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ON DYNAMIC FEEDBACK COMPENSATION AND
COMPACTIFICATION OF SYSTEMS*
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Abstract. This paper introduces a compactification of the space of proper p x m transfer
functions with a fixed McMillan degree n. Algebraically, this compactification has the structure
of a projective variety and each point of this variety can be given an interpretation as a certain
autoregressive system in the sense of Willems. It is shown that the pole placement map with dynamic
compensators turns out to be a central projection from this compactification to the space of closed-
loop polynomials. Using this geometric point of view, necessary and sufficient conditions are given
when a strictly proper or proper system can be generically pole assigned by a complex dynamic
compensator of McMillan degree q.
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1. Introduction. In this paper we investigate the pole placement problem with
dynamic compensators from a geometric point of view. For this consider a multivari-
able, time invariant linear system Fn of order n with m-inputs and p-outputs. Such
a system can be represented with its state space representation

(1.1) Fn Ax + Bu, y Cx.

From an engineering point of view, an input-output description is natural. Mathe-
matically, this can be achieved by taking the Laplace transform. The system En is
then described .in the frequency domain by the following equation:

(1.2) ) C(sI- A)-IB .
The strictly proper rational matrix G(s) :- C(sI- A)-IB is called the transfer
function associated to the system F. It is well known that the dynamics of the
system depends in an essential way on the location of the poles of the transfer
function G(s), which are exactly the eigenvalues of the matrix A. A fundamental
open problem in multivariable linear system theory is the following question: Un-
der which conditions can a p-input, m-output system F(s) of McMillan degree q be
constructed that stabilizes the closed-loop system GF(8) :-- (I- G(s)F(s))-G(s)?
More generally, we can ask the following question: Given an arbitrary polynomial
(8) 8n-bq -[- )n_bq_l 8n-bq-1 "-[’-’’"-’[-" 0, under which conditions is it always possible
to find a compensator of order q such that the poles of the closed-loop system Gf(s)
are exactly the roots of the polynomial (s)? Willems and Hesselink [37] called a
system G(s) with this property pole assignable in the class of feedback controllers of
order q. Using a dimension argument they showed that

q(m + p) + mp >_ n + q
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is a necessary condition for any system G(s) to have the pole assignability property in
the class of feedback controllers of order q. In this paper we will show the new result
that this numerical condition is not only necessary but also sufficient for a generic
system G(s) if the base field is algebraically closed. To establish this result, we will
study for a generic system G(s) the associated pole placement map pG. The domain
of pG is the space of proper transfer functions of McMillan degree q and the range of
pv is the space of monic polynomials of degree n -t- q. In this language the system
G(s) has the pole assignability property in the class of feedback controllers of order q
if and only if pG is onto.

The question of pole assignability is fairly well understood if we restrict ourselves
to the class of static compensators, in other words, compensators with McMillan
degree q 0, and if we assume that the base field is algebraically closed. In this case
we know that mp >_ n is a necessary and sufficient condition for the pole placement
map pv to be onto generically. Indeed, Hermann and Martin [13] first showed that
pG is almost onto using the dominant morphism theorem. Brockett and Byrnes [2]
later showed that pG is even onto and the mapping degree of pv in the case mp-- n
is equal to the degree of the Grassmann variety Grass(p, p / m).

The pole placement problem with dynamic compensators (q > 0) is much less
understood. The following result of Brash and Pearson [1], published 1970, is still one
of the strongest results available. For the generic situation their result can be quoted
in the following manner. (See, e.g., [3].)

THEOREM 1.1 (Brash and Pearson [1]). The generic degree n linear system
with m-inputs and p-outputs can be arbitrarily pole assigned (over any field) using a
compensator of order q, where q is any natural number satisfying

(1.4) max(m,p)(q + 1) >_ n.

It is interesting to see that the necessary condition q(m + p) + mp >_ n -t- q
of Willems and Hesselink [37] is also sufficient as soon as min(m, p) 1. In 4 we
will explain that this is essentially due to the fact that the space of proper transfer
functions with fixed McMillan degree is a Zariski open subset of a projective space
if min(m, p) 1 and p is a linear map from this projective space to the space of
closed-loop polynomials identified with a projective space as well. If min(m, p) > 1,
however, this is not the case and pG is a rather complicated morphism.

An important contribution to understanding the pole placement problem in gen-
eral was done by Byrnes [4]. In this paper Byrnes introduced a compactification for
the quasi-projective variety of proper transfer functions of degree q, which he denoted
by Cqm,p. He then explained the pole placement problem as an intersection problem
in Cqm,p. Using this point of view he achieved new results for pole assignment with
compensators of degree q 1 not achieved by any other means. Our approach is
guided in part by the philosophy of this paper and that is one of the reasons why we
have chosen a similar title.

A great deal of research was devoted to the question of understanding the pole
placement problem with static compensators over the reals. In 1975 Kimura [16]
proved the result that m + p- 1 >_ n is a sufficient condition for the pole placement
map p( to be generically onto. Since that time, several authors have improved his
results and methods in different directions. Using a geometric approach Wang [35]
very recently achieved the strong result that the pole placement map p( is generically
onto over the reals as soon as mp- 1 >_ n. A crucial part in Wang’s proof is the fact
that the pole placement map pG is a central projection when q 0. As we will show
in this paper, the same is true in general.
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The paper is structured as follows. After explaining some mathematical prelim-
inaries in 2, we will introduce a projective variety in 3 that can be viewed as a
compactification of the space of proper p x m transfer functions of McMillan degree n
that we denote with Kp,m This compactification was originally introduced by Rosen-
thal in [27] and used in [28] to achieve new results for certain low-dimensional feedback
problems In Theorem 3.6 we will describe the defining equations of the variety K’p,m
and in Theorem 3.10 we give an interpretation in terms of certain autoregressive
systems.

