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Abstract

This thesis looks at two di�erent problems in probability theory.

The �rst part of the thesis treats the problem of characterizing the law of the largest eigenvalue

in the generalized Cauchy random matrix ensemble. The generalized Cauchy random matrix

ensemble is an ensemble of Hermitian matrices with a weight that can be viewed as a general-

ization of the standard Cauchy probability distribution. Forrester and Witte describe the law

of the largest eigenvalue of a matrix in such an ensemble of �nite size N × N in earlier work

(Nonlinearity, 13:1965�1986, 2000 and Nagoya Math. J., 174:29�114, 2004). They obtain a

characterization of this law in terms of a Painlevé-VI equation using the theory of τ -functions.

We show that under a restriction on the involved parameters, the same result can be obtained

via the famous formalism of Tracy and Widom (Comm. Math. Phys., 163:33�72, 1994). Then,

we show that when the largest eigenvalue is appropriately scaled, this law converges pointwise to

a limiting law when the size of the ensemble tends to in�nity. The limit law can be interpreted

as the law of the largest point in a determinantal point process on the real line described by

Borodin and Olshanski (Comm. Math. Phys., 223:87�123, 2001). We also characterize the limit

law in terms of a Painlevé-V equation and give a sense to the convergence of the correspond-

ing Painlevé-VI equation for the �nite case to the former equation when N → ∞. Finally, we

also show that the pointwise convergence of the law is of order N−1. The techniques we use

to obtain the convergence results are completely elementary. They essentially involve checking

pointwise convergence and domination of all quantities involved in the corresponding Fredholm

determinants in order to apply dominated convergence.

In the second part of the thesis we deal with the asymptotic behavior of the perturbed weakly

self-avoiding walk. The weakly self-avoiding walk is a random walk on Zd where self-intersections
are penalized by a factor 1− λ, λ > 0 a small parameter and the dimension d ≥ 9 (respectively

d ≥ 5 in the symmetric case). We use the lace expansion to show that when starting the walk

with a distribution which is a small perturbation of the standard nearest neighbor distribution
1
2d1{x:‖x‖=1}, a local central limit Theorem holds with exponential error decay and a correction of

order n−d/2 near the mean of the walk. Our main Theorem in this part is in fact a more general

central limit Theorem for convolution equations similar to the one given by the weakly self-

avoiding walk. The lace expansion has been introduced by Brydges and Spencer (Comm. Math.

Phys., 97:125�148, 1985). Most approaches to the lace expansion use Fourier methods. We

however use the Banach �xed point Theorem for an appropriately chosen space and operator to

show that the limiting density of the weakly self-avoiding walk is stable under small perturbations

and close to a normal density. Our method is based on earlier work for the symmetric (standard)

weakly self-avoiding walk by Ritzmann (PhD thesis, Universität Zürich, 2001). With this method

we can work directly in Zd and obtain the central limit Theorem in a more transparent way than

with Fourier methods. Moreover, we can directly estimate the lace expansion diagrams via the

connectivities of the walk.





Zusammenfassung

Diese Dissertation befasst sich mit zwei verschiedene Problemen aus der Wahrscheinlichkeits-

theorie.

Im ersten Teil wird die Verteilung des grössten Eigenwertes im verallgemeinerten Cauchy Zu-

fallsmatrizenensemble beschrieben. Das verallgemeinerte Cauchy Ensemble ist die Menge der

Hermiteschen Matrizen mit einer verallgemeinerten Cauchy-Verteilung. Forrester und Witte

beschreiben die Verteilung des grössten Eigenwertes einer solchen Matrix endlicher Grösse N×N
(Nonlinearity, 13:1965�1986, 2000 und Nagoya Math. J., 174:29�114, 2004). Sie charakter-

isieren diese mit Hilfe von τ -Funktionen als Funktion der Lösung einer Painlevé-VI Gleichung.

Wir zeigen, dass man unter einer kleinen Einschränkung für die involvierten Parameter das-

selbe Resultat über die berühmte Methode von Tracy und Widom (Comm. Math. Phys.,

163:33�72, 1994) herleiten kann. Weiter zeigen wir, dass diese Verteilung punktweise zu einer

Grenzverteilung konvergiert, wenn die Grösse des Ensembles nach Unendlich strebt und der

grösste Eigenwert richtig skaliert wird. Die Grenzverteilung interpretieren wir als Verteilung des

grössten Punktes in einem von Borodin und Olshanski (Comm. Math. Phys., 223:87�123, 2001)

eingeführten determinanten Punktprozess auf R. Wir charakterisieren diese Grenzverteilung

mit Hilfe der Lösung einer Painlevé-V Gleichung und geben der Konvergenz der entsprechen-

den Painlevé-VI Gleichung für den endlichen Fall zu der letztgenannten Gleichung für N → ∞
einen mathematischen Sinn. Schliesslich zeigen wir auch, dass die punkweise Konvergenz der

Verteilung von der Ordnung N−1 ist. Um die Konvergenzresultate zu zeigen benützen wir nur

elementare Techniken. Im Wesentlichen prüfen wir die punkweise Konvergenz und geben obere

Schranken für alle in den entsprechenden Fredholm-Determinanten involvierten Grössen. Dann

benützen wir den Satz der majorisiteren Konvergenz.

Im zweiten Teil betrachten wir das asymptotische Verhalten der gestörten schwach selbst-

abstossenden Irrfahrt. Die schwach selbst-abstossende Irrfahrt ist eine Irrfahrt auf Zd bei der

Selbstüberschneidungen durch einen Faktor 1 − λ bestraft werden, wobei λ > 0 ein kleiner Pa-

rameter ist und die Dimension d mindestens 9 ist (beziehungsweise 5 im symmetrischen Fall).

Wir benützen die �Lace-Expansion� um zu zeigen, dass wir einen lokalen zentralen Grenzwertsatz

mit exponentiellem Fehlerabfall und einer Korrektur von der Ordnung n−d/2 nahe des Mittel-

werts der Irrfahrt erhalten, falls wir mit einer leichten Störung der üblichen symmetrischen

nächsten Nachbarn-Verteilung 1
2d1{x:‖x‖=1} starten. Unser zentrales Theorem in diesem Teil

ist eigentlich allgemeiner und gilt für alle Faltungsgleichungen die in gewisser Weise ähnlich

sind zu der Gleichung der schwach selbst-abstossenden Irrfahrt. Die Lace-Expansion wurde von

Brydges und Spencer (Comm. Math. Phys., 97:125�148, 1985) eingeführt. Meistens wird die

Lace-Expansion zusammen mit Fourier Methoden verwendet. Wir benützen jedoch den Banach-

schen Fixpunktsatz auf einem geeigneten Raum mit einem geeigneten Operator, um zu zeigen,

dass die Grenzdichte der schwach selbst-abstossenden Irrfahrt nahe bei der Dichte der Normal-

veteilung liegt und zudem stabil unter kleinen Störungen ist. Unsere Technik basiert auf einer

Arbeit von Ritzmann (PhD thesis, Universität Zürich, 2001). Dank dieser Technik können wir di-

rekt in Zd arbeiten und erhalten so den lokalen zentralen Grenzwertsatz in einer tranparenteren

Art und Weise als mit Fourier Methoden. Ein weiterer Vorteil ist, dass die Diagramme der

Lace-Expansion direkt duch die zwei-Punkte Funktion der Irrfahrt abgeschätzt werden können.
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Preface

In probability theory, the study of limiting distributions in various occurrences has a long his-

tory. In particular, one of the most universal and best studied limiting distributions is the

Normal or Gauss distribution. It arises in the Central Limit Theorem. Roughly speaking this

Theorem says that under certain (very mild) conditions, the appropriately normalized sum of

independent random variables converges weakly to a standard normal random variable. This

can be interpreted as follows: Modeling the outcome of an experiment with uncertainty by a

random variable satisfying those mild conditions, the repeated and independent execution of this

experiment under the same initial conditions implies that the normalized result over all exper-

iments follows a Gauss distribution. The central limit Theorem was �rst proved by De Moivre

around 1733 for independent and symmetric Bernoulli variables. Later on it was generalized by

Laplace to the case of non-symmetric Bernoulli variables. A completely rigorous proof of the

central limit Theorem for independent and identically distributed random variables with �nite

second moments was given in 1901�1902 by Lyapunov. This Theorem has wide applications

ranging from game theory over �nancial mathematics to bio-statistics and physics. A variant

of the central limit Theorem is the Local Central Limit Theorem. It states that the density of

the normalized sum of the variables converges pointwise to the density of a normally distributed

variable.

A completely di�erent kind of limit Theorem arises in Random Matrix Theory. Random matrix

theory was �rst encountered in statistics by Hsu, Wishart and others in the 1930's. However,

it was only really intensively studied from the 1950's, starting with Wigner who used random

matrices in nuclear physics. Since then random matrices have been used in various �elds of

physics such as chaotic systems and conductivity in disordered metals. They are even used to

model the zeros of the Riemann-ζ-function (starting in the 1970's with a still open conjecture

by Montgomery). One �eld of interest is the distribution of the (real) eigenvalues of a randomly

distributed Hermitian matrix of size N ×N whose probability law is independent under change

of basis (ie. under conjugation by unitary matrices). From a physical point of view, these

eigenvalues may model the energy levels of a random operator, or can give the distribution of

electrical unit charges con�ned to be on the real line under a certain external potential and with

a logarithmic interaction term. One can try to characterize the law of the largest eigenvalue in

such a regime and try to understand the convergence of this law when the size N of the matrix

ensemble tends to in�nity.

In the �rst part of this thesis we deal with the latter problem. We consider the Hermitian matrix

ensemble with a Generalized Cauchy Weight. This can be seen as a two-parameters extension

of the well studied Circular Unitary Ensemble (CUE) (also called Dyson Ensemble). The CUE

is an ensemble of unitary matrices distributed according to the normalized Haar measure on

the unitary group of size N × N . The Hermitian and the unitary matrices are linked via the

Cayley transform. The generalized Cauchy weight is a weight that is invariant under unitary

conjugation of the matrices and it generalizes the standard Cauchy distribution on the real line

(Hermitian matrix of size 1× 1). In this regime, we study the law of the largest eigenvalue and

give a limiting law for this eigenvalue distribution under appropriate scaling and when the size

N of the ensemble tends to in�nity. In particular, we characterize the limiting law in terms of

the solution of a Painlevé-V di�erential equation. Painlevé equations often enter the description

of the law of the largest eigenvalue of a random matrix. These equations are second order

ordinary di�erential equations in C with the property that their only movable singularities are

poles and which are not solvable using elementary functions. They originate in the study of

special functions and isomonodromic deformations of linear di�erential equations. In fact, we
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also characterize the law of the largest eigenvalue in the �nite N -case in terms of a Painlevé-VI

equation. This is done via a very general method introduced by Tracy and Widom [37]. Using

this method we unfortunately only get this characterization under a restriction on the set of

parameters. However, Forrester and Witte [15] extend the Painlevé-VI characterization to the

full set of parameters using a di�erent method (τ -function theory). We show that this Painlevé-

VI equation converges in some sense to the limiting Painlevé-V equation if N →∞. Finally, we

also give the convergence speed for the law when N →∞.

In the second part of the thesis, we are interested in the local central limit Theorem for perturbed

weakly self-avoiding random walks. In fact, a classical regime of the central limit Theorem is

the standard random walk on a lattice (Zd, d being the dimension). The location of a random

walker after n steps is then simply the sum of n independent identically distributed random

variables. Therefore, one can give a central limit Theorem for this case. Here, we will not

consider the standard random walk, but we will look at a random walk which is penalized

whenever it intersects itself. This model has been introduced by Physicists and Chemists to

study the growth of large polymer chains. We will assume that the initial distribution of the

random walk need not to be symmetric and may be spread out. Note that the position of

the weakly self-avoiding walk after n steps cannot be modeled by the sum of n independent

and identically distributed random variables since the walk has to remember its complete past

at any time. Nevertheless, we show that for high dimensions (d ≥ 9, respectively d ≥ 5 if

we restrict to symmetric initial distributions), this random walk has di�usive behavior if its

initial distribution is contained in a certain closed set around the standard symmetric initial

distribution and the penalty for each self-intersection is not too large. That is, its probability

density converges locally for each x ∈ Zd to the density of a normal random variable. In other

words, the perturbed weakly self-avoiding random walk satis�es a local central limit Theorem.



Chapter 1

Introduction to the Generalized

Cauchy Random Matrix Ensemble

1.1 Introduction

This part of the thesis deals with the characterization of the law of the largest eigenvalue of a

matrix in the Generalized Cauchy RandomMatrix Ensemble (denoted by GCyE). In case of �nite

sized ensembles and under a restriction on the involved parameters we give a characterization

of this law via a Painlevé-VI equation. We are also interested in the convergence of the law,

when the size of the matrix tends to in�nity and in the characterization of the limiting law in

terms of a Painlevé-V equation. A result on the rate of convergence for the law is also given.

All the results on the convergence and the limiting law are taken from the article [29] which is

joint work with Joseph Najnudel and Ashkan Nikeghbali.

1.1.1 General Remarks on Random Matrix Theory

The theory of random matrices is essentially the theory of matrix valued random variables. A

Random Matrix Ensemble is a set of matrices with an associated probability measure. One can

imagine any kind of ensemble, but in general there are two groups of ensembles which are widely

studied.

The �rst group are ensembles of matrices that contain entries which are chosen independently

according to some given distribution. The most classical such example is the Gaussian Unitary

Ensemble (GUE):

De�nition 1.1. A random N×N Hermitian matrix belongs to the GUE, if the diagonal elements

xjj and the upper triangular elements xjk = ujk+ivjk (j < k) are chosen independently according

to normal densities of the form:

1√
π
e−x

2
jj ∼ N (0,

1

2
) (diagonal elements),

2

π
e−2(u2

jk+v2
jk) ∼ N (0,

1

4
) + iN (0,

1

4
) (upper triangular elements).

Note that other conventions on the normalization of the variances exist.

That is, the GUE is an ensemble of Hermitian matrices with independent Gaussian entries. It is

such that the law of a matrix is independent under conjugation by unitary matrices. Similar such

examples are the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Symplectic Ensemble

(GSE). The former is the ensemble of all real symmetric N ×N matrices with Gaussian entries

and the latter is the ensemble of all N × N symplectic matrices with Gaussian entries. These

ensembles have been widely studied and applied in various �elds. Already in the 50's Wigner

(see [42]) used the GUE to model the statistical behavior of slow neutron resonances, and later

in the 70's Montgomery [27] conjectured that the appropriately scaled zeros of the Riemann-Zeta
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function on the critical line <z = 1/2 appear to have the same pair correlation as the eigenvalues

of the GUE. There is still no proof of this numerical fact.

The second group of ensembles are obtained as follows: Consider a compact Lie group G. Then,
there exists a G-invariant measure µ on G (unique up to scaling). Ie. µ(gA) = µ(A), for all g ∈ G
and A an open subset of G (see [8]). This measure is called the Haar measure. When normalized,

it gives a probability measure on G. The most classical such ensemble is the Circular Unitary

Ensemble (CUE) (also called Dyson Ensemble). It is the unitary group U(N) endowed with its

normalized Haar measure. In the following, we will only be interested in the Generalized Cauchy

Ensemble. It is an ensemble of this second kind and in fact, it is in some sense a generalization

of the CUE.

A very detailed study of many ensembles and a good overview on random matrix theory can be

found in the classical book by Mehta [26] and also in Forrester's new book [14].

1.1.2 The Eigenvalues of a Random Matrix

In random matrix theory one is often interested in the distribution of the eigenvalues in a certain

ensemble. The measure on the eigenvalues is obtained by projecting the measure on the ensemble

onto the space of eigenvalues. Given a random matrix of size N ×N with real eigenvalues, the

eigenvalue probability distribution function (PDF) on RN/S(N) (S(N) being the symmetric

group of order N) often has the form

const ·
∏

1≤j<k≤N

(xj − xk)2
N∏
j=1

w(xj)dxj , (1.1.1)

where w(x) is a weight function on R, and where x1, . . . , xn ∈ R are the eigenvalues (considerer

to be unordered here!). The term
∏

1≤j<k≤N (xj−xk) is called van der Monde Determinant since

it is equal to −det(xj−1
k )1≤j,k≤N . For example in the GUE case, the eigenvalue distribution has

this form with the weight function w2(x) = e−x
2

. On the other hand, the choices wL(x) = xae−x

on R+ with a > −1, or wJ(x) = (1 − x)α(1 + x)β for −1 ≤ x ≤ 1 with α, β > −1, lead to the

so called Laguerre or Jacobi ensembles respectively. The three weight functions w2, wL and wJ
occur in the eigenvalue PDF for certain ensembles of Hermitian matrices based on matrices with

independent Gaussian entries (see for example Forrester [14]) and are called classical weight

functions. In Adler, Forrester, Nagao and van Moerbeke [1], the de�ning property of a classical

weight function in this context was identi�ed as the following fact: If one writes the weight

function w(x) of an ensemble as w(x) = e−2V (x), with 2V ′(x) = g(x)/f(x), f and g being

polynomials in x, then the operator n := f(d/dx) + (f ′ − g)/2 increases the degree of the

polynomials by one, and thus, deg f ≤ 2, and deg g ≤ 1. For a long time, these three examples

have been the only classical weight functions known.

In case the eigenvalue PDF has the form (1.1.1), there is a well known methodology for treating

the distribution of the eigenvalues (see Mehta [26]). In fact we can rewrite formula (1.1.1) using

elementary row and column operations from the second to the third line to obtain

const ·
∏

1≤j<k≤N

(xj − xk)2
N∏
j=1

w(xj)dxj

=const ·
(

det(xj−1
i

√
w(xi))1≤i,j≤N

)2

=const ·
(

det(pj−1(xi)
√
w(xi))1≤i,j≤N

)2

,

where pj−1 is a monic polynomial of degree j−1. If now it is possible to de�ne a set of monic or-

thogonal polynomials pi with respect to the weight function w(x) on R, then one de�nes the inte-
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gral operator KN on L2(R), associated with the kernel KN (x, y) :=
∑N−1
i=0

pi(x)pi(y)
‖pi‖2

√
w(x)w(y).

Using a generalization of the Cauchy-Binet formula (see Johansson [21]), one can show that

const ·
(

det(pj−1(xi)
√
w(xi))1≤i,j≤N

)2

= const · det(KN (xi, xj))
N
i,j=1.

