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Abstract—This paper studies the decoding capabilities of maxi-
mum distance profile (MDP) convolutional codes over the erasure
channel and compares them with the decoding capabilities of
MDS block codes over the same channel. The erasure channel
involving large alphabets is an important practical channel model
when studying packet transmissions over a network, e.g, the
Internet.
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I. INTRODUCTION

When transmitting over an erasure channel like the Internet,
one of the problems encountered is the delay experienced
on the received information which is due to the possible re-
transmission of lost packets. One way to eliminate these delays
is by using forward error correction.

Until now mainly block codes have been used for such a
task, see e.g. [2] and the references therein. The use of convo-
lutional codes over the erasure channel has been studied much
less and we are aware of the work of Epstein [1] and the more
recent work by Arai et al. [3]. In this paper we demonstrate
how maximum distance profile (MDP) convolutional codes
provide an attractive alternative to block codes.

Convolutional codes have a certain flexibility given by the
“sliding window” characteristic. This means that the received
information can be grouped in blocks or windows in many
ways, depending on the erasure bursts, and then be decoded
by decoding the “easy” blocks first. This flexibility in group-
ing information brings certain freedom in the handling of
sequences; we can split the blocks in smaller windows, we
can overlap windows, etc., we can proceed to decode in a less
strict order. The blocks are not fixed as in the block code case,
i.e., they do not have a fixed grouping of a fixed length. We
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can slide along the transmitted sequence and decide the place
where we want to start our decoding depending on the erasure
occurrence. This property allows us to correct in a given block
more erasures than a block code of that same length could do.

An [N,K] block code used for transmission over an erasure
channel can correct up to N−K erasures in a given block. The
optimal error capability of N − K is achieved by an [N,K]
maximum distance separable (MDS) code.

As an alternative consider now a class of (n, k, δ) convo-
lutional codes, i.e., a class of rate k/n convolutional codes
having degree δ. We will demonstrate that for this class, the
maximum number of errors which can be corrected in some
sliding window of appropriate size is achieved by the subclass
of MDP convolutional codes. In this paper, we will study the
maximum number of erasures that such a class of codes can
decode and the conditions under which this happens. Moreover
we will show that over the erasure channel this class of codes
can decode efficiently. To be more specific we will show that a
code over a very large alphabet (e.g q in the range of 21000) and
the number of states in the order of q50 can still be decoded
in practical terms on a personal computer. This is of course
something which cannot be achieved by trellis decoding.

The paper is organized as follows. Section II provides
the necessary background for the development of the paper.
Thus, subsection II-A explains the assumptions on the channel
model; subsection II-B provides all the necessary concepts
about MDP convolutional codes and their characterizations.
Section III is the main part of the paper. It contains our main
result and describes in detail the decoding procedure. It also
provides examples and special concerns to be noticed when
comparing with MDS block codes, and in particular with
Reed-Solomon codes. Section IV shows a decoding method
in which the transmitted information is recovered directly.

II. PRELIMINARIES

A. Erasure channel

An erasure channel is a communication channel where the
symbols sent either arrive correctly or the receiver knows that
a symbol has not been received or was received incorrectly. An
important example of an erasure channel is the Internet, where
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packet sizes are upper bounded by 12,000 bits - the maximum
that the Ethernet protocol allows (that everyone uses at the
user end). In many cases, this maximum is actually used. Due
to the nature of the TCP part of the TCP/IP protocol stack,
most sources need an acknowledgment confirming that the
packet has arrived at the destination; these packets are only 320
bits long. So if everyone were to use TCP/IP, the packet size
distribution would be as follows: 35% –320 bits, 35% – 12,000
bits and 30% – in between the two, uniform. Real-time traffic
used, e.g., in video calling does not need an acknowledgment
since that would take too much time; overall, the following is
a good assumption of the packet size distribution: 30% – 320
bits, 50% – 12,000 bits, 20% –in between, uniform.