In 4 the pole placement problem is formulated in a geometric language. To
deal with compensators that are not admissible, the notion of q-degeneracy, a gen-
eralization of the concept of degeneracy [2], is introduced. We will show that for
a q-nondegenerate plant, the pole placement map can be extended in a continuous
manner to the whole compactification.

The main results of the paper are given in 5. It is first shown that the q-
degenerate systems form an algebraic subset in the quasi-projective variety of transfer
functions. Then necessary and sufficient conditions are given when the q-nondegenerate
systems are generic. We will show that the pole placement map is a central projec-
tion. Using this fact we are able to formulate conditions when the pole placement
map for a q-nondegenerate strictly proper (or proper) system is onto (almost onto).
These results constitute a generalization of the results of Hermann and Martin [13]
and Brockett and Byrnes [2] from the problem of static to the problem of dynamic
feedback compensation.

Finally some words about the base field. Most constructions we do in 3 and 4
can be done over an arbitrary field IK. For most applications, of course, the relevant
base fields are the real or complex numbers, i.e., lK ]R or ]K . The results in

5 will use the projective dimension theorem (see, e.g., [9]) and this theorem is only
valid if the field is algebraically closed.

2. Preliminaries. Let lK be an arbitrary field. With l we will denote the
algebraic closure of lK. If V is a lK-vector space, we will denote with lP(V) the set of
one-dimensional subspaces of V. lP(V) is called the projective space associated to V.
A topology defined on V induces a topology on IP(V), namely, the quotient topology
of the canonical projection pr" V-{0} --+ lP(V). As it is well known, lP(@n+l) and
IP(IR’+1) are compact manifolds with the induced topology coming from the natural
topology on ,+1 or lRn+. If V lK+ we sometimes use the notation lPg or
simply lP.

We will identify lKn as a subset of ]P’ using the inclusion:

In particular lK is identified with { (x, 1) x e ]K} c ]PK- We will call the point (1, 0),
which is the only point in the difference set ]PK- i(lK), the point at infinity and lPK
the projective line over IK.

Consider now the polynomial ring ]K[s] in one indeterminate. Assume the set of
polynomials (f(s),..., fn+(s)} C ]K[s] has no common zeroes. Then the map

(2.2) /" ]K --+ ]PK, 8 t-----+ (fl (8),..., fn-{-1 (8))

is well defined and called a rational map. The degree of f is defined by the highest
degree of the polynomials f(s). Assume f has degree d. The homogenization of f(s)
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is defined by

8

Note that ] extends the rational map f to the whole projective line lPK. Moreover,
if ]K is algebraically closed, the image Im(]) defines a rational curve in lPK in the
sense of algebraic geometry. Note that over the complex numbers the holomorphic
maps from the Riemann sphere ]P to the complex projective space ]P are exactly
the rational maps corresponding to our definition.

The degree d of the rational map f has the following geometric interpretation:
Intersect the curve Im(]) with a generic linear hyperplane H in ]PK, which can
be described by a homogeneous linear equation of the form cixi 0. By the
fundamental theorem of algebra, H intersects Im(]) over the algebraic closure ] in
exactly d points when counted with multiplicities. In short, the variety Im(]) has
degree d.

Denote with Ratd(lP1, lPn) the set of all rational maps of degree d. Ratd(lP1, ]pn)
can be exhibited as a Zariski open set in ]P(lKd+l (R) ]Kn+l). For this consider a
particular embedding

The complement of the image of Ratd(]p1, lP’) under T in lP(lKd+ (R) ]K’+1) is an
algebraic set already described around the turn of the century by Macaulay [21]. If
n 1 this algebraic set is a hypersurface described by the well-known resultant locus
of two polynomials:

(2.5) det ReS(fl, f2) 0.

A natural generalization of the projective space is the Grassmann variety. Con-
sider again a lK-vector space V. The set of p-dimensional subspaces in V is called
the Grassmann variety which we will denote by Grass(p, V). If V lKn we will just
write Grass(p, n). In particular, we have Grass(l, n)-- lPn-.

The set Grass(p, n) indeed has the structure of a projective variety. For this
consider the Pliicker embedding of the Grassmann variety Grass(p, n), which is
defined in the following way:

(2.6) Grass(p, n) --- ]P(AP]Kn),
span(v,...,Vp) vl A... A Vp.

It is easy to verify that is an embedding. Moreover, Im() is irreducible and
described by a famous set of quadratic relations sometimes called "shuffle relations."
(See, e.g., the survey article [17] or [25] for a characteristic free approach.) Finally we
say a map h ]K -- Grass(p, n) is a rational map if f :- o h is rational according
to the definition above.

The set of all rational maps of degree d from the projective line ]PK to the
Grassmann variety Grass(p, n) will be denoted by aatd(]P, Grass(p, n)).
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3. A compactification of the space of proper transfer functions. In the
following denote with Spn,m the space of proper p m transfer functions of McMillan
degree n. Algebraically, the set Spasm has the structure of a quasi-projective variety of
dimension n(m + p) + rap. This follows directly from the fact that the space Ratn,m,p
of strictly proper transfer functions is quasi-projective (even quasi-affine) [10], has

ndimension n(m + p), and Sp,m Ratn,m,p ]Krap. Analytically, i.e., over the com-
plex numbers, it is well known that Spn,m and Ratn,m,p are both connected com-
plex manifolds. Many authors already studied topological properties of the spaces
Sp,m, Ratn,m,p, and very recently Mann and Milgram [22] introduced a new stratifi-
cation of Ratn,m,p enabling them to calculate the additive structure of the homology
ring H. (Ratn,m,p).