Note here that in the GUE, the monic orthogonal polynomial ensemble consists of the monic

Hermite polynomials. Using the kernel KN , it is possible to describe probabilities of the form:

E(k, J) := P [there are exactly k eigenvalues inside the interval J ],

where J ⊂ R and k ∈ N0, by the formula (see again Mehta [26]):

E(k, J) =
(−1)k

k!

dk

dxk
det(I − xKN )|x=1,

where the determinant is a Fredholm Determinant and the operator KN is restricted to J . A

de�nition of the Fredholm determinant is given in (1.2.15).

The distribution of the largest eigenvalue as well as the problem of the convergence of the scaled

largest eigenvalue have received much attention (see e.g. [31], [34], [35], [38]). Also the problem

on the rate of convergence has been studied, especially in [17] and [10] for GUE and LUE

matrices, and in [22] as well as in [12] for Wishart matrices. To deal with the largest eigenvalue,

one takes J = (t,∞) for some t ∈ R. Then E(0, (t,∞)) is simply the probability distribution

of the largest eigenvalue, denoted from now on by λ1(N), of a N ×N matrix in the respective

ensemble. In their pioneering work [37], Tracy and Widom give a system of completely integrable

di�erential equations to show how the probability E(0, J) can be linked to solutions of certain

Painlevé di�erential equations. Tracy and Widom apply their method to the �nite Hermite,

Laguerre and Jacobi ensembles. Moreover, one can also apply the method to scaling limits of

random matrix ensembles when the dimension N goes to in�nity. The famous sine kernel and its

Painlevé-V representation for instance, as obtained by Jimbo, Miwa, Môri and Sato [20], arise

if one takes the scaling limit in the bulk of the spectrum of the Gaussian Unitary Ensemble

and of many other Hermitian matrix ensembles (see e.g. [23], [25], [28] and [30]). On the other

hand, if one scales appropriately at the edge of the Gaussian Unitary Ensemble, one obtains

an Airy kernel in the scaling limit with a Painlevé-II representation for the distribution of the

largest eigenvalue (see Tracy and Widom [38]). Similar results have been obtained for the edge

scalings of the Laguerre and Jacobi ensembles, where the Airy kernel has to be replaced by the

Bessel kernel and the Painlevé-II equation by a Painlevé-V equation (see Tracy and Widom [39]).

Soshnikov [35] gives an overview on scaling limit results for large random matrix ensembles.

1.1.3 The Generalized Cauchy Ensemble (GCyE)

Let H(N) be the set of Hermitian matrices endowed with the measure

const · det(1 +X2)−N
∏

1≤j<k≤N

dXjk

N∏
i=1

dXii, X ∈ H(N), (1.1.2)

where const is a normalizing constant (depending on N), such that the total mass of H(N) is

equal to one. This measure is the analogue of the normalized Haar measure µN on the unitary

group U(N), if one relates U(N) and H(N) via the Cayley transform: H(N) 3 X 7→ U = X+i
X−i ∈

U(N). The measure (1.1.2) can be deformed to obtain the following two parameters probability

measure:

const · det((1 + iX)−s−N ) det((1− iX)−s−N )
∏

1≤j<k≤N

dXjk

N∏
i=1

dXii, (1.1.3)
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where s is a complex parameter such that <s > −1/2 (otherwise the quantity involved in (1.1.3)

does not integrate as is proved in Borodin and Olshanski [5]). Following Forrester and Witte

[15] and [43], we call this measure the Generalized Cauchy Measure on H(N). H(N) endowed

with the generalized Cauchy measure shall be called the Generalized Cauchy Random Matrix

Ensemble, noted GCyE. The name is chosen because if s = 0 and N = 1, (1.1.3) is nothing else

than the density of a standard Cauchy random variable. We project this measure onto the space

RN/S(N) of all (unordered) sets of eigenvalues of matrices in H(N), to obtain the eigenvalue

density

const ·
∏

1≤j<k≤N

(xj − xk)2
N∏
j=1

wH(xj)dxj . (1.1.4)

Here wH(xj) = (1 + ixj)
−s−N (1− ixj)−s−N , and the xj 's denote the eigenvalues. As usual, the

constant is chosen so that the total mass of RN/S(N) is equal to one.

As mentioned in the last Subsection 1.1.2, there have for a long time been three classical weight

functions only (w2, wL and wJ). But for s ∈ (−1/2,∞), the property of being classical also

holds for the weight function wH of the GCyE. We thus have four classical weight functions

(see also Witte and Forrester [43]). However, the construction of the matrix model for the

GCyE is di�erent from the construction of the other three classical ensembles: A matrix model

for the GCyE will not have independent entries, but one can construct the ensemble via the

Cayley transform. Indeed, following Borodin and Olshanski [5] (see also [14], [15] and [43])

the measure (1.1.3) is, via the Cayley transform, equivalent to the deformed normalized Haar

measure const·det((1−U)s) det((1−U∗)s)µN (dU), U ∈ U(N). If we denote by eiθj , j = 1, . . . , N ,

the eigenvalues of a unitary matrix with θj ∈ [−π, π], the deformed Haar measure can, as in the

Hermitian case, be projected to the eigenvalue space to give the PDF

const ·
∏

1≤j<k≤N

|eiθj − eiθk |2
N∏
j=1

wU (θj)dθj , (1.1.5)

where wU (θj) = (1− eiθj )s(1− e−iθj )s, and θj ∈ [−π, π]. This measure is de�ned on SN/S(N),

where S is the complex unit circle. Note, that this eigenvalue measure has a singularity at θ = 0,

if s 6= 0. Borodin and Olshanski [5] studied the measures (1.1.3), (1.1.4) and (1.1.5) in great

detail due to their connections with representation theory of the in�nite dimensional unitary

group U(∞).

When s ∈ (−1/2,∞), (1.1.5) is nothing else than the eigenvalue distribution of the circular Jacobi

unitary ensemble. This is a generalization of the Circular Unitary ensemble corresponding to the

case s = 0. In fact, if s = 1, this corresponds to the CUE case with one eigenvalue �xed at one.

More generally, for s ∈ (−1/2,∞) the singularity at one corresponds, in the log-gas picture,

to a impurity with variable charge �xed at one, and mobile unit charges represented by the

eigenvalues (see Witte and Forrester [43], and also [16]). It is the singularity at one that makes

the study of this ensemble more di�cult than the CUE. In the special case when s = 0, one can

obtain the eigenvalues with PDF (1.1.4) from the eigenvalues of the circular unitary ensemble

using a stereographic projection (see the book of Forrester [14], Chapter 2, Section 5 on the

Cauchy ensemble). In fact, in this case, we get that (1.1.4) represents the Boltzmann factor for

a one-component log-gas on the real line subject to the potential 2V (x) = N log(1 + x2). This

corresponds to an external charge of strength −N placed at the point (0, 1) in the plane (this

can also be generalized to arbitrary inverse temperature β as shown in the previous reference).

Moreover, note that when s 6= 0, a construction of a random matrix ensemble with eigenvalue

PDF (1.1.5) is given in Bourgade, Nikeghbali and Rouault [7].

As already mentioned, we are interested in the law of the largest eigenvalue in the GCyE

case (convergence, asymptotic distribution, rate of convergence and characterization in terms
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of Painlevé equations) for all admissible values of the parameter s, namely <s > −1/2. Due

to the form of the eigenvalue PDF (1.1.4), we will use the methodology with the Fredholm

determinant brie�y discussed in Subsection 1.1.2 above.

For the eigenvalue measure (1.1.4), Borodin and Olshanski [5] give the kernel in the �nite N

case, denoted by KN in the following (see Theorem 1.2), as well as a scaling limit of this kernel,

when N →∞, denoted by K∞ (see (1.2.12)). Using the kernel KN , one can set up the system

of di�erential equations in the way of Tracy and Widom (see Subsection 1.1.2) for the law

E(0, (t,∞)) of the largest eigenvalue λ1(N), for any t ∈ R. In the case of a real parameter

s, this has been done by Witte and Forrester in [43]. They obtain a characterization of the

law of the largest eigenvalue in terms of a Painlevé-VI equation. More precisely, (1 + t2) times

the logarithmic derivative of E(0, (t,∞)) satis�es a Painlevé-VI equation. The same method

suitably modi�ed leads to a generalization of this result for complex s as we show in Chapter

2. However, the method of Tracy and Widom has the drawback that it only works for s with

<s > 1/2. Forrester and Witte propose in [15] an alternative method which makes use of the

τ -function theory to derive the Painlevé-VI characterization for E(0, (t,∞)) for any s such that

<s > −1/2.

To sum up, for the generalized Cauchy ensemble, it is known that for �nite N , (1 + t2) times the

logarithmic derivative of E(0, (t,∞)) satis�es a Painlevé-VI equation for t ∈ R. The orthogonal
polynomials associated with the measure wH are known as well as the scaling limit of the

associated kernel KN , which we note K∞. One naturally expects λ1(N), appropriately scaled,

to converge in law to the probability distribution F∞(t) := det(I −K∞)|L2(t,∞), for t > 0 (t ≤ 0

is not permissible in this particular case, as we will see in Remark 1.10). We shall see below

that this is indeed the case for all values of s such that <s > −1/2. A natural question is:

does (1 + t2) times the logarithmic derivative of F∞(t) also satisfy some non-linear di�erential

equation? And as previously mentioned, what is the rate of convergence to F∞(t)?

1.2 Results

In this Section, we state our main Theorems. These results are based on earlier work by Borodin

and Olshanski [5] who obtained an explicit form for the orthogonal polynomials associated with

the weight wH as well as the scaling limit for the associated kernel, and Forrester and Witte

[15] who express, for �xed N and for any complex number s with <s > −1/2, the probability

distribution of the largest eigenvalue λ1(N) of a matrix in the Generalized Cauchy Ensemble

in terms of some non-linear di�erential equation. For clarity and to �x the notations, we �rst

state a Theorem of Borodin and Olshanski [5]. We refer the reader to the paper [5] for more

information on the determinantal aspects. The discussion on the methods we use is postponed

to the next Section 1.3.

Borodin and Olshanski [5] give the correlation kernel for the determinantal point process de�ned

by the measure (1.1.4). In fact, the monic orthogonal polynomial ensemble {pm; m < <s+N− 1
2}

on R associated with the weight wH(x), is de�ned by p0 ≡ 1, and

pm(x) = (x− i)m2F1

[
−m, s+N −m, 2<s+ 2N − 2m;

2

1 + ix

]
, (1.2.1)

where 2F1[a, b, c; x] =
∑
n≥0

(a)n(b)n
(c)nn! x

n is the Gauss Hypergeometric Function, and (x)n =

x(x + 1) . . . (x + n − 1). Using the Christo�el-Darboux formula and the theory of orthogonal

polynomials, the following was proven by Borodin and Olshanski [5]:

Theorem 1.2. The n-point correlation function (n ≤ N) for the eigenvalue distribution (1.1.4)

is given by

ρs,Nn (x1, ..., xn) = det (Ks,N (xi, xj))
n
i,j=1 ,
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where the kernel Ks,N (x, y) de�ned on R2 is given by:

KN (x, y) := Ks,N (x, y) =

N−1∑
m=0

pm(x)pm(y)

‖pm‖2
√
wH(x)wH(y) =

φ(x)ψ(y)− φ(y)ψ(x)

x− y
, (1.2.2)

with

φ(x) =
√
CwH(x)pN (x), (1.2.3)

and

ψ(x) =
√
CwH(x)pN−1(x), (1.2.4)

where wH(x) = (1 + ix)−s−N (1− ix)−s−N = (1 + x2)−<s−Ne2=sArg(1+ix) and

C := CN,s =
22<s

π
Γ

[
2<s+N + 1, s+ 1, s+ 1

N, 2<s+ 1, 2<s+ 2

]
. (1.2.5)

Here, we use the notation:

Γ

[
a, b, c, ...

d, e, f, ...

]
=

Γ(a)Γ(b)Γ(c) · · ·
Γ(d)Γ(e)Γ(f) · · ·

. (1.2.6)

Moreover, if x = y, the kernel is given by:

KN (x, x) = φ′(x)ψ(x)− φ(x)ψ′(x), (1.2.7)

using the Bernoulli-Hôpital rule.

Note that pN is well-de�ned (and in L2(wH)) only for <s > 1/2. However, it can be

analytically continued to <s > −1/2 using the hypergeometric expression pN (x) = (x −
i)N 2F1[−N, s, 2<s; 2/(1 + ix)], except if <s = 0. Moreover, Borodin and Olshanski [5]

give a way to get rid of the singularity at <s = 0. They introduce the polynomial

p̃N (x) = pN (x)− iNs

<s(2<s+ 1)
pN−1(x)

= (x− i)N 2F1

[
−N, s, 2<s+ 1;

2

1 + ix

]
. (1.2.8)

This polynomial makes sense for any s ∈ C with <s > −1/2 and one can de�ne the kernel in

Theorem 1.2 equivalently by:

KN (x, y) = C
p̃N (x)pN−1(y)− pN−1(x)p̃N (y)

x− y
√
wH(x)wH(y). (1.2.9)

We are interested in the distribution of the largest eigenvalue λ1(N) of a matrix in the GCyE.

We have already seen that the probability that λ1(N) is smaller than t, is

E(0, (t,∞)) = det(I −KN )|L2(t,∞), (1.2.10)

for any t ∈ R. Hence, we need to consider the operator KN with kernel KN (x, y) restricted to

the interval (t,∞) to calculate the probability that no eigenvalue is in the interval (t,∞). This

restriction is symmetric, with eigenvalues between 0 and 1. It is easy to see that KN , restricted

to any subinterval J (or �nite union of subintervals) of R, has no eigenvalue equal to 1, since

E(0, (t,∞)) > 0 for any t ∈ R. This is true because

P (λ1(N) ≤ t) = cst ·
∫

(−∞,t)N

∏
(xj − xk)2

∏
wH(xj)dx1 . . . dxN ,
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and the integrand is strictly positive. Moreover, restricting the correlation function ρs,Nn of

Theorem 1.2 to J gives

ρs,Nn (x1, ..., xn)|J =

n∏
j=1

χJ(xj)ρ
s,N
n (x1, ..., xn) (1.2.11)

=

n∏
j=1

χJ(xj) det(KN (xi, xj))
n
i,j=1 = det(χJ(xi)KN (xi, xj)χJ(xj))

n
i,j=1,

where χJ denotes the indicator function of the set J . Therefore, the restriction of KN to J ,

denoted by KN,J , de�nes a determinantal process on J with kernel χJ(x)KN (x, y)χJ(y) =:

KN,J(x, y).

Borodin and Olshanski [5] give a scaling limit for the kernel KN (x, y) given in Theorem 1.2.

Namely, limN→∞NKN (Nx,Ny) = K∞(x, y), for any x, y ∈ R∗ = R\{0}, where the kernel K∞
is de�ned by

K∞(x, y) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)

P̃ (x)Q(y)−Q(x)P̃ (y)

x− y
, (1.2.12)

if x 6= y, and,

K∞(x, x) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)
(P̃ ′(x)Q(x)−Q′(x)P̃ (x)), (1.2.13)

where

P̃ (x) = |2/x|<se−i/x+π=sSgn(x)/2
1F1

[
s, 2<s+ 1;

2i

x

]
,

Q(x) = (2/x)|2/x|<se−i/x+π=sSgn(x)/2
1F1

[
s+ 1, 2<s+ 2;

2i

x

]
,

with

1F1 [r, q;x] =
∑
n≥0

(r)n
(q)nn!

xn,

for any r, q, x ∈ C.

Remark 1.3. The kernel K∞ de�nes a determinantal point process (see [5] , Theorems IV and

6.1).

Remark 1.4. If s = 0, the limiting kernel K∞ writes as

K∞(x1, x2) =
1

π

sin(1/x2 − 1/x1)

x1 − x2
.

Under the change of variable y = 1
πx and taking into account the corresponding change of the

di�erential dx, K∞ translates to the famous sine kernel with correlation function

ρn(y1, . . . , yn) = det

(
sin(π(yi − yj))
π(yi − yj)

)n
i,j=1

,

for any n ∈ N and y1, . . . , yn ∈ R (see Borodin and Olshanski [5]).

Before stating our main results, we need to introduce one more notation: we note K[N ](x, y) the

kernel

K[N ](x, y) := NKN (Nx,Ny), (1.2.14)
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and K[N ] the associated integral operator. We also recall the de�nition of the Fredholm determi-

nant: if K is an integral operator with kernel given by K(x, y), then the k-correlation function

ρk is de�ned by:

ρk(x1, . . . , xk) := det(K(xi, xj)1≤i,j≤k).

The Fredholm determinant F , from R∗+ to R, is then de�ned by

F (t) :=1 +
∑
k≥1

(−1)k

k!

∫
(t,∞)k

ρk(x1, . . . , xk)dx1 . . . dxk

= det(I −K)|L2(t,∞). (1.2.15)

Our �rst Theorem states that E(0, (t,∞)) from (1.2.10) can be interpreted in terms of the

solution to an equation equivalent to a Painlevé-VI equation.

Theorem 1.5. For <s > 1/2, de�ne

σ(t) =(1 + t2)
d

dt
log det(I −KN )|L2(t,∞)

=(1 + t2)
d

dt
logP [there is no eigenvalue inside (t,∞)].

Then, for t ∈ R, σ(t) satis�es the equation:

(1 + t2)(σ′′)2 + 4(1 + t2)(σ′)3 − 8t(σ′)2σ + 4σ2(σ′ − (<s)2) + 8(t(<s2)−<s=s
−N=s)σσ′ + 4(2t=s(N + <s)− (=s)2 − t2(<s)2 +N(2<s+N))(σ′)2 = 0. (1.2.16)

Forrester and Witte [15] extend this Theorem using τ -function theory to the full set of admissible

parameters s (ie. <s > −1/2). We will use this extension in the proof of the results below

concerning the case N →∞. Note that this Theorem also generalizes the same result for s real

with <s > 1/2 given by Witte and Forrester ([43], Proposition 4).

Remark 1.6. The ODE (1.2.16) is equivalent to the master Painlevé equation (SD-I) of Cosgrove

and Scou�s [11]. Cosgrove and Scou�s, show that the solution of this equation can be expressed

in terms of the solution of a Painlevé-VI equation using a Bäcklund transform. In the real case,

this transformation is described in Witte and Forrester [43].

Remark 1.7. To prove the above Theorem, we use the method of Tracy and Widom [37]. Let

us brie�y explain the reason why we get the restriction <s > 1/2 here (more details follow in

Chapter 2). The method of Tracy and Widom establishes a system of PDE's, the so called Jimbo-

Miwa-Môri-Sato equations, which can be reduced to a Painlevé-type equation as for example

the one in the above Theorem. These PDE's consist of a set of universal equations and a set of

equations depending on the speci�c form of some recurrence di�erential equations for φ and ψ.

