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BCH Convolutional Codes

Joachim Rosenthabenior Member, IEEEand Eric V. York,Member, IEEE

Abstract—Using a new parity-check matrix, a class of convo- tional code with a designed free distance was presented. This
lutional codes with a designed free distance is introduced. This construction required that a controllability matrix associated
new class of codes has many characteristics _of BCH block COdeSwith the state-space system was the parity-check matrix of a
therefore, we call these codes BCH convolutional codes. . .

Reed-Solomon code. As in the construction of Reed—Solomon

Index Terms—BCH codes, convolutional codes, cyclotomic sets, codes, Iarge—.S|_gnaI al'phabets were r,equ'red' In [_27]' YF’”‘
linear systems. showed how it is possible to do a subfield construction which

leads to binary convolutional codes with a designed free
distance.
. INTRODUCTION In this paper, we will work systematically with linear
ONVOLUTIONAL codes having a large free distancestate-space descriptions and we will generalize the binary
and a low degree are often found by computer searchesnstruction presented in [27] to codes over arbitrary Galois
Several authors have extended constructions known for bldadds. The code construction which we present is similar to the
codes to convolutional codes. A survey of some of this work @assical Bose—Chaudhuri-Hocquenghem (BCH) construction
provided in the book of Piret [17, Sec. 3.5] where more confier block codes and this explains our choice of title. There
plete references can be found. Most of these constructions Brealso some similarity to the work of Justesen [7], [8],
based on cyclic or quasi-cyclic constructions of block codeand Tanner [26] who derived BCH-type binary constructions
These techniques originate in work by Massey, Costello, astarting with the generator polynomial of a BCH block code.
Justesen [13] where it is shown how the free distance ©he main difference is that the code constructions presented
a convolutional code can be lower-bounded by the distanielow are much closer to the classical BCH code constructions.
of a related cyclic code. In [7] and [8] Justesen refines thighere is another advantage of our approach. The nature of
method and he constructs polynomial generator matricestbé state-space description allows one to analyze the encoder
convolutional codes directly from the generator polynomials state at each time instance. This knowledge leads to an
cyclic codes. In these papers Justesen also presents a subdilgjdbraic decoding algorithm for convolutional codes which
code construction. is particularly well suited for the BCH convolutional codes

The paper by Tanner [26] uses a quasi-cyclic code tmnstructed in this paper. Details of this algorithm are given
construct a polynomial parity-check matrix of a convolutionah [21].
code. This work generalizes the methods by Justesen andhe paper is structured as follows. Our starting point will be
further progress in this direction has recently been reportadstate-space realization ofrational and systematic encoder
by Esmaeiliet al. [1]. Also worth mentioning is the paper byUsing some classical ideas from linear systems theory we
Piret [18] where he constructed convolutional codes havingll analyze the algebraic structure of convolutional codes
a parity-check matrix of the fornH{(z) = Hy + zH; with in Section Il. In this section we will also provide a review
characteristics similar to those of a Reed—Solomon block codd.the relevant results from systems theory that will be used
All the referenced constructions have in common that thelgroughout the paper. In Section Ill, we present a general code
relate the polynomial representations of the cyclic codes witlonstruction technique which leads to convolutional codes
the polynomial representations of the convolutional codes. with a designed free distance. As an immediate application

In [23], the authors of this paper jointly with J. M. Schu-of the derived results we obtain the Reed-Solomon-type
macher showed that state-space representations commaualgstruction presented in [23]. We show that codes constructed
used in systems theory are very useful for the constructiomthis way have excellent free distance if the rate is high.
of convolutional codes. In [23], a construction of a convolun Section IV, we provide the main results of this paper, a

detailed convolutional code construction similar to the BCH
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by the linear system governed by the equations Proposition 2.2 (Local Description of Trajectories)et
7,7 € 74 be positive integers with- < ~. Assume that
ZTyp1 = Axy + Buy, the encoder is at state, at timet¢ = 7. Then any code
v = Cay + Duy, sequence( (') },., governed by the dynamical system (2.1)
<Ut> must satisfy
vp=1""}, zo = 0. (2.1)
U
Yr C

We callz, € F° thestate vectoru, € F* theinformation vec- | 4,41 CA
tor, y, € F*~* the parity vector andv; € F" the code vectar _ : =
each at timet. In the systems literature, representation (2.1) |s : T
known as thdnput state outputepresentation. The integér o
describes the McMillan degree of the linear system (2.1). The ¥~ cAT
McMillan degree is equal to the dimension of the state space D 0 0
F°. In terms of coding theory, (2.1) describes the state-space CB ' :
realization ofa ra.tiona}l qnd sy;tematic convolutipnal encoder + CAB CB
and we will explain this in detail at the end of this section. . . _ 0

Remark 2.1: The state-space realization (2.1) is different CAY™""1B (CA"""2B ... CB D
from a realization often found in the coding literature. In the 1,
coding literature, convolutional codes are usually represented Urtt
by adriving variable representation .

Ti41 :Axt + Bmt .
vy =Cxy + Dmy (2.2) Uy

with m; € F* the message vectaandv; € F*, x; € F® as Moreover, the evolution of the state vectey is given over
above. Representation (2.2) was used by Massey and Saife as

[14, Theorem 1] and became the standard way in which
convolutional codes were presented in terms of linear systems.

