
Tree-Based Construction of LDPC Codes
Deepak Sridhara, Christine Kelley, and Joachim Rosenthal1

Institut für Mathematik,
Universität Zürich,

CH-8057 Zürich, Switzerland.
email: {cak, rosen, sridhara}@math.unizh.ch

Abstract— We present a construction of LDPC codes that have
minimum pseudocodeword weight equal to the minimum dis-
tance, and perform well with iterative decoding. The construction
involves enumerating a d-regular tree for a fixed number of
layers and employing a connection algorithm based on mutually
orthogonal Latin squares to close the tree. Methods are presented
for degrees d = ps and d = ps

+1, for p a prime, – one of which
includes the well-known finite-geometry-based LDPC codes.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes are widely ac-
knowledged to be good codes due to their near Shannon-
limit performance when decoded iteratively. However, many
structure-based constructions of LDPC codes fail to achieve
this level of performance, and are often outperformed by ran-
dom constructions. (Exceptions include the finite-geometry-
based LDPC codes (FG-LDPC) of [1], which were later
generalized in [2].) Moreover, there are discrepancies between
iterative and maximum likelihood (ML) decoding performance
of short to moderate blocklength LDPC codes. This behavior
has recently been attributed to the presence of so-called
pseudocodewords of the LDPC constraint graphs, which are
valid solutions of the iterative decoder which may or may not
be optimal [3]. Analogous to the role of minimum Hamming
distance, dmin, in ML-decoding, the minimal pseudocodeword
weight, wmin, has been shown to be a leading predictor of
performance in iterative decoding. Furthermore, the error floor
performance of iterative decoding is dominated by minimal
weight pseudocodewords. Although there exist pseudocode-
words with weight larger than dmin that have adverse affects
on decoding, pseudocodewords with weight wmin < dmin are
especially problematic [4].

The Type I-A construction and certain cases of the Type II
construction presented in this paper are designed so that the
resulting codes have minimal pseudocodeword weight equal
to the minimum distance of the code, and consequently, these
problematic low-weight pseudocodewords are avoided. The
resulting codes have minimum distance which meets the lower
tree bound originally presented in [5], and since wmin shares
the same lower bound [4], [6], and is upper bounded by dmin,
the proposed constructions have wmin = dmin. It is worth
noting that this property is also a characteristic of some of the
FG -LDPC codes [2], and indeed, the projective-geometry-
based codes of [1] arise as special cases of our Type II

1This work was supported by NSF Grant No. CCR-ITR-02-05310.

construction. Furthermore, the Type I-B construction presented
herein is a modification of the Type I-A construction, and
it yields a family of codes with a wide range of rates and
blocklengths that are comparable to those obtained from finite
geometries.

We now present the tree bound on wmin derived in [6].
Theorem 1.1: Let G be a bipartite LDPC constraint graph

with smallest left (variable node) degree d and girth g. Then
the minimal pseudocodeword weight wmin (for the AWGN/BSC
channels) is lower bounded by

wmin ≥

{
1 + d + d(d − 1) + d(d − 1)2 + . . . + d(d − 1)

g−6

4 ,
g

2
odd

1 + d + d(d − 1) + . . . + d(d − 1)
g−8

4 + (d − 1)
g−4

4 ,
g

2
even

This bound is also the tree bound on the minimum distance
established by Tanner in [5]. And since the set of pseudocode-
words includes all codewords, we have wmin ≤ dmin. In the
following sections we present two construction techniques of
LDPC codes wherein for certain cases, wmin = dmin.

II. PRELIMINARIES

The connection algorithms for the tree constructions Type
I-B and Type II are based on mutually orthogonal Latin
squares. A well-known construction of a family of mutually
orthogonal Latin squares of order ps, a power of a prime,
may be found in [7]. Let M (1), M (2), . . . , M (ps

−1) denote
ps − 1 mutually orthogonal Latin squares (MOLS) of order
ps. Let the rows (and columns) of each square be indexed
by the integers 0, 1, 2, . . . , ps − 1. Without loss of generality,
assume that the first column of each of the Latin squares
is [0, 1, 2, . . . , ps − 1]T . In addition, define a new square of
size ps × ps, denoted M (0), where each column of M (0) is
[0, 1, 2, . . . , ps − 1]T .