If we consider feedback problems with high gain compensators or if we want
to understand partial system failures, it is of ample importance to understand the
boundary structure of the space Sp,m Motivated by those problems, several authors
(e.g. [4], [8], [11], [12], [20], [26], [29])considered the problem of compactifying the
space Sp,,. In this section we will describe a compactification of the space Sp,m, which
turns out to be suitable for the study of dynamic feedback compensation. The basic
idea is to embed Spnm into a projective space. The closure of the image with respect to
the Zariski topology serves as a compactification. Our approach is geometric, indeed,
we will view each transfer function G(s) e Sp,m as a rational curve of degree n into
a Grassmann variety. In other words we will identify each G(s) with its Hermann-
Martin curve [23]. Because this curve is of crucial importance for all that follows
and because we want to develop our theory over an arbitrary field lK, we explain this
concept in more detail.

Consider a left coprime factorization D;l(s)NL(S) G(s), where DL (s) and

NL (s) are polynomial matrices. The following results are well known and proofs
can be found, for example, in [5]. From coprimeness it follows that the p (m + p)
polynomial matrix N (s) DL (8)) is of full rank for all s e l. If [9-l(s)l (s) G(s)
is a second coprime factorization, then there is a p p unimodular matrix U(s),
i.e., V(s) e Glp(lK[s]), with (/rL (s)/L (S)) V(s) NL (8) DL (8)); in other words,

L (S) /L (S)) is row equivalent to NL (s) DL (s)). From these remarks it now follows
that every element s E]K is assigned a p-dimensional subspace in ]Km-t-p, namely, the
rowspace of NL (s) D (s)). Identifying each subspace with a point of the Grassmann
variety Grass(p, m+p) we get a well-defined map h that is independent of the selected
coprime factorization and just depends on the transfer function G(s)"

(3.1) h IK ---. Grass(p, m + p), s rowsp( NL (s) D (s)).

DEFINITION 3.1. The map h is called the Hermann-Martin map associated to
the transfer function G(s).

We wili show that h is a rational map and Im(h) describes a rational curve in the
sense of algebraic geometry. It is not hard to see that two different transfer functions
G(s) and G(s) give rise to two different maps. In this way, the space Spnm is embedded
into the space of rational maps into the Grassmannian Grass(p, m + p). As pointed
out by Martin and Hermann [23], it is possible to extend h to "infinity" if we consider
a strictly proper transfer function G(s) and if we work over the complex numbers.
In the case of an arbitrary field lK, we can do something similar. Moreover, we do
not have to restrict our considerations to strictly proper transfer functions. We will
contemplate the following general setting.

Denote with Pp,m the space of all p (m + p) full rank polynomial matrices
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P(s). We say two elements P(s),/5(s) in Pp,m are (row) equivalent if there is a p p
unimodular matrix U(s) E Glp(lK[s]) with the property that P(s) U(s)P(s). Every
p x (m+p) polynomial matrix defines a system of autoregressive equations of the form

(3.2) (P(s)). () (s) O.

If u(s) and y(s) are solutions from the space of rational functions, it is clear that
equivalent systems have the same solution set. Using the language of Willems [38],
[39] (compare also with [18], [30]) we call an equivalence class in Pp,, an autoregres-
sive system and the solution set the behavior of the system. Not all autoregressive
systems actually describe a left factorization of a transfer function because the last
minor of P(s) is not necessarily invertible. However, if the polynomial matrix P(s)
can be partitioned into (P1 (8) P2(8)) with P2(8) e GIp(]K(8)) (this is the generic situ-

ation), P(s) defines a proper or improper transfer function G(s):= Pl(s)Pl(s) and
equivalent systems define the same transfer function.

As shown by Kuijper and Schumacher [18], [19] it is always possible to realize an

autoregressive system by a not necessarily regular descriptor system of the form

(3.3) E& Ax + Bu, y Cx + Du.

An autoregressive system P(s) is called irreducible or controllable if P(s) has full
rank for all s e lK. (Compare with [7], [14], [30], [39].) Every irreducible autoregressive
system P(s) Pp,m gives rise to a rational map

(3.4) h" lK -- Grass(p, m / p); s rowspP(s)

and this map depends only on the equivalence class in Pp,,. (Compare with [7].) In
the following we extend h to the whole projective line ]PK; in other words, we extend
h to "infinity."

Without loss of generality we assume P(s) is row reduced (see, e.g., [15]). Denote
with hi(s) the ith row of P(s) and with i the degree of the polynomial vector hi(s),
i.e., the highest degree of all polynomial entries. Consider the homogenization

Denote with P(s,t) the matrix constructed from the rows (s,t). In this way we

receive an extended Hermann-Martin map :
(3.6) h P Grs(p, m + p), (s, t) rowspP(s, t).

The map h is in fact rational. For this consider the Plficker embedding of the
Grsmann variety Grs(p, m + p) defined in (2.6). The combined map f o h
is given by (s, t) := hi(s, t) A... A hv(s, t). Because the entries of ](s, t) are the

principal minors of (s,t), it is immediate that (s,t) is homogeneous in (s,t) of
degree n i. In other words,

(3.7)

defines a rational map. Finally note that (s,t) is exactly the homogenization of
:=
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Note that the McMillan degree of a proper or even improper transfer function
G(s) represented by a coprime factorization D[I(s)NL(s) G(s) is equal to the
highest degree of the principal minors of the matrix NL (s) D. (s)) (see, e.g., [7],
[14]). Based on this fact we define the McMillan degree of an autoregressive system
in the following way.

DEFINITION 3.2. The McMillan degree of an autoregressive system P(s) is given
by the maximal degree of the full size minors of P(s).

