SIAM J. CONTROL AND OPTIMIZATION © 1992 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 203-211, January 1992 013

NEW RESULTS IN POLE ASSIGNMENT BY REAL OUTPUT
FEEDBACK*

JOACHIM ROSENTHAL'

Abstract. This paper considers the problem of tuning natural frequencies of a linear system by
a memoryless controller. Using algebro-geometric methods it is shown how it is possible to improve
current sufficiency conditions.

The main result is an exact combinatorial characterization of the nilpotency index of the mod 2
cohomology ring of the real Grassmannian. Using this characterization, new sufficiency results for
generic pole assignment for the linear system with m-inputs, p-outputs, and McMillan degree n are
given. Among other results it is shown that

2.25 - max(m, p) + min(m,p) —3 > n

is a sufficient condition for generic real pole placement, provided min(m,p) > 4.
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1. Introduction. Consider a linear time invariant system ¥ with m-inputs, p-
outputs and McMillan degree n. In the time domain ¥ can be modelled by the
following system of differential equations:

(1.1) I {Z

Az + Bu
Czx re€R™ yeRP,ue R™.

The problem of output pole assignment with a static compensator is the problem
of finding a feedback law u = Fy in such a way that the closed loop system

(A+ BFC)x
Czx

(1.2) e {Z

is assigned a desired set of eigenvalues. The stability of equilibria or periodic motions
of theclosed loop system depends on the eigenvalues of the matrix A+ BFC. In par-
ticular the closed loop system is asymptotically stable, if the eigenvalues of A + BFC
have negative real parts. In this paper we are interested in under which conditions
it is possible to assign a set of real eigenvalues, in particular when it is possible to
stabilize a generic system. Because the eigenvalues correspond to the poles of the
transfer function under Laplace transform one often refers to this type of problem as
the pole placement problem. This question has already been considered by many au-
thors (e.g. [1], [2], [10], [16], [20], [21]), and interesting links to topological questions
and Schubert calculus were made. An excellent survey article can be found in [3],
where a larger bibliography is also given.

Kimura [10], motivated by the problem of stabilizing and controlling a mechan-
ical system, studied this inverse eigenvalue problem in a systematic way. Typically
such systems have m—inputs m—outputs and the dimension of the state is 2m. More
generally, one would hope that m + p > n would imply pole assignability, and hence
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stabilizability for the generic p x m n—dimensional system. In 1975, Kimura proved
a result, which came “within one degree of freedom” of the desired result.

THEOREM 1.1 (KIMURA [10]). If (A, B) is controllable and (A, C) is observable
and if m+p —1 > n, an almost arbitrary set of distinct real or complex conjugate
poles is assignable by real gain output feedback.

In 1978, Willems and Hesselink [21] showed that in the case of m = p = 2, at most
3 real poles can be assigned arbitrarily for the generic system, so that Theorem 1.1
also gives a necessary condition for this case.

Quite surprisingly, as shown in this paper, the case studied by Willems and Hes-
selink is the only nontrivial case (min(m,p) > 2) where m + p > n is not a sufficient
condition. This result will follow from a new combinatorial criterion, which will be
formulated in the next section. In fact more will be shown. Using an identification of
the mod 2 cohomology ring of the real Grassmannian with a quotient of the space of
symmetric functions it will be possible to characterize the maximum number of non-
trivial terms in a nonzero product of H*(Grass(p,m + p), Z2), sometimes called the
cup length of this ring, in a combinatorial way. In the next section the combinatorial
criterion is formulated and the main results stated.

2. A new combinatorial criterion. Consider a m x p array A, where m can
be seen as the number of inputs and p as the number of outputs. Let u = (1, -, us)
be a partition of mp. This means p3 > pg > -+ > ps > 0 and Y u; = mp. Denote
with K, the number of possibilities to insert y; integers ¢ into the array A under the
condition that the rows are increasing and the columns are strictly increasing.

DEFINITION 2.1. ¢(m,p) := max{s | K, .. u,) 15 odd}.

THEOREM 2.2. The cup length of the mod 2 cohomology ring of the real Grass-
mannian Grass(p,m + p) is ¢(m,p).