III. TREE-BASED CONSTRUCTION: TYPE I

In the Type I construction, first a d-regular tree of alternating
variable and constraint node layers is enumerated from a root
variable node (layer L0) for � layers. If � is odd (respectively,
even), the final layer L�−1 is composed of variable nodes
(respectively, constraint nodes). Call this tree T . The tree T

is then reflected across an imaginary horizontal axis to yield
another tree, T ′, and the variable and constraint nodes are
reversed. That is, if layer Li in T is composed of variable
nodes, then the reflection of Li, call it L′

i, is composed of
constraint nodes in the reflected tree, T ′. The union of these
two trees, along with edges connecting the nodes in layers
L�−1 and L′

�−1 according to a connection algorithm that is

described next, comprise the graph representing a Type I
LDPC code. We now present two connection schemes that
can be used in this Type I model, and discuss the resulting
codes.

A. Type I-A

For d = 3, the Type I-A construction yields a d-regular
LDPC constraint graph having 1 + d + d(d − 1) + . . . +

d(d − 1)
g−4

2 variable and constraint nodes, and girth g. The
tree T has g

2 layers. To connect the nodes in L g

2
−1 to L′

g

2
−1,

first label the variable (resp., constraint) nodes in L g

2
−1

(resp., L′
g

2
−1) when g

2 is odd, as v0, v1, . . . , v2
g

2
−2

−1
,

v
2

g

2
−2 , . . . , v2·2

g

2
−2

−1
, v

2·2
g

2
−2 , . . . , v3·2

g

2
−2

−1
(resp.,

c0, c1, . . . , c3·2
g

2
−2

−1
). The nodes v0, v1, . . . , v2

g

2
−2

−1

form the 0th class, the nodes v
2

g

2
−2 , . . . , v2·2

g

2
−2

−1
form the

1st class, and the nodes v
2·2

g

2
−2 , . . . , v3·2

g

2
−2

−1
form the

2nd class; classify the constraint nodes in a similar manner.
In addition, define three permutations π(·), τ(·), τ ′(·) of the
set {0, 1, . . . , 2

g

2
−2 − 1} as follows. The nodes in L g

2
−1 and

L′
g

2
−1 are connected as follows:

1) For i = 0, 1, and j = 0, 1, . . . , 2
g

2
−2 − 1, the variable

node v
j+i·2

g

2
−2 is connected to nodes c

π(j)+i·2
g

2
−2 and

c
τ(j)+(i+1)·2

g

2
−2 .

2) For i = 2, and j = 0, 1, . . . , 2
g

2
−2−1, the variable node

v
j+i·2

g

2
−2 is connected to nodes c

π(j)+2·2
g

2
−2 and cτ ′(j).

The permutations for the cases g = 6, 8, 10, 12 are given
below. The above construction can be extended for higher g in
a natural way and we are working on an explicit closed form
expression for the permutations π, τ, τ ′ for higher g.

g = 6, π = τ = τ
′

= (0)(1), the identity permutation.

g = 8, π = (0)(2)(1, 3), τ = (0)(2)(1, 3), τ
′ = (0, 2)(1)(3).

g = 10, π = (0)(2)(4)(6)(1, 5)(3, 7), τ = (0)(2)(4)(6)(1, 7)(3, 5),

τ
′ = (0, 4)(2, 6)(1, 3)(5, 7).

g = 12, π = (0)(4)(8)(12)(2, 6)(10, 14)(1, 9)(3, 15)(5, 13)(7, 11),

τ = (0)(4, 12)(8)(2, 6, 10, 14)(1, 15, 13, 11)(3, 9, 7, 5),

τ
′ = (0, 8)(4, 12)(2, 14)(6, 10)(1, 3, 5, 7)(9, 11, 13, 15).