We are now in a position to describe a compactification of S,,, the quasi-
projective variety of proper p m transfer functions of McMillan degree n. The
Hermann-Martin identification gives rise to an embedding of Sm into the space of
rational maps Ratn(lP, Grass(p, re+p)). Using the Pliicker embedding (2.6), this set
can be identified with a set of rational maps into a projective space, and, as outlined
earlier, this set is contained in a Zariski open set of a projective space. All those maps
can be summarized by the following diagram of maps [27]:

m
Her.-Mar.

Pliicker

(38)

DEFINITION 3.3.

,IK’+).

Rata (lP1, Grass(p, m + p))

IP(IK+ (R)/’1K’+).

Kpn,m is defined as the Zariski closure of Sp,, in ]P(]Kn+l (R)

K,m is an algebraic set of a projective space by definition. Over the reals (lK
lR) or over the complex numbers (lK ) we have already mentioned in 2 that
:)(1Kn-F1 ()/xP1Km-Fp) is compact with the induced topology. In this way we can view

Kp,m as a compactification of S’pn,, Note also that 0n Kp,m Grass(p, m + p). In other
words, our compactification reduces to the Grassmannian model already widely used
to study static output feedback problems (see, e.g., [3], [34]). The following theorem
states that K,m is a projective variety for all natural numbers m, p, n.

THEOIEM 3.4. K,m is a projective variety of dimension n(m +p) + mp. If S,m
is irreducible then K,m is irreducible as well.

Proof. Because S,m is quasi-projective the dimension of S,m and its Zariski
closure K,m are the same. The irreducibility of K,m follows directly from the ir-
reducibility of Sp,m Indeed, consider a decomposition Kpn,m yl[j y2 into Zariski
closed subsets. Then Sp,m n 2 n(Sp,m Y )(.J(Sp,m f Y ). By irreducibility of Sp,m it
follows that Spn,m C yl or S,, c yz. But then K,m is also contained in one of the
sets Y

Remark 3.5. 1. Over an algebraically closed field S,m is always irreducible [10].
2. By a dimension argument it is clear that Kn,m is a proper subset of IP(lKn+l (R)

APIKre+p) as soon as min(m, p) >_ 2. On the other hand, we have:

(3 9) Knl,.= K =lP’+m+n1

In the following we want to describe a specific set of equations that gener-
ate the homogeneous ideal I(K,m). For this consider a polynomial vector f(s) e
Ratn(]p1,]P(AP]Km+p)) and expand it in terms of its Pliicker coordinates with re-
spect to the standard basis:

(3.10) /(s)=
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To say the map f(s) factors over the Grassmannian it is necessary that the Pliicker
coordinates satisfy the "shuffle relations" (QR) (see, e.g., [17] or [25] ), when consid-
ered as equations of the polynomial ring ]K[s]"

pd-1

(3.11) (QR) -(-1)x. f, ,_, (s) f ,; + (s) o.

In these equations, il,..., ip_ and jl,..., jp+l are any sequence of integers with
1 _< i,, j _< m d- p and the symbol means that j must be removed (compare [17]).
As shown in [25] the quadratic equations (QR) generate the homogeneous ideal if the
base field is arbitrary but infinite. Equating polynomial coefficients we receive a set of
necessary quadratic equations in ]P(]Kn+l (R) AP]Km+p). The following theorem states
that those equations are also sufficient; in other words, they really "cut out" Kn

p,m

THEOREM 3.6. Let ]K be an infinite field. Then the variety Kpn,m C ]I:)(]Kn+i (R)

AP]Krod-p) i8 the zero set of the ideal generated by the set of quadratic relations obtained
from equating the coefficients in the shuffle relations (QR).

Proof. Denote with the homogeneous ideal generated by the equations obtained
when equating (QR). Because the polynomials of p vanish on Sp,m, i.e., p c_ I(S,m)
it follows for the sets of zeros that Z(I(Spn,m)) Kp,m C_ Z(p). It therefore remains

to show that Z(gv) c_ Kpn,m For this consider in ]P(lKn+l (R) Ap]KmTp) the Zariski
open subset Y corresponding to all polynomial vectors f(s) (..., f_(s),...) that
have the property that f(s) 0 for all s E ]K and that have the property that
the last Pliicker coordinate fm+l m+p(S) has degree n. Assume now that a point
f(s) Y C lP(lKn+ (R) APlK"+p) satisfies the equations coming from (QR) for all
s ]K. Viewing the entries of f(s) as elements in the field ]K(s), it is immediate that
there is a rational p (re+p) matrix R(s) that is mapped under the Pliicker embedding
on the vector f(s). Using the row reduction process introduced by Forney [6], we
find a p (m + p) polynomial matrix P(s) with minimal row indices and a rational
matrix Q(s) e Glp(lK(s)) with P(s) q(s)R(s). The Pliicker coordinates p(s) of the
polynomial matrix P(s) are clearly given by p(s) det Q(s)f(s). However, it then
follows from the assumptions we made that det Q(s) lK, the last entry of p(s) is a
polynomial of degree n, and P(s) is mapped onto f(s) viewed as a point of projective
space. In other words, f(s) describes a point of Sp,m In short, Z(p)N Y C_ Spn,m, but
it is then clear that Z(ga) c Kn

p,m
The following example illustrates how it is possible to find a describing set of

equations in a concrete case.
Example 3.7 (see [27]). K2,2 ]l::) is the complete intersection of three quadrics.
Indeed, K is defined by {(fl,2(s) f3,a(s))lf,2(s)f3,4(s)- fl,3(s)f2,4(s)2,2

fl,4(s)f2,3(s) =-- 0 and f,j(s) ai,j + bi,js 1 <_ < j <_ 4}. In ]pl, we therefore have
the following equations:

(3.12) al,2a3,4 al,3a2,4 + al,4a2,3 0,
(3.13) b,263,a b,3b2,a -{- b,462,3 0,

(3.14) a,2b3,4 + a3,4bl,2 a,3b2,4 a2,4b,3 + a,4b2,3 + a2,3b,4 O.