We can model each packet as an element or sequence of
elements from a large alphabet. Since packets over the Internet
are usually protected by a cyclic redundancy check (CRC)
code the receiver knows when a packet is in error or has not
arrived. For the purpose of illustration we could employ as
alphabet the finite field F := F21,000 . If a packet has less than
1,000 bits then one uses simply the corresponding element
of F. If the packet is larger one uses several alphabet symbols
to describe the packet. Even if one uses some interleaving,
such an encoding scheme results in the property that errors
tend to occur in bursts and this is a phenomena observed about
many channels modeled via the erasure channel. This point is
important to keep in mind when designing codes which are
capable of correcting many errors over the erasure channel.

B. MDP convolutional codes

Let F be a finite field. We view a convolutional code C with
rate k/n as a submodule of Fn[z] (see [5], [12], [13]) that can
be described as

C =
{
v(z) ∈ Fn[z]|v(z) = G(z)u(z) with u(z) ∈ Fk[z]

}
where G(z) is a n× k polynomial matrix called a generator
matrix for C, u(z) is the information vector and v(z) is the
code vector or codeword.

We define the degree of a convolutional code C, and
we denote it by δ, as the maximum of the degrees of the
determinants of the k × k sub-matrices of any generator
matrix of C. Then we say that C is an (n, k, δ) convolutional
code [11].

In case the convolutional code C is also observable (see,
e.g., [12], [15]) then C can be equivalently described through
a parity check matrix. In other words, there exists in this case
an (n− k)× n full rank polynomial matrix H(z) such that

C =
{
v(z) ∈ Fn[z] | H(z)v(z) = 0 ∈ Fn−k[z]

}
.

If we write v(z) = v0 + v1z + . . . + vlz
l (with l ≥ 0) and

we represent H(z) as a matrix polynomial

H(z) = H0 + H1z + . . . + Hνzν .

we can expand the kernel representation in the following way

H0

...
. . .

Hν . . . H0

. . . . . .
Hν . . . H0

. . .
...

Hν




v0

v1

...
vl

 = 0. (1)

An important distance measure for convolutional codes is
the free distance:

dfree(C) := min {wt(v(z)) | v(z) ∈ C and v(z) 6= 0} .

The following lemma shows the importance of the free dis-
tance as a performance measure of a code used over the erasure
channel.

Lemma 2.1: If C is a convolutional code with free distance
d := dfree and if during transmission at most d − 1 erasures
occur then these erasures can be uniquely decoded. Moreover,
there exist patterns of d erasures which cannot be uniquely
decoded.

Proof: Let v(z) = v0+v1z+. . .+vlz
l be a received vec-

tor with d−1 symbols erased. Let the erasures be in positions
i1, . . . , id−1. The homogeneous system (1) of (ν+l+1)(n−k)
equations with (l + 1)n unknowns can be changed into an
equivalent nonhomogeneous system

Ĥ


vi1

vi2
...

vid−1

 = b

of (ν + l + 1)(n − k) equations with d − 1 unknowns
vi1 , . . . , vid−1 .

This nonhomogeneous system has a solution, because of the
assumption that the channel allows only erasures. In addition
the columns of the system matrix are linearly independent,
because d = dfree(C), so the matrix Ĥ is full column rank. It
follows from these two facts that the solution must be unique.

Rosenthal and Smarandache [14] showed that an (n, k, δ)
convolutional code has a free distance upper bounded by

dfree(C) ≤ (n− k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1. (2)

This bound is known as the generalized Singleton bound [14]
since it generalizes in a natural way the Singleton bound for
block codes. Analogously, we say that an (n, k, δ) code is a
maximum distance separable convolutional code (MDS) [14]
if its free distance achieves the generalized Singleton bound.

Another local distance measure, important as well for
decoding and related with the previous one, is the column
distance [8], dc

j(C), given by the expression

dc
j(C) = min

{
wt(v[0,j](z)) | v(z) ∈ C and v0 6= 0

}
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where v[0,j](z) = v0 + v1z + . . . + vjz
j represents the jth

truncation of the codeword v(z) ∈ C. It is related with the
dfree(C) in the following way

dfree(C) = lim
j→∞

dc
j(C). (3)

The j-th column distance is then upper bounded by

dc
j(C) ≤ (n− k)(j + 1) + 1 (4)

and the maximality of any of the column distances implies the
maximality of all the previous ones, that is, if dc

j(C) = (n −
k)(j+1)+1 for some j, then dc

i (C) = (n−k)(i+1)+1 for i ≤
j, see [4], [6]. The (m + 1)-tuple (dc

0(C), dc
1(C), . . . , dc

m(C))
is called the column distance profile of the code [8].