The problem is that the method of Tracy and Widom has originally been developed for �nite

intervals (or unions of �nite intervals). If one applies the method to the case of a semi-in�nite

interval (t,∞), one has to consider an interval (t, a), where a > t. Then, one writes down the

PDE's of Tracy and Widom for that interval and takes the limit in all these equations as a→∞.

Note that the variables in these PDE's are the end-points t and a of the interval. It is clear that

one has to be careful about the convergence of the quantities involved in these equations, when

a → ∞. In particular, one needs in our case that the term (1 + a2)Q(a)R(t, a), where R(x, y)

is the kernel of the resolvent operator KN,J(1−KN,J)−1, and Q(x) = (I −KN,J)−1φ(x), which

is of order a1−2<s, tends to zero, when a → ∞. This implies the restriction <s > 1/2. One

might encounter the same type of obstacle in an attempt to prove Theorem 1.11 below with this

method (we will give the corresponding recurrence equations for φ and ψ in the case of K∞ in

Remark 3.14).
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The remaining results concern the limiting law and the convergence and can also be found in

[29]:

Theorem 1.8. For s such that <s > −1/2 and t > 0, let FN be the Fredholm determinant

associated with K[N ], and let F∞ be the Fredholm determinant associated with K∞. Then, FN
and F∞ are in C3(R∗+,R), and for p ∈ {0, 1, 2, 3}, the p-th derivative of FN (with respect to t)

converges pointwise to the p-th derivative of F∞.

As an immediate consequence, one obtains the following convergence in law for the scaled largest

eigenvalue:

Corollary 1.9. Given the set of N ×N random Hermitian matrices H(N) with the generalized

Cauchy probability distribution (1.1.3), denote by λ1(N) the largest eigenvalue of such a randomly

chosen matrix. Then, the law of λ1(N)/N converges to the distribution of the largest point of

the determinantal process on R∗ described by the limiting kernel K∞(x, y) in the following sense:

P

[
λ1(N)

N
≤ x0

]
= det(I −KN )|L2(Nx0,∞) −→ det(I −K∞)|L2(x0,∞), as N →∞,

for any x0 > 0.

Remark 1.10. Note that in the case of �nite N , the range of the largest eigenvalue is the whole

real line, whereas in the limit case when N → ∞, the range of the largest eigenvalue is R∗+.
This is because an in�nite number of points accumulate near 0 (0 itself being excluded however).

The accumulation of the points can be seen from the fact that due to the form of K∞(x, x) (see

(1.2.13)), limε→0

∫∞
ε
K∞(x, x)dx diverges.

Now, de�ne

θ∞(τ) = τ
d log det(I −K∞)|L2(τ−1,∞)

dτ
, τ > 0. (1.2.17)

Using the result of Forrester and Witte [15] for the distribution of the largest eigenvalue for �xed

N and Theorem 1.8, we are able to show:

Theorem 1.11. Let s be such that <s > −1/2. Then the function θ∞ given by (1.2.17) is well

de�ned and is a solution to the Painlevé-V equation on R∗+:

−τ2(θ′′(τ))2 =
[
2(τθ′(τ)− θ(τ)) + (θ′(τ))2 + i(s− s)θ′(τ)

]2
− (θ′(τ))2(θ′(τ)− 2is)(θ′(τ) + 2is). (1.2.18)

Remark 1.12. This implies in particular the result of Jimbo, Miwa, Môri and Sato [20] that

the sine kernel, which is the special case of the K∞ kernel with parameter s = 0 (see Remark

1.4), satis�es the Painlevé-V equation (1.2.18) with s = 0.

Eventually, following our initial motivation, we have the following result about the rate of con-

vergence:

Theorem 1.13. For all x0 > 0, and for x > x0,∣∣∣∣P [λ1(N)

N
≤ x

]
− det(I −K∞)|L2(x,∞)

∣∣∣∣ ≤ 1

N
C(x0, s),

where C(x0, s) is a constant depending only on x0 and s.
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1.3 Strategy of the Proof

We say a few words about the way we prove the above Theorems. The �rst Theorem 1.5 on

the Painlevé-VI characterization in the �nite N case is proven by simply checking that all the

equations involved in the method of Tracy and Widom are ful�lled in our case.

For the remaining results on the limiting law we split our proofs into several technical Lemmas

and only use elementary methods. Namely, our proofs only involve checking pointwise conver-

gence and domination in all the quantities involved in the Fredholm determinants of K[N ] and

K∞. We can then apply dominated convergence to show that the logarithmic derivative of the

Fredholm determinant of K[N ], as well as its derivatives, converge pointwise to the respective

derivatives of the Fredholm determinant of K∞. This su�ces to show that the Fredholm de-

terminant of K∞ satis�es a Painlevé-V equation because we can write the rescaled �nite N

Painlevé-VI equation of Forrester and Witte ([15], [16] and Theorem 1.5 with the extension to

<s > −1/2) as the sum of polynomial functions of the Fredholm determinant of K[N ] and its

�rst, second and third derivatives. Moreover, the various estimates and bounds we obtain for

the di�erent determinants and functions involved in our problem help us to obtain directly an

estimate for the rate of convergence in Corollary 1.9 (that is Theorem 1.13).

Given Theorem 1.2 and the Painlevé-VI characterization of Forrester and Witte [15], the results

contained in Theorem 1.8 and Corollary 1.9 are very natural; but yet they have to be rigorously

checked. As far as Theorem 1.11 is concerned, Borodin and Deift [4] obtain the same equation

as (1.2.18) from the scaling limit of a Painlevé-VI equation characterizing a general 2F1-kernel

similar to our kernel KN (Section 8 in [4]). They claim that it is natural to expect that the

appropriately scaled logarithmic derivative of the Fredholm determinant of their 2F1-kernel

solves this Painlevé-V equation. In fact, according to our Theorem 1.11, (1.2.17) corresponds

to their limit, when N → ∞, of the scaled solution of the Painlevé-VI equation and solves

the Painlevé-V equation (1.2.18). Borodin and Deift's method is based on the combination

of Riemann-Hilbert theory with the method of isomonodromic deformation of certain linear

di�erential equations. This method is very powerful and general. However, we were not able

to apply it in our situation; moreover, it seems that we would have to restrict ourselves to the

values of s such that 0 ≤ <s ≤ 1. Our method to prove Theorem 1.11 heavily relies on the result

of Forrester and Witte [15] for �xed N : hence we do not provide a general method to obtain such

Painlevé equations. Nevertheless it is an e�cient approach to obtain some information about

the rate of convergence in Corollary 1.9.



Chapter 2

The Painlevé Formulation via the

Method of Tracy and Widom

Here, we derive the Painlevé-VI equation in Theorem 1.5 via the method of Tracy and Widom

[37].

Note that this method has a major drawback. Namely, as already mentioned, it only works for

<s > 1/2 (see Section 2.3), whereas using τ -function theory, Forrester and Witte [15] were able

to prove the result for the full range of parameters. However, this Chapter provides an extension

to the article [43] of Witte and Forrester, where they prove Theorem 1.5 for s real and s > 1/2

via the method of Tracy and Widom.

2.1 The Recurrence Equations

Let us denote the normalized polynomials pm(x)
‖pm‖ (see (1.2.1) for the de�nition of pm) by p̂m(x)

for m = 0, . . . , N . Then we have the following result:

Lemma 2.1. We have

p̂m(x) =i−m2N+<s
[
m!(N + <s−m− 1/2)Γ(N + s−m)Γ(N + s−m)

2πΓ(2<s+ 2N −m)

]1/2

·

P−N−s,−N−sm (−ix) (2.1.1)

=:Y (m)P−N−s,−N−sm (−ix),

where Pα,βm (x) denotes the usual Jacobi polynomial (see for example Szegö [36] for a de�nition

of those polynomials).

We use the formula

Pα,βn (x) =
1

n!

n∑
ν=0

(
n

ν

)
(n+ α+ β + 1) · · · (n+ α+ β + ν)· (2.1.2)

(α+ ν + 1) · · · (α+ n)

(
x− 1

2

)ν
of Szegö [36] (p.62) to generalize the Jacobi polynomials to arbitrary complex parameters α, β

and complex values of x.

Proof. From Borodin and Olshanski [5] we know,

‖pm‖2 =
π2−2<s

22(N−m−1)
· (2.1.3)

Γ

[
2<s+ 2(N −m)− 1, 2<s+ 2(N −m), m+ 1

s+N −m, s+N −m, 2<s+ 2N −m

]
.
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Thus, using (1.2.1) and setting y = 1 + ix,

p̂m(x) = ‖pm‖−1(−2i)m
m∑
k=0

(−m)k(s+N −m)k
(2<s+ 2N − 2m)k

(y2 )m−k

k!
.

Now use (a)k = (a)m
(−a−m+1)m−k

(−1)m−k to get

p̂m(x) =‖pm‖−1(−2i)m
(−m)m(s+N −m)m
(2<s+ 2N − 2m)mm!

·

2F1

[
1 +m− 2N − 2<s, −m, 1− s−N ;

y

2

]
=‖pm‖−1(−2i)m

m!Γ(2<s+ 2N − 2m)

Γ(2<s+ 2N −m)
P−N−s,−N−sm (−ix).

The term in front of P−N−s,−N−sm (−ix) is equal to

(−1)mim2N+<s
(
m!(<s+N −m− 1

2 )Γ(s+N −m)Γ(s+N −m)

2πΓ(2<s+ 2N −m)

) 1
2

,

and the Lemma follows.

Note that the de�nition of p̂m(x) is equivalent to the one in Witte and Forrester [43] if s ∈ R
and s > −1/2. This can easily be seen using the following symmetry property given by Borodin

and Olshanski [5]:

pm(−x) = (−1)mpm(x)|s↔s.

In order to �nd an ordinary di�erential equation in t for the probability E(0, (t,∞)) to have

no eigenvalue larger than t in (1.2.10), we will set up some general partial di�erential equations

in Section 2.2 in accordance with the general method established by Tracy and Widom in [37].

There will be a set of universal equations and a set of equations depending on the speci�c form

of the following recurrence di�erential equation for φ and ψ:

m(x)φ′(x) = A(x)φ(x) +B(x)ψ(x)

m(x)ψ′(x) = −C(x)φ(x)−A(x)ψ(x),
(2.1.4)

where A,B,C and m are polynomials in x. For that, the next Lemma will be useful.

Lemma 2.2. Let α, β ∈ C and n ∈ N. Then, the following di�erential equation is satis�ed by

the Jacobi polynomials Pα,βn (x), where α, β ∈ C and x ∈ [−1, 1]:

(2n+ α+ β)(1− x2)
d

dx
Pα,βn (x) =n(α− β − (2n+ α+ β)x)Pα,βn (x)

+ 2(n+ α)(n+ β)Pα,βn−1(x).

This formula is also stated in Witte and Forrester [43], but they do not give a proof and only

work with α and β real.

Proof. Suppose at �rst that α, β are real and strictly bigger than −1. Then, the equation in the

Lemma is equivalent to

d

dx
{(1− x)α+1(1 + x)β+1yn} = (1− x)α(1 + x)β ((ax+ b)yn + cyn−1) ,
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with yn = Pα,βn , yn−1 = Pα,βn−1 and the constants a, b, c chosen accordingly. Note that

d

dx
{(1− x)α+1(1 + x)β+1yn} = const · (1− x)α(1 + x)βz, (2.1.5)

z being a polynomial of degree ≤ n+ 1. Now, let us remark that∫ 1

−1

d

dx
{(1− x)α+1(1 + x)β+1yn} · ρ(x)dx = 0, ∀ρ of degree n− 2. (2.1.6)

Indeed, integration by parts gives that the left hand side is equal to

−
∫ 1

−1

(1− x)α+1(1 + x)β+1ynρ
′(x)dx =

∫ 1

−1

yn · r(x)(1− x)α(1 + x)βdx,

with r a polynomial of degree ≤ n−1, and this last integral is equal to zero by the orthogonality

property of the Jacobi polynomial yn having degree n. The relation (2.1.6) implies that in

(2.1.5), z = (ax+ b)yn + cyn−1 for some a, b, c.

To �nish the proof for α, β > −1, all that is left to do is to check the values of a, b, c, or

equivalently, to compare the coe�cients of the three highest terms on both sides of the equation

in the Lemma. First, note that both sides are polynomials of degree n + 1 in (x − 1) since the

original equation is equivalent to

− 2(2n+ α+ β)(x− 1)
d

dx
Pα,βn (x)− (2n+ α+ β)(x− 1)2 d

dx
Pα,βn (x)

=(n(α− β)− n(2n+ α+ β))Pα,βn (x)− n(2n+ α+ β)(x− 1)Pα,βn (x)

+ 2(n+ α)(n+ β)Pα,βn−1(x),

and we can use formula (2.1.2) for the Jacobi polynomials. The coe�cient of (x − 1)n in that

formula is
1

n!
(n+ α+ β + 1) · · · (2n+ α+ β)

1

2n
.

Thus, the coe�cient of the highest term in the derivative d
dxP

α,β
n (x) is

1

(n− 1)!
(n+ α+ β + 1) · · · (2n+ α+ β)

1

2n
.

Therefore, the coe�cient of (x− 1)n+1, on the left-hand-side is

−(2n+ α+ β)
1

2n(n− 1)!
(n+ α+ β + 1) · · · (2n+ α+ β).

This is clearly equal to the corresponding coe�cient on the right-hand side. The veri�cation for

the terms (x− 1)n and (x− 1)n−1 is left to the reader.

Finally, to extend the formula to α, β ∈ C, note that both sides of the equation are polynomials

in α and β and equality holds by analytic continuation.

We need this Lemma with α = −N − s and β = −N − s. Moreover, we substitute the variable x

by −ix. This is permissible since the equation can be continued analytically in x. The equation

in the Lemma thus turns into:

(2n− 2N − 2<s)(1 + x2)
d

dx
P−N−s,−N−sn (−ix) =

n [−2=s+ (2n− 2N − 2<s)x]P−N−s,−N−sn (−ix) (2.1.7)

− 2i(n−N − s)(n−N − s)P−N−s,−N−sn−1 (−ix).
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2.1.1 The Equation for φ

Recall the de�nitions of φ, C and wH from Theorem 1.2. A direct computation yields:

(1 + x2)φ′(x) =
√
CwH(x)

[
(1 + x2)p′N (x) + pN (x)(=s− x(N + <s))

]
. (2.1.8)

Since by (2.1.1), pN (x) = ‖pN‖p̂N (x) = ‖pN‖Y (N)P−N−s,−N−sN (−ix), we have, using equation

(2.1.7) with n = N ,

(1 + x2)p′N (x) =

[
N
=s
<s

+Nx

]
pN (x) + i

|s|2

<s
Y (N)

Y (N − 1)

‖pN‖
‖pN−1‖

pN−1(x). (2.1.9)

Recall (2.1.3). Using this and the de�nition of Y (m) in (2.1.1),

‖pN‖
‖pN−1‖

Y (N)

Y (N − 1)
= −i N

<s
2<s+N

2<s+ 1
.

Equations (2.1.8), (2.1.9) and the above �nally give the desired equation for φ:

(1 + x2)φ′(x) = φ(x)

[
−x<s+ =s

(
1 +

N

<s

)]
+
|s|2

<s2
N

2<s+N

2<s+ 1
ψ(x). (2.1.10)

2.1.2 The Equation for ψ

As for φ′, we have:

(1 + x2)ψ′(x) =
√
CwH(x)

[
(1 + x2)p′N−1(x) + pN−1(x)(=s− x(N + <s))

]
. (2.1.11)

But pN−1(x) = ‖pN−1‖Y (N − 1)P−N−s,−N−sN−1 (−ix), and we can, as for pN above again put

this into equation (2.1.7). However, the Jacobi polynomial P−N−s,−N−sN−2 (−ix) will then appear.

This calls for the following recurrence relation:

Lemma 2.3. For general complex α, β and x, one has:

2n(n+ α+ β)(2n+ α+ β − 2)Pα,βn (x)

=(2n+ α+ β − 1)
[
(2n+ α+ β)(2n+ α+ β − 2)x+ α2 + β2

]
Pα,βn−1(x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α+ β)Pα,βn−2(x) for n = 2, 3, 4, . . . ;

Pα,β0 (x) = 1, Pα,β1 (x) =
1

2
(α+ β + 2)x+

1

2
(α− β).

Proof. This formula is given in Szegö [36] (p.71) for α, β > −1 and x ∈ [−1, 1]. The extension

to general α, β and x is done via analytic continuation, since both sides of the equation are

polynomials in α, β and x if one uses the explicit expression (2.1.2) for the Jacobi polynomials.

Using this Lemma, we express P−N−s,−N−sN−2 (−ix) as:

P−N−s,−N−sN−2 (−ix) =
N(N + 2<s)(<s+ 1)

|s+ 1|2<s
P−N−s,−N−sN (−ix)

+
1 + 2<s
|s+ 1|2<s

[−i<s(<s+ 1)x+ i=s(N + <s)]P−N−s,−N−sN−1 (−ix).
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Combining this with equation (2.1.7) for n = N − 1, one obtains

(1 + x2)
d

dx
P−N−s,−N−sN−1 (−ix) = i

N(N + 2<s)
<s

P−N−s,−N−sN (−ix)

+

[
x(N + 2<s)− 2=s−N =s

<s

]
P−N−s,−N−sN−1 (−ix).

Therefore,

(1 + x2)p′N−1(x) = i
N(N + 2<s)

<s
‖pN−1‖
‖pN‖

Y (N − 1)

Y (N)
pN (x)

+

[
x(N + 2<s)− 2=s−N =s

<s

]
pN−1(x).

Inserting this into equation (2.1.11) �nally gives the desired equation for ψ:

(1 + x2)ψ′(x) = φ(x)(−(2<s+ 1)) + ψ(x)

(
x<s−=s

(
1 +

N

<s

))
. (2.1.12)

We can sum up equations (2.1.10) and (2.1.12) in the following Theorem:

Theorem 2.4. For φ and ψ given in Theorem 1.2, the recurrence equations (2.1.4) hold with:

m(x) = 1 + x2 =: µ0 + µ2x
2,

A(x) = −x<s+ =s
(

1 +
N

<s

)
=: −xα1 + α0,

B(x) =
|s|2

<s2
N

2<s+N

2<s+ 1
=: β0,

C(x) = 2<s+ 1 =: γ0.