Ur
(Compare with [15].) The difference of (2.1) compared to (2.2)  ,_, fer1 . )
is best seen when the degrée- 0, which is the case when*t =4 =+ (4 AR A E
the convolutional code is memoryless. For this denoté, by, Ut—1
the (n — k) x (n — k) identity matrix. Equations (2.1) reduce t=7+17+2,--,v+1 (2.6)

to the parity-check equation
Proof: This follows easily by iterating the equations that

(I, — D] [3’} =0. (2.3) define the system. O
t
. In this paper we will construct codes with large free
In contrast to this, (2.2) reduces to distance. For algebraic reasons it will be desirable to restrict
ourselves to finite-weight codewords:
Yi . ,
{UJ = vy = Dmy. (2.4) Definition 2.3: A sequence{(,gi) € F*|t = 0,1,2,---}

represents dinite-weight codewordf
For the purpose of constructing convolutional codes we feell) equation (2.1) is satisfied for all € 7, where 7,
that (2.1) is the better choice. denotes the set of positive integers;
One of our design objectives will be the construction of 2) there is an integet such thatx,4; = 0 andx, = 0
convolutional codes with a large free distance. In terms of for ¢ > ~v + 1.
the state-space description (2.1) we immediately have th

T _ S
characterization of the free distance through “The definition implies thay, = 0 for ¢ >  + 1 and the

code sequence, therefore, has finite weight. For a finite-weight

oo oo codeword it is, therefore, required that both the input sequence
ds(C) = min Z wt (1) + Z wt (111) (2.5) and the state sequence (and hence the output sequence) have
=0 =0 finite support. The set of finite-weight codewords can be char-

acterized through a natural parity-check matrix. This matrix

where the minimum has to be taken over all possible nonzegd| be of central importance in the construction of codes of
codewords and wheret denotes the Hamming weight. this paper.

The set of codewords are by definition equal to the set
of trajectories{ (¥') },., of the dynamical system (2.1). The
following Proposition characterizes those trajectories.

Proposition 2.4 (Global Description of Trajectories):
{(¥) € F*[t =0,---,~} represents a finite-weight codeword
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standard literature on convolutional codes [2], [5], [6], [15],
and [17].

SinceF[z] is a principal ideal domairnC (A, B,C, D) is a
free module of rank (see [4. Ch. IV, Theorem 6.1]) and there
exists ann x k polynomial matrixG(z) such that

C(A,B,C,D)={v(z) € F"[2]|Im(z)
€ F*[2]: v(2) = G(z)m(2)}.
We will call G(z) a polynomial encodenf the finite-weight

convolutional cod€ (A, B, C, D). The following lemma pro-
vides a way to compute a polynomial encodéfz).

Lemma 2.5: There exist polynomial matriceX (»), Y (»),
andU(z) of sizeé x k, (n — k) x k, andk x k, respectively,
such that

X(2)
ker {ZI —4 0 _B} =im|Y(z) (2.9)
¢ I -D v

Proof: Settingr = 0 in Proposition 2.2 gives the bottomMoreover, the polynomial matrix

portion of the matrix. Sincer,; = 0, the top part of the

matrix follows from (2.6) in Proposition 2.2. O

Observe that the sequence of information Symbo&ﬁescribesapolynomial encoder

U, * -

Lyl = 0.

In what follows, we will use the local and global systemg

-, u~ In (2.7) is restricted by some algebraic constraints.
These constraints simply guarantee that the state vecégr 0 — k)

Proof: The matrix on the left-hand side of (2.9) has size
x (6§ +n) and it has full rank over the field of
rationalsF(z). The kernel over the fieldF(z) has, therefore,
imensionk. This kernel has a minimal polynomial basis in

theoretic properties described above to give code constructions sense of Forney [3]. Choosing such a minimal basis results

with designed free distance. These representations were @ls

crucial in the decoding algorithm [21].

The set of finite-weight codewords has a natural modulg
S . . p
structure over the polynomial ring[z]. For this consider a
finite-weight codeword () }o<:<~ with corresponding state

sequence{x; bo<t<~. Define

xteﬂzév t:()vv,y
weF*, t=0,-

2(2) =m0 +x127 + -+ 2,
u(Z):qu"/{—ulz"/—l_i_..._i_u,W .y

and let
Y(2)=yor +y2" T o dyy, e 1=0,--- .

One immediately verifies thdtz,, u., v, } satisfy (2.1) if and
only if

~ 7 3 z(z)
{zI_CA 00257_1;@ _g} ZE?;] =0. (2.8)

Moreover, the set of polynomial vectors

] e

which satisfy (2.8) for some polynomial vectotz) € F°[z]
forms aF[z]-submodule of the free modul€™[z]. By abuse
of notation we will denote this module §( A, B, C, D) and

the matrix on the right-hand side of (2.9).
If v(=) € F"[#] is a finite-weight codeword then there exists
olynomial vectorz(z) € F°[#] such that

) i)

v(z) G(z)
In other words,G(~») is a polynomial encoder for the convo-
lutional codeC(A, B, C, D). O

Clearly, not everyd-tuple of matriceq 4, B, C, D) having
sizeséxé, 6xk, (n—k)x 8, and(n—k)x k, respectively, results
in a “desirable” finite-weight convolutional code. In addition,
the description (2.1) is in general not unique. The following
lemma addresses the nonuniqueness of the description (2.1).
We omit the simple proof.

Lemma 2.6:If S € GIs(F) is an invertible matrix then
C(SAS™',8B,CS™',D) =C(A,B,C, D).

The transformationS € Gls(F) has no affect on the
degree 6. Sometimes it is possible to describe the code
C(A, B, C, D) using matricesA;, By,Cy,D; which are in
size smaller than the matriced, B,C, D. If the matrices
A, B,C,D have the smallest possible size we say (2.1) is
a minimal description for the cod€(A, B,C, D). In order
to describe the class of matricéd, B, C, D) which describe

we will call this module thefinite-weight convolutional code noncatastrophic convolutional encoders in a minimal way we

generated by the matrices B, C, D. The cod&C(A, B, C, D)

will have to recall some systems-theoretic concepts. We will

will be the main focus of our investigation. At the end otart with some notation which will be convenient throughout
this section we will relate the properties of this code with thine paper.
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Let A, B, C be scalar matrices ovér of sizeé x 6, 6 x k&, The theorem now follows from the identity
and(n — k) x &, respectively. Lej be a positive integer and

define 21— Ay —A 0 -B
' ' ker 0 zls_, — As 0 0
®,(A,B):=(B AB-.-- A77?B A/7'B) (2.10) -y —Cy I... -D
C ZIT - Al 0 0 _Bl
CA = ker 0 Is.., 0 0 (2.15)
Q;(A,0) =] A% |, (2.11) o 0 I, -D
oAt H

The theorem simply states tha{ifi, B) is not a controllable
The matrices®;(A, B) and ©;(A,C) will be of central pair then the finite-weight convolutional codéA, B, C, D) is
importance in the rest of this paper. With this notation wgot described in a minimal way. Because of this we will now

define (compare, e.g., with [9, p. 356]) assume thafA, B) forms a controllable pair. The following
Definition 2.7: Let A, B be matrices of sizé x § andé x k, theorem is due to Popov [19, Theorem 2].
respectively. ThefA, B) is called acontrollable pairif Theorem 2.10:If (A, B) forms a controllable pair then
i itive i > o> Ry
rank @5(A, B) = 6 (2.12) there exist positive integers; > > ky only dependent

on theGls equivalence class dfA, B) having the following
If (A,B) is a controllable pair then we call the smallesProperties.
integer » having the property thatank ®,.(4,B) = § the 1) ; —  the controllability index of(4, B).
controllability indexof (A, B). k
2) > k; = 6, the size of the matrixd.