When g
2 is odd, the minimum distance of the resulting code

meets the tree bound, and hence, dmin = wmin. When g

2 is
even, dmin is strictly larger than the tree bound; we believe
however, that wmin is equal to dmin in this case as well.
Figure 1 illustrates the general construction procedure and
Figure 2 shows a girth 10 Type I-A LDPC constraint graph.

B. Type I-B

For d = ps, p a prime, the Type I-B construction yields
a d-regular LDPC constraint graph having 1 + d + d(d −
1) variable and constraint nodes, and girth 6. The tree T

has 3 layers L0, L1, and L2. L2 (resp., L′

2) is composed
of ps sets {Si}

ps
−1

i=0 of ps − 1 variable (resp., constraint)
nodes in each set; the set Si corresponds to the children
of branch i of the root node. Let Si (resp., S′

i) contain
the variable (resp., constraint) nodes vi,1, vi,2, . . . , vi,ps−1

L’
l−1

L
l−1

L
0

L
1

L
2

L’
2

L’
1

L’
0

v
0
v
1
v
2
v
3
v
4
v
5

c
0
c
1
c
2
c
3
c
4
c
5 2l−1

c

2l−1
c +1

2l−2
v 2l−2

v +1
2l−1
v 2l−1

v +1

2l−2
c +12l−2

c

Fig. 1. Tree construction of Type I-A LDPC code.

c1 c2 c3 c4 c5 c6 c7c8 c9 c10 c11 c12 c13 c14 c15c16 c17c18 c19 c20 c21c22 c23c0

v1 v2 v3 v4 v5 v6 v7v8 v9 v10 v11 v12 v13 v14 v15v16 v17v18 v19 v20 v21v22 v23v0

Fig. 2. Type I-A LDPC constraint graph having degree d = 3 and girth
g = 10.

(resp., ci,1, ci,2, . . . , ci,ps−1). To use MOLS of order ps in
the connection algorithm, an imaginary node, vi,0 (resp., ci,0)
is temporarily introduced into each set Si (resp, S′

i). The
connection algorithm proceeds as follows:

1) Let xt(i, j) denote the (j, t)th entry of the square M (i)

defined in Section II. For i = 0, . . . , ps − 1 and j =
0, . . . , ps − 1, connect variable node vi,j to constraint
nodes c0,x0(i,j), c1,x1(i,j), . . . , cps−1,xps

−1(i,j).

2) Delete all imaginary nodes {vi,0, ci,0}
ps

−1
i=0 and the edges

incident on them.
3) For i = 1, . . . , ps − 1, delete the edge connecting v0,i

to c0,i.
The resulting d-regular constraint graph represents the Type I-
B LDPC code. Figure 3 illustrates the construction procedure
and Figure 4 provides a specific example of a Type I-B LDPC
constraint graph with d = 4; the squares used for constructing
this graph are[

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

]
,

[
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

]
,

[
0 2 3 1

1 3 2 0

2 0 1 3

3 1 0 2

]
,

[
0 3 1 2

1 2 0 3

2 1 3 0

3 0 2 1

]
.

The Type I-B algorithm yields LDPC codes having a wide
range of rates and blocklengths that are comparable to, but
different from, the two-dimensional LDPC codes from finite
Euclidean geometries [1], [2]. The Type I-B LDPC codes
are ps-regular with girth six, blocklength N = p2s + 1, and
distance dmin ≥ ps + 1. For degrees of the form d = 2s, the
resulting Type I-B codes have very good rates, above 0.5, and
perform well with iterative decoding.