Note that this Theorem only makes sense if <s 6= 0, but we will have to restrict ourselves to

<s > 1/2 anyway in this Chapter.

2.2 Some General PDE's

To obtain the desired di�erential equation in Theorem 1.5 for E(0, (t,∞)) we need to establish

some general partial di�erential equations (pde's). The following is a restriction to our particular

case of the very general setting given by Tracy and Widom in [37].

Write J =
⋃m
i=0(a2i+1, a2i+2) ⊂ R, for some −∞ < a1 < . . . < a2m+2 < ∞ and set K := KN,J

for the operator with kernel χJ(y)KN (x, y)χJ(y) restricted to J . If A is an integral operator

with kernel A(x, y), we use the notation A
.
= A(x, y) to relate an operator with its kernel. We

introduce the following:

K(1−K)−1 .
= R(x, y),

(1−K)−1 .
= ρ(x, y) = δ(x− y) +R(x, y),

where (1−K)−1 :=
∑∞
i=0K

i exists since all eigenvalues of K are strictly smaller than one (see

Section 1.2). R is the resolvent kernel of K. Moreover, for k ∈ N0, let

Qk(x) :=
∫
J
ρ(x, y)ykφ(y)dy,

Pk(x) :=
∫
J
ρ(x, y)ykψ(y)dy,
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and set qkj := Qk(aj) = limx→aj Qk(x), and pkj := Pk(aj) = limx→aj Pk(x). Note that in the

following, any quantity at some aj is interpreted to be the limit as x→ aj , with x ∈ J . We need

the following scalar products:

u :=〈φ,Q〉J =

∫
J

Q(x)φ(x)dx,

v :=〈ψ,Q〉J =

∫
J

Q(x)ψ(x)dx =

∫
J

P (x)φ(x)dx = 〈φ, P 〉J ,

w :=〈ψ, P 〉J =

∫
J

P (x)ψ(x)dx,

where P := P0 and Q := Q0.

The following equations hold:

∂

∂aj
log det(I −K) = (−1)j−1R(aj , aj),

R(aj , ak) =
qjpk − qkpj
aj − ak

,

∂

∂ak
R(aj , aj) = (−1)kR(aj , ak)R(ak, aj), (2.2.1)

∂qj
∂ak

= (−1)kR(aj , ak)qk,

∂pj
∂ak

= (−1)kR(aj , ak)pk,

∂u

∂ak
= (−1)kq2

k,
∂v

∂ak
= (−1)kqkpk,

∂w

∂ak
= (−1)kp2

k,

where j 6= k and qj := q0j , pj := p0j . For the �rst equation, see for example Forrester [14] (p.325,

ex.7.2). The others can be found in Tracy and Widom [37]. These equations are independent

of the recurrence equations (2.1.4), whereas the following set of pde's does depend on these

equations: Set

m(x) =: µ0 + µ1x+ µ2x
2,

A(x) =: α0 + α1x,

B(x) =: β0 + β1x,

C(x) =: γ0 + γ1x.

Then,

m(ai)
∂qi
∂ai

=(α0 + α1ai + γ1u− β1w − µ2v)qi

+ (β0 + β1ai + 2α1u+ 2β1v + µ2u)pi (2.2.2)

−
∑
k 6=i

(−1)kR(ai, ak)qkm(ak),

m(ai)
∂pi
∂ai

=(−γ0 − γ1ai + 2γ1v + 2α1w − µ2w)qi

+ (−α0 − α1ai + β1w − γ1u+ µ2v)pi (2.2.3)

−
∑
k 6=i

(−1)kR(ai, ak)pkm(ak),
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m(ai)R(ai, ai) =(γ0 + γ1ai − 2γ1v − 2α1w + µ2w)q2
i

+ (β0 + β1ai + 2α1u+ 2β1v + µ2u)p2
i (2.2.4)

+ (α0 + α1ai + γ1u− β1w − µ2v)2piqi

+
∑
k 6=i

(−1)km(ak)
(qipk − pkqi)2

ai − ak
,

and

∂

∂ai
[m(ai)R(ai, ai)] =2α1qipi + β1p

2
i + γ1q

2
i

−
∑
k 6=i

(−1)km(ak)R2(ai, ak). (2.2.5)

These are special cases of the more general equations in Tracy and Widom [37]. They are also

stated in Witte and Forrester [43].

We restrict our attention to the single interval J = (t,∞), t > 0. That is a1 = t and a2 → ∞.

In order to make sense of the above equations in the limit, we need to make sure that q2, p2, as

well as the last terms in the equations (2.2.2) to (2.2.5) tend to zero, when a2 →∞. Moreover,

the integrals de�ning u, v and w have to be well de�ned as a2 → ∞. In Section 2.3, we prove

that these conditions are ful�lled in the case <s > 1/2 only. For now, we set

q2 = p2 = 0.

We also introduce the notations q1 =: q and p1 =: p. Equations (2.2.1) now specialize to:

d

dt
log det(I −K) = R(t, t), (2.2.6)

du

dt
= −q2, (2.2.7)

dv

dt
= −qp, (2.2.8)

dw

dt
= −p2. (2.2.9)

The equations with j 6= k vanish. The equations depending on the special form of (2.1.4)

(Theorem 2.4 respectively) are:

(1 + t2)
dq

dt
=

(
=s
(

1 +
N

<s

)
− t<s− v

)
q (2.2.10)

+

(
|s|2

(<s)2
N

2<s+N

2<s+ 1
− u(2<s− 1)

)
p,

(1 + t2)
dp

dt
= (−2<s− 1− w(2<s+ 1)) q (2.2.11)

+

(
−=s

(
1 +

N

<s

)
+ t<s+ v

)
p,

(1 + t2)R(t, t) =(2<s+ 1 + w(2<s+ 1))q2 (2.2.12)

+

(
|s2|

(<s)2
N

2<s+N

2<s+ 1
− u(2<s− 1)

)
p2

+

(
=s
(

1 +
N

<s

)
− t<s− v

)
2pq,

d

dt

[
(1 + t2)R(t, t)

]
=− (2<s)pq. (2.2.13)
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2.3 Asymptotics for the PDE's in Section 2.2

In Section 2.2, we need to estimate some quantities which are related to the restriction KN,J of

the operator KN , where J = (t,∞) for some t ∈ R. In particular, we need to prove that for

t > 0 �xed, the quantities:

R(t, x)Q(x)(1 + x2),

R(t, x)P (x)(1 + x2),

(1 + x2)
P 2(x) +Q2(x)

x
, and

(1 + x2)R2(t, x)

tend to zero when x goes to in�nity. In order to obtain the Painlevé formulation in the next

subsection, we will need the following: To deduce (2.4.1) from (2.2.8) and (2.2.13), we have to

prove that v and (1 + t2)R(t, t) tend to zero when t goes to in�nity. Finally, to deduce (2.4.5)

from (2.4.4), u, w, t(1 + t2)R(t, t) and (1 + t2)((1 + t2)R(t, t))′ also have to tend to zero.

In the following, C(N, s) denotes a strictly positive real number, depending only on N and s.

This constant may change from line to line. We also note that the following calculations require

<s > 1/2. Now, for all x ∈ R, we have from Theorem 1.2:

KN (x, x) = C(N, s)
(
p̃′N (x)pN−1(x)− p̃N (x)p′N−1(x)

)
wH(x).

Since p̃′NpN−1 − p̃Np′N−1 is a polynomial of degree 2N − 2, the explicit form of wH in Theorem

1.2 gives for all x ∈ R:
KN (x, x) ≤ C(N, s)(1 + |x|)−2−2<s,

and because KN de�nes a positive self-adjoint operator on L2(R),

KN (x, y) ≤ C(N, s)[(1 + |x|)(1 + |y|)]−1−<s, ∀x, y ∈ R.

Now, for p ≥ 2, the kernel of the operator Kp
N,J , de�ned by

Kp
N,J(x, y) =

∫
Jp−1

KN (x, z1) · · ·KN (zp−1, y)dz1 · · · dzp−1,

satis�es for x ≥ t > 0 :

Kp
N,J(x, x) ≤

∫
Jp−1

|KN (x, z1)||KN (z1, z2)| · · · |KN (zp−1, x)|dz1 · · · dzp−1

≤ C(N, s)(1 + x)−2−2<s
(
C(N, s)

∫ ∞
t

(1 + z)−2−2<s dz

)p−1

≤ C(N, s)D1(N, s, t)p−1 (1 + x)−2−2<s,

where D1(N, s, t) depends only on N, s, t and tends to zero when t goes to in�nity (recall that

<s > 1/2). Since R =
∑
p≥1K

p
N,J , one obtains, for t large enough and x ≥ t:

R(x, x) ≤ D2(N, s, t)(1 + |x|)−2−2<s, (2.3.1)

if for N, s �xed, D2(N, s, t) > 0 converges when t goes to in�nity. Moreover, it is easy to check

that:
KN,J

1− λ
−R
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is a positive operator, if λ < 1 denotes the largest eigenvalue of KN,J . Therefore:

R(x, x) ≤ KN,J(x, x)

1− λ

and (2.3.1) holds for any x ∈ R, since λ depends only on N, s and t. By positivity of R:

R(x, y) ≤ D2(N, s, t) ((1 + |x|)(1 + |y|))−1−<s
.

Now,

|φ(x)| ≤ C(N, s)(1 + |x|)−<s,
|ψ(x)| ≤ C(N, s)(1 + |x|)−1−<s,

by (1.2.3) and (1.2.4). Hence,

|Q(x)| ≤|φ(x)|+
∫ ∞
t

|R(x, y)||φ(y)|dy

≤C(N, s)(1 + |x|)−<s

+D2(N, s, t)C(N, s)(1 + |x|)−1−<s
∫ ∞
t

(1 + |y|)−1−2<sdy

≤D3(N, s, t)(1 + |x|)−<s,

where D3(N, s, t) converges when t goes to in�nity. By the same argument,

|P (x)| ≤ D4(N, s, t)(1 + |x|)−1−<s,

where D4(N, s, t) converges when t goes to in�nity. We deduce from (2.3.1) and the last two

bounds that for t �xed and x going to in�nity:

R(t, x)Q(x)(1 + x2) = O(x1−2<s),

R(t, x)P (x)(1 + x2) = O(x−2<s),

(1 + x2)
P 2(x) +Q2(x)

x
= O(x1−2<s),

(1 + x2)R2(t, x) = O(x−2<s).

All these quantities tend to zero when x goes to in�nity, as long as <s > 1/2. Moreover,

|u| ≤
∫ ∞
t

|φ(x)||Q(x)|dx

≤
∫ ∞
t

C(N, s)(1 + |x|)−<sD3(N, s, t)(1 + |x|)−<sdx

= O(t1−2<s),

when t goes to in�nity (recall that D3(N, s, t) converges). By the same argument:

v = O(t−2<s),

w = O(t−1−2<s),

for t→∞. Finally,

|t(1 + t2)R(t, t)| ≤ D2(N, s, t)|t|(1 + t2)(1 + |t|)−2−2<s

= O(t1−2<s),



22 Chapter 2. The Painlevé Formulation via the Method of Tracy and Widom

and, using (2.2.13):

|(1 + t2)((1 + t2)R(t, t))′| = 2<s|P (t)||Q(t)|(1 + t2)

≤ 2<(s)D3(N, s, t)(1 + |t|)−<s

D4(N, s, t)(1 + |t|)−1−<s(1 + t2)

= O(t1−2<s),

as t→∞ goes to in�nity.

2.4 Painlevé Formulation

We use equations (2.2.6)�(2.2.13) to state an ordinary di�erential equation (ODE) for σ(t) :=

(1 + t2)R(t, t) = d
dt log det(I −K). Recall that <s > 1/2. With (2.2.8) and (2.2.13), one gets:

(1 + t2)R(t, t) = 2<s v. (2.4.1)

The integration constant is equal to zero since both v and (1+t2)R(t, t) tend to zero (see Section

2.3) if t→∞. Now, using (2.4.1) and (2.2.12) and the notations of Theorem 2.4,

[γ0 + w(2<s+ 1)] q2 + [β0 − u(2<s− 1)] p2

− [−α0 + t<s+ v] 2pq − 2<s v = 0. (2.4.2)

Adding p times (2.2.10) and q times (2.2.11) gives:

(1 + t2)(pq)′ + [γ0 + w(2<s+ 1)] q2 − [β0 − u(2<s− 1)] p2 = 0. (2.4.3)

Subtract 2<s times (2.4.3) from (2.4.2) to get:

{[β0 − u(2<s− 1)] [γ0 + w(2<s+ 1)]}′ − 2<s(1 + t2)v′′ − 4<s tv′

+ 2<s tv′ − 2vv′ + 2<s v + 2α0v
′ = 0 (2.4.4)

Again using the fact that u, v, w all tend to zero if t → ∞ (see Section 2.3) together with the

equations (2.2.8) and (2.2.13), one integrates the above equation to:

[β0 − u(2<s− 1)] [γ0 + w(2<s+ 1)] = β0γ0 + (1 + t2)
[
(1 + t2)R(t, t)

]′
− t(1 + t2)R(t, t) +

1

4(<s)2
((1 + t2)R(t, t))2 − α0

<s
[(1 + t2)R(t, t)].

Setting σ := σ(t) := (1 + t2)R(t, t), this turns into:

[β0 − u(2<s− 1)][γ0 + w(2<s+ 1)] = β0γ0 + (1 + t2)σ′ − tσ +
1

4(<s)2
σ2 − α0

<s
σ. (2.4.5)

With all these equations in hand, we can get the desired ODE as follows: Combining (2.4.1) and

(2.4.3) gives:

− 1

2<s
(1 + t2)σ′′ = [β0 − u(2<s− 1)]p2 − [γ0 + w(2<s+ 1)]q2. (2.4.6)

Combining (2.4.1) and (2.4.2) gives:

σ − 1

2(<s)2
(σ + 2(<s)2t)σ′ +

α0

<s
σ′ = [β0 − u(2<s− 1)]p2 + [γ0 + w(2<s+ 1)]q2. (2.4.7)
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Subtracting the square of equation (2.4.7) from the square of equation (2.4.6) leads to:

1

4(<s)2
(1 + t2)2(σ′′)2 − σ2 +

1

(<s)2
σσ′(σ + 2(<s)2t)− 2

α0

<s
σσ′

+
α0

(<s)3
(σ′)2(σ + 2(<s)2t)− 1

4(<s)4
(σ + 2(<s)2t)2(σ′)2 −

(α0

<s

)2

(σ′)2 (2.4.8)

+ 4p2q2[β0 − u(2<s− 1)][γ0 + w(2<s+ 1)] = 0.

In the last line of this equation, we can write 4p2q2 = 1
(<s)2 (σ′)2 and for the product of the two

brackets, one uses equation (2.4.5). Equation (2.4.8) is now equivalent to the ODE

(1 + t2)(σ′′)2 + 4(1 + t2)(σ′)3 − 8t(σ′)2σ + 4σ2(σ′ − (<s)2) + 8(t(<s2)−<s=s
−N=s)σσ′ + 4(2t=s(N + <s)− (=s)2 − t2(<s)2 +N(2<s+N))(σ′)2 = 0.

But this is precisely the ODE in Theorem 1.5 (note in particular that the equation itself is

meaningful not only for <s > 1/2 but for all s with <s > −1/2) with

σ(t) =(1 + t2)R(t, t) = (1 + t2)
d

dt
log det(I −KN )|L2(t,∞)

=(1 + t2)
d

dt
logP [there is no eigenvalue inside (t,∞)].

Thus, Theorem 1.5 is proved.





Chapter 3

Scaling Limit and Painlevé

Characterization

In this Chapter we split the proofs of Theorems 1.8, and 1.11 into several technical Lemmas.

The notations are those introduced in Chapter 1. Throughout the remainder of this part of the

thesis, C(a0, a1, . . . , an) stands for a positive constant which only depends on the parameters

a0, a1, . . . , an, and whose value may change from line to line (we shall not be interested in

explicit values for the di�erent constants). We �rst bring in an ODE that θ∞ should satisfy;

then we prove several technical Lemmas about the convergence of the correlation functions and

the derivatives of the kernel K[N ]. We shall use these Lemmas to show that θ∞(t) is indeed well

de�ned (i.e. F∞(t) is non-zero for any t > 0) and to prove Theorems 1.8 and 1.11.

3.1 Scaling Limits

We show that when N → ∞, the ODE (1.2.16) converges to a σ-version of the Painlevé-V

equation (for the full set of parameters s with <s > −1/2). This limiting equation is also given

in Borodin and Deift [4] (Proposition 8.14). Borodin and Deift obtain this equation as a scaling

limit of a Painlevé-VI equation characterizing their 2F1-kernel. However, their 2F1-kernel is

di�erent from our kernel KN .

Set for τ > 0,

θ(τ) := θN (τ) := τ
d log det(1−KN )|L2(Nτ−1,∞)

dτ
. (3.1.1)

Then,

θ(τ) = τ

(
−N
τ2

)
R

(
N

τ
,
N

τ

)
= −N

τ

[
σ
(
N
τ

)
1 + N2

τ2

]
.

where R(x, y) is the kernel of the resolvent operator KN,J(1 −KN,J)−1 and we use (2.2.6). It

follows that

σ

(
N

τ

)
=− θ(τ)

(
τ

N
+
N

τ

)
,

σ′
(
N

τ

)
=
τ2

N2
(τθ′(τ) + θ(τ)) + (τθ′(τ)− θ(τ)),

σ′′
(
N

τ

)
=− τ3

N3
[4τθ′(τ) + 2θ(τ) + τ2θ′′(τ)]− τ3

N
θ′′(τ).
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Now, put this into the ODE (1.2.16) with t = N
τ . After dividing by N2, we obtain:(

1

τ2

)2

(τ3θ′′(τ))2 + 4

(
1

τ2

)
(τθ′(τ)− θ(τ))3 +

8

τ
(τθ′(τ)− θ(τ))2 θ(τ)

τ

+ 4

(
θ(τ)

τ

)2

(τθ′(τ)− θ(τ)− (<s)2)− 8

(
(<s)2

τ
−=s

)
θ(τ)

τ
(τθ′(τ)− θ(τ))

+ 4

[
2
=s
τ
− (<s)2

τ2
+ 1

]
(τθ′(τ)− θ(τ))2 = O(N−1).

This gives

−τ2(θ′′(τ))2 = 4
{

(θ′(τ))2(τθ′(τ)− θ(τ)− (<s)2) + 2=s θ′(τ)(τθ′(τ)− θ(τ))

+(τθ′(τ)− θ(τ))2
}

+O(N−1).