=1
Definition 2.8: Let A,C be matrices of sizes x § and ~ 3) There exist polynomial matrice$(z), Y'(z), U(z) satis-

(n— k) x 6, respectively. Thei4, C) is called anobservable fying (2.9) and having the property that tii column
pair if degree of

In a similar fashion we define:

rank Q5(A,C) = &, (2.13) Glz) = [58}

If (A,C) is an observable pair then we call the smallest IS €qual tox;, and theith column degree of{(z) is
integer » having the property thatank ,.(A,C) = § the equal tor; — 1 fori =1,---,k.
observability indexof (A4, C). The indicesx; > --- > r; are often referred to as the

Let us now explain what happens if eithet, B) is not a controllability indice; of 'Fhe paif A, B). (See [9] for more
controllable pair oA, C) is not an observable pair. details.) In the coding literature [6, S_ec._ 2:5] the mt_egers
If (A, B) is not a controllable pair then there is an integeff: "« are referred to as theonstraint indicesand # is

r with rank ®5(A, B) = r < 6. One shows the existence ofcalled thememoryof the encoder(z). We would like to
an invertible matrixS € Gis(F) such that note that those indices are invariants of the column module

C(A, B, C, D) of G(2) and that they are, in general, different
_ _ A A B from the minimal polynomial indices (in the sense of Forne
SASL 5B,cs = ([ 42 [P o, e nat poly y
( T ) <[ 0 Az’ (G, 2] [3]) of the rational vector space spanned by the columns of
(2.14) G(z). Details about those differences are given in [16].

. ) Next we are interested in conditions on the matrices
where A, By, C are matrices of size x r, 7 x k, and(n — A,B,C,D which guarantee that the induced polynomial
k) x r, respectively, and wherd,, B, ) forms a controllable encoder(z) is noncatastrophic. First assume tht (=)
pair. The partitioning appearing in (2.14) is often referred to ag,q G»(z) are two polynomial encoders of the finite-weight
Kalman’s normal form and the existence of such partitioningynyolutional codeC(A, B,C, D). Since the columns of
is easily established. G1(#z) and the columns of7»(z) both form aF[z]-basis of

Theorem 2.9:Assume(A, B) is not a controllable pair and the free modul€ (4, B, C, D) there exists & x k unimodular

let (SAS—1,SB,CS~1) be the Kalman normal form as inMatrix V(z) such thatG(z) = G1(z)V(2). It follows that
(2.14). Then G1(z) describes a noncatastrophic encoder (i@ (z) is

right prime) if and only ifG2(z) describes a noncatastrophic
encoder. For finite-weight convolutional codes one therefore
has a notion of noncatastrophicity. In order to avoid any
confusion with the existing literature and in light of the next
Proof: By Lemma 2.6 we know that lemma, we callC(A, B, 0, D) an observable convolutional
code(compare with [27], [23]) if one and hence every encoder
C(SAS™',8B,CS™',D)=C(A,B,C,D). G(z) of C(A, B,C, D) describes a noncatastrophic encoder.

C(Avach) :c(AlvBlvclvD)'
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The following result identifies the observable convolutionalefining ¢ as the F-linear span of the columns ofi(z).
codes. Note that this definition is independent of the particular
convolutional encode€i(z) of C(A, B,C, D).
The free distance of the convolutional cagdlés defined [6],

411?] as the minimal valué; in (2.5), where the [ninimization
Is taken over all possible nonzero codeword<”inThe next
emma shows that for constructions of convolutional codes

ith a certain designed distance it is sufficient to consider the
" finite-weight convolutional cod€(A, B, C, D).

Lemma 2.11:Assume the matricegA, B) form a con-
trollable pair. The convolutional cod& A, B, C, D) defined
through (2.1) represents an observable convolutional cod
and only if (4, C) forms a observable pair.

Proof: Notation as in Lemma 2.5. By [23, Lemma 3.2
G(z) is right prime if and only if the matrix pencil (i.e.
polynomial matrix of degree one)

o — A Lemma 2.13:Let (f(A,B,O,D) C F™ be a convolutional

[ _C } code defined by the matriced, B,C, D. Assume (A4, C)
forms an observable pair. If one minimizes (2.5) over all

is right prime and by the well-known Popov—Belevitch-Hautusonzero codewords insidé then the minimum value is

test [9, Theorem 6.2-6] this is the case if and only4,C) attained at a codeword inside the finite-weight convolutional

forms an observable pair. U codeC(4, B,C, D).

An analogous result for the driving variable representation Proof: Let {(51) € F"lt =0,1,2,---} be a nonzero
does not exist. code sequence which results in the minimal valde in

(2.5). By definition, this sequence has finite weight As-
Example 2.12 ([27]): Let C be the rate; convolutional sume, by contradiction, that this sequence does not belong

code overf; having a catastrophic generator matrix to C(A,B,C, D), ie., the state sequencgr; € F°lt =
21 0,1,2,---} does not have finite support. Under this condition,
G(z) = <7 i1 ) there exists a positive integersuch thatz, # 0 andu, = 0

andy; = 0 for ¢ > 7. Since(A, C) forms an observable pair
The driving variable representation for this system is given hifis contradicts the local description of the trajectories as given