Since no column distance can achieve a value greater than
the generalized Singleton bound, the largest integer for which
that bound can be attained is

L =
⌊

δ

k

⌋
+

⌊
δ

n− k

⌋
. (5)

An (n, k, δ) convolutional code C is maximum distance
profile (MDP) [4], [6], if dc

L(C) = (n − k)(L + 1) + 1. In
this case, every dc

j(C) for j ≤ L is maximal, so we can say
that the column distances of MDP codes increase as rapidly
as possible for as long as possible.

In order to characterize the column distances as well as
MDP codes algebraically assume the parity check matrix is
given as H(z) =

∑ν
i=0 Hiz

i. For each j > ν define Hj = 0
and define:

Hj =


H0

H1 H0

...
...

. . .
Hj Hj−1 · · · H0

 ∈ F(j+1)(n−k)×(j+1)n.

(6)
Then we have:

Theorem 2.2: ( [4, Proposition 2.1]) Let d ∈ N. Then the
following properties are equivalent.
(a) dc

j = d;
(b) none of the first n columns of Hj is contained in the span

of any other d−2 columns and one of the first n columns
of Hj is in the span of some other d− 1 columns of that
matrix.

As a consequence we have the algebraic characterization of
MDP convolutional codes:

Theorem 2.3: ( [6, Theorem 3.1]) The j-th column distance
attains the maximum value

dc
j = (n− k)(j + 1) + 1, (7)

if and only if, every (j + 1)(n− k)× (j + 1)(n− k) full-size
minor of Hj formed from the columns with indices 1 ≤ i1 <
· · · < i(j+1)(n−k), where is(n−k) ≤ sn for s = 1, . . . , j, is
nonzero.

In particular when j = L, then H(z) represents an MDP
code, if and only if, every (L + 1)(n− k)× (L + 1)(n− k)

full-size minor of HL formed from the columns with indices
1 ≤ i1 < · · · < i(L+1)(n−k), where is(n−k) ≤ sn for s =
1, . . . , L, is nonzero.

MDP convolutional codes can be thought to be like an MDS
block code within windows of size (L+1)n. The nonsingular
full-size minors property given in the previous theorem ensures
that if we truncate a codeword at iterations up to L it will have
weight higher or equal than the bound (7).

III. DECODING OVER AN ERASURE CHANNEL

Let us suppose that we use an MDP convolutional code C
to transmit over an erasure channel. Then we can state the
following result.

Theorem 3.1: Let C be an (n, k, δ) MDP convolutional
code. If in any sliding window of length (L + 1)n at most
(L + 1)(n− k) erasures occur then we can recover the whole
sequence.

Proof: Assume that we have been able to correctly
decode up to an instant t − 1. Then we have the following
homogeneous system :

26666664

Hν Hν−1 . . . H0

Hν . . . H1

. . .

. . . H0

HL . . . H1 H0

37777775

266666666664

vt−ν

...
vt−1

?
?
...
?

377777777775
= 0 (8)

where ? takes the place of a vector that had some of the com-
ponents erased. Let the positions of the erased field elements
be i1, . . . , ie, e ≤ (n − k)(L + 1), where i1, . . . , is, s ≤ n,
are the erasures occurring in the first erased n-vector. We can
compute the syndrome and get a nonhomogeneous system with
(L + 1)(n − k) equations and e, at most (L + 1)(n − k),
variables.

We claim that there is an extension {ṽt, . . . , ṽt+L} such
that the vector (vt−ν . . . vt−1 ṽt, . . . , ṽt+L) is a codeword
and such that ṽt is unique.