Because dim K2,2 8 the intersection must be complete. In particular the degree of
K,2 is equal to 8 by the classical Bzout theorem.

In the remaining part of this section we want to give a system theoretic interpre-
tation of the boundary points that were added in the compactification Kpn,m For this
consider a polynomial vector f(s) Kpn,m We now distinguish two cases.
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Case 1. Assume f(s) 0 for all s E lK. From the proof of Theorem 3.6 it
immediately follows that we find a p (m+p) polynomial matrix P(s) that is mapped
onto f(s) under the Pliicker embedding. Because P(s) has full rank for all s e lK,
it follows that the Kronecker row indices are equal to the minimal row indices in the
sense of Forney [6]. (Compare [15].) In other words, if/5(s) is another polynomial
matrix that is mapped onto f(s), then P(s) and P(s) are row equivalent, i.e., there
is a unimodular matrix U(s) with/5(s) U(s). P(s).

Case 2. There is an So l with f(So) O. Because the minimal polynomial of So
over lK divides each coordinate, we find a polynomial g(s) e ]K[s] with f(s) g(s)](s)
and ](s) 0 for all s l. It is obvious that we again find a polynomial p (m + p)
matrix P(s) that is mapped onto f(s). Note that P(so) does not have full rank. To
describe all other polynomial matrices that are mapped onto f(s) we introduce the
following group:

(3.15) H {A e Glp(lK(s))ldetA e lK\{0}}.
Clearly the unimodular group is a subgroup of H consisting of all elements in

H that have polynomial entries. This group enables us to introduce the following
equivalence relation.

DEFINITION 3.8. Two polynomial matrices P(s) and/5(s) are called H-equivalent
if there is an element V e H with P(s) V. P(s).

Note that row equivalent matrices are always H-equivalent. Moreover, if P(s) has
full row rank for all s lK, it then follows from the proof of Theorem 3.6 that P(s)
and P(s) are row equivalent if and only if they are H-equivalent. In other words, the
concept of row equivalence and H-equivalence are the same for the generic set. The
following example illustrates the difference of the two concepts.

Example 3.9. The following two matrices have the same Pliicker coordinates and
are therefore H-equivalent"

(1 0 0 ) B_(S 0 O)(3.16) A-
0 2s 3s 0 2 3

On the other hand, it is immediate that the matrices A, B are not row equivalent;
that is, there is no unimodular matrix U(s) with B UA.

From the above it is now clear that every point of Km can be viewed as an
H-equivalence class of p (m + p) polynomial matrices and every H-equivalence
class consists of one (generically) or several autoregressive systems. At this point we
want to mention that K,, has singularities and those singularities occur at points
where several autoregressive systems form one H-equivalence class. As shown by Ravi
and Rosenthal [26] the set of all "homogeneous autoregressive systems" of degree n
constitutes a desingularisation of K,m and we refer to [26] for details.

We summarize this section with the following theorem.
THEOREM 3.10. K,m consists of all H-equivalence classes of autoregressive

systems of size p (m + p) and degree less than or equal to n.

4. Dynamic feedback and q-nondegeneracy. In the last section we intro-
duced a compactification (denoted by Kp,,) of the space of proper transfer functions
Sp,m In this section we will show that the pole placement problem with dynamic
compensators can be studied as an intersection problem in the variety Kp,m

For this consider a proper transfer function G(s) Spn,m describing the behavior
between an input fi and an output in the frequency domain:

(4.1) ) G(s)t.
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The feedback compensators that we will consider are proper transfer functions F(s)
sqm,p. The plant and the compensator are combined through the feedback law:

(4.2) t F(s) + .
If the characteristic matrix (I-G(s)F(s)) is invertible (this is always the case if G(s)
is strictly proper) it is well known that the transfer function between the new input
3 and the output ) is well defined and given by

Gf(s) := (I G(s)F(s))-lG(s).

The stability of equilibria or periodic motions of the closed-loop system depends on
the position of the poles of GF(s). To describe the poles of the closed-loop trans-
fer function, we introduce a left coprime factorization of G(s) and a right coprime
factorization of F(s):

(4.4) -1C(s) D,.a (s)Na (s), -1F(s) Na (s)DRF (s).

A straightforward calculation results in the following form for the closed-loop transfer
function:

CF(S) DRF(s)(D,.G(s)Da(s NLG(8)NF(8))-INLc(8).

Note that every pole of GF(S) is a zero of the polynomial

(4.6) (s) det(DLc(s)Da(s N,.c(s)NaF(s))

and every zero of (s) is a pole of aF(s) if no pole-zero cancellation occurred. More-
over, if G(s) is a strictly proper system of McMillan degree n and F(s) is a proper
compensator of McMillan degree q, then (s) is a polynomial of degree n + q. Iden-
tifying the vector space ]Kn+q with all monic polynomials of degree n + q we define
the pole placement map for a strictly proper system G(s) by:

(4.7) Pc Sq,p ---* ]K’+ F(s) (8}monic.

This definition is in many ways unsatisfactory if G(s) is proper. Indeed, if G(s)
is proper it is possible that (s) is not of degree n + q anymore, in particular if
(I- G(s)F(s)) is not invertible (s) 0.

To extend the definition of the pole placement map to proper systems we first
introduce the following set, which Ghosh [8] called the base locus:

(4.8) Bc := {F(s) e Sq,p det(I- G(s)F(s))=_ 0}.

To avoid difficulties with low-degree polynomials, we identify the space of polynomials
with the projective space ]pn+q and use the following definition.