Now if one neglects the terms of order O(N−1), it is easy to see that this is precisely equation

(1.2.18). But this is also exactly the σ-form of the Painlevé-V equation in Borodin and Deift [4],

Proposition 8.14.

Hence, θN (τ)(= θ(τ)) satis�es a di�erential equation which tends to the σ-Painlevé-V equation

and we have the following Proposition:

Proposition 3.1. The ODE (1.2.16) with the change of variable t = N/τ , τ > 0, is solved by

θN (τ), and is of the form

m∑
k=0

N−k
Pk(τ, θN (τ), θ′N (τ), θ′′N (τ))

τ q
= 0,

where m and q are universal integers and the Pk's are polynomials which are independent of N .

Moreover, P0(τ, θN (τ), θ′N (τ), θ′′N (τ))τ−q corresponds to the σ-form of the Painlevé-V equation

(1.2.18).

Remark 3.2. We note that θN (τ), given by (3.1.1), is a solution of the ODE (1.2.16), with

t = N/τ . Moreover, we know that limN→∞NKN (x, y) = K∞(x, y), for any x, y ∈ R∗. Hence it
is natural to guess that θ∞(τ) should satisfy the ODE (1.2.18).

3.2 Some technical Lemmas

For clarity, we decompose the proof of our Theorems into several Lemmas about the convergence

of correlation functions and the derivatives of the kernel K[N ].

Lemma 3.3. Let K be a function in C2((R∗+)2,R), such that for all k ∈ N, and x1, x2, . . . , xk >

0, the matrix K(xi, xj)1≤i,j≤k is symmetric and positive. De�ne the k-correlation function ρk
by:

ρk(x1, . . . , xk) = det(K(xi, xj)1≤i,j≤k),

and suppose that for (p, q) ∈ {(i, j); i, j ∈ N0, i+ j ≤ 2}, for some α > 1/2, and for all x0 > 0,

one has the upper bound ∣∣∣∣ ∂p+q

∂xp∂yq
K(x, y)

∣∣∣∣ ≤ C(x0)

(xy)α
, (3.2.1)

if x, y ≥ x0. Then, ρk is in C2((R∗+)k,R) for all k, and for all x0 > 0, x1, . . . , xk ≥ x0, one has:∣∣∣∣∣ ∂p∂xpj ρk(x1, . . . , xk)

∣∣∣∣∣ ≤ (C(x0))k

(x1 . . . xk)2α
, (3.2.2)
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if p ∈ {0, 1, 2} and j ∈ {1, . . . , k}. Moreover,

∂p

∂xpj
ρk(x1, . . . , xk) = 0 (3.2.3)

if p ∈ {0, 1}, j ∈ {1, . . . , k} and if there exists j′ 6= j such that xj = xj′ .

Proof. Fix k ∈ N. The fact that ρk is in C2 is an immediate consequence of the fact that K is

in C2. For x1, ..., xj−1, xj+1, ..., xk �xed, the function:

t 7→ ρk(x1, ..., xj−1, t, xj+1, ..., xk)

is positive by the positivity of K, and equal to zero if t = xj′ for some j′ ∈ {1, . . . , j − 1, j +

1, . . . , k}. Therefore, t = xj′ is a local minimum of this function and one deduces the equality

(3.2.3). We now turn to the proof of (3.2.2). By symmetry of ρk, we only need to show the case

j = 1. We isolate the terms containing x1 in the determinant de�ning ρk to obtain:

ρk(x1, . . . , xk) = K(x1, x1) det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1K(xi, x1)K(x1, xj) det(K(xl+1+1l≥i−1
, xm+1+1m≥j−1

)1≤l,m≤k−2),

where we take the convention that an empty sum is equal to 0 and an empty determinant is

equal to 1. One deduces:

∂

∂x1
ρk(x1, . . . , xk) = (K ′1 +K ′2)(x1, x1) det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1(K ′2(xi, x1)K(x1, xj) +K(xi, x1)K ′1(x1, xj))

det(K(xl+1+1l≥i−1
, xm+1+1m≥j−1

)1≤l,m≤k−2),

and

∂2

∂x2
1

ρk(x1, ..., xk) = (K ′′1,1 + 2K ′′1,2 +K ′′2,2)(x1, x1) det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1(K ′′2 (xi, x1)K(x1, xj) + 2K ′2(xi, x1)K ′1(x1, xj)

+K(xi, x1)K ′′1 (x1, xj)) det(K(xl+1+1l≥i−1
, xm+1+1m≥j−1

)1≤l,m≤k−2),

where for p, q ∈ {1, 2}, K ′p denotes the derivative of K with respect to the p-th variable, and

K ′′p,q denotes the second derivative of K with respect to the p-th and the q-th variable. By the

positivity of K, there exists, for all r ∈ N and y1, ..., yr, z1, ..., zr > 0, vectors e1, ..., er, f1, ..., fr
of an Euclidian space E equipped with its usual scalar product (.|.), such that (ei|fj) = K(yi, zj)

for all i, j ∈ {1, . . . , r}. Now, we can de�ne a scalar product on the r-th exterior power of E by

setting

(u1 ∧ ... ∧ ur|v1 ∧ ... ∧ vr) = det((ui|vj)1≤i,j≤r),

for all u1, ..., ur, v1, ..., vr ∈ E. Note that this scalar product is nothing else than a Gram

determinant and we have the upper bound

|det((ei|fj)1≤i,j≤r)| ≤
r∏
i=1

‖ei‖E
r∏
i=1

‖fi‖E ,
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‖.‖E being the norm associated to (.|.). This last bound is equivalent to

|det(K(yi, zj)1≤i,j≤r)| ≤

√√√√ r∏
i=1

K(yi, yi)

r∏
i=1

K(zi, zi). (3.2.4)

Now, let x0 > 0 and x1, . . . , xk ≥ x0. The bound (3.2.1) given in the statement of the Lemma

and the inequality (3.2.4) imply

|det(K(xl+1, xm+1)1≤l,m≤k−1)| ≤ (C(x0))k−1

(x2x3 · · ·xk)2α

and

|det(K(xl+1+1l≥i−1
, xm+1+1m≥j−1

)1≤l,m≤k−2)|

≤ (C(x0))k−2

(x2x3 · · ·xi−1xi+1 · · ·xk)α(x2x3 · · ·xj−1xj+1 · · ·xk)α

=
(C(x0))k−2(xixj)

α

(x2...xk)2α
.

Hence, each term involved in the expressions of ρk and its two �rst derivatives with respect to x1

is smaller than 4(C(x0))k/(x1 · · ·xk)2α and therefore, the absolute values of ρk an its derivatives

are bounded by 4((k − 1)2 + 1)(C(x0))k/(x1 · · ·xk)2α ≤ 4k(C(x0))k/(x1 · · ·xk)2α, implying the

bound (3.2.2).

Remark 3.4. In the above proof, the value of C(x0) does not change. It is thus possible to

take C(x0) in the inequality (3.2.2) to be equal to 4 times the value of C(x0) in (3.2.1).

We now have to prove that the re-scaled kernel K[N ] satis�es the hypothesis of Lemma 3.3, and

that its partial derivatives converge pointwise to the partial derivatives of K∞. In the following,

we introduce the notation

Fn,h,a(x) = 2F1 [−n, h, a; 2/(1 + ix)] ,

for (n, h, a) ∈ N× C× R∗+.

Lemma 3.5. Let ε ∈ {0, 1}, h ∈ C, a ∈ R∗+. For N ∈ N, we set n := N − ε. Then,

x 7→ Fn,h,a(Nx) and x 7→ 1F1[h, a; 2i/x] are in C∞(R∗), and for all p ∈ N and x ∈ R∗:

dp

dxp
(Fn,h,a(Nx)) −→

N→∞

dp

dxp
( 1F1[h, a; 2i/x]).

Moreover, for all x0 > 0 and for all x ∈ R such that |x| ≥ x0, one has the bound∣∣∣∣ dpdxp (Fn,h,a(Nx))

∣∣∣∣ ≤ C(x0, h, a, p)

|x|p+1p>0
.

Proof. One has

Fn,h,a(Nx) =

∞∑
k=0

(−n)k(h)k
(a)kk!

(
2

1 +Nix

)k
,

where only a �nite number of the summands are di�erent from zero. This implies that the

function is C∞ on R∗, and

dp

dxp
(Fn,h,a(Nx)) =

∞∑
k=0

(−n)k(h)k
(a)kk!

(k)p

(
2

1 +Nix

)k+p(
− iN

2

)p
.
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The term of order k in this sum is dominated by (note that a > 0)

(|h|)k
(a)kk!

(k)p
2k

|x|k+p
,

and for �xed x, tends to
(h)k

(a)kk!
(k)p

(2i)k(−1)p

xk+p
,

when N →∞. One deduces, that for |x| ≥ x0 > 0:∣∣∣∣ dpdxp (Fn,h,a(Nx))

∣∣∣∣ ≤ ∞∑
k=0

(|h|)k
(a)kk!

(k)p
2k

|x|k+p

≤ 1p=0 +
1

|x|p+1

∞∑
k=1

(|h|)k
(a)kk!

(k)p
2k

xk−1
0

≤ C(x0, h, a, p)

|x|p+1p>0

which is the desired bound. Now, by dominated convergence, one has

dp

dxp
(Fn,h,a(Nx)) −→

N→∞

∞∑
k=0

(h)k
(a)kk!

(k)p
(2i)k(−1)p

xk+p
.

Hence, Lemma 3.5 is proved if we show that x 7→1 F1[h, a; 2i/x] is C∞ on R∗, and that

dp

dxp
( 1F1[h, a; 2i/x]) =

∞∑
k=0

(h)k
(a)kk!

(k)p
(2i)k(−1)p

xk+p
. (3.2.5)

But the sum in (3.2.5) is obtained by taking the derivative of order p of each term of the sum

de�ning 1F1. Therefore, we are done, since this term by term derivation is justi�ed by the

domination of the right hand side of (3.2.5) by C(x0, h, a, p)/|x|p+1p>0 on R\(−x0, x0).

Lemma 3.6. Fix s such that <s > − 1
2 . De�ne the functions P̃N and QN by

P̃N (x) = 2<s
(

Γ(2<s+N + 1)

NΓ(N)

)1/2

p̃N (Nx)
√
wH(Nx),

QN (x) = 2<s+1

(
NΓ(2<s+N + 1)

Γ(N)

)1/2

pN−1(Nx)
√
wH(Nx),

where p̃N , pN−1 and wH are given in Theorem 1.2 and the remark below that Theorem. Then,

P̃N and QN are C∞ on R, P̃ and Q, de�ned below (1.2.12), are C∞ on R∗, and for all x ∈ R∗,
p ∈ N0,

(Sgn(x))N P̃
(p)
N (x) −→

N→∞
P̃ (p)(x),

(Sgn(x))NQ
(p)
N (x) −→

N→∞
Q(p)(x).

Moreover, for all p ∈ N0, x0 > 0, one has the following bounds:∣∣∣P̃ (p)
N (x)

∣∣∣ ≤ C(x0, s, p)

|x|p+<s
,

and ∣∣∣Q(p)
N (x)

∣∣∣ ≤ C(x0, s, p)

|x|p+1+<s ,

for all |x| ≥ x0.
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Proof. We de�ne

ΦN (x) = D(N,n, s)(Nx− i)nFn,h,a(Nx)(1 + iNx)(−s−N)/2(1− iNx)(−s−N)/2,

where

D(N,n, s) = 2<s+(N−n)

(
Γ(2<s+N + 1)

NΓ(N)

)1/2

NN−n,

and N − n ∈ {0, 1} (see Lemma 3.5). Then, if (n, h, a) = (N, s, 2<s + 1), ΦN (x) = P̃N (x) and

if (n, h, a) = (N − 1, s + 1, 2<s + 2), ΦN (x) = QN (x). Moreover, note that ΦN is a product of

C∞ functions on R.
Now, for δ ∈ {−1, 1}:

log(1 + δiNx) = log(1− δi/Nx) + log(N |x|) + i
π

2
δSgn(x),

because both sides of the equality have an imaginary part in (−π, π) and their exponentials are

equal. Hence, (
−s+N

2
− (N − n)

)
log(1 + iNx) +

−s−N
2

log(1− iNx)

=

(
−s+N

2
− (N − n)

)
log(1− i/Nx) +

−s−N
2

log(1 + i/Nx)

− (<s+ (N − n)) log(N |x|) + niπSgn(x)/2 + π=sSgn(x)/2.

This implies:

ΦN (x) =D(N,n, s)(−i)n(1 + iNx)(−s+N)/2−(N−n)(1− iNx)(−s−N)/2Fn,h,a(Nx)

=D(N,n, s)(−i)n(N |x|)−<s−(N−n)eniπSgn(x)/2eπ=sSgn(x)/2

(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx)

=D(N,n, s)(Sgn(x))n(2N)−<s−(N−n)(2/|x|)<s+N−neπ=sSgn(x)/2

(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx)

=D′(N, s)(Sgn(x))Neπ=sSgn(x)/2(2/x)N−n(2/|x|)<s

(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx), (3.2.6)

where for s �xed,

D′(N, s) = D(N,n, s)(2N)−<s−(N−n) =

(
Γ(2<s+N + 1)

N2<s+1Γ(N)

)1/2

. (3.2.7)

This tends to 1 when N goes to in�nity. In particular D′(N, s) can be bounded by some C(s),

not depending on N . We investigate all the terms in (3.2.6) separately in the following.

Let G be the function de�ned by:

G(y) := (1− iy/N)(N−s)/2−(N−n)(1 + iy/N)(−s−N)/2.

This function is C∞ on R and one has:

G(p)(y) =G(y)

p∑
q=0

C(p, q)(i/N)q(−i/N)p−q(−(N − s)/2 +N − n)q

((N + s)/2)p−q(1− iy/N)−q(1 + iy/N)−(p−q).
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For s, y, p and N − n ∈ {0, 1} �xed, the last sum is dominated by some constant C(s, p) only

depending on s and p and tends to (−i)p, as N →∞. Moreover, G(y) tends to e−iy, and

G(y) =

(
1− iy/N
1 + iy/N

)(N−i=s)/2

(1− iy/N)−(N−n)(1 + y2/N2)−<s/2.

A simple computation, yields the following:

|G(y)| ≤ C(s)

(
1 +

y2

N2

)−<s/2
≤ C(s)(1 + y2)1/4.

This implies that G(p)(y) tends to (−i)pe−iy when N goes to in�nity, and that∣∣∣G(p)(y)
∣∣∣ ≤ C(s, p)(1 + y2)1/4.

Now, for all f in C∞(R), the function g de�ned by x 7→ f(1/x) is in C∞(R∗), and there exist

universal integers (µp,k)p∈N0,0≤k≤p, such that µp,0 = 0 for all p ≥ 1, and for p ∈ N0,

g(p)(x) =

p∑
k=0

µp,k
xp+k

f (k)(1/x).

Applying this formula to the functions G and y → e−iy, one obtains the following pointwise

convergence (for x 6= 0):

dp

dxp

[
(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2

]
−→
N→∞

dp

dxp
(e−i/x) (3.2.8)

with, for |x| ≥ x0 > 0,∣∣∣∣ dpdxp [(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2
]∣∣∣∣ ≤ C(x0, s, p)

|x|p+1p>0
. (3.2.9)

Recall that by Lemma 3.5, one has the convergence

dp

dxp
(Fn,h,a(Nx)) −→

N→∞

dp

dxp
( 1F1[h, a; 2i/x]), (3.2.10)

and the bound ∣∣∣∣ dpdxp (Fn,h,a(Nx))

∣∣∣∣ ≤ C(x0, h, a, p)

|x|p+1p>0
≤ C(x0, s, p)

|x|p+1p>0
, (3.2.11)

since (h, a) only depends on s in the relevant cases (see the beginning of the proof). Moreover,∣∣∣∣ dpdxp [(2/x)N−n(2/|x|)<s
]∣∣∣∣ ≤ C(s, p)

|x|<s+(N−n)+p
. (3.2.12)

We can now give the derivatives of ΦN , using (3.2.6). One has for p ≥ 0:

(Sgn(x))N
dp

dxp
(ΦN (x)) =D′(N, s)eπ=sSgn(x)/2

∑
q1+q2+q3=p

p!

q1!q2!q3!

dq1

dxq1

[
(2/x)N−n(2/|x|)<s

]
dq2

dxq2

[
(1− i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−N−s)/2

]
dq3

dxq3
[Fn,h,a(Nx)] .
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By (3.2.7), (3.2.8) and (3.2.10), whenever s, x and N−n ∈ {0, 1} are �xed, this expression tends

to

eπ=sSgn(x)/2
∑

q1+q2+q3=p

p!

q1!q2!q3!

dq1

dxq1

[
(2/x)N−n(2/|x|)<s

]
dq2

dxq2

[
e−i/x

] dq3

dxq3
( 1F1[h, a; 2i/x]) ,

for N → ∞. But this is precisely the p-th derivative of P̃ at x if ΦN = P̃N , and the p-th

derivative of Q at x if ΦN = QN . Moreover, for |x| ≥ x0 > 0, one easily obtains the bound∣∣∣∣ dpdxp (ΦN (x))

∣∣∣∣ ≤ C(x0, s, p)

|x|<s+(N−n)+p
,

using (3.2.7), (3.2.9), (3.2.11) and (3.2.12). This completes the proof of the Lemma.

Lemma 3.7. Let f and g be two functions which are C∞ from R∗ to R. We de�ne the function

φ from (R∗)2 to R by

φ(x, y) :=
f(x)g(y)− g(x)f(y)

x− y
,

for x 6= y, and

φ(x, x) := f ′(x)g(x)− g′(x)f(x).

Then, φ is C∞ on (R∗)2 and for all p, q ∈ N0:

(a) If x 6= y:

∂p+qφ

∂xp∂yq
=

p∑
k=0

q∑
l=0

CkpC
l
q

f (k)(x)g(l)(y)− g(k)(x)f (l)(y)

(x− y)p+q−k−l+1
(−1)p−k(p+ q − k − l)!.

(b) If x and y have same sign:

∂p+qφ

∂xp∂yq
=

q∑
k=0

Ckq

[
g(q−k)(y)

∫ 1

0

f (k+p+1)(y + θ(x− y))θp(1− θ)kdθ

−f (q−k)(y)

∫ 1

0

g(k+p+1)(y + θ(x− y))θp(1− θ)kdθ
]
.