This cup length has an important topological meaning. As was shown by Eilen-
berg [4], this number gives a lower estimate for the Ljusternik Snirelmann category
of a topological space.

In the innovative paper [1], Brockett and Byrnes explained the pole placement
problem with static compensators as an intersection problem in some Grassmann
variety. Moreover Byrnes [2] showed that the Ljusternik Snirelmann category of the
real Grassmannian gives a lower bound for the number of real poles which can be
generically assigned. Using Theorem 2.2 therefore, one has immediately the following
result.

THEOREM 2.3. c¢(m,p) > n is a sufficient condition for generic pole placement of
a generic, strictly proper linear system X, with m inputs and p outputs and McMillan
degree n.

Clearly not every m X p system ¥ of order n can be pole assigned by output
feedback; in particular one needs controllability and observability of the system. The
results we present in this paper are stated for a generic system (see, e.g., [21]). Recall
that a subset of a variety is called generic if it contains a nonempty Zariski open
subset. Before giving the proof of Theorem 2.3, it will be illustrated how it is possible
to obtain new sufficiency conditions for generic real pole placement. The following
examples were given in [15].

3. Examples and corollaries.

Ezample 3.1. Two inputs, two outputs or m = p = 2. To apply Theorem 2.3,
compute K, for different partitions of 4:
K1,1,1,1) = 2 (— even) given by the two possibilities:
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K(3,1,1) = 1 (— odd) given by the only possibility:

—
—i|

Because K311 is odd, ¢(2,2) = 3, consistent with the result of Kimura [10] and
Willems and Hesselink [21].

Ezxample 3.2. Two inputs, three outputs, or m = 2 and p = 3. In this case, one
immediately computes K6y = 5 (— odd) given by the possibilities:

171273 1724 172]5 173
415]6 3[51]6 314716 210516

[
N
Y Ot

In other words ¢(2,3)=6 and up to 6 poles can be placed generically. This result is
somewhat surprising, although it was already established in the paper of Brockett
and Byrnes [1].

Ezample 3.3. The following table shows c(m,p) for max(m,p) < 5.

m\p|1l 2 3 4 5

T T 2 3 1 5

2 |2 3 6 7 8

(3.1) 313 6 8 9 11
1|17 9 10 17

5 |5 8 11 17 19

LEMMA 3.4. m+p—12>n is a sufficient condition for generic real pole assign-
ment.

Proof: Consider the partition y = (p™~1,1P). As one immediately verifies, K, =
1 corresponding to the only possibility:

1 1 1

2 2 2
m;l m—1 ... ... m;—l

m m+1 ... ... m+p-—1

THEOREM 3.5. The following conditions imply generic real pole assignability.
(By duality assume m<p) :
(3.2) m=2 and 15p>n
(3.3) m=3 and 2p+12>n
(3.4) m>4 and 2.25p+m—3>n.
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The proof of this theorem and Theorem 2.3 is based on an interesting identification
of the mod 2 cohomology ring of the real Grassmannian and the space of symmetric
functions Z5[z1, - - - ,:c,,]sf' . A good description of the topology of the real Grassmann
manifold can be found for example in [14]. The important properties about the
ring structure of H*(Grass(p,m + p), Z2) are given in the next section. Several
properties about the ring of symmetric functions Z;[z1, - - - ,xp]SP are summarized in
an Appendix, where further references are given.

4. The cohomology ring of the real Grassmannian. The collection of m-
planes in R™*? is called the Grassmann manifold and will be denoted by Grass(p, m+
p). The Grassmannian Grass(p,m + p) is a smooth, compact manifold of dimension
mp. Additively, the cohomology ring H*(Grass(p, m + p), Z2) can be described as a
free Z;—module over the set of Schubert cocycles [a1,---,ap] where m > a; > -+ >
ap > 0. This notation coincides with the notation adopted in Griffith and Harris [6]
and is “reverse” to the notation used by Hiller [7], [8].