00 1 in Proposition 2.2. O
T = Ty + m . .
e <1 0) ¢ <0> ¢ If (A,C) does not form an observable pair then the min-
0 1 1 imization over the nonzero codewords @A, B, C, D) is,
v = <1 0)% + <1>mt- in general, smaller than the minimization over the nonzero

codewords inC(A, B, C, D). For this, consider the parity-

Despite the fact thaf7(z) is catastrophic the matrix pair check matrix appearing in (2.7). For each positive integer
00 1 let d, be the distance of the block code defined by (2.7), then
<< ), < )) d. is equal to the minimal weight of a nonzero trajectory of

10 0 length~v+1 which starts from and returns to the zero state. The
forms a controllable pair and the pair integersd., form a nonincreasing sequence and they are related
00 01 but not equal to th_ey_th—order row distancc_e of an encoder
<<1 0), <1 0)) [6, Sec. 3.1]. The limitd., := lim. ... d- is equal to the

minimal weight of a nonzero trajectory which starts from and
forms an observable pair. returns to the all-zero state. This integer is also equal to the
More generally, one can show that any catastrophic polginimal valued; in (2.5) where the minimization is taken over
nomial encoderG(z) has a driving variable representatiorall possible nonzero codeword¥ A, B, C, D). The book of
(A, B,C,D) as described in (2.2) whose matrix paftd, 3) Linand Costello [11, Sec. 10.3] definds, as the free distance
and(.A,C) are both controllable and observable, respectivelgf a convolutional encoder.
thus making it difficult to work with this representation of a On the side ofd., there is a second important distance
code. There is yet another peculiarity of the driving variabkmeasure called thgth-order column distancé6], [11], [17]
representation. 1fG(z) is a polynomial encoder, then theof C, defined as
matrix .4 appearing in the driving variable representation i i
(2.2) is necessarily nilpotent. For these reasons we feel it is .
preferable to work with the input state output representation K <tz% wt () + ; W (yt)> (2.16)
(2.1) of a code. B B
Up to now we have concentrated our efforts on properties where the minimum has to be taken over all possible (trun-
finite-weight convolutional codes of the for@(A, B, C, D). cated) nonzero codewords 6{A, B, C, D). For any positive
In the coding literature [2], [5], [6], [15], [17] it is customaryintegersj and~ one has that; < d,. co = limj .o ¢
to define a convolutional code as J&-linear subspace of is equal to the minimal weight of a nonzero trajectory which
F", where F represents either the field of rational functionstarts from the all-zero state, but does not necessarily return
F(z) or the field of formal Laurent serieB((z)). If G(z) to the all-zero state. This integer is also equal to the minimal
is a polynomial encoder af(A, B, C, D) thenG(z) induces value d; in (2.5) where the minimization is taken over all
a convolutional code& = (f(A,B,C,D) C F™ by simply possible nonzero codeword:%(A,B,C,D). The books of
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Johannesson and Zigangirov [6, Ch. 3] and Piret [17, p. 6F&rity-check matrix appearing in (2.7). This matrix gives a
define co, as the free distance of the convolutior@l By nice algebraic criterion for characterizing the distamgeas
Lemma 2.13 (compare also with [6, Theorem 3.6]) one hdefined in (2.5) and it is also very useful if one is interested in
the equalityc., = d., when the code is observable. algebraic methods for decoding convolutional codes [21]. At
Our last result of this section will show that the state-spatiee same time, there seems to exist little engineering reason
description (2.1) describes in a natural way the dynamics ofady infinite-weight codewords have to be part of the theory.
rational and systematic encoder. For this, recall that a ratiomal fact, McEliece [15, Sec. 2] points out that finite-weight
function(p(z)/q(z)) € F(z) is called proper ifleg ¢ > deg p. codewords are the only ones that can occur in engineering
A matrix with entries inF(z) is called aproper transfer practice. From a more mathematical point of view there are
functionif each entry ofR(>) is a proper rational function. some other beneficial points. The set of all submodules of
F"[2] is in one-to-one correspondence with the the set of all

Lemma 2.14:Notation as in Lemma 2.5. The matriceﬁi ear, shiftinvariant, and complete behavior BF[[]] b
A, B,C, D appearing in (2.9) form a state-space realization %Pcaté orical dualit ' (See [23pTheorem 2.6]) Tr;is a)IlIows
the transfer functiory (2)U(z)~1, i.e., one has the relation: 9 Y ' o

one to simply carry over the representations from systems
C(zl — A 'B+D=Y(2)U(x)"". (2.17) theory to convolutional coding theory and we have done this
in this section. Finally, we would like to mention that the set
In particuIar,Y(z)(_J(z)—]L de.scribe.s a proper transfer fgnctionof all rank & submodule’ C F"[2] of degree at most has
Proof: Equation (2.9) is equivalent to the equations i, 5 natural way the structure of a smooth projective variety
X()U(2)™ = (2] — A)~'B X;, . [20]. The set ofk-dimensional subspace c Fr of
degree at most corresponds to the observable finite-weight
convolutional codes and inside the variek) . this subset
YU(2) ™t = CX(:)U(2) "t + D forms a proper Zariski open set. The “missing points” inside
e closure oﬂ(,‘i’n are the nonobservable convolutional codes.
In the next section, we will use the algebraic description
of Proposition 2.4 to construct observable convolutional codes
Remark 2.15:1f the polynomial matriced/(z),Y (z) have of the form C(A, B, C, D) having a fixed rate and degree.
the property thatY'(z)U(z)~! describes a proper transferBecause of this proposition we will work with finite-weight
function then there always exist matricgésB, C, D satisfying codewords and the free distance that we compute corresponds
(2.17). The dynamical system (2.1) is then callestaie-space to the smallest possible weight of a codeword whose state
realization of the transfer functiont’(2)U/(z)~*. If U(z) is starts and terminates in the all-zero state. Because of Lemmas
either not invertible or ifY (2)U(z) ! is not proper then a 2.11 and 2.13, the distance bounds for these codes also hold
more general state-space description such as el M” if one prefers to consider infinite sequences whose state does
description [23, Theorem 3.1] will be needed. A particulatiot terminate in the all-zero state.
simple algorithm for computing both traditional, B, C, D
realizations as well as more general realizations was recently |||, A G ENERAL CODE CONSTRUCTION TECHNIQUE

given in [22]. AND REED-SOLOMON-TYPE CONVOLUTIONAL CODES

We can view the transfer functidi(z)U(z)~! in two ways. . .
In the coding literature it is customary to consider the cod How do we go about choosind, B, €, and D matrices to

5 - " ebtain observable convolutional codes with large free distance?
C(A,B,C, D) c 77, the F-linear subspace spanned by th e showed in Lemma 2.11 that a code is observable as

columns OfG(Z)I As an encoder oveF, G(z) is equivalent soon as the matrix pa{4, C') forms an observable pair. The
to the systematic encoder L . o ,
code description is only in a minimal form {f4, B) forms
[Y(z)U(z)l} a controllable pair. Hence, two obvious conditions for the

and

which, in turn, is equivalent to (2.17). Using Cramer’s rule iEh
follows from (2.17) thatY (»)U/(z)~* is proper.