DEFINITION 4.1. The pole placement map for a proper transfer function G(s)
is given by

(4.9) Pc" Sqm,p Bc - ]P"+q, F(s) (s).

It is, of course, an important problem in multivariable linear control theory:
under which condition is Pc onto or at least almost onto? In particular, it would be
of great interest to know the minimum order q of a compensator that pole assigns
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or stabilizes a given generic system of order n. Using a dimension argument, we
immediately obtain the following necessary condition for Po to be onto:

(4.10) q(m + p) + mp > n + q.

One of our main goals in this paper is to show that this condition is also sufficient
when the field is algebraically closed and the plant G(s) is generic. To achieve this
result, we first give a new description of the polynomial (s) and this will enable us
to reformulate the problem geometrically.

If F(s) D71(s)N,.F(s) NRF(s)D(s are a left and a right coprime factor-
ization of F(s) it is obvious that

(4.11) (NL (s) DL (s)) ,_Nar (s) =- Omp.

In some sense we can view the matrix

as the dual curve of the Hermann-Martin curve (N (s) D,. (s)) of F(s). The follow-
ing lemma, which is well known if the compensator is static [2], is now easy to verify
and the proof will be omitted.

LEMMA 4.2. For a particular point si E lK the following conditions are equivalent:

(4.12) det (Da(si) Na(si)) \-N,(si)] O,

( DLv(si) N(si) ) 0(4.13) det NF (si) D(si)
(4.14) rowsp(Da(si) Nv(si)) rowsp(N(si)D(si)) {0}.

Note that two polynomials with the same roots are multiples of each other. In
other words the following corollary holds.

COROLLARY 4.3.

Da (s)(4.15) (s) det(Da(s)Dn(s N,.a(s)NRF(s))

The (m+p) x (m+p) matrix appearing in this equation has many nice properties.
On one side the equation

(4.16) (D’o(s) N"(s) ) ( )NL (s) D,. (s) Y--u (s) 0

gives a combined description of the plant and the compensator equations by means
of autoregressive equations. This point of view can be found, e.g., in [31], [39].

Geometrically, (Dv (s)Nv (s)) defines a rational curve eRatn(]P1, Grass(p, m +
p)) and (N(s)DLF (s)) defines a rational curve beRatq(]P Grass(m, m +p)). Using
the Pliicker embedding (2.6) we can represent by

(4.17)
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where again gi(s) denotes the ith row of (DLa(s)NLo(s)). Similarly, has a repre-
sentation

Finally the poles of the closed-loop system are the zeros of the polynomial

(4.19) (s) "= gl(s) A... A gp(S) A fl(s) A... Afm (s).

Note that (s) is, of course, a multiple of the polynomial (s). In addition the wedge
product g(s) A f(s) defines a bilinear pairing (,) that extends linearly to the product
space (+ pmTp) x (qT1 mmWp).

We are now in a position to formulate the pole placement problem with dynamic
compensators in a geometric language.

Geometc problem. Given a rational curve CeRtn(1, Grs(p, m + p)) and a
divisor P {s,..., s+a}. Is there a curve CeRatq(P1, Grs(m, m + p)) such that
(s) (s) {0} for all s e P? What is the minimal degree q needed?

Remark 4.4. Not 11 geometric solutions enable us to construct a proper compen-
sator although it is always possible to represent such a solution by an autoregressive
system. In addition, we warn to find solutions that are admissible (compare with [31]).
In geometric terms, we want to exclude a Hermann-Martin curve (s) with the prop-
erty that (s) (s) {0} for all s e .

To handle these difficulties we make the following definition.
DEFINITION 4.5. A rational curve eRat(1, Grs(p, m +p)) is called q-degen-

erate if there is a rational curve CeRat(1, Grs(m, m + p)) with q and (s)
(s) {0} for all s . A curve that is not q-degenerate is called q-nondegenerte. A
system G(s) is called a-(non)degenerate if the corresponding nermann-Martin curve
is q-(non)degenerate.

Note that our definition is a natural generMiztion of the concept of the degen-
erate system introduced in [2], and this concept itself generalizes the concept of a
degenerate curve in projective space. In a concrete example we can use the equivalent
formulations in Lemma 4.2 to decide if a particular plant G(s) is q-degenerate.
om the definition it now follows immediately that the pole placement map pC

introduced in (4.7) and (4.9) can be extended in a continuous manner to a morphism
p defined on the whole compactification K,p if the system G(s) is q-nondegenerate.
In other words, all autoregressive systems P(s) K,p are admissible and the be
locus set Be introduced in (4.8) is empty:

p K, +q
(4.20) T T

p S,p +q

The concept of q-degeneracy will be of crucial importance in the next section. The
following example will illustrate the concept of q-degeneracy on a 3-input, 1-output
system.

Example 4.6.
1. G(s) (1/s5, 1/s3, l/s) defines a system of order 5, which is 1-degenerate.

Indeed, use the first condition in Lemma 4.2 to construct a covector which will mke
the inner product (,) identically zero:

(4.21) (1, s2, sa, s5) (O,O,s,-1)> 0
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2. ((s) (1/s6, 1Is4, 1/s2) defines a system of order 6 which is 1-nondegenerate
because

((1, s2,s4, s6), (a + bs, a2 -- b2s, a3 + b3s, a4 -t- b4s)) =- 0

implies ai bi 0, 1,..., 4. Actually, we will show in the next section that
the generic 1-input, 3-output system of order 6 is 1-nondegenerate.

5. On the minimal order dynamic compensator. In this section we will
assume that the ground field lK is algebraically closed. The following theorem, called
the projective dimension theorem, will be used several times in this section. Our
formulation can be found in Hartshorne [9], where a proof is also given.