Denote with &, m+p the canonical p-bundle over Grass(p, m+p). The total space
of & m+p is defined by

(4.1) E(&pm+p) = {(V,z)€ Grass(p,m +p) x R™*? |z eV}

and the corresponding bundle map is a projection on the first factor. The orthogonal
bundle of &, m4p is an m-plane bundle and will be denoted with f_p,p_,.m. Finally
denote with wy the kth Stiefel Whitney class of 4+ and with o; the jth Stiefel
Whitney class of Ep,erm. In terms of Schubert cocycles those Stiefel Whitney classes
are described by

(42) Wk = 1’]-’"'71707"'70]7 kzlaap

(43) g; = [jaoa"'a"'ao]v j=1--,m.

The multiplicative structure of H*(Grass(p,n), Z3) is described by the classical
formulas of Pieri and Giambelli. Giambelli’s formula expresses a general Schubert
cocycle as a polynomial in the special Schubert cocycle o; and Pieri’s formula explains
how a Schubert cocycle is multiplied with a special Schubert cocycle.

Pieri’s formula:

(4.4) [alv""ap]'o'j: Z [b17"‘>bp]

aj_12b;>a

f:l bi=(Zf=1 @i)+j
Giambelli’s formula:
Oa, Oay+1  -++ Oagj+4p—1

(4.5) lag,---, ap] = det(Uai+j—i) = det Ga?—l Oa,

O'ap_p.J,.l e Oq,

From Giambelli’s formula it follows in particular that the Stiefel Whitney classes of the
orthogonal bundle &, . generate H*(Grass(p,m + p), Z2). As shown by Hiller [8,
p. 530] the same is true for the Stiefel Whitney classes of the canonical bundle &, p 4.
In fact we will show that a general Schubert cocycle can be expressed in terms of the
Stiefel-Whitney classes {wy, -+, wp} using a well-known classical formula.
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In order to achieve our results the relation between the cohomology ring of the
real Grassmannian and the space of symmetric functions will be studied. It will be
shown that the cohomology ring H*(Grass(p, m + p), Z2) is isomorphic to a quotient
of the space of symmettic functions Z3[zy,---,z,]5 . Using this identification it is
possible to characterize the cup-length of H*(Grass(p, m + p), Z2) in a combinatorial
way.

In the case of a complex Grassmannian a connection between the space of sym-
metric functions Z[z1,--+,z,]% and the cohomology ring H*(Grass(p,m + p), Z)is
well known. According to Stanley [17], Lesieur [12] was the first who recognized a
formal similarity between (4.5) and the classical identity of Jacobi and Trudi (see the
Appendix). Horrocks [9] showed that this relationship is more than formal and can
be explained geometrically.

In this section we work out a similar relationship for the real Grassmannian. From
a geometric point of view, this relation can be understood in the following way.

Consider the space Flag(R™*?) of mutually orthogonal and ordered (m-+p)-
tuples of lines (I1,--+,lm+p). Over Flag(R™*P) are line bundles & with total space
E(&;), where

(4.6) E(&) = {((l ", lmtp)iy) € Flag(R™P) x R™P | y € I;}.
One has a projection

(4.7) 7 : Flag(R™*?) — Grass(p,m +p)

(lla"'alm+p) L Spa'n(lla"'alp)
This projection induces an embedding (compare Hiller [8] or Stong [19])

(4.8) * : H*(Grass(p,m + p), 22) — H*(Flag(R™P))

= Z2[$17"'axm+p]/lmpa
where I, is the ideal generated by the relations

m-+p

(4.9) H(1+:1;i) = 1,

1=1

expressing the triviality of the bundle

§1®"'®£m+p-

The projection 7 can be covered by a bundle map. Indeed, consider the p—bundle
& %+ -x&p over Flag(R™*P). It is immediate that 7* (w(&pm+p)) = w(&1 X+ x&p) =
le(l + z;). Under n*, the kth Stiefel Whitney class wy of the canonical p-bundle
&pp+m of Grass(p,p + m) is therefore mapped onto the kth elementary symmetric
function e, = Yy, -+ - zi, of Zo[xy, -, zp).
Because the Schubert cocycles {w.,---,wp,} generate H*(Grass(p,m + p)2Z;) as
a ring, H*(Grass(p,m + p), Z3) can be embedded into Za[z1, -+, xp]5 /Inp, where
Imp = Imp () Z2[x1, -+, 2] Because the elementary symmetric functions generate
2Zo[z1,- -+, xp)5 , this last embedding is even an isomorphism.
In the following we will represent the ideal fmp as the kernel of a ring homomor-
phism. For this denote with hj the kth complete homogenous symmetric function in
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p variables (see the Appendix for details). The set B := {hy,---,hp} is algebraically
independent and forms a multiplicative basis of Zz[z1, - - -, 2,5 (compare [13]). Any
map defined on B extends therefore in a unique way to a ring homomorphism. Con-
sider now the following ring homomorphism:

(410) 1/’ :ZZ[xla'”,xp]Sp - H*(Grass(p’m"'p)aZZ)

h]' — O'j.

Here we assume that the jth Stiefel Whitney class o; of the orthogonal bundle Ep,p+m
is zero for j > m. Using the equivalence of (4.5) and the Jacobi-Trudi identity (6.10),
it is immediate that a general Schur function sy is mapped onto the Schubert cocycle
[A1,-++, Ap]. From Theorem 6.3 it follows that the kth elementary symmetric function
ex is equal to the Schur function s(;x g.... o), and this element is mapped onto the
Stiefel Whitney class wg. Again from (4.5) it follows that the kernel of the map ¢ has
an additive basis of Schur functions sy with A; > m. Finally the Nagelbasch-Kostka
identity (6.11) gives a formula expressing a general Schubert cocycle as a polynomial
in the Stiefel Whitney classes {wy,- -, wp}.

5. Proof of the theorems. In the following denote by c¢ the cup length of
H*(Grass(p, m+p), Z5) and assume that g = g;--- -- g. is a maximal nonzero product.
Our first goal will be to show that g € H™P, in other words, g = [m?]. If not, expand
g in terms of Schubert cocycles g = 3, ;[A]* and define d := max{b |b=m—Ap},,.
From (4.4) it follows that g - o4 # 0 contradicting the maximality of the length of the
product. It is therefore immediate that d = 0 and g = [m?].

Using the Nagelbasch-Kostka identity (6.11) one can express each factor g; as a

polynomial in the classes {w1, -+, wp}. In this way, g becomes a polynomial g =
v(wy,- -, wp). Because H™P is one-dimensional, v is just a monom, in other words
g = Wy = Wy, - wy,. During the substitution process, the number of factors can

only increase, in other words k£ > ¢. On the other hand ¢ is equal to the cup length,
which shows k = c.

In Z5[zq, - ,xp]sp, this product corresponds to a product of elementary symmet-
ric functions e, = ey, - --- - e,.. To say w, is nonzero is therefore equivalent to the
condition that e, & ker(¢). Using Theorem 6.3, one can expand e, in terms of Schur
functions:

(5.1) ey = Z K3, 8x
[Al=mp

Because |A| = |u| = mp, there is exactly one Schur function sy not lying in the ideal
Inp = ker(¢), namely, sy = $(mr).

In summary, w,, is nonzero if and only if the Kostka number K (,m), is odd. But
this number is equal to the number K, introduced in §2. This proves Theorem 2.2
and therefore also Theorem 2.3. 0

In fact, one can show a little more. Using (4.5) and the same argument as above
one finds a description of g in terms of the special Schubert cocycle o, i.e., g = 0, =

Oy v ove e oy, In Zo[xy,- - ,x,,]sp. This product can be written as:
(5.2) hy=hy -ohy, = Y Kxsa.
[A|=mp

To say that o, is nonzero is therefore equivalent to the condition that the Kostka
number K (), is odd. In this way we have proved Lemma 5.1.
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LEMMA 5.1. ¢(m,p) = c(p, m).

The proof of Theorem 3.5 is partially based on results obtained by Stong [19]. In
this paper Stong calculates explicitly maximal nonzero cup products w, = wy, - -
wy,,. In this way he calculates the numbers ¢(m,p) for m = 2,3, 4.

Putting his results in a little more convenient form one obtains

(5.3) c(2,p) = ka(p)-p where 1.5 <ky(p) < 2,
(5.4) c(3,p) = ks(p)-p+1 where 2 <kz(p) < 2.5,
(5.5) c(4,p) = ka(p)-p+1 where 2.25 < ky4(p) < 3.