I matrices chosen are that
and one can view the encoding as a linear map rank ®5(A,B) =6 and rank Qs5(A,C) = 6.
o: F* — F' K u(z) = y(z) = Y(2)U(2) tu(z). What are some other conditions? Propositions 2.2 and 2.4 tell

. . . - » Us that they(z) part of the trajectories depends locally on
Under this point of view there are no restrictionswz) € F*. Q(A,C), while theu(=) part depends globally o (A, B).

: 1 . :
Alternatively, Y (2)U/(z)~! describes a module homomor Using this insight, we show that by choosinly B, and C

phism from the column module ot/(z) to the column . d :
. . ) . . properly, we can control the trajectories enough to give a lower
module of Y(z). From this point of view, the information : .
bound on the free distance of the corresponding code. Note

vector u(z) is assumed to be in the column modulel&fz) . . .
. - . that we have complete freedom in choosing the mafriand
and this restriction will guarantee that the sequence of state = . . .
LT ére is no concern about the nilpotency of the mattixThe
vectorszg, x1, 2, - - - reaches the all-zero state in finite time

(Compare with Proposition 2.4.) following theorem is in essence [27, Theorem 6.2.1].

The major reason we have developed a theory for finite-Theorem 3.1:Let C be an observable, rate/n, degrees,
weight convolutional codes (i.e., modules) of the fornsonvolutional code defined through the matriegs3, C, and
C(A, B, C, D) is Proposition 2.4 together with the convenienD. Let » be the observability index of the pajrd, C') and
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suppose that there existse Z, such that®,, (A, B) forms
the parity-check matrix of a block code of distanéeThen
the free distance of is greater than or equal @
Proof: Let v(z) € C and suppose thateg v(z
Without loss of generality we assume that # 0. If
then, by Proposition 2.4 and our assumption ®g,(
we obtainwt (u(z)) > d, which implies thatwt (v(z)
Suppose now that > dv and thatwt(u(z)) =
(note that if wt ((u(2)) = b > d we would be done). By
the pigeonhole principle, there must be at ledst b length

1839

Then the convolutional cod€ defined by the matrices
A,B,C,D is an observable, raté/n convolutional code
with degreeé and free distance

de(C)z 6+1+ec (3.1)

Proof: The observability index in this situation is =
[6/(n — k)]. The size of the finite field guarantees that
&5, (A, B) forms the parity-check matrix of a maximum-
distance separable (MDS) code, in particular the distance of
this block code isl = 6 + 1. Because of Theorem 3.1, the free

v sequences of all-zero input vectors occurring before tintistance of the convolutional cod A, B, C, D) is, therefore,

dv — 1. Let
Uipl = Uig2 =+ = Ujpy =0

be one such sequence.

We claim thatz; 11 # 0. To see this, note that if;; = 0,
then we could choose, = 0 for all ¢ > < and we would obtain
a trajectoryii(z) € C with deg 4(z) < ¢ < dv. Proposition 2.4
implies ®;(A, B)t, = 0 with

wt (ﬁ,o,ﬁ,l,“'ai) <d
which contradicts our choice of4, B in the statement
of the theorem. Hencegx;y; # 0. Using Proposition
2.2, and the fact thatank Q,(4,C) = 4, we see that
wt (Yit1, Yit2, > Yitr) > 0. Since there are at leadt— b

such sequences, we obtain
wt ((vo, v1,v2, -+, Vap—1))) 2d—b+b=d

which implies thatwt (v(z)) > d. O

According to this theorem one way to construct convol

at leasté + 1. This establishes the claim in the case when the
convolutional code has a “high rate.”

When ¢ = max{n — 2k + 1,0} > 0 (i.e., the code has
low rate) one can improve on the free distance estimate. One
observes that thén — k) x n matrix (I,,_x D) defines the
parity-check matrix of an MDS block code. The weight of the
code componert:g, 7o), therefore, has to be at least k+1.

The weight ofy, is therefore at least—2k+-1. This completes
the proof. O

It is in general straightforward to compute a generator
matrix from the4-tuple of matrice§ A, B, C, D) as given in
Corollary 3.2 and this is the case even if the free distance is
fairly large. The following example was given in [27, Example
6.3.4].

Example 3.3:Letn =3,k =2,¢ = 1801, = 11,6 = 30,
andD = (0 0). Thenr = 2. Let (A4, B, C, D) be defined as in
Corollary 3.2. Using the identity (2.9) one readily computes

Jhe 3 x 2 generator matrix(z) having entries

tional codes having rate/n, degrees, and designed distance g, ;(z) =315z + 749 + 752'° + 8972% + 639> — 610"

d is to ensure that the matrik,,. (A, B) defines a parity-check
matrix for a “good block code.” This was accomplished in [23]

when the finite field= had sufficiently many elements.