THEOREM 5.1. Let Y, Z be varieties of dimension r, s in ]DN. Then every irre-
ducible component ofY0Z has dimension >_ r + s N. Furthermore, if r + s N >_ O,
then Y g Z is nonempty.

The next theorem that we present is a strong version of the classical Bzout
theorem, which we will need to prove Theorem 5.7. The theorem was originally
formulated and proven by Weil [36]. The crucial part for the formulation of the
theorem was the "right" definition of the intersection multiplicity i. For a broader
discussion of this theorem and its generalizations we refer the reader to Vogel [33].
The following theorem is a reformulation of [33, Prop. 3.26].

THEOREM 5.2. Let Y, Z be varieties of dimension r, s in lPN. Assume the in-
tersection Y V Z is proper, i.e., dim(Y N Z) r + s N. Denote with t the set of
irreducible components of Y V Z and with i(Y, Z; C) the intersection multiplicity of Y
and Z along C. Then we have

(5.1) deg Y. deg Z E i(Y, Z; C). deg C.
ceil

Another important concept in all that follows is the notion of a central projection.
Assume E, H are linear subspaces of dimension r, N r 1 and E g H q}. In this
case we can define the following map, which is well defined by basic facts of linear
algebra:

(5.2) r" lPN E -- H, x span(x, E)O H.

is called a central projection onto H with center E. As shown by Wang [34], the
pole placement map with static compensators is a central projection. As we will show,
the same is true in the dynamic case.

Our first goal is a characterization of the q-nondegenerate systems.
LEMMA 5.3. The set of q-degenerate systems is algebraic in the quasi-projective

variety Spn,m of proper systems with McMillan degree n.

Proof. Consider in Sp,m gqm,p the coincidence set

(5.3)
S := {(NLa(s DLa(s)), (NR(s) DR(s)) det(Da(s)D(s) Na(s)Nn(s)) =_ 0},

which defines an algebraic set in the product. Because Kqm,p is projective, the pro-
jection on the first factor is still an algebraic set by the main theorem of elimination
theory (see, e.g., [24]). [:]

The next lemma shows that every system is q-degenerate for some large natural
number q E lN.
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LEMMA 5.4. I.f q(m + p) + mp > n + q, every p m system of order n is
q-degenerate.

Proof. Assume g(s) are the Pliicker coordinates of a plant G(s) with McMillan
degree n. Consider in ]P(IKq+l (R) AmlKm+p) the set

EG :-- {f(8) (g(8), f(8)

EG defines a plane of codimension at most q(m+p) +rap, the dimension of the variety
Kqm,p. The plane E intersects Kqm,p by the projective dimension theorem.

So far it has only been shown (Lemma 5.3) that the set of q-nondegenerate systems
form a Zariski-open (possibly empty) set in S,m. Using the following theorem we will
be able to show that this Zariski-open set is nonempty in S,m if q is small enough.

THEOREM 5.5. The dimension of the coincidence set S c S,m x Kqm,p introduced
in (5.3) is given by

dim S dim S,m + dim Kqm,p n q 1.

Proof. Consider an element of S given by

(5.6) det NF (s) DF (s)
=_ 0.

Without loss of generality we assume that the system (D,.a (s)Nv (s)) and the com-
pensator (N, (s)D, (s)) are both row reduced with minimal indices

Prespectively, #1 >_ _> #m and Ul _> 1. In particular we have n =1 u and
mq -j=l #J" As explained in [30] we have a free action on (N,.(s)D,.(s)) with an

algebraic group of dimension at least m2. This group is characterized as the subgroup
of the unimodular group Glm(lK[s]) which leaves the row indices #1,..., #m invari-
ant. Similarly there is a free action on (Da(s)Na(s)) with an algebraic group of
dimension at least p2.

Denote with $1 the parameter space of all (m + p- 1) (m + p) polynomial
matrices having row indices u2,..., Up, #1,..., #m. $1 is a vector space of dimension

p m

dimS1 (’ui + -#j /m +p- 1)(m +p).

Assume now that the last m-t-p- 1 rows form a minimal basis in the sense of
Forney [6] of the ]K(s)-vector space, which these rows generate. Equivalently, the
greatest common divisor of the full size (m q-p- 1) (m -b p- 1) minors is 1. In
the following we restrict the dimension calculation to this Zariski-open subset of $1
because it is not difficult to show that the other cases lead to lower-dimensional
subsets. From (5.6) it then follows that the first row is a linear combination of the
last m + p- 1 rows

p m

e
=2 j=l

From the main theorem in Forney [6] it follows that xi(s), yj(s) are even elements of
]K[s]. Moreover deg xi(s)

_
ul ui and degyj(s)

_
ul #.



DYNAMIC FEEDBACK COMPENSATION 293

Denote with $2 all polynomial vectors gl (s) of degree ul that are in the rowspace
of a given set of vectors {g2(s),..., gp(S),.., hm(s)}. From the above follows that

P m

(5.9) dim $2 (ul ui 4- 1) 4-(u #j 4- 1) (m 4- p)u n q 4- m 4- p 1.
=2

Finally, taking into consideration the free action of the above-mentioned groups, we
obtain

(5.10) dim S <_ dimS + dim $2 m2 p2
+ + + + + q 1

(5.12) dim Sp,, 4- .dim Kqm,p n q 1.

Finally, (5.6) imposes at most n+ q+ 1 algebraic conditions because the characteristic
equation is a polynomial of degree at most n + q. The inequality in (5.10) is therefore
an equality.

COROLLARY 5.6. If q(m + p) + mp <_ n + q, the generic p x m proper system
order n is q-nondegenerate.

