (see, e.g., [11])

σi(M) =
1

n!




p1 1 0 . . . 0

p2 p1 2
...

...
. . .

. . .
. . .

...
...

. . . p1 n− 1
pn . . . . . . p2 p1



,
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which induces an isomorphism F
n → F

n, (p1, . . . , pn) �→ (σ1, . . . , σn). Based on this
we can equally well study the map

φ : Z −→ F
n, M �−→ (tr(MZ), . . . , tr((MZ)n)) .(2.3)

We will use the following result from [10].

Proposition 2.2. Let L ⊂ Matn×n be a linear subspace of dimension ≥ n,
L �⊂ sln (i.e., L contains an element with nonzero trace). Define

π(M) = (m11,m22, . . . ,mnn)

the projection onto the diagonal entries. Then there exists a S ∈ Gln such that

π(SLS−1) = F
n.

It is possible to “compactify” the problem. For this, consider the identity

det(λI −MZ) = det

[
I Z
M λI

]
.(2.4)

Denote by Grass (k, n) the Grassmann manifold consisting of all k-dimensional linear
subspaces of F

n. Algebraically, Grass (k, n) has the structure of a smooth projective
variety. In what follows we will identify rowsp[I Z] with a point in the Grassmannian
Grass (n, 2n). By identifying rowsp[I Z] with Z ∈ Matn×n, we can say that Z ⊂
Grass (n, 2n). Let Z̄ be the projective closure of Z in Grass (n, 2n). Every element in
Z̄ can be represented simply by a subspace of the form rowsp[Z1 Z2], where the n×n
matrix Z1 is not necessarily invertible. rowsp[Z1 Z2] describes an element of Z if and
only if Z1 is invertible. For any element rowsp[Z1 Z2] ∈ Z̄, define ψ̄ : Z̄ −→ P

n

ψ̄([Z1 Z2]) = det

[
Z1 Z2

M λI

]
,(2.5)

where a polynomial b0λ
n+b1λ

n−1+· · ·+bn is identified with the point (b0, b1, . . . , bn) ∈
P
n. Recall that the Plücker coordinates of rowsp[Z1 Z2] ∈ Grass (n, 2n) are given

by the full size minors [Z1 Z2], and by considering the Plücker coordinates as the
homogeneous coordinates of points in P

N , N =
(
2n
n

) − 1, one has an embedding
Grass (n, 2n) ⊂ P

N which is called Plücker embedding. Under the Plücker coordinates,
(2.5) becomes

ψ̄([Z1 Z2]) = det

[
Z1 Z2

M λI

]
=

N∑
i=0

zimi(λ),(2.6)

where {zi} are n × n minors of [Z1 Z2] and mi(λ) is the cofactor of the zi in the
determinate of (2.5). ψ̄ is undefined on the elements where

det

[
Z1 Z2

M λI

]
= 0.

So ψ̄ is a rational map.
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3. New results. The next theorem constitutes the main result of this paper.
As stated in the introduction we will identify the set Matn×n with the vector space

F
n2

and we will identify the set of monic polynomials of degree n

λn + b1λ
n−1 + · · ·+ bn

with the vector space F
n. If V is an arbitrary F-vector space, one says that U ⊂ V

forms a generic set if U contains a nonempty Zariski open subset. Over the complex
or real numbers a generic set is necessarily dense with respect to the natural topology.
The dominant morphism theorem, Theorem 2.1, states that the image of an algebraic
morphism forms a generic set as soon as the linearization around a smooth point is
surjective and if the field is algebraically closed.

If Problem 1.1 has a positive answer for a generic set of matrices inside Matn×n

and a generic set of monic polynomials, then we will say that Problem 1.1 is generically
solvable. With this preliminary we have the main result of this paper.
Theorem 3.1. Let Z ⊂Matn×n be an affine variety over an algebraically closed

field F. Then Problem 1.1 is generically solvable if and only if dimZ ≥ n and det(Z)
is not a constant function on Z.

Proof. The conditions are obviously necessary. So we only need to prove the
sufficiency. Assume that dimZ ≥ n and det(Z) is not a constant on Z. Then there
exists a curve Z(t) ⊂ Z such that

d

dt
detZ(t)|t=0 �= 0,

Z(0) = Z0 is a smooth point of Z, and detZ0 �= 0.
Let Z(t) = Z0 + tL+O(t2) where L ∈ T

Z0,Z . Then

detZ(t) = detZ0 det(I + tZ−1
0 L+O(t2)) = detZ0(1 + ttrZ−1

0 L+O(t2))

and

d

dt
detZ(t)|t=0 = detZ0trZ

−1
0 L �= 0,

i.e.,

Z−1
0 T

Z0,Z �⊂ sln.

By Proposition 2.2, there exists an S ∈ Gln such that

π(SZ−1
0 T

Z0,ZS
−1) = F

n.

Let

D :=




1
2

. . .

n


(3.1)

and

M := S−1DSZ−1
0 .
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Then for any curve through Z0

Z(t) = Z0 + tL+O(t2) ⊂ Z, L ∈ T
Z0,Z ,

we have

lim
t→0

tr(MZ(t))i − tr(MZ0)
i

t
= lim

t→0

tr(MZ0 + tML+O(t2))i − tr(MZ0)
i

t

= i · tr((MZ0)
i−1ML)

= i · tr(DiSZ−1
0 LS−1).

Let

V = D




1 1 · · · 1
1 2 · · · 2n−1

...
...