Corollary 3.2: Let » := max{n — k,k} and let« be

a primitive of the fieldF,, i.e., a generator of the cyclic

group F;. Assume|F,| = ¢ > ér[¢/(n — k)] and let
e = max{n — 2k + 1,0}. Let

a” 0 0
A= 0 o . :
S ()
0 0 o
1 a o k1
1 CM2 CM4 a2(k—1)
B=1. . : :
1 o o oS k=1)
1 1 1
(8% 062 Oé(s
o ol at 28
an—k—l a?(n;k—l) aé(n;k—l)
1 1 1
(8% 062 Oék
D= : : :
an—k=1)  2n—k-1) kn—k—1)

+ 8722° — 13325 4+ 4027 — 43123 + 5652°
+ 24721 + 408212 + 674213 — 112 — 783210
a1.2(7) =935z + 104210 4- 83827 4 4102° + —3402*
— 3762° — 1412°% + 99527 + 322,°% — 258"
— 52921 — 1932'% — 5072'% — 7462*
— 55221 4+ 559
g2.1(2) =825z + 41820 4 8227 4+ 8302° + 472* + 8502°
+4492% — 74127 + 60128 4 30627 + 45221
+ 524217 4+ 310212 4+ 2352 — 708217
G2.2(2) =1 — 4422 + 67220 + 7562” — 586> + 909"
+2242° — 4572° + 66127 — 5322° — 3002°
+ 38521 — 98212 — 627218 4 28121
g3.1(2) =858z — 424210 — 18527 — 912% 4 9282* 4 9882°
— 5702% — 59327 + 6402° — 6312° + 7502
+ 1752%% + 647213 + 895211 — 22,10
— 222 4 9072'% 4+ 81222 + 5502 — 6152*
+3242° — 1052° + 43527 4+ 5592% — 6792°
— 33621 — 47222 4 544213 — 27321 + 233215,

g3,2(2)

G(z) defines a ratg/3 convolutional code whose free distance
is at least31. The memory of this code is5 and the degree
is 30.
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In general, the computation of the generator matrix requir€narandache [24] which result in better free distances than
the solution of a system of linear equations having fewer théli"dmax. For the rate% Justesen [8] constructed codes with
62 +n(6+k) unknowns. For this, observe that the computatiomaximal possible free distaneg = n(§ + 1). All of these
of the kernel in (2.9) is a linear problem in the coefficientsonstructions require large field sizes.
of the polynomial matricesX(»),Y(z),U/(»). By Popov’'s It is interesting to observe that the construction that we pro-
Theorem 2.10 we know that thgh-column degree oX (=) vided in Theorem 3.1 is near-optimal for high rates whereas the
is k; — 1. The number of coefficients i (=) is, therefore, construction of Justesen [7], [8] and the extensions of Tanner
6 E?:l k; = 62. Similarly, the number of coefficients in [26] are best for low rates. In [25], Smarandache together with
Y(2),U(2)isn Zle (ki +1) = n(6 + k). the first author showed how the result of Justesen [8] can be

If one writes down the linear system that the coefficiengbtained by choosing the matrices B as in Corollary 3.2
of X(z),Y(z),U(z) do satisfy, one observes that this systerand adding in a clever way a matrX different from the one
is in a fairly sparse form. Because of this, one can compuéovided in Corollary 3.2. Unfortunately, this method works at
generator matrices with a designed free distance of 3@0. this point only for ratel /» and the construction of & matrix
Of course, codes with such a large free distance will requiresulting in better distances seems to be difficult in general.
very large finite fields and we will explain in the next section We conclude the section with an example which explains
how to overcome this obstacle. the properties of the provided codes.

In the remainder of this section we analyze how the free
distance of the presented codes does compare with the lbe
possible free distance among all codes with the same rate a

the same degree. is then at most8 and the free distance is hence at most

Let us first discuss Example 3.3: A. ragy3 code of max = 10(8 4+ 1) = 90. Corollary 3.2 shows that there exists
memory 15 and degree30 can have a distance of at most

3(15+ 1) = 48. Lin and Costello [11, Table 11.1] give the® "A1€9/10 code of distancesl.
best rate2/3 binary codes with degre& < 10. For example, V. BCH-TYPE CONVOLUTIONAL CODES
the best2/3 binary code of degreé = 10 has a distance

. . In this section, we will give techniques for constructions
of d; = 10. Since these results were obtained by computer : g 9 q
over arbitrary finite fields-,.

;earch_, no compa_rable _results for higher degree and Iargeji’he generalization of the Reed—Solomon codes in the theory
field sizes are available in [11]. .
. ?I block codes are the Bose—Chaudhuri-Hocquenghem (BCH)
In general, we know from (3.1) that for the code describe :
. . . i codes (see [12]). In the sequel, we explain how the construc-
in Corollary 3.2 the following estimate holds: . . ; .
tion of the last section can be generalized to arrive at a BCH
ds(C) > type of convolutional code over arbitrary finite fiellls. The
- case whergy = 2 was first presented in [27]. First, we review

It follows that the presented codes are “asymptotically goodome of the ingredients of the BCH construction for block
in the sense that codes.

Example 3.5:Let G(z) be the generator matrix of a rate
b convolutional code of degreé = 80. The smallest
trollability index (compare with Theorem 2.10) 6f(z)

lim dfT(c) > 0. 3.2) Definition 4.1: LetF, be an arbitrary finite field, l&t,d, N

. . _ - be positive integers, lelV satisfy (N, ¢) = 1, and leta be a
HOV]Y_ aredth_ey compa:edbto ﬂ;ef best poss||bl_e coldesd. Eor_t imitive Nth root of unity. LetF,~ be the splitting field of
we first derive a simple bound for a convolutional code havingy _ "¢ 'F .. — F,(a). The BCH code oveF, of design

a certain rate and a certain degree: distanced is defined as thé&, kernel of the matrix

Lemma 3.4: Suppose thaf is a ratek/n code with degree 1 o a2t aN=1)b
§. Then 1 ottt Q20D (V=1 (+1)
§ H:= : : :
df(c) S n \‘E + 1J = dnlax- (33) 1 Oéb+'d_2 a2(b'|"d—2) ...... a(]v—l)‘(b—l—d—?)
Proof: The smallest column degree of a generator matrix (4.2)
G(z)is given bymk < |6/k]. The weight of the corresponding\ye will denote this code by BCHAN, d).
column vector is, therefore, at modt,a. - Note that BCH(N,d) is a linear subspace of). If

Inequality (3.3) in particular implies that> (k/n)dumax — N = ¢ — 1, i€, if a is a primitive of the splitting field
k. Using these estimates we obtain for the codes constructeg-, the code BCH(N, d) is often referred to as primitive

above BCH codeand if b = 1 then one speaks of marrow-sense
) d;(C) N I BCH code
Faeel Ay — 1 The following result is well known (see, e.g., [12, Ch.7,

Hence, for very high rates, the codes constructed abO\S/SC' 6, Theorem 10]) and easy to verify.

are near-maximal. However, we note that very large fieldsTheorem 4.2:BCH,(N,d) C [FQ’ is a cyclic code and
are needed in order to construct these codes. For low raitebas designed distance at leastand dimension at least
some constructions were provided by the first author afd — m(d — 1).
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For the BCH construction which will follow it will be Proof: Direct consequence from the fact thht (A, B)
of importance that we determine the exact dimension obincides with the firstyk columns ofH. O
BCH, (N, d). This will be established in the sequel.