Proof. (a) By induction, one proves that for all p, q ∈ N0, and for x, y ∈ R distincts and di�erent

from zero, it is possible to take, in a neighborhood of (x, y), p derivatives of φ with respect to

x and q derivatives of φ with respect to y, in any order, with a result equal to the expression

given in the statement of the Lemma. This implies the existence and the continuity of all partial

derivatives of φ in (R∗)2\{(x, x), x ∈ R∗}. Therefore, φ is C∞ in this open subset of (R∗)2.

(b) With the same method as in (a), we obtain that φ is C∞ on (R∗−)2 ∪ (R∗+)2. The only

technical issues are the continuity and the derivation under the integral. These can easily be

justi�ed by the boundedness of the derivatives of f and g in any compact set of R∗.

Proposition 3.8. Let x, y ∈ R∗ and let <s > −1/2. Then K[N ] and K∞ are C∞ in (R∗)2 and

for all p, q ∈ N0,

(Sgn(xy))N
∂p+q

∂xp∂yq
K[N ](x, y) −→

N→∞

∂p+q

∂xp∂yq
K∞(x, y).

Moreover, for any x0 > 0, and |x|, |y| ≥ x0 > 0:∣∣∣∣ ∂p+q

∂xp∂yq
K[N ](x, y)

∣∣∣∣ ≤ C(x0, s, p, q)

|x|<s+p+1|y|<s+q+1
.
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Note that the pointwise convergence in the case p = q = 0 corresponds to the convergence result

for the kernels given by Borodin and Olshanski [5].

Proof. One has

(Sgn(xy))NK[N ](x, y) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)

(Sgn(x))N P̃N (x)(Sgn(y))NQN (y)− (Sgn(y))N P̃N (y)(Sgn(x))NQN (x)

x− y

for x 6= y, and

K[N ](x, x) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)
(P̃ ′N (x)QN (x)−Q′N (x)P̃N (x)),

with P̃N and QN de�ned in Lemma 3.6. Recall the de�nition of K∞ in (1.2.12) and (1.2.13).

Now, P̃N , QN , P̃ and Q are in C∞(R∗) (see Lemma 3.6) and hence, by Lemma 3.7, K[N ] and

K∞ are in C∞((R∗)2).

Moreover, by Lemma 3.6, the derivatives of x 7→ SgnN (x)P̃N (x) and x 7→ SgnN (x)QN (x) con-

verge pointwise to the corresponding derivatives of P̃ and Q. Considering, for x 6= y, the

expression (a) of Lemma 3.7, and for x = y, the expression (b), one easily deduces the point-

wise convergence of the derivatives of (x, y) 7→ (Sgn(xy))NK[N ](x, y) towards the corresponding

derivatives of K∞.

Finally, the bounds given in the statement of the Lemma can be obtained from the bounds of

the derivatives of P̃N and QN , given in Lemma 3.6, and by applying the formula (a) of Lemma

3.7 if xy < 0 or max(|x|, |y|) > 2 min(|x|, |y|) (which implies |x − y| ≥ max(|x|, |y|)/2), or the
formula (b) if xy > 0 and max(|x|, |y|) ≤ 2 min(|x|, |y|).

Summarizing, we have:

Proposition 3.9. Let s be such that <s > − 1
2 . Then, the restriction to R∗+ of the scaled kernel

K[N ] and the kernel K∞ satisfy the conditions of Lemma 3.3. Moreover, for all p, q ∈ N0, the

partial derivatives

Sgn(xy)N
∂p+q

∂xp∂yq
K[N ](x, y)

converge pointwise to the corresponding partial derivatives of K∞(x, y).

Proof. This follows immediately from Proposition 3.8 and the fact that these kernels are real

symmetric and positive because they are kernels of determinantal processes on the real line (see

remark 1.3 for the kernel K∞).

The next step is to analyze the convergence of the Fredholm determinant of KN,J and its

derivatives to the corresponding derivatives of the Fredholm determinant ofK∞,J , for J = (t,∞),

t > 0.

Lemma 3.10. Let F be a function de�ned from (R∗+)k+1 to R, for some k ∈ N. We suppose

that F is in C1, and that there exists, for some α > 1 and for all x0 > 0, a bound of the form

|F (t, x1, x2, ..., xk)|+
∣∣∣∣ ∂∂tF (t, x1, x2, ..., xk)

∣∣∣∣ ≤ C(x0)

(x1...xk)α
,

for all t, x1, ..., xk ≥ x0. Then, the integrals involved in the de�nitions of the following two

functions from R∗+ to R are absolutely convergent:

H0 : t 7→
∫

(t,∞)k
F (t, x1, . . . , xk)dx1 . . . dxk,
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and

H1 : t 7→
∫

(t,∞)k

∂

∂t
F (t, x1, . . . , xk)dx1 . . . dxk

−
k∑
l=1

∫
(t,∞)k−1

F (t, x1, . . . , xl−1, t, xl+1, . . . , xk)dx1 . . . dxl−1dxl+1 . . . dxk.

Moreover, the �rst derivative of H0 is continuous and equal to H1.

Proof. Due to the bound given in the Lemma, it is clear that all the integrals in the de�nition

of H0 and H1 are absolutely convergent. Therefore, for 0 < t < t′, we can use Fubini's Theorem

in order to compute the integral ∫ t′

t

H1(u)du.

Straightforward computations show that this integral is equal to H0(t′) − H0(t). Hence, if we

prove that H1 is continuous, we are done. Now, let t > x0 > 0. For t′ > x0, one has

|H1(t′)−H1(t)| ≤
∫

(x0,∞)k

∣∣∣∣ ∂∂t′F (t′, x1, . . . , xk)1{x1,...,xk>t′}

− ∂

∂t
F (t, x1, . . . , xk)1{x1,...,xk>t}

∣∣∣∣ dx1 . . . dxk

+

k∑
l=1

∫
(x0,∞)k−1

∣∣F (t′, x1, . . . , xl−1, t
′, xl+1, . . . , xk)1{x1,...,xl−1,xl+1,...xk>t′}

−F (t, x1, . . . , xl−1, t, xl+1, . . . , xk)1{x1,...,xl−1,xl+1,...xk>t}
∣∣ dx1 . . . dxl−1dxl+1 . . . dxk.

All the terms inside the integrals converge to zero almost everywhere when t′ → t (more precisely,

whenever the minimum of the xj 's is di�erent from t). Hence, by dominated convergence,

|H1(t′)−H1(t)| tends to zero when t′ → t.

Lemma 3.11. Let K be a function satisfying the conditions of Lemma 3.3. Then, using the

notation of that Lemma, ∑
k≥1

1

k!

∫
(t,∞)k

ρk(x1, . . . , xk)dx1 . . . dxk <∞

for all t > 0. Moreover, the Fredholm determinant F , from R∗+ to R, de�ned in (1.2.15) is in

C3, and its derivatives are given by

F ′(t) =
∑
k≥0

(−1)k

k!

∫
(t,∞)k

ρk+1(t, x1, . . . , xk)dx1 . . . dxk,

F ′′(t) =
∑
k≥0

(−1)k

k!

∫
(t,∞)k

∂

∂t
ρk+1(t, x1, . . . , xk)dx1 . . . dxk,

F ′′′(t) =
∑
k≥0

(−1)k

k!

∫
(t,∞)k

∂2

∂t2
ρk+1(t, x1, . . . , xk)dx1 . . . dxk,

where all the sums and the integrals above are absolutely convergent.

Proof. For k ≥ 1, we de�ne Fk by

Fk(t) =
(−1)k

k!

∫
(t,∞)k

ρk(x1, . . . , xk)dx1 . . . dxk.
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The integral is �nite because of the bounds given in Lemma 3.3. By the same bounds, one can

apply Lemma 3.10 three times, to obtain that Fk is in C3, with the derivatives given by

F ′k(t) =
(−1)k−1

(k − 1)!

∫
(t,∞)k−1

ρk(t, x1, . . . , xk−1)dx1 . . . dxk−1,

F ′′k (t) =
(−1)k−1

(k − 1)!

∫
(t,∞)k−1

∂

∂t
ρk(t, x1, . . . , xk−1)dx1 . . . dxk−1,

F ′′′k (t) =
(−1)k−1

(k − 1)!

∫
(t,∞)k−1

∂2

∂t2
ρk(t, x1, . . . , xk−1)dx1 . . . dxk−1,

where again all the integrals are absolutely convergent by Lemma 3.3. Note that we use (3.2.3)

to calculate the derivatives above. Moreover, for p ∈ {0, 1, 2, 3}, (3.2.2) gives the following bound
for any x0 > 0:

sup
t≥x0

|F (p)
k (t)| ≤ (C(x0))k

(k − 1)!
.

Using dominated convergence, we have that the sum∑
k≥1

Fk(t)

is absolutely convergent, and that its p-th derivative, p ∈ {0, 1, 2, 3} with respect to t is contin-

uous and given by the absolutely convergent sum∑
k≥1

F
(p)
k (t).

3.3 θ∞ is well de�ned

In order to prove that θ∞ is well de�ned, we need to prove that F∞(t) never vanishes for t > 0

(recall from Remark 1.10 that the range of the largest eigenvalue is R∗+). We note that F∞(t) is

the Fredholm determinant of the restriction of the operator K∞ to the space L2((t,∞)), which

can also be seen as the operator on L2((t0,∞)) with kernel (x, y) → K∞(x, y)1x,y>t, for some

t0 such that t > t0 > 0. This operator is positive, and we note that it is a trace class operator,

since: ∫
(t,∞)

K∞(x, x) dx <∞.

Therefore, the Fredholm determinant of this operator is given by the convergent product of

1− λj , where (λj)j∈N is the decreasing sequence of its (positive) eigenvalues, with multiplicity.

This implies that the determinant is zero if and only if 1 is an eigenvalue of the operator: hence,

we only need to prove that this is not the case. Indeed, if 1 is an eigenvalue, there exists f 6= 0

in L2((t0,∞)) such that for almost all x ∈ (t0,∞):

f(x) = 1x>t

∫ ∞
t

K∞(x, y) f(y) dy.

Therefore f(x) = 0 for almost every x ≤ t, and

f = p(t,∞)K∞,(t0,∞)f
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in L2((t0,∞)), where K∞,(t0,∞) is the operator on this space, with kernel K∞, and p(t,∞) is the

projection on the space of functions supported by (t,∞). Now, if we denote g := K∞,(t0,∞)f ,

||g||2L2((t0,∞)) =

∫ ∞
t0

∫ ∞
t0

∫ ∞
t0

K∞(x, y)K∞(x, z) f(y) f(z) dx dy dz.

By dominated convergence, one can check that ||g||2L2((t0,∞)) is the limit of∫ ∞
t0

∫ ∞
t0

∫ ∞
t0

K[N ](x, y)K[N ](x, z) f(y) f(z) dx dy dz

when N goes to in�nity. This expression is equal to ||p(t0,∞)K[N ]f̃ ||2L2(R), and hence, smaller

than or equal to ||K[N ]f̃ ||2L2(R), where the operators p(t0,∞) and K[N ] act on L
2(R), and where

f̃ is equal to f on (t0,∞) and equal to zero on (−∞, t0]. Now, K[N ] (as KN ) is an orthogonal

projector on L2(R) (with an N -dimensional image), hence, ||K[N ]f̃ ||L2(R) ≤ ||f̃ ||L2(R). This

implies:

||g||L2((t0,∞)) ≤ ||f ||L2((t0,∞)).

Now, with obvious notation:

||g||2L2((t0,∞)) = ||p(t,∞)g||2L2((t0,∞)) + ||p(t0,t]g||
2
L2((t0,∞))

= ||f ||2L2((t0,∞)) + ||p(t0,t]g||
2
L2((t0,∞))

since f = p(t,∞)g. By comparing the last two equations, one deduces that

||p(t0,t]g||
2
L2((t0,∞)) = 0,

which implies that g is supported by (t,∞), and

f = p(t,∞)g = g = K∞,(t0,∞)f.

It follows that K∞,(t0,∞)f (equal to f) takes the value zero a.e. on the interval (t0, t). Since f

is di�erent from zero, one easily deduces a contradiction from the following Lemma:

Lemma 3.12. Let f be a function in L2((t,∞)) for some t > 0. Then the function g from R∗+
to R, de�ned by:

g(x) =

∫ ∞
t

K∞(x, y) f(y) dy

is analytic on {z ∈ C; <(z) > 0}.

Proof. It is su�cient to prove that for all x0 such that 0 < x0 < t/2, g can be extended

to a holomorphic function on the set Hx0 := {x ∈ C;<(x) > x0}. Let (ε, h, a) be equal to

(0, s, 2<(s) + 1) or (1, s+ 1, 2<(s) + 2), and Φ equal to P̃ in the �rst case, Q in the second case.

One has for x ∈ R∗+:

Φ(x) =

(
2

x

)<(s)+ε

e−i/xeπ=(s)/2
1F1[h, a; 2i/x].

Φ can easily be extended to Hx0
: for the �rst factor, one can use the standard extention of the

logarithm (de�ned on C\R−), and the last factor is a hypergeometric series which is uniformly
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convergent on Hx0 . Moreover, it is easy to check (by using dominated convergence for the

hypergeometric factor), that this extension of Φ is holomorphic with derivative:

Φ′(x) =

eπ=s/2
(

2

x

)<s+ε
e−i/x

·
[
−(<s+ ε)

x
1F1[h, a; 2i/x] +

i

x2 1F1[h, a; 2i/x]

−
∞∑
k=0

(h)k(2i)kk

(a)kk!

(
1

x

)k+1
]
.

With these formulae, one deduces the following bounds, available on the whole set Hx0
:

|Φ(x)| ≤ C(x0, s)

|x|<(s)+ε
,

|Φ′(x)| ≤ C(x0, s)

|x|<(s)+ε+1
.

Now, let us �x y ∈ (t,∞). Recall that for x ∈ R∗+\{y}:

K∞(x, y) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)

P̃ (x)Q(y)−Q(x)P̃ (y)

x− y
. (3.3.1)

This formula is meaningful for all x ∈ Hx0
\{y} and gives an analytic continuation of x 7→

K∞(x, y) to this set. Now, for x > x0, one also has the formula:

K∞(x, y) =
1

2π

Γ(s+ 1)Γ(s+ 1)

Γ(2<s+ 1)Γ(2<s+ 2)
E
[
P̃ ′(Z)Q(y)−Q′(Z)P̃ (y)

]
,

where Z is a uniform random variable on the segment [x, y]. By the bounds obtained for Φ and

Φ′, one deduces that the continuation of x 7→ K∞(x, y) to the set Hx0\{y} is bounded in the

neighborhood of y, and hence can be extended to Hx0 . By construction, this extension coincides

with K∞(x, y) for x ∈ (x0,∞)\{y}, and in fact it coincides on the whole interval (x0,∞), since

K∞(x, y) tends to K∞(y, y) when x is real and tends to y. In other words, we have constructed

an extension of x 7→ K∞(x, y) which is holomorphic on Hx0 . Now, let us take x ∈ Hx0 such that

|x− y| ≥ y/2, which implies that |x− y| ≥ C(|x|+ y) for a universal constant C. By using this

inequality and the bounds on P̃ and Q, one obtains:

|K∞(x, y)| ≤ C(s, x0)

|xy|<(s)+1
.

By taking the derivative of the equation (3.3.1), one obtains the bound (again for x ∈ Hx0
and

|x− y| ≥ y/2): ∣∣∣∣ ∂∂xK∞(x, y)

∣∣∣∣ ≤ C(s, x0)

|x|<(s)+2y<(s)+1
.

Now, the maximum principle implies that the condition |x−y| ≥ y/2 can be removed in the last

two bounds. By using these bounds, Cauchy-Schwarz inequality and dominated convergence,

one deduces that the function:

x 7→
∫ ∞
t

K∞(x, y) f(y) dy

is well de�ned on the set Hx0
, and admits a derivative, given by the formula:

x 7→
∫ ∞
t

(
∂

∂x
K∞(x, y)

)
f(y) dy.
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3.4 Proof of the Scaling Limit Theorem 1.8

Note that by Proposition 3.9, K[N ] and K∞ satisfy the conditions of Lemma 3.3. For k,N ∈ N,
let ρk,N be the k-correlation function associated with K[N ] and ρk,∞ the k-correlation function

associated with K∞. By Lemma 3.11, FN is well de�ned for N ∈ N∪{∞}, and C3. The explicit

expressions of FN and F∞ and their derivatives are given in Lemma 3.11 by replacing ρk by

ρk,N and ρk,∞ respectively. Now, for k ≥ 1, all the partial derivatives of any order of ρk,N
converge pointwise to the corresponding derivatives of ρk,∞ when N goes to in�nity. This is due

to the explicit expression of ρk,N as a determinant and the convergence given by Proposition

3.9. Moreover, by that same Proposition, there exists α > 1/2 only depending on s such that∣∣∣∣ ∂p∂xp1 ρk,N (x1, . . . , xk)

∣∣∣∣ ≤ C(x0, s)
k

(x1 . . . xk)2α
,

for p ∈ {0, 1, 2}, and for all x1, ..., xk ≥ x0 > 0. In particular, this bound is uniform with respect

to N , and it is now easy to deduce the pointwise convergence of the derivatives of FN (up to

order 3), by dominated convergence.

3.5 Proof of the Painlevé Theorem 1.11

Theorem 1.11 follows immediately from Proposition 3.1 and the following Proposition:

Proposition 3.13. Let s be such that <s > −1/2, and FN , N ∈ N, and F∞ be as in Theorem

1.8. Then, for N ∈ N ∪ {∞}, the function θN from R∗+ to R, de�ned by

θN (τ) = τ
d

dτ
log(FN (τ−1)),

is well de�ned and C2. Moreover, for p ∈ {0, 1, 2}, the derivatives θ
(p)
N converge pointwise to

θ
(p)
∞ (de�ned by (1.2.17)).

Proof. Recall that for t > 0, FN (t) is the probability that a random matrix of dimension

N , following the generalized Cauchy weight (1.1.3), has no eigenvalue in (Nt,∞). Therefore,

FN (t) > 0, for any t > 0. Similarly, F∞(t) is the probability that the limiting determinantal

process has no point in (t,∞), which is also di�erent from zero for any t > 0, as we proved in

section 3.3. Therefore, for all N ∈ N ∪ {∞}, θN is well-de�ned and

θN (τ) = − F ′N (τ−1)

τFN (τ−1)
.