Proof. Because dim gqm,p q(m 4- p) 4- mp it follows from (5.5) that dim S G

dim Sp,,- 1. In particular the projection of S onto Spn,m is a proper algebraic subset
in Spn,m

The previous corollary was proven for q 0 (static feedback) by Brockett and
Byrnes [2], from which it then followed that the pole placement map with static
compensators is generically onto if mp n. In the following we will extend this result
to the dynamic case. The proof that we present combines ideas from a proof given by
Rosenthal in [27] and a proof given by Wang in [34] for the case of static feedback.

THEOREM 5.7. If a system G(s) is q-nondegenerate and q(m +p) +mp n+q
then the pole placement map

(5.13) p-" g,p ---+ lP"+q

is onto of degree dm,p,q, where dm,p,q is the degree of the variety Kqm,p.
Proof. Consider in lP(lKq+l (R) AmlKre+p) again the linear subspace

(5.14) Ev {f(s) g(s) f(s) 0}.

Because G(s) is q-nondegenerate it follows that Ev N Kq,p and the codimension
of Ev is equal to q(m + p) +mp + 1. The linear pairing {, induces a linear map

(5.15) L ]P(]Kqd-1 (R)/m]Kmq-P) E ---. lPn+a

which has to be onto by a linear argument. Note that p-G L IK,. Denote with H
any linear subspace of ]P(]Kq+ (R) Am]Kre+p) for which dimU n 4- p and L(H)
]pn+q. We have a central projection

(5.16) r ]P(]Kq+l (R) A’]K"+p) Ev ---, U.

If y H is a particular point, it follows by linear equation theory that the whole fiber
r-(y) (which is a linear plane in ]P(]Kq+ (R) Am]KIn+P)) is mapped under L onto
L(y). In other words, we have L L o and p-v is onto if and only if r IK,, is onto.
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By the projective dimension theorem ?l’-l(y) [ Kq,p O. Finally every fiber r-l(y)
intersects gain,p properly [32, p. 48]. By Theorem 5.2, r-l(y) gqm,p consists in this
case of exactly dm,p,q points when counted with multiplicities. [:]

If the system G(s) is strictly proper and the compensator F(s) is admissible and
proper, it follows from Corollary 4.3 that the closed-loop characteristic polynomial
(s) has degree exactly equal to n + q, the sum of the McMillan degrees of G(s) and
F(s). In other words the "infinite points," that is, the points in the set Kqm,p Sq

m,p
are mapped onto the closed-loop characteristic polynomials of degree strictly less than
n + q. We therefore obtain the following corollary.

COROLLARY 5.8. /f G(s) is q-nondegenerate and strictly proper and q(m + p) +
mp n+q then the pole placement map PG Sqm,p ----* lKn+q introduced in (4.7)
is onto. Moreover, if counted with multiplicities there are exactly dm,p,q different
compensators F(s) assigning a specific closed-loop characteristic polynomial.

The degree of the variety Kqm,p is therefore equal to the number of compensators
that will place the poles of the closed-loop system at a desired location. In particular,
if G(s) is a real plant and the number d,,p,q would turn out to be odd for certain
re, p, q, we would be able to predict the existence of a real compensator because
the solution set must be invariant under complex conjugation. In the case of static
feedback, i.e., q 0, we have 0Km,p Grass(m, m + p) and it is well known when the
degree of the Grassmann variety is odd. (Compare, e.g., [3].) As shown in [28] the
degree of K2,3 is equal to 55 and so such (nontrivial) cases also exist if q > 0. The
following corollary explains the proper situation.

COROLLARY 5.9. If G(s) is q-nondegenerate and proper and q(m + p) + mp
n + q, then the pole placement map pG Sqm,p

___
]pn+q introduced in (4.9) is

almost onto.

Proof. Because G(s) is q-nondegenerate., the lifted map p-( Kqm,p _. ]pn+q
exists and is onto by Theorem 5.7. The difference set Kqm,p- Sqm,p has dimension

strictly less than n + q. Because IG(Kqm,p) ]pn+q and P-G 18,-- PG the statement
follows. [:1

Remark 5.10. From the proof it follows in particular that those closed-loop char-
acteristic polynomials that cannot be achieved with a proper compensator can always
be achieved with a general autoregressive compensator. (Compare with Remark 4.4.)

So far we have provided only positive results, that is, results when the dimension
of the domain and the range are equal. The following theorem explains the situation
when the dimension of the domain is larger than the dimension of the range.

THEOREM 5.11. If G(s) E Spasm is a generic plant and if

(5.17) q(m + p) + mp >_ n + q,

then the pole placement map

(5.18) pG qm,p BG ]enTq

introduced in Definition 4.1 is almost onto. Moreover, the extended map

(5.19) fZG K,p EG ---* ]P+q

is onto.
Proof. Consider again the coincidence set S c Sp,m Kqm,p introduced in the proof

of Lemma 5.3. Denote with pr" S -- Spasm the projection onto the first factor. From
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Theorem 5.5 it then follows that for a generic element G(s) E Sp,, the dimension of
the fiber pr-1 (G(s)) is bounded by

dim(pr-l(G(s))) <_ dim Kqm,p- n-q- 1.

In particular, using earlier notation we have

(5.21) dim(me N Kqm,p) <_ q(m + p) +mp n q 1.

Following the proof of Theorem 5.7 and using again the projective dimension theorem
it follows that

(5.22) dim(r-1 (y) N Kqm,p) > q(m + p) + mp n q 1.

From above two inequalities it now follows in particular that for every closed-loop
polynomial p(s) there is an admissible autoregressive system F(s) Kqm,p EC with
p-(F(s)) p(s). The map P-c is therefore onto. Finally because the fibers of P-c in

Kqm,p EC have dimension at least q(m + p) + mp n q and the dimension of the
range of P-c is n + q, the map Pc Sqm,p Bc --* ]pn+q is almost onto by a dimension
argument.
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