We can identify the BCH code BCHIN,d) c FV
with the set of polynomialse(z) € F,[z] of degree
degc(x) < N and having the property that(xz) has roots
at(a®, ottt ... ob*t4=2) Let M;(z) €F,[z] be the minimal
polynomial ofa?. The generator polynomial of the cyclic cod
BCH, (N, d) is then equal to (see, e.g., [12, Ch.7, Sec. 6])

At this point, the matricesi, B are still defined ovef
and what we really need are matrices defined over the base
field F,. As is well known, we can identify the fiell,~ with
the vector spacélF,)™ and in this way we will have a way
of rewriting the matricesd, B as enlarged matrices ovet,.
eUnfortunately, the situation is not so easy since we will lose in
general the controllability of this “blown-up matrix pa'u@, B.
g(z) = Lem {My(x), Myy1 (), -, Mypa_o(z)}. If one does the process of field extension carefully and
takes into consideration the degrees of the minimal poly-
The following theorem describes now the dimension dfomials M; () of each elements,1 < s < £, it is

BCH, (I, d). possible to arrive at a controllable paﬁ,é defined over
Theorem 4.3 F, whose controllability. matrix has designed distar_m&e .
For reasons of readability we choose not to work in this
dimg, BCH,(N,d) = N —deg g(z) > N —m(d — 1). full generality and we prefer to make certain restrictions

o ) ) which will ultimately guarantee that all irreducible polyno-
Moreover, there exist integets< 71 < - < e <b+d—2 mials {M;, (z), M;,(z), -, M;,(z)} have degreen.

such that Assumeq is a primitive of F,. It is well known that if
g(z) = My, (z) - - M, (z) a' € F = is a root of some polynomiai(z) then
i M (z).
Proof: The dimension formula is given in [12, Ch. 7, o @i o7 = b (4.3)

Sec. 3, Theorem 1]. The selection of the indiges - -, j; is

accomplished by omitting any repetition among the irreducibf§e roots as well. The sefi, i, ¢, ---,¢™'i} is often
factors of { M, (z), My41(x), -, Myya—2(x)}. O referred to as ayclotomic cosetThe cardinality of the set
of roots given in (4.3) is simply the degree of the minimal

_Letat, -, alt be roots ofMj, (x),-- -, M;.(x), 1€SPEC- nolnomial M;(«) and in general it is not true that this degree
tively. Define is m. The following Lemma provides a simple sufficient
1 ot @21 ... .. oN-Da condition. This Lemma is a straightforward generalization of
1 a2 %2 ... .. g(N—Diz [12, Ch. 9, Sect. 3].
H=1]. . . . (4.2)
: : : : Lemma 4.5: Assume that
1 ade @2c ... ... oD

; [m/2]
‘H is obtained fromH by omitting a set of rows. Thé-, 0<i<yq :

kernel of H is equal to thel-, kernel of H by construction.
It is also clear that no further rows can be omitted frétn
without changing the kernel.

For the BCH construction of this section it will be necessary
to show that we can write the parity-check matfik as a i =tmo1q™ 4+ i1q + io.
controllability matrix:

Then them numbers ofF,~ described in (4.3) are pairwise-
different.
Proof: Write the integeri to the base; as

Lemma 4.4:Let k be a positive integer, let, ji, -- -, j¢ be In this way we can identify the integérwith the m-vector

as above. and let (tm—1,- -+, %0). The multiplication byg modulo¢™ — 1 cor-
’ . responds then to a cyclic left shift of the vector. Under the
a0 e 0 assumption of the integémwe know that the firstm/2] com-
A= 0 afiz T : ponents of the corresponding-vector are zero. Therefore,
o : ) 0 there will bem cyclic shifts needed until the vector repeats
0 e 0 ohie itself for the first time. O
1 ot Q¥ ..o ki This lemma will allow us to determine the dimension of
b 1 ad2 a2 ... qUk-Di BCH,(NV, d) more exactly under certain technical conditions.
i ’ 5 * :1)1 Lemma 4.6: Consider the BCH code defined by (4.1). If
a/ £ « Je e o c—1)¢

- [m/2]
Then (A, B) forms a controllable pair and for any positive b+d—2<q

i [ ; < . . .
integer~y with £ < vk < N one has that thé, kernel of then the irreducible polynomial§M;, («), -- -, M;, ()} all

(A, B)=(BAB---A"'B) have degreen. In particular, the dimension

forms a block code of lengthk with designed distancé. dimg BCH,(N,d) = N —m/.
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Remark 4.7: The Lemma is a generalization of [12, Ch. 9, Proof: It is enough to verify the statement for the basis

Sec. 3, Corollary 8]. elementsl, a, - - -, o™~ L. For these elements it is clear that

Proof: Because of Lemma 4.5 each irreducible factanultiplication of a? by « corresponds to multiplication of the
must have degreen. Since the generator polynomial ofvector in (4.4) byL,,. O
BCH,(V,d) is equal tog(z) = M; (x)- ... - M;,(x) the

Remark 4.10:SinceF ;~ = F,[a] the assignment — L,
extends to an isomorphisff,[a] = F,[L,]. In this way, we
For narrow-sense BCH codes we can give a more exatitain a known embedding (compare with [10, Ch. 2.5]) of

claimed dimension formula is established.