Since FN is in C3, θN is in C2, for all N ∈ N ∪ {∞}, and one can give explicit expressions

for θN and for its �rst two derivatives (see Lemma 3.11). It is now easy to deduce from these

explicit expressions and the pointwise convergence of the �rst three derivatives of FN assured

by Theorem 1.8, the pointwise convergence for the �rst two derivatives of θN , when N ∈ N goes

to in�nity.

Remark 3.14. Note that most probably, it is also possible to derive the fact that the kernel

K∞ gives rise to a solution of the Painlevé-V equation (1.2.18) directly by the methods of Tracy

and Widom [37] in an analogous way to the one used to obtain the Painlevé-VI equation (1.2.16)

in the �nite N case. In fact, the recurrence equations (2.1.4) in the in�nite case are:

x2P ′(x) =

(
−x<s+

=s
<s

)
P (x) +

|s|2

<s2

1

2<s+ 1
Q(x),

x2Q′(x) = − (2<s+ 1)P (x)−
(
−x<s+

=s
<s

)
Q(x),
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where P and Q are as in the de�nition of K∞ in (1.2.12) and (1.2.13). However, this method

has several drawbacks, as already mentioned in the Introduction (Chapter 1) and in Chapter 2.





Chapter 4

The Convergence Rate

We �rst need the rate of convergence for the scaled kernel K[N ](x, y) = NKN (Nx,Ny):

Lemma 4.1. Let x, y > x0 > 0. Then there exists a constant C(x0, s) > 0 only depending on

x0 and s ∈ C (<s > −1/2), such that∣∣K[N ](x, y)−K∞(x, y)
∣∣ ≤ 1

N

C(x0, s)

(xy)<s+1
.

In the following proof, C(a, b, . . .) denotes a strictly positive constant only depending on a, b, . . .

which may change from line to line.

Proof. Let x, y > x0, x 6= y. Then, setting C(s) =
∣∣∣ 1

2π
Γ(s+1)Γ(s+1)

Γ(2<s+1)Γ(2<s+2)

∣∣∣, and using the notations

from Lemma 3.6, we have∣∣K[N ](x, y)−K∞(x, y)
∣∣ = (4.0.1)

C(s)

∣∣∣∣ 1

x− y

∣∣∣∣ ∣∣∣P̃N (x)QN (y)− P̃N (y)QN (x)− (P̃ (x)Q(y)− P̃ (y)Q(x))
∣∣∣

≤C(s)

∣∣∣∣ 1

x− y

∣∣∣∣ {∣∣∣P̃N (x)QN (y)− P̃ (x)Q(y)
∣∣∣+
∣∣∣P̃N (y)QN (x)− P̃ (y)Q(x)

∣∣∣}
≤C(s)

∣∣∣∣ 1

x− y

∣∣∣∣ {∣∣∣P̃N (x)− P̃ (x)
∣∣∣ |QN (y)|+ |QN (y)−Q(y)|

∣∣∣P̃ (x)
∣∣∣

+
∣∣∣P̃N (y)− P̃ (y)

∣∣∣ |QN (x)|+ |QN (x)−Q(x)|
∣∣∣P̃ (y)

∣∣∣} .
Similarly, if x, y > x0, it is easy to check (by using the fundamental Theorem of calculus) that∣∣K[N ](x, y)−K∞(x, y)

∣∣ ≤ C(s)E
[∣∣∣P̃ ′N (Z)− P̃ ′(Z)

∣∣∣ |QN (x)| (4.0.2)

+ |QN (x)−Q(x)|
∣∣∣P̃ ′(Z)

∣∣∣+
∣∣∣P̃N (x)− P̃ (x)

∣∣∣ |Q′N (Z)|+ |Q′N (Z)−Q′(Z)|
∣∣∣P̃ (x)

∣∣∣] .
where Z is a uniform random variable in the interval [x, y].

By using (4.0.1) if max(x, y) ≥ 2 min(x, y) and (4.0.2) if max(x, y) < 2 min(x, y), one deduces

that the Lemma is proved, if we show that for p ∈ {0, 1},∣∣∣P̃ (p)
N (x)− P̃ (p)(x)

∣∣∣ ≤ 1

N

C(x0, s, p)

xp+<s
, (4.0.3)

and ∣∣∣Q(p)
N (x)−Q(p)(x)

∣∣∣ ≤ 1

N

C(x0, s, p)

xp+1+<s , (4.0.4)

Recall from (3.2.6), the following function (note that x > x0 > 0):

ΦN (x) = D′(N, s)eπ=s/2
(

2

x

)N−n(
2

x

)<s
·
(

1− i

Nx

)(N−s)/2−(N−n)(
1 +

i

Nx

)−(s+N)/2

Fn,h,a(Nx),
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and let us de�ne similarly:

Φ(x) = eπ=s/2
(

2

x

)N−n(
2

x

)<s
e−i/x1F1 [h, a; 2i/x] ,

where (n, h, a) = (N, s, 2<s+ 1) and ΦN (x) = P̃N (x), or (n, h, a) = (N − 1, s+ 1, 2<s+ 2) and

ΦN (x) = QN (x), for N ∈ N∗ (recall that N −n = 0 in the �rst case and N −n = 1 in the second

case). It su�ces to show that for p ∈ {0, 1}, |Φ(p)
N (x) − Φ(p)(x)| ≤ C(x0,s,p)

Nx<(s)+1+p to deduce (4.0.3)

and (4.0.4). Let us �rst investigate the case p = 0:

|ΦN (x)− Φ(x)| ≤ eπ=s/2
(

2

x

)<s+(N−n)

(4.0.5)

·
{
|D′(N, s)− 1|

∣∣∣(1− i/(Nx))
(N−s)/2−(N−n)

(1 + i/(Nx))
−(N+s)/2

Fn,h,a(Nx)
∣∣∣

+
∣∣∣(1− i/(Nx))

(N−s)/2−(N−n)
(1 + i/(Nx))

−(N+s)/2 − e−i/x
∣∣∣ |Fn,h,a(Nx)|

+
∣∣∣e−i/x∣∣∣ |Fn,h,a(Nx)− 1F1 [h, a; 2i/x]|

}
.

We show that the bracket {.} is bounded uniformly by 1
NC(x0, s). In the following, we look at

the three summands in the bracket separately. For the �rst one, we have by (3.2.9) and (3.2.11)

that ∣∣∣(1− i/(Nx))
(N−s)/2−(N−n)

(1 + i/(Nx))
−(N+s)/2

Fn,h,a(Nx)
∣∣∣ ≤ C(x0, s).

Moreover, it is easy to check (for example, by using Stirling formula) that∣∣∣∣Γ(2<s+N + 1)

N2<s+1Γ(N)
− 1

∣∣∣∣ ≤ 1

N
C(s).

Now, if some sequence aN > 0 converges to a > 0 in the order 1/N as N →∞,
√
aN →

√
a, in

the order 1/N as well, for N →∞. Hence,

|D′(N, s)− 1| =

∣∣∣∣∣
(

Γ(2<s+N + 1)

N2<s+1Γ(N)

)1/2

− 1

∣∣∣∣∣ ≤ 1

N
C(s).

Thus, the �rst term in the bracket {.} of (4.0.5) is bounded by C(x0, s)/N . Let us look at the

second term:

|Fn,h,a(Nx)| ≤ C(x0, s),

again according to (3.2.11). Moreover,∣∣∣(1− i/(Nx))(N−s)/2−(N−n)(1 + i/Nx)−(N+s)/2 − e−i/x
∣∣∣ (4.0.6)

≤
∣∣∣(1− i/(Nx))(N−s)/2(1 + i/(Nx))−(N+s)/2 − e−i/x

∣∣∣ ∣∣∣(1− i/(Nx))−(N−n)
∣∣∣

+
∣∣∣e−i/x∣∣∣ ∣∣∣(1− i/(Nx))−(N−n) − 1

∣∣∣ .
It is clear, that the second term in the sum is bounded by C(x0)/N . For the �rst term, the
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second factor is bounded by C(x0), whereas for the �rst factor, we have the following:

∣∣∣∣∣
(

1− i/(Nx)

1 + i/(Nx)

)N/2(
1− i/(Nx)

1 + i/(Nx)

)−i=s/2 (
1 + 1/(Nx)2

)−<s/2 − e−i/x∣∣∣∣∣ (4.0.7)

≤

∣∣∣∣∣
(

1− i/(Nx)

1 + i/(Nx)

)N/2
− e−i/x

∣∣∣∣∣
∣∣∣∣∣
(

1− i/(Nx)

1 + i/(Nx)

)−i=s/2∣∣∣∣∣ ∣∣∣(1 + 1/(Nx)2
)−<s/2∣∣∣

+
∣∣∣e−i/x∣∣∣ ∣∣∣∣∣

(
1− i/(Nx)

1 + i/(Nx)

)−i=s/2
− 1

∣∣∣∣∣ ∣∣∣(1 + 1/(Nx)2
)−<s/2∣∣∣

+
∣∣∣e−i/x∣∣∣ ∣∣∣(1 + 1/(Nx)2

)−<s/2 − 1
∣∣∣ .

We investigate all terms in this sum separately: |(1 + 1/(Nx)2)−<s/2 − 1| can be bounded by

C(x0, s)/N using binomial series, and

∣∣∣∣∣
(

1− i/(Nx)

1 + i/(Nx)

)−i=s/2∣∣∣∣∣ = |exp{−=sArg(1 + i/Nx)}| ≤ C(x0, s).

Furthermore,∣∣∣∣∣
(

1− i/(Nx)

1 + i/(Nx)

)−i=s/2
− 1

∣∣∣∣∣ = |exp{−=sArg(1 + i/(Nx))} − 1|

= |exp{−=sArctan(1/(Nx))} − 1| ≤

∣∣∣∣∣∣∣
∞∑
k=0

(
−=s

∑∞
n=0

(−1)n

2n+1 (1/(Nx))
2n+1

)k
k!

− 1

∣∣∣∣∣∣∣
≤ 1

N
C(x0, s).

Here, we use the fact that the Taylor series for the arctangent is absolutely convergent if 0 <

1/(Nx) < 1, which is true for N large enough. Now, by considering the series of the complex

logarithm of 1± i/(Nx) (absolutely convergent for N large enough), one can show that

∣∣∣(1± i/(Nx))
∓N/2 − e−i/(2x)

∣∣∣ ≤ 1

N
C(x0).

The remaining terms in the sum (4.0.7) are clearly bounded by C(x0, s) and hence, the second

term in the sum (4.0.5) converges to zero in the order 1/N .

We investigate the third term in (4.0.5): Clearly,
∣∣e−i/x∣∣ = 1. The second factor in the third

term requires somewhat more work:

|Fn,h,a(Nx)− 1F1[h, a; 2i/x]|

=

∣∣∣∣∣
∞∑
k=0

(−n)k(h)k2k

(a)kk!

(
1

1 + iNx

)k
−
∞∑
k=0

(h)k(2i)k

(a)kk!

(
1

x

)k∣∣∣∣∣
≤
∞∑
k=1

(|h|)k2k

(a)kk!

∣∣∣∣∣(−n)k

(
1

i−Nx

)k
−
(

1

x

)k∣∣∣∣∣ ,
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where the last inequality is true because of the absolute convergence of both sums. Now,∣∣∣∣∣(−n)k

(
1

i−Nx

)k
−
(

1

x

)k∣∣∣∣∣
≤ 1

xk0

∣∣∣∣1− (−n)k
((i/x)−N)k

∣∣∣∣
=

1

xk0

∣∣∣∣∣1−
N−n+k−1∏
l=N−n

l −N
(i/x)−N

∣∣∣∣∣
=

1

xk0

∣∣∣∣∣1−
N−n+k−1∏
l=N−n

(N − l)+

N − (i/x)

∣∣∣∣∣ .
Since all the factors in the last product have a module smaller than 1, it is possible to deduce:∣∣∣∣∣(−n)k

(
1

i−Nx

)k
−
(

1

x

)k∣∣∣∣∣
≤ 1

xk0

N−n+k−1∑
l=N−n

∣∣∣∣1− (N − l)+

N − (i/x)

∣∣∣∣
≤ 1

xk0

N−n+k−1∑
l=N−n

l + 1/x

N

≤ 1

xk0

k2 + k/x0

N
.

This bound implies easily that:

|Fn,h,a(Nx)− 1F1[h, a; 2i/x]| ≤ C(s, x0)

N
,

and we can deduce:

|ΦN (x)− Φ(x)| ≤ 1

N

C(x0, s)

x<s+(N−n)
.

Therefore, (4.0.3) and (4.0.4) are proved for p = 0.

It remains to prove that

|Φ′N (x)− Φ′(x)| ≤ 1

N

C(x0, s)

x<s+(N−n)+1
,

to show (4.0.3) and (4.0.4) for p = 1. But this is immediate using the same methods as above

and the fact that we can write

Φ′N (x) =

D′(N, s)eπ=s/2
(

2

x

)<s+(N−n)

(1− i/(Nx))
(N−s)/2−(N−n)

(1 + i/(Nx))
−(s+N)/2

·
[
−(<s+ (N − n))

x
Fn,h,a(Nx)

+
i

x2

{(
1− s/N

2
− N − n

N

)
1

1− i/(Nx)
+

1 + s/N

2

1

1 + i/(Nx)

}
Fn,h,a(Nx)

+

∞∑
k=0

(−n)k(h)kk2k+1

(a)kk!

(
− iN

2

)(
1

1 + iNx

)k+1
]
,
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and

Φ′(x) =

eπ=s/2
(

2

x

)<s+(N−n)

e−i/x

·
[
−(<s+ (N − n))

x
1F1[h, a; 2i/x] +

i

x2 1F1[h, a; 2i/x]

−
∞∑
k=0

(h)k(2i)kk

(a)kk!

(
1

x

)k+1
]
.

This ends the proof.

Now we prove Theorem 1.13. Let us �rst prove the following result: for all n ∈ N∗, and

for all symmetric and positive n × n matrices A and B such that sup1≤i,j≤n |Ai,j | ≤ α,

sup1≤i,j≤n |Bi,j | ≤ α and sup1≤i,j≤n |Ai,j −Bi,j | ≤ β for some α, β > 0, one has

|det(B)− det(A)| ≤ βn2αn−1. (4.0.8)

Indeed, the following formula holds:

det(B)− det(A) =

∫ 1

0

dλ Diff det[A+ λ(B −A)].(B −A)

where for C := A+λ(B−A), Diff det[C].(B−A) denotes the image of the matrix B−A by the

di�erential of the deteminant, taken at point C. Now, C is symmetric, positive, and |Ci,j | ≤ α

for all indices i, j, since C is a barycenter of A and B, with positive coe�cients. Moreover, the

derivative of C with respect to the coe�cent of indices i, j is (up to a possible change of sign)

the determinant of the (n− 1)× (n− 1) matrix obtained by removing the line i and the column

j of C. By using the same arguments as in the proof of inequality (3.2.4), one can easily deduce

that this derivative is bounded by αn−1. Hence:

|det(B)− det(A)| ≤
∫ 1

0

dλαn−1
∑

1≤i,j≤n

|Bi,j −Ai,j |

which imples (4.0.8). Now, we can compare the determinants of (K[N ](xi, xj))
n
i,j=1 and

(K∞(xi, xj))
n
i,j=1 for x1, . . . , xn > x0 by applying (4.0.8) to:

Ai,j = (xixj)
<(s)+1K[N ](xi, xj),

Bi,j = (xixj)
<(s)+1K∞(xi, xj),

α = C(x0, s), β = C(x0, s)/N.

Here, we use the bounds for K[N ], K∞ and their di�erence given in Proposition 3.8 and in

Lemma 4.1. We obtain: ∣∣det(K[N ](xi, xj)
n
i,j=1)− det(K∞(xi, xj)

n
i,j=1)

∣∣
≤ 1

(x1 · · ·xn)2<(s)+2

n2

N
(C(x0, s))

n.
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This implies ∣∣∣∣P [λ1(N)

N
≤ x

]
− det(I −K∞)|L2(t,∞)

∣∣∣∣
≤
∞∑
n=1

1

n!

∫
(x,∞)n

∣∣det(K[N ](xi, xj)
n
i,j=1)− det(K∞(xi, xj)

n
i,j=1)

∣∣ dx1 · · · dxn

≤
∞∑
n=1

1

n!

n2

N

(∫
(x,∞)

C(x0, s)

y2<s+2
dy

)n

≤ 1

N

∞∑
n=1

n

(n− 1)!

(∫
(x0,∞)

C(x0, s)

y2<s+2
dy

)n
≤ C(x0, s)/N,

since the last sum is convergent and depends only on x0 and s.



Chapter 5

Some Remarks about the Unitary

Group U(N)

With Theorem 1.5 extended to the full range of parameters, we know that the distribution of

λ1(N), the largest eigenvalue of a matrix in H(N) can be written as

P [λ1(N) ≤ a] = exp

(
−
∫ ∞
a

σ(t)

1 + t2
dt

)
(5.0.1)

under the distribution (1.1.3). Using the Cayley transform H(N) 3 X 7→ U = X+i
X−i ∈ U(N),

we can map the generalized Cauchy measure from H(N) to the measure (1.1.5) on U(N). The

inverse of the Cayley transform writes as

θ 7−→ i
eiθ + 1

eiθ − 1
= cot

(
θ

2

)
,

for θ ∈ [−π, π]. θ = 0 is mapped to ∞ by de�nition. Using this application, equation (5.0.1)

turns into:

P [θ1(N) ≥ y] = exp

(
−1

2

∫ y

0

dφ σ

(
cot

(
φ

2

)))
, (5.0.2)

for y = 2arccot(a), y ∈ [0, 2π], and eiθ1(N) = λ1(N)+i
λ1(N)−i . θ1(N) being here in [0, 2π] (and not in

[−π, π]!). In other words, the distribution of the largest eigenvalue on the real line of a random

matrix H ∈ H(N) with measure (1.1.3), maps to the distribution of the eigenvalue with smallest

angle of a random matrix U ∈ U(N) satisfying the law (1.1.5). Here, smallest angle has to be

understood as the eigenvalue which is closest to 1 looking counterclockwise on the circle from

the point 1.

According to Bourgade, Nikeghbali and Rouault [6], the eigenvalues {eiθ1 , . . . , eiθN }, (recall

that θi ∈ [−π, π]) of a random unitary matrix U , satisfying the law (1.1.5), also determine a

determinantal point process with correlation kernel

KU
N (eiα, eiβ) (5.0.3)

= dN (s)
√
wU (α)wU (β)

eiN
α−β

2 QsN (e−iα)QsN (eiβ)− e−iN
α−β

2 QsN (eiα)QsN (e−iβ)

ei
α−β

2 − e−iα−β2

,

where dN (s) = 1
2π

(s+1)N (s+1)N
(2<s+1)NN !

Γ(1+s)Γ(1+s)
Γ(1+2<s) , QsN (x) = 2F1[s,−n,−n− s;x] and wU is the weight

de�ned after (1.1.5). If N →∞, the rescaled correlation kernel 1
NK

U
N (eiα/N , eiβ/N ) converges to

KU (α, β) (5.0.4)

= e(s)|αβ|<se−π2=s(Sgn(α)+Sgn(β)) e
iα−β2 Qs(−iα)Qs(iβ)− e−i

α−β
2 Qs(iα)Qs(−iβ)

α− β
,

where e(s) = 1
2πi

Γ(s+1)Γ(s+1)
Γ(2<s+1)2 , and Qs(x) = 1F1[s, 2<s + 1;x] (again according to Bourgade,

Nikeghbali and Rouault [6]). In [6], it is also shown that the kernel KU coincides up to multi-

plication by a constant with the limiting kernel K∞ from (1.2.12) if one changes the variables
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in (5.0.4) to α = 2
x and β = 2

y , x, y ∈ R∗. This not surprising because a scaling x 7→ Nx for

the eigenvalues in the Hermitian case corresponds to a scaling α 7→ α
N for the eigenvalues in the

unitary case as can be seen from the elementary fact that for x ∈ R∗, and N ∈ N, one has

Nx+ i

Nx− i
= e

2i
Nx+O(N−2). (5.0.5)

Remark 5.1. Note that because of the O(N−2) term in the argument of (5.0.5), it is not possible

to give an identity involving the kernel KN of Theorem 1.2 and the kernel (5.0.3).



Chapter 6

Introduction to the Weakly

Self-Avoiding Walk

In the second part of this thesis we look at the weakly self-avoiding random walk. We are

interested in the di�usive behavior of this walk in high dimensions. Eventually, we prove a type

of local central limit theorem for weakly self-avoiding walks in Zd, with dimension d ≥ 9 (d ≥ 5

in the restriction to the symmetric case), whose initial distributions are periodic and in a closed

neighborhood of the standard symmetric nearest neighbor distribution 1
2d1{x:‖x‖=1}. Due to the

fact that we work on a lattice with discrete time, we need to take care of periodicity issues.

In case of non-periodic initial distributions we get the same result for initial distributions in a

closed neighborhood of the distribution giving uniform weight on the points ±ei and ±2ei, for

i = 1, . . . , d, where ei stands for the standard i-th unit vector in Rd.

6.1 Introduction

Consider the following problem in two dimensions: You are standing at an intersection in a

town where the streets are laid out in square-grid style. Now you start walking around. At each

intersection you choose the next road that you take at random with the condition that you are

never allowed to use a road leading you back to an intersection you have already visited. In

other words you will walk along a random path which is self-avoiding. There are three basic

questions you can ask for such a walk:

• How many paths of n steps starting from the origin are there?

• How many paths of n steps starting from the origin and ending at a given intersection are

there?

• On average, how far from the starting point will you be after n steps?

This problem may be generalized to a self-avoiding random walk on the Hypercubic Lattice Zd,
d ≥ 1. Then, the transition from one Vertex along an edge to the next vertex is called a Step.

The above questions are still very natural to ask in this setup. However, the answers are not

known for any but very small values of n ∈ N; except of course in the trivial case d = 1. A more

simple question to ask might be to understand the asymptotic behavior of such a walk. This

is still a hard question and no rigorous results are known for dimensions two and three. It is

believed that the walk is not di�usive in these two dimensions though. Physicists and Chemists

have introduced this type of model to study the growth of large polymer chains such as proteins.

They have applied several methods and produced many results. However most of them are not

proven in a mathematically rigorous way. Some of these results and details of some rigorous

mathematical work on the self-avoiding walk can be found in the book of Madras and Slade [24],

where the above 2-dimensional problem is taken from.

Most mathematically rigorous results have been obtained in high dimensions (d ≥ 5). In the

1980's, Brydges and Spencer [9] introduced the Lace Expansion as a method to study the Weakly
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Self-Avoiding Walk (or Domb-Joyce Model). This is a random walk which may intersect itself,

but each self-intersection is penalized by a parameter 1−λ, λ ∈ [0, 1]. We explain the lace expan-

sion in Appendix A. It is a renewal-type equation for the Two-Point Function (or Connectivity)

of the walk. Other models for self-avoiding random walks have been proposed and studied,

such as the true (or myopic) self-avoiding walk or the loop erased walk (see Madras and Slade

[24]), but we will only be interested in the weakly self-avoiding walk model, often abbreviated

as WSAW from now on. Using a perturbation technique Brydges and Spencer proved that this

walk is di�usive for d ≥ 5. For the self-avoiding walk (λ = 1, no intersection allowed), Hara and

Slade ([19] and [18]) have been able to prove the di�usive behavior for d ≥ 5 at the beginning of

the 1990's also by using the lace expansion. However, their argument is still perturbative and

relies on a number of computer-assisted estimates. Later on, van der Hofstad, den Hollander

and Slade [40] presented an inductive approach to the lace expansion which they used to prove

a Local Central Limit Theorem (noted local CLT) for a weakly self-avoiding walk in which the

penalty for self-intersections decreases in time. Van der Hofstad and Slade [41] generalized and

simpli�ed this approach to prove a local CLT for the self-avoiding walk if d ≥ 5. At this point it

should be noted that the lace expansion was also applied to various other probabilistic problems,

such as percolation theory and branched polymers.

The early approaches to the lace expansion usually rely on taking Laplace transforms in time

and then inverting this transform. This is a rather di�cult problem. The last two articles [40]

and [41] mentioned above avoid this di�culty but the authors still work in Fourier space. A

new approach has however been presented by Bolthausen and Ritzmann in the PhD-thesis [32]

of the latter. They work directly in Zd, avoiding Fourier or Laplace transforms. Instead, they

use Banach �xed point Theorem to show that the di�usive behavior of the weakly self-avoiding

walk in dimensions d ≥ 5 comes from the fact that the local CLT for a standard random walk

remains stable under small perturbations. The perturbations are coming from the penalties for

the self-intersections. The proof is done by showing that the �xed point of a certain convolution

operator remains asymptotically close to the normal distribution. Note that due to the nature

of the problem, a true local CLT cannot be obtained for the WSAW, since the decay of the error

at the origin is of order n−d/2 in time which is the same as the size of the approximating normal

distribution at the origin. This is due to the fact that the walk will always remember that it

started at zero. Nevertheless, in [32] Gaussian error decays in space are obtained.

In this work, we generalize the lace expansion to perturbed weakly self-avoiding walks. That

is, we do allow not only nearest neighbor jumps and we weight jumps in di�erent directions

di�erently (we still keep spatial homogeneity though). The generalization of the lace expansion

to these types of walks is straightforward and we present it in Section 6.2 and Appendix A.

We are able to prove a local CLT for distributions which lie in a closed neighborhood of the

standard nearest neighbor distribution (ie. for small perturbations of the standard nearest

neighbor WSAW) for dimensions d ≥ 9. We will make this more precise in the next Section

6.2 and in Chapter 8. We note here that due to the discrete nature of the problem we have

to split the result into the periodic and the aperiodic case. To prove the local CLT, we use an

operator which is slightly di�erent from the one used in Ritzmann [32] switching from discrete

to continuous time and then back. This has the side e�ect that we only obtain Exponential

error decays instead of Gaussian error decays. For technical reasons we were unable to obtain

the result for d ≥ 5 because we lose the symmetry of the problem when allowing perturbations

of the initial distribution of the walk. However, we show that if we restrict to WSAW's with

symmetric and rotationally invariant initial distributions, we do obtain the result for d ≥ 5 as

in [32] (with Exponential error decays only though). The key issue is the change in the bound

of the lace function (see Lemmas A.2 and A.4) where we obtain an extra polynomial decay in

the symmetric case, allowing us to lower the dimension in the proof of the local CLT. We do

however believe that it is possible to extend the result in the perturbed case to d ≥ 5 too, since
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the lace functions can be bounded down to d ≥ 5 (see again Lemma A.2) and also, arguing

heuristically, in the non-symmetric case the errors should really decay at least as fast as in the

symmetric case. Possibly, this extension could be done by trying to �nd Gaussian decay for

the errors and choosing a better norm for the Banach �xed point argument. An additional

di�culty in the perturbed case is that one does not know the asymptotically correct drift of the

walk initially. This is in particular problematic if this drift turns out to be zero. Then, one

encounters continuity problems switching from a very small drift to drift zero if one attempts to

lower the result to dimensions d ≥ 5.

Finally, we remark that our method which uses a �xed point argument very similar to the one in

Ritzmann [32] is rather general and can easily be extended to include the case where the initial

distribution is not on Zd but on Rd. In fact, the main local CLT in Theorem 8.1 is then a lot

simpler to prove. However, there is no lace expansion for random walks on Rd. Therefore, this
extension is only a toy result at the moment and we do not enter into details on this.

6.2 Notations and Result

Consider a random walk on Zd with one step distribution S(x) := s(x)/u, having bounded

support Ω ⊂ Zd, where Ω cannot be embedded in some subspace of dimension strictly smaller

than d. u := |Ω| is the total number of points in Ω and s(x) is some positive function giving

the proportion of weight assigned to each point in Ω. Of course s has to be chosen in such a

way that S is normalized. Moreover, we assume that 0 6∈ Ω, ie. s(0) = 0 and Ω is a set around

0. Also, we assume that Zd is embedded in Rd in the canonical way. Now let λ ∈ [0, 1] be a

given parameter and set for any s, t ∈ N0 and path ω = (ω(0) = 0, ω(1), ω(2), ω(3), ...) ∈ (Zd)N
starting at the origin and with ω(i+ 1)− ω(i) ∈ Ω for all i ≥ 0,

Ust(ω) :=

{
1, if ω(s) = ω(t),

0, else.

We de�ne the Connectivity of the random walk to be the sequence (Cn(x))n≥0, with x ∈ Zd, by
C0(x) := δ0(x), and for the n-th step (n ≥ 1) by

Cn(x) :=
∑
ω:0 x
|ω|=n

∏
0≤l<t≤n

(1− λUlt(ω))

n∏
r=1

s(ω(r)− ω(r − 1)). (6.2.1)

Cn(x) simply counts the weighted number of paths from 0 to x in n steps, penalizing each self-

intersection of the path by (1− λ) for some λ ∈ [0, 1]. The corresponding total mass sequence is

de�ned by c0 := 0, and for n ≥ 1:

cn :=
∑
x∈Zd

Cn(x). (6.2.2)

(We will always denote measures by capital letters and the corresponding total mass by lower

case letters). The quantity Cn(x)/cn gives a distribution for the end point of the random

walk after n steps. Note that Cn(x)/cn is not the distribution of a Markov chain since the

walk hast to remember its complete past at any time. In the case of the standard nearest

neighbor initial distribution we have Ω = {±ei, i = 1, . . . , d}, where ei = (0, . . . , 1, . . . , 0)

is the standard unit vector in Rd in direction i, s ≡ 1 on Ω, and u = 2d. Then, Cn(x) =∑
ω:0 x
|ω|=n

∏
0≤l<t≤n(1 − λUlt(ω)). Ie. Cn(x) is the total number of paths going from 0 to x in

n steps where each self-intersection is penalized by a factor (1 − λ). If λ = 0 we get the usual

random walk, whereas if λ = 1, we get the fully self-avoiding random walk. In the following
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we will be interested in the regime 0 < λ � 1, and S a small perturbation of the usual nearest

neighbor initial distribution.

Using the lace expansion, one may write the following renewal type equation for Cn:

Cn(x) = uS ∗ Cn−1(x) +

n∑
m=2

Πm ∗ Cn−m(x), (6.2.3)

where the ∗ refers to the convolution of two measures on Zd and will from now on often be

omitted. The sequence (Πm)m≥2 re�ects the penalties for the self intersections. Of course if

λ = 0, all Πm's are equal to zero. We give the derivation of this equation and more details about

the lace expansion (in particular on upper bounds for Πm(x)) in Appendix A. Furthermore, we

will write φκ,∆(x) for the d-dimensional normal density with mean κ ∈ Rd and covariance matrix

∆ real, symmetric and positive semi-de�nite. That is,

φκ,∆(x) :=
1

(2π)d/2|∆|1/2
exp

(
−1

2
(x− κ)t∆−1(x− κ)

)
.

Moreover, we write

θκ,∆(x) :=
K(d)

|∆|1/2
exp

(
−
√

(x− κ)t∆−1(x− κ)
)
.

Ie. θκ,∆ stands for a d-dimensional �doubly-exponential� distribution with mean κ and covariance

matrix ∆. K(d) is a norming constant. Finally, if X is a random variable with law S, we denote

s(i) := E[Xi] the mean of X in direction i, i = 1, . . . , d, and s(ij) := E[XiXj ], i, j = 1, . . . , d, the

second moments of X. This notation is extended to arbitrary moments and to moments of (not

necessarily positive) measures. Moreover, for a general measures G, g :=
∑
xG(x) is the zeroth

moment.

Our main result is a local CLT for weakly self-avoiding walks in dimensions d ≥ 9 with initial

distributions S that can be viewed as a perturbation of the standard symmetric nearest neighbor

distribution S(x) = 1
2d1{x:‖x‖=1}(x) (‖.‖ is the Euclidean norm on Rd) and with a penalty

parameter λ that is small enough (depending on the chosen initial distribution S). Before

stating the Theorem, we have to introduce a few more notations and concepts. In the proof of

our main result we will need a distribution pt, t ≥ 0 (see Section 8.2). This distribution depends

on the following set of parameters: a ≤ η ≤ b for some 0 < a � 1 arbitrarily small and some

b � 1 arbitrarily large, πi ∈ [0, 1], for i = 1, . . . , d, πij ∈ [0, 1], for 1 ≤ i < j ≤ d, di ∈ [ε′, 1] for

i = 1, . . . , d, and dij ∈ [0, 1], for 1 ≤ i < j ≤ d, with
∑d
i=1 di +

∑
1≤i<j≤d dij = 1. 1� ε′ > 0 is

some (arbitrarily chosen) parameter that will ensure that we only consider distributions having a

covariance matrix of full rank d. Then, we de�ne the subset C = {(x1, . . . , xd, y1, . . . , yd(d+1)/2)}
of Rd ×Rd(d+1)/2 given by the following set of equations:

xi = ηdi(2πi − 1), for i = 1, . . . , d

yi = η(di +
∑
j:j<i

dji +
∑
j:j>i

dij), for i = 1, . . . , d

yi = ηdij(2πij − 1), for i = d+ 1, . . . , d(d+ 1)/2.

Now consider an arbitrary small parameter 1� ε > 0 and set Cε to be the closed set C\{x ∈ C :

∃y ∈ ∂C with ‖y − x‖ < ε}. This set will determine the admissible mean (�rst d coordinates)

and covariance structure (remaining coordinates) of the distribution S. As already mentioned,

we have to deal with the case of periodic initial distributions and aperiodic initial distributions

separately. In this thesis, we call S two-periodic if Sn(x) = 0 whenever n and ‖x‖1 do not have

the same parity (‖.‖1 is the L1-norm and Sn the n-fold convolution of S with itself). Otherwise,
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we call S aperiodic. Let now R ∈ N be a �xed number and write B(0, R) for the closed ball of

radius R around 0 in the Euclidean norm on Rd. Then, the set of all aperiodic distributions

S with support in (B(0, R) ∩ Zd)\{0} such that the mean and covariance of S lie in Cε is a

closed subset of L∞+ (RN ), N being the number of points in (B(0, R) ∩ Zd)\{0}. Moreover, this

set is a closed neighborhood of the standard initial nearest neighbor distribution 1
2d1{x:‖x‖=1}.

Let us denote this set by AN,ε. Furthermore, the set of periodic distributions S with support in

(B(0, R)∩Zd)\{0}, for some R ∈ {2, 3, . . .}, such that mean and covariance of S lie in Cε is again

a closed subset of L∞+ (RN ). Also, this set is a closed neighborhood of the initial distribution

giving weight 1
4d to the points ±ei and ±2ei, for i = 1 . . . , d, where ei is the standard unit vector

in direction i. Let us denote this set of periodic distributions by PN,ε. From now on, we may

always assume that the upper bound b for η is equal to 2R.

We are now able to state the main result. Note that if we take the standard symmetric nearest

neighbor distribution S(x) = 1
2d1{x:‖x‖=1}(x) only, the result also follows by the corresponding

Theorem in Ritzmann [32]. In this case, one can even prove the Theorem for d ≥ 5 and with

Gaussian decay of the error. In the �rst part the Theorem also recovers a result by Brydges and

Spencer [9]:

Theorem 6.1. Let d ≥ 9 and let R ∈ N and ε > 0 arbitrarily small. Then, there are

closed neighborhoods in L∞+ (RN ) × [0, 1] of ( 1
2d1{x:‖x‖=1}, 0) (periodic case) respectively of

( 1
4d1{x:‖x‖∈{1,2}}, 0) (aperiodic case) containing PN,ε and AN,ε respectively, such that for any

pair (S, λ) in the corresponding neighborhood,

cn = αµn(1 +O(n−3/2)),

for some α > 0 and µ > 0. For S �xed, the last coordinate λ takes values in some interval

[0, λ0(S)], for some λ0(S) > 0. The corresponding λ0 will be determined more precisely in

Chapter 8 (see in particular equations (8.3.25)�(8.3.27)).

Moreover, if S is aperiodic, we have for all x ∈ Zd and all n ∈ N,

∣∣∣∣Cn(x)

cn
− φnκ,n∆(x)

∣∣∣∣ ≤ K
n−1/2θnκ,nσ(x) + n−d/2

n/2∑
j=1

j2 exp

(
−
√
n− j
σ
‖κ‖

)
θjκ,jσ(x)

 ,
for some κ ∈ Rd and ∆ a real symmetric and positive semi-de�nite matrix, as well as for some

K > 0 and σ > 0 large enough. If S is two-periodic, and n− ‖x‖1 even,

∣∣∣∣Cn(x)

cn
− 2φnκ,n∆(x)

∣∣∣∣ ≤ K
n−1/2θnκ,nσ(x) + n−d/2

n/2∑
j=1

j2 exp

(
−
√
n− j
σ
‖κ‖

)
θjκ,jσ(x)

 .
The constants α and µ and the mean κ and covariance matrix ∆ depend on λ, d and S, whereas

σ depends on d