Indeed, we know that a solution of the system exists since
we assumed only erasures occur. To prove the uniqueness of
ṽt, or equivalently, of the erased elements ṽi1 , . . . , ṽis

, let us
suppose there exist two such good extensions {ṽt, . . . , ṽt+L}
and {˜̃vt, . . . , ˜̃vt+L}. Let hi1 , . . . ,hie , be the column vectors
of the sliding parity-check matrix in (8) which correspond to
the erasure elements. We have:

ṽi1hi1 + . . . ṽis
his

+ . . . + ṽie
hie

= b̃

and
˜̃vi1hi1 + . . . + ˜̃vishis + . . . + ˜̃viehie = ˜̃b,

where the vectors b̃ and ˜̃b correspond to the known part of the
system. Subtracting these equations and observing that b̃ = ˜̃b,
we obtain:

(ṽi1 − ˜̃vi1)hi1 + . . . + (ṽis − ˜̃vis)his + . . . + (ṽie − ˜̃vie)hie = 0.
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Using Theorem 2.2 for j = L, and using that the code is
MDP, so dc

L = (L + 1)(n− k) + 1, we obtain by part (b) that
the system is full rank and necessarily,

ṽi1−˜̃vi1 = 0, . . . , ṽis
− ˜̃vis

= 0,

This concludes the proof of our claim.
In order to find the value of this unique vector, we solve

the full column rank system, find a solution and retain the part
which is unique. Then we slide n bits to the next n(L + 1)
window and proceed as above.

A. Examples and Remarks

Remark 3.2: The decoding algorithm requires only simple
linear algebra. For every (n− k) erasures a matrix of size at
most (L + 1)(n− k) has to be inverted over the base field F.
This is easily achieved even over fairly large fields.

In addition one should notice that for a rate k
n MDP

convolutional code, 100 · n−k
n percent of the erasures can be

corrected.
Remark 3.3: Theorem 3.1 is optimal in a certain sense: One

can show that for any (n, k, δ) code there exist patterns of
(L+2)(n−k) erasures in a sliding window of length (L+2)n
which cannot be uniquely decoded.

The following illustrative example compares the size of a
particular MDP convolutional code with an MDS block code
which would perform similarly.

Example 3.4: Let us take a (2, 1, 50) MDP convolutional
code to decode over an erasure channel. In this case the
decoding can be completed if in any sliding window of length
202 there are not more than 101 erasures; 50% of the erasures
can be recovered.

The MDS block code which achieves a comparable perfor-
mance is a [200, 100] MDS block code. In a block of 200
symbols we can recover 100 erasures, that is again 50%.

Remark 3.5: It has been noticed that the parameter L gives
us an upper bound on the length of the window we can take
to correct, but it should be noticed as well that the property
of Theorem 2.3 holds for every j < L. This means that we
can take smaller windows to set our systems (the size will be
conveniently decided by the distribution of the erasures in the
sequence). Then in a window of size (j+1)n symbols we can
recover at most (j + 1)(n− k) erasures.

This property allows us to recover the erasures in situations
where the MDS block codes cannot do it. For example, assume
that we have been able to correctly decode up to an instant t
and then it comes a block of 200 symbols where 2 bursts of
60 erasures occur separated by a block of 80 clean symbols,
and after it, clean symbols again.

60︷ ︸︸ ︷
? ? . . . ? ? v61v62 . . . v140

60︷ ︸︸ ︷
? ? . . . ? ? v201v202 . . .

In this situation 120 erasures happen in a block of 200 symbols
and the MDS block code is not able to recover them. In the

block code situation one has to skip the whole block losing
that information, and go on with the decoding.

However, the MDP convolutional code can deal with this
situation. Let us set a 120 symbols length window; in these
windows we can correct up to 60 erasures. We can take 100
previous decoded symbols, then set a window with the first
60 erasures and 60 more clean symbols. In this way we can
recover the first block of erasures. Then we can slide through
the received sequence with this 120 symbols window until we
set the rest of the erasures in the same way.

v40 . . . v140

60︷ ︸︸ ︷
? ? . . . ? ? v201v202 . . . v260

After this we have correctly decoded the sequence.
Remark 3.6: Another advantage to remark is related to the

storage and to the field size required to construct the codes.
In the example, we propose we have a [200, 100] MDS block
code. If we take, for example, a Reed-Solomon code (one of
the most widely used MDS block codes) then we need to store
the 200 roots of a 200 degree polynomial to set the code. That
is, we need at least 200 field elements.