dimension estimate: Fg= into the matrix ringGL,,(F,).
Lemma 4.8: Consider the BCH code defined by (4.1) hav- Theorem 4.11:Consider the BCH code defined by (4.1). If
ing b = 1. If b+d—2 < ¢/™?] then the matrices
m/2] .
d—2< g™ 1 (Lo )k 0 0
then the dimension . 0 L. kiz
d—1 S I
diquBCHq(N,d):N—m<d—1— {—J) : . . 0
q 0 0 (La)Me
Proof: The indicesj; < --- < j¢ generating the differ- 1] (o] [o@] - [a(k_l)jl]
ent cyclotomic cosets are in this case given1hg,---,q — 0] 0] [a@e] .- [a®—Die]
1,g+1,.--. By assumption they are all different and have B .=
cardinality m. O : : 3 L
[ o] o] oo [atoDi)

With this preparation we will now be able to assume that
under certain conditions all minimal polynomialg; (x) have having sizesn? x m# andm# x k, respectively, define a con-
cardinalitym. As is done in the classical BCH construction, Wergllable pair. Moreover, if the integey satisfiesmé < ky <

can identifyF,- with the vector spacé ™. For this note that  then the block code defined by the parity-check matrix
Fyn» = F,[a] and thatl, «, - -+, @™ ! forms aF,-basis. We

wiII identify this [Fq—basis with the standard ba3|sE;' ie., & (A B) = (E} A‘é_nﬁwflé)
we make the identification with the following column vectors: R

1 0 0 has designed distance at ledst

0 1 : Proof: Direct consequence of Theorem 4.2 and Lem-
l1e | SO 0 s, o™l o - (4.4) ma 4.4, O

: : 0 As soon as we can exhibit gn — k) x mé matrix C such

0 0 1 that(A4, C') forms an observable pair we will have constructed

If 8 € F is a particular element then denote w the cor- an observable convolutional code of designed distahaed
respondlng column vector i under above identification. degreem/ < m(d—1) as we will show in a moment. We will
Clearly, addition insideF corresponds to vector additionShow first how to construct such a matdx

inside . What about multlpllcatlon by the elemea® For Let

this, note that multiplication by is al, linear transformation 1] [0 [@@] - [o k- Di
insideF ;. This suggests that there exists an invertible linear 0] [o#] [@%] - [a(n_k_l)jz]
transformationZ,, € GL,,(F,) describing this multiplication. C .=
The following lemma makes this precise. : : : :
1] [odc] [e2i] - [alr=F=Did
Lemma 4.9:Let
f@) = fo+ iz + for® + -+ frmaz™ T 42 € Fylz] Lemma 4.12:1f n—k > ged (k, g™ — 1) then(A, C) forms

be an irreducible monic polynomial of degree Let « be a @ controllable pair, in particula(/lt, C*) forms an observable

root of f(x), and letL, be the companion matrix fof(x) pair.
defined by Proof: Let v be an integer satisfying:.{ < kv < N.

Then the matrix®.,(A, B) appearing in Theorem 4.11 has

0 _ 0 fo full rank m¢. We claim that every column ob. (A, B) also
1 -h appears in®;(A,C) for a sufficiently large integei. This
Lo=1o 1 . - | (4.5) would establish thatA, ') forms a controllable pair and hence
. the lemma.
; ' - 0 : If n —k > k, the claim is trivially true. Otherwise,
o --- 0 1 _fm—l

the exponents of the first row ob;(A,C) have the form
Then multiplication by« inside F,~ corresponds to left 0, 71,241, -, (n — k& + 1)j1,kj1,(k + 1)j1,---. Although
multiplication by L,, inside F". some integers seem to be missing, we observe that “modulo
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(g™ — 1) all integers of the top row O@W(A,B) indeed designed distancé then it seems that

appear. For this, consider the factor ring ds(C)

Jm 50 42

and, in analogy to the block code situation, the presented
BCH convolutional codes would be asymptotically bad. At
this point, however, we cannot prove such a result.

We conclude the paper with an illustrative example:

Zyn_y =2Z/(q" — 1)L
Under the conditiom — & > ged (k, ¢™ — 1) it follows that

{G+hC €L 1|0<j <n—k—1,( €L} =Zym_,. (4.6)
Example 4.15:Continuing with Example 3.5 we want to
This establishes the claim. O design a code of rat8/10 and distance3l over the binary
field. We chooséh = 1. By Theorem 4.13 we have to find
m such that2™ > 9m(81% — 81) and ¢/™/? > 80 are both
satisfied. The smallest integer which satisfies these inequalities

The matricesA and At are similar and therefore an invert-
ible matrix S exists such thatlt = SAS—1L. Let

R - is m = 21.
. Ote-l L
C=0"57" (4.7) The numbersjy,---,j, appearing in Theorem 4.11 are,
. therefore, equal td, 3,5, ---,21 and ¢ = 11. The calculated
The main theorem then states. 4-tuple of matrice§ A, B, C, D), therefore, defines an observ-

Theorem 4.13:Let b,k,n,d be fixed positive integers able convolutional code of raf'10, designed distancgl and
with & < n. Choosem such thatg™ > km(d®> — d) and degreed = E(d—_ 1) = 880. The individual pqunomial entries
¢/ > b+d—2 and such that — k > ged (k, g™ —1). Let are, therefore, in the range of degra® which corresponds

to the memory.

The decoding algorithm as presented in [21] can be applied,
provided the Berlekamp—Massey algorithm for a BCH code
with 880 syndromes can be performed.

N = ¢ —1 and leta be a primitiveNth root of unity. Letfl,
B be defined as in Theorem 4.11 and ¢&tbe defined as in
(4.7). Finally, letD be any(n — k) x k constant matrix. Then
the 4-tuple of matrices(A, B,C, D) defines an observable
convolutional code of designed distance at lehahd degree
at mostm(d — 1).

Proof: By Theorem 4.11(A, B) is a controllable pair.  The authors wish to thank B. Allen, H. @ing-Lilerssen,
Sincen — k > ged (k, g™ — 1), we have that A, Ct) forms A Loeliger, R. Smarandache, and P. Weiner for helpful

an observable pair. It follows that for every invertible matrigliscussions during the preparation of this paper. Helpful
S € Gl also (SA*S—1,C*S—1) forms an observable pair, COmments by the anonymous referees are acknowledged as
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