IV. TREE-BASED CONSTRUCTION: TYPE II

In the Type II construction, first a d-regular tree T of
alternating variable and constraint node layers is enumerated

v1,1v1,0
v1,2

vp −1,0s svp −1,1 svp −1,p −1s

c1,1c1,0 c1,2
c1,p −1 cp −1,0s cp −1,1s cp −1,p −1

ss

v0,p −1
sv0,2v0,1

c0,1c0,0 c0,2
c0,p −1

s

sv1,p −1

s

v0,0

Fig. 3. Tree construction of Type I-B LDPC code. (Shaded nodes are
imaginary nodes and dotted lines are imaginary lines.)

c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3c0,1 c0,2 c0,3c0,0 c1,0 c2,0 c3,0

v0,1 v0,2 v0,3v0,0 v1,1 v1,2 v1,3v1,0 v2,1 v2,2 v2,3v2,0 v3,1 v3,2 v3,3v3,0

Fig. 4. Type I-B LDPC constraint graph having degree d = 4 and girth
g = 6.

from a root variable node (layer L0) for � layers, as in Type I.
The tree T is not reflected; rather, a single layer of (d−1)�−1

nodes is added to form layer L�. If � is odd (resp., even), this
layer is composed of constraint (resp., variable) nodes. The
union of T and L�, along with edges connecting the nodes in
layers L�−1 and L� according to a connection algorithm that
is described next, comprise the graph representing a Type II
LDPC code. We now present the connection scheme that is
used for this Type II model, and discuss the resulting codes.
The connection algorithm for � = 3 and � = 4 proceeds as
follows.

A. � = 3

The d constraint nodes in L1 are labeled B0, B1, . . . , Bps

to represent the d branches stemming from the root
node, and the d(d − 1) variable nodes in the third
layer L2 are labeled as B0,0, B0,1, . . . , B0,ps−1,
B1,0, . . . , B1,ps−1, . . ., Bps,0, . . . , Bps,ps−1. The p2s

constraint nodes in the final layer L� = L3 are labeled
A0,0, A0,1, . . . , A0,ps−1, A1,0, A1,1, . . . , A1,ps−1, . . .,
Aps−1,0, Aps−1,1, . . . , Aps−1,ps−1.

1) The constraint nodes in L3 are grouped into d− 1 = ps

classes of d − 1 = ps nodes in each class. Similarly,
the variable nodes in L2 are grouped into d = ps +
1 classes of d − 1 = ps nodes in each class. Those
nodes descending from B0 form the 0th class, those
descending from B1 form the first class, and so on.

2) Each of the variable nodes descending from B0 is
connected to all the constraint nodes of one class.

That is, B0,0 is connected to A0,0, A0,1, . . . , A0,ps
−1,

B0,1 is connected to A1,0, A1,1, . . . , A1,ps−1, and in
general, B0,k is connected to Ak,0, Ak,1, . . . , Ak,ps−1

which correspond to the constraint nodes in the kth

class.
3) Let xt(i, j) denote the (j, t)th entry of M (i−1).
4) Then connect the variable node Bi,j to the constraint

nodes
A0,x0(i,j), A1,x1(i,j), A2,x2(i,j), . . . , Aps

−1,xps
−1(i,j).

Figure 5 illustrates the construction procedure and Figure 6
provides an example of a Type II LDPC constraint graph with
degree d = 4 and girth g = 6; the squares used for constructing
this example are

M (0) =
[

0 0 0

1 1 1

2 2 2

]
, M (1) =

[
0 1 2

1 2 0

2 0 1

]
, M (2) =

[
0 2 1

1 0 2

2 1 0

]
.

The ratio of minimum distance to blocklength of the codes
is at least 2+ps

1+ps+p2s , and the girth is six. For degrees d of
the form d = 2s + 1, the tree bound on minimum distance
and minimum pseudocodeword weight [5], [6] is met, i.e.,
dmin = wmin = 2 + 2s, for the Type II, � = 3, LDPC codes.

B. Relation to finite geometry codes

The codes that result from this � = 3 construction
correspond to the two-dimensional projective-geometry-based
LDPC (PG LDPC) codes of [2]. With a little modification
of the Type II construction, we can also obtain the two-
dimensional Euclidean-geometry-based LDPC codes of [2].

Since a two-dimensional Euclidean geometry may be ob-
tained by deleting certain points and line(s) of a two-
dimensional projective geometry, the graph of a two-
dimensional EG-LDPC code [2] may be obtained by perform-
ing the following operations on the Type II, � = 3, graph:

1) In the tree T , the root node along with its neighbors,
i.e., the constraint nodes in layer L1, are deleted.