To get a lower bound for ¢(m,p) in general (m > 4), Theorem 2.2 will be used.
Consider a partition g of the number 4p of length ¢(4,p) in such a way that the
Kostka number K,1)(,) is odd. But then it is immediate that the Kostka number
K(pm)(pm-1 4 is odd as well. In this way one sees that c(m, p) > c(4,p) +m —4, which
completes the proof of Theorem 3.5. O

6. Appendix: Symmetric functions. Let u = (u1,- -, ps) be a partition of
n of length s. This means py > pg > -+ > ps > 0 and > pu; = n. If the integer p; is
repeated r; times in the partition y, the abbreviated notation u = (ui,---, pi*) will
be used.

A partition p defines a diagram D,,, which can be considered as a left-justified
array of boxes with u; boxes in the ith row.

Ezample 6.1. Two partitions with corresponding diagrams are illustrated:

p=(3,2) « /j,=(3,12) —

The number |p| = Y p; is sometimes called the weight of the partition p and the
numbers p; are called the parts of the partition. The dual partition @ = (&y, - - -, )
of a partition p of n is obtained by taking the “transpose” of D,. In other words 7;
is defined as the number of boxes in the column 7 of D,. Assume in addition that
there is given a set S C .

DEFINITION 6.2. A standard Young tableau of shape p is a diagram D,,, where
each box in D, contains a number from S under the constraint that the rows are
increasing and the columns are strictly increasing.

Consider now R = Z5[zy, -+, 7,|5 , the ring of symmetric functions in p variables.
R is in a natural way a graded ring:

(6.1) R=A+A1+-+An+---, AiA; C Agyj.

The homogenous component A,, can be described by different classical bases, where
each basis is usually parametrized by the set of all partitions p with weight n. In
particular the dimension of A, is equal to p(n), the partition number of n.

Products of elementary symmetric functions:

(6.2) eu = 6“1 ..... e/.l,s7

where e, = Y @y - - z;, is the kth elementary symmetric function.
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Monomial symmetric functions:

(6.3) my = Zx’fl ----- zhr,

where the summation has to be taken over all distinct monomials with exponents
M1y ...y Up.

Complete homogenous symmetric functions:

(64) h,ﬂ = h’lll ..... thV

where hy = ZI M=k A is the kth complete symmetric function.

Schur functions: Classically, Schur functions were introduced by Jacobi (~1835) as
the quotient of two alternating functions giving a symmetric function:

det[z2P]
(65) slt det[xf_J] ) 1,] ]-7 Iy 2
The denominator of this expression is nothing else than the Vandermonde determinant
and the numerator is a generalization of this type of determinant. The importance of
those functions became apparent when Schur, a student of Frobenius, developed the
character theory of the symmetric group (~1900).

The change of basis between the different bases of A, is described by a linear
transformation. In 1907, Kostka [11] published matrices describing the change of
basis and showed that the different transformations are closely related. The following
theorem, which is due to Kostka, is proven in [18].

THEOREM 6.3.

(6.6) hy = Y Kausa,
|A|=n

(6.7) Sy = ZKM,\m,\7
IAl=n

(6.8) ew = Y Kysa.
|A]=n

The coefficients {K,} are called the Kostka coefficients. The number Ky, can
be described in a combinatorial way as the number of standard Young tableaux with
shape A and content u. This means the number of ways of filling in p; integers ¢ into
the diagram D) under the condition that the rows are increasing and the columns are
strictly increasing (see [18]).

Only in very special cases are formulas for the numbers K, known. For example
if 4 =(1,1,---,1), the number K, can be described by the famous hook formula
of Frame, Robinson, and Thrall [5]. If in addition A = (p™), the number K, is
described by the following formula:

1Meeen —1)!- (mp)!

Finally, the following two classical formulas give a polynomial expression of a
Schur function in terms of complete symmetric respective elementary symmetric func-
tions.
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Jacobi-Trudi identity:
(6.10) sy = det(hx,+5-i), ,j=1,---,p.
Nagelbasch—Kostka identity:
(6.11) sx = det(ex,+5-i), 1,5 =1,--+, 1.

More details about these identities are given in [13, p. 25] and in [18].
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