...
1 n · · · nn−1


D.(3.2)

Then V is invertible and the Jacobian dφ
Z0

: T
Z0,Z �→ F

n

dφ
Z0
(L) = (tr(DSZ−1

0 LS−1), 2tr(D2SZ−1
0 LS−1), . . . , ntr(DnSZ−1

0 LS−1))

= π(SZ−1
0 LS−1)V

is onto. By the dominant morphism theorem, Theorem 2.1, φ(Z) contains a nonempty
Zariski open set of F

n, so does ψ(Z).
Since the set of M ’s such that ψ is almost onto is a Zariski open set, and we just

showed that it is nonempty, ψ is almost onto for a generic set of matrices M .
Theorem 3.1 says that if dimZ ≥ n and det(Z) is not a constant function on

Z, then there is a nonempty Zariski open set of n × n matrices such that for any
M in this set, the multiplicative inverse eigenvalue problem is solvable for a Zariski
open set of characteristic polynomials. From the proof of Theorem 3.1 we can get a
description of such a Zariski open set of matrices.
Corollary 3.2. Let Z be an affine variety of dimension at least n such that

det(Z) is not a constant function on Z. Pick a smooth point Z0 ∈ Z such that
detZ0 �= 0, and let E be the nonempty Zariski open set of Gln defined by

E = {R ∈ Gln | π(R−1Z−1
0 T

Z0,ZS) = F
n}.

Then for every M ∈ Gln such that MZ0 has n distinct eigenvalues with the associated
right eigenvectors [α1, . . . , αn] ∈ E, the multiplicative inverse eigenvalue problem is
solvable for a nonempty Zariski open set of characteristic polynomials.

Next we consider the number of solutions of Problem 1.1 when dimZ = n. For
this we introduce an important technical concept.
Definition 3.3. A matrix M is called Z-nondegenerate for the right multiplica-

tive inverse eigenvalue problem if

det

[
Z1 Z2

M λI

]
�= 0(3.3)

for any rowsp[Z1, Z2] ∈ Z̄ ⊂ Grass (n, 2n).
Thus if M is Z-nondegenerate, then the map ψ̄ defined by (2.5) becomes a mor-

phism. In this situation we can say even quite a bit more.
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Theorem 3.4. If M is Z-nondegenerate and dimZ = n, then Problem 1.1 is
solvable for any monic polynomial p(λ) of degree n. Moreover, when counted with
multiplicities, the number of matrices inside Z which results in a characteristic poly-
nomial p(λ) is exactly equal to the degree of the projective variety Z̄ ⊂ Grass (n, 2n)
when viewed under the Plücker embedding Grass (n, 2n) ⊂ P

N .
Proof. We will repeatedly use the projective dimension theorem [9, Charter I,

Theorem 7.2] which says that if X and Y are r-dimensional and s-codimensional
projective varieties, respectively, then dimX ∩ Y ≥ r− s. In particular, X ∩ Y is not
empty if r ≥ s.

Let

K =

{
(z0, . . . , zN ) ∈ P

N |
N∑
i=0

zimi(λ) = 0

}
.

Then K must have codimension n+1 because of the condition K ∩Z = ∅. Therefore
the linear equation

N∑
i=0

zimi(λ) = p(λ)(3.4)

has solutions in P
N for any p(λ) ∈ P

n, and the set of all solutions for each p(λ) is in
the form of zp +K where zp is a particular solution; i.e., the solution set is given by
Kp −K, where Kp is the unique n-codimensional projective subspace through zp and
K. Since K ∩ Z̄ = ∅, we must have

dimKp ∩ Z̄ = 0,

and by Bézout’s theorem [14], there are deg Z̄ many points in Kp ∩ Z̄ counted with
multiplicities. If p(λ) is a monic polynomial of degree n, then from (2.5) one can see
that all the solutions are in Z.

An immediate application of Theorem 3.4 is a result of Friedland [7]: Let Z be
the set of all diagonal matrices. Then closure Z̄ of Z inside the Grassmann variety
Grass (n, 2n) is isomorphic to the product of n projective lines:

P
1 × · · · × P

1.

As shown in [2] the degree of Z̄ is then equal to n!. Moreover all points of Z̄ are of
the form rowsp[Z1 Z2] where Z1 and Z2 are given by

Z1 =



z11 0 · · · 0
0 z12 · · · 0
...

...
. . .

...
0 0 · · · z1n


 , Z2 =



z21 0 · · · 0
0 z22 · · · 0
...

...
. . .

...
0 0 · · · z2n


 .

In these matrices, (z1i, z2i) represent the homogeneous coordinates of the ith projec-
tive line P

1.
In order to apply Theorem 3.4 we have to find the algebraic conditions which

guarantee that a particular matrix M is Z-nondegenerate, i.e., condition (3.3) has to
be satisfied for every element [Z1 Z2] ∈ Z̄. For this let I be a subset of {1, 2, . . . , n},
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J be the complement of I, and |J | be the number of elements in J . For any point
[Z1 Z2] ∈ Z̄, assume

z1i = 0 for i ∈ I,
z1j �= 0 for j ∈ J.

Without loss of generality we can take

z2i = 1 for i ∈ I,
z1j = 1 for j ∈ J,

and (2.5) becomes

ψ̄([Z1 Z2]) = ±M
I
λ|J| + lower power terms,

where M
I
is the principal minor of M consisting of the ith rows and columns, i ∈ I.

Furthermore if we take

z2j = 0 for j ∈ J,
then

ψ̄([Z1 Z2]) = ±M
I
λ|J|.

Therefore M is Z-nondegenerate if and only if all the principal minors of M are
nonzero. Thus we have Friedland’s result [7, Theorem 2.3] formulated for an alge-
braically closed field: If all the principal minors ofM are nonzero, then the multiplica-
tive inverse eigenvalue problem with perturbation from the set of diagonal matrices is
solvable for any monic polynomial p(λ) of degree n, and there are n! solutions, when
counted with multiplicities.
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