2) Consequently, the edges from the constraint nodes
B0, . . . , Bps to layer L2 are also deleted.

3) At this stage, the remaining variable nodes have degree
ps, and the remaining constraint nodes have degree
ps +1. Now, a constraint node from layer L3 is chosen,
say, constraint node A0,0. This node and its neighboring
variable nodes and the edges incident on them are
deleted. Doing so removes exactly one variable node
from each class of L2, and the degrees of the remaining
constraint nodes in L3 are lessened by one. Thus, the
resulting graph is now ps-regular with a girth of six, has
p2s−1 constraint and variable nodes , and corresponds to
the two-dimensional Euclidean-geometry-based LDPC
code EG(2, ps) of [2].

C. � = 4

1) The tree T is now enumerated for four layers,
with the nodes in L0, L1, and L2 labeled as
in the � = 3 case. For i = 0, . . . , ps, the
constraint nodes in the ith class of L3 are labeled
Bi,0,0, Bi,0,1, . . . , Bi,0,ps−1, Bi,1,0, Bi,1,1, . . . , Bi,1,ps−1,
. . ., Bi,ps−1,0, . . . , Bi,ps−1,ps−1.

B 0 B 1 B p

B 0,0 B 0,p −1 B 1,0 B 1,p −1 B p ,0 B p ,p −1

A0,p −1A0,0
A1,p −1 Ap −1,0A1,0 Ap −1,p −1

B 0,1

B

s

s ss s s

s s s s s

Fig. 5. Tree construction of girth 6 Type II (� = 3) LDPC code.

B 0

B 0,0 B 1,0
B 1,1 B 1,2 B 2,0 B 2,1 B 2,2 B 3,0 B 3,1 B 3,2

B 3B 2B 1

B 0,1 B 0,2

A2,0 A2,1A2,2A0,2A0,0 A0,1 A1,0 A1,1 A1,2

B

Fig. 6. Type II LDPC constraint graph having degree d = 4 and girth g = 6.
(Shaded nodes highlight a minimum weight codeword.)

2) The p3s variable nodes in the final layer L4 are labeled
A0,0,0, A0,0,1, . . . , A0,0,ps−1, A0,1,0, A0,1,1, . . . , A0,1,ps−1,
. . . Aps−1,0,0, Aps−1,0,1, . . . , Aps−1,0,ps−1,
. . . , Aps−1,ps−1,0, Aps−1,ps−1,1, . . . , Aps−1,ps−1,ps−1.

3) For 0 ≤ i ≤ ps − 1, 0 ≤ j ≤ ps − 1, connect the
variable node B0,i,j , that is in the 0th class of L3, to
the constraint nodes Ai,j,0, Ai,j,1, . . . , Ai,j,ps

−1.

4) Let xt(i, k) = M (i−1)(k, t), the (k, t)th entry of
M (i−1), and let yt(i, j) = M (i)(j, t), the (j, t)th entry
of M (i∗), where i∗ = i mod ps.

5) Then, for 1 ≤ i ≤ ps, 0 ≤ j, k ≤ ps − 1, connect the
variable node Bi,j,k to the constraint nodes

A0,x0(i,k),y0(j,k), A1,x1(i,k),y1(j,k), . . . , Aps
−1,xps

−1(i,k),yps
−1(j,k).

The Type II, � = 4, LDPC codes have girth eight, minimum
distance dmin ≥ 2(ps+1), and blocklength N = 1+ps+p2s+
p3s. (We believe that the tree bound on the minimum distance
is actually met for all the Type II, � = 4, codes, i.e. dmin =
wmin = 2(ps+1).) Figure 7 illustrates the general construction
procedure. For d = 3, the Type II, � = 4, LDPC constraint
graph as shown in Figure 8 corresponds to the (2, 2)-Finite-
Generalized-Quadrangles-based LDPC (FGQ LDPC) code of
[8]; the squares used for constructing this code are

M (0) =
[

0 0

1 1

]
, M (1) =

[
0 1

1 0

]
.

We believe that the Type II, � = 4, construction results in
other FGQ LDPC codes for other choices of d. The Type
II construction algorithm can be modified for larger � by
involving more iterations of the MOLS in the connection
scheme, as will be discussed in a forthcoming paper.

B 0 B 1 B p

B 0,0 B 0,p −1 B 1,0 B 1,p −1 B p ,0 B p ,p −1

A0,0,0 A0,0,p −1

B 1,p −1,p −1B 1,p −1,0
B 1,0,p −1B 1,0,0

B 0,p −1,p −1B 0,p −1,0B 0,0,0 B p ,0,p −1B p ,0,0 B p ,p −1,p −1B p ,p −1,0
B 0,0,p −1

A0,p −1,0 A0,p −1,p −1 Ap −1,p −1,0
Ap −1,0,0

Ap −1,0,p −1 Ap −1,p −1,p −1

B

s

s s s s s s s s

s s s

s s s s s

s s s s s

s s

s s

s s s

s s

Fig. 7. Tree construction of girth 8 Type II (� = 4) LDPC code.

B 0 B 1 B 2

B 0,0 B 0,1 B 1,0 B 1,1 B 2,0 B 2,1

B 0,0,0 B 0,0,1 B 0,1,0 B 0,1,1 B 1,0,0 B 1,0,1 B 1,1,0 B 1,1,1 B 2,0,0 B 2,0,1 B 2,1,0 B 2,1,1

A0,0,0 A0,0,1 A0,1,0 A0,1,1 A1,0,0 A1,0,1 A1,1,0 A1,1,1

B

Fig. 8. Type II LDPC constraint graph having degree d = 3 and girth g = 8.
(Shaded nodes highlight a minimum weight codeword.)

V. SIMULATION RESULTS

Figures 9, 10, 11, 12 show the bit-error-rate performance of
Type I-A, Type I-B, Type II girth six, and Type II girth eight
LDPC codes, respectively over a binary input additive white
Gaussian noise channel with min-sum iterative decoding. The
performance of regular or semi-regular randomly constructed
LDPC codes of comparable rates and blocklengths are also
shown. (All of the random LDPC codes compared in this paper
have a variable node degree of three and are constructed from
the online LDPC software available at

http://www.cs.toronto.edu/̃ radford/ldpc.software.html.)
Figure 9 shows that the Type I-A LDPC codes perform

substantially better than their random counterparts. Figure 10
reveals that the Type I-B LDPC codes perform better than
comparable random LDPC codes at short blocklengths; but as
the blocklengths increase, the random LDPC codes tend to
perform better in the waterfall region. Eventually however, as
the SNR increases, the Type I-B LDPC codes outperform the
random ones since, unlike the random codes, they do not have
a prominent error floor. Figure 11 reveals that the performance
of Type II girth-six LDPC codes is also significantly better
than comparable random codes; these codes correspond to
the two dimensional PG LDPC codes of [2]. Figure 12
indicates the performance of Type II girth-eight LDPC codes;
these codes perform comparably to random codes at short
blocklengths, but at large blocklengths, the random codes
perform better as they have larger relative minimum distances
compared to the Type II girth-eight LDPC codes.

As a general observation, min-sum iterative decoding of

1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type I versus Random LDPCs

Type I, d=3,g=6,N=10,rate=0.400
Random, N=10,rate=0.400
Type I, d=3,g=8,N=22,rate=0.182
Random, N=22,rate=0.182
Type I, d=3,g=10,N=46,rate=0.217
Random, N=46,rate=0.217
Type I, d=3,g=12,N=94,rate=0.148
Random, N=94,rate=0.148

Type I

Random

Fig. 9. Performance of Type I-A versus Random LDPC codes with min-sum
iterative decoding.

most of the tree-based LDPC codes (particularly, Type I-A,
Type II, and some Type I-B) presented here did not typically
reveal detected errors, i.e., errors caused due to the decoder
failing to converge to any valid codeword within the maximum
specified number of iterations. Detected errors are caused
primarily due to the presence of pseudocodewords, especially
those of minimal weight. We think that the lack of detected
errors with iterative decoding of these LDPC codes is primarily
due to their good minimum pseudocodeword weight wmin.

VI. CONCLUSIONS

The Type I construction yields a family of LDPC codes
that, to the best of our knowledge, do not correspond to
any of the LDPC codes obtained from finite geometries or
other geometrical objects. The two tree-based constructions
presented in this paper yield a wide range of codes that
perform well when decoded iteratively, largely due to the
maximized minimal pseudocodeword weight. However, the
overall minimum distance of the code is relatively small.
Constructing codes with larger minimum distance, while still
maintaining dmin = wmin, remains an open problem.

REFERENCES

[1] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite
geometries: A rediscovery and new results”, IEEE Trans. of Information Theory,
vol. IT-47, no. 7, pp. 2711-2736, Nov. 2001.

[2] S. Lin, H. Tang, Y. Kou, J. Xu, and K. Abdel-Ghaffar, “Codes on Finite Geometries”,
Proceedings of the 2001 IEEE Info. Theory Workshop, (Cairns), Sept. 2-7, 2001.

[3] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding of finite length
codes”, in Proceedings of the IEEE International Symposium on Turbo Codes and
Applications, (Brest, France), Sept. 2003.

[4] C. Kelley and D. Sridhara, “Pseudocodewords of Tanner Graphs”, Submitted to
IEEE Transactions on Information Theory.

[5] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
on Information Theory, vol. IT-27, no. 5, pp. 533-547, Sept. 1981.

[6] C. Kelley, D. Sridhara, J. Xu, and J. Rosenthal, “Pseudocodeword-weights and
Stopping sets”, in Proceedings of the IEEE International Symposium on Information
Theory, (Chicago, USA), p. 150, June 27 - July 3, 2004.

[7] F. S. Roberts, Applied Combinatorics. Prentice Hall, New Jersey, 1984.
[8] P. O. Vontobel and R. M. Tanner, “Construction of codes based on finite generalized

quadrangles for iterative decoding”, in Proceedings of the IEEE International
Symposium on Information Theory, (Washington DC), p. 223, June 24 - 29, 2001.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type I−B versus Random LDPCs

Type I−B, d=3,g=6,N=10,rate=0.300
Random, N=10,rate=0.300
Type I−B, d=4,g=6,N=17,rate=0.294
Random, N=17,rate=0.294
Type I−B, d=5,g=6,N=26,rate=0.269
Random, N=26,rate=0.269
Type I−B, d=8,g=6,N=65,rate=0.477
Random, N=65,rate=0.477
Type I−B, d=16,g=6,N=257,rate=0.626
Random, N=257,rate=0.626
Type I−B, d=32,g=6,N=1025,rate=0.732
Random, N=1025,rate=0.732

Type I−B

Random

Fig. 10. Performance of Type I-B versus Random LDPC codes with min-sum
iterative decoding.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

Performance of Type II versus Random LDPCs (Girth = 6)

Type II, d=3,N=7,rate=0.42
Random, N=7,rate=0.42
Type II, d=5,N=21,rate=0.52
Random, N=21,rate=0.52
Type II, d=9,N=73,rate=0.61
Random, N=73,rate=0.61
Type II, d=17,N=273,rate=0.69
Random, N=273,rate=0.69
Type II, d=33,N=1057,rate=0.77
Random, N=1057,rate=0.77

Type II

Random

Fig. 11. Performance of girth 6 Type II versus Random LDPC codes with
min-sum iterative decoding.

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Performance of Type II versus Random LDPCs (Girth = 8)

Type II, d=3,N=15,rate=0.333
Random, N=15,rate=0.333
Type II, d=5,N=85,rate=0.412
Random, N=85,rate=0.412
Type II, d=9,N=585,rate=0.444
Random, N=585,rate=0.444
Type II, d=4,N=40,rate=0.325
Random, N=40,rate=0.325

Type II

Random

Fig. 12. Performance of girth 8 Type II versus Random LDPC codes with
min-sum iterative decoding.