However, to set the (2, 1, 50) MDP convolutional code we
need to store the coefficients of 2 polynomials of degree 50,
that is at most 100 different elements.

Nevertheless there are some disadvantages. On the one
hand, the storage and the field size are smaller, but on the
other hand, there are not direct constructions for the case of
MDP convolutional codes. This is still an open problem.

The construction of MDP convolutional codes has been
developed somewhat [7], however there exists still no efficient
algorithm to construct this class of codes. In relation to this
problem, special type of matrices called superregular matrices
proved to be relevant during this study and this topic has
become of main importance when trying to construct MDP
convolutional codes [6], [9].

If we denote by T i1,...,ir

j1,...,jr
the r× r submatrix obtained from

a matrix T ∈ Fn×n by taking the rows with indices i1, . . . , ir
and the columns with indices j1, . . . , jr, then we can define a
superregular matrix as follows.

Definition 3.7: [6] A lower triangular Toepliz matrix T

T =


t1 0 . . . 0

t2 t1
. . .

...
...

. . . . . . 0
tn . . . t2 t1

 ∈ Fn×n (9)

is said to be superregular if T i1,...,ir

j1,...,jr
is nonsingular for all

1 ≤ r ≤ n and all indices 1 ≤ i1 < . . . < ir ≤ n, 1 ≤ j1 <
. . . < jr ≤ n which satisfy js ≤ is for s = 1, . . . , r. The
submatrices obtained by picking such indices are called the
proper submatrices and their determinants the proper minors
of T .

Unfortunately, the characterization or construction of these
matrices is a hard problem and more research is needed in this
direction in order to come up with a construction for MDP
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convolutional codes. It was however shown in [6] that over
an infinite field MDP convolutional codes form a generic set.
As a result we can expect that over a very large field (e.g.
Fq = F21000) a randomly constructed convolutional code is
MDP.

IV. DECODING WITH THE HELP OF THE GENERATOR

MATRIX

In this section we explain how the use of the generator
matrix of the MDP code can make our decoding process more
efficient and faster.

We know that the encoding process is represented by
G(z)u(z) = v(z), so the idea is to use this relation to recover
directly the original message u(z) instead of computing first
the code sequence and then decode it into the original sequence
u(z), as we did before when working with the parity check
matrix.

In an analogous way to the parity check matrix we can
expand the generator matrix into

G(z) = G0 + G1z + . . . + Gmzm

and define Gj as

Gj =


G0

G1 G0

...
. . .

Gj Gj−1 . . . G0

 . (10)

Then the equivalences in the following theorem give us the
properties to improve the decoding algorithm.

Theorem 4.1: ( [4, Theorem 2.4]) Let Hj and Gj be as in
(6) and (10). Then the following are equivalent:

1) dc
j = (n− k)(j + 1) + 1

2) every (j + 1)k× (j + 1)k full-size minor of GT
j formed

from the columns with indices 1 ≤ t1 < . . . < t(j+1)k,
where tsk+1 > sn for s = 1, . . . , j, is nonzero.

One notices that for an MDP convolutional code the maximum
size of the matrix Gj we can construct is again given by
the parameter L. This tells us that the maximum number of
original symbols we are able to recover in one time is (L+1)k.
Since in any sliding window of length (L+1)n not more than
(L+1)(n−k) erasures occur we can set a full rank system with
at least (L+1)k equations to recover the (L+1)k symbols of
the original sequence. We will leave the details to the reader.

V. CONCLUSION

In this paper, we propose MDP convolutional codes as an
alternative to block codes when decoding over an erasure
channel. We have seen that the step-by-step-MDS property
of the MDP codes lets us recover the maximum number
of erasures at every step. Even over large field sizes the
complexity of decoding is polynomial for a fixed window size
since the decoding algorithm requires the solving of some
linear system only. Moreover, the sliding window property
allows us to adapt the decoding process to the distribution

of the erasures in the sequence. We have shown how the
possibility of taking smaller windows lets us recover erasures
that the block codes cannot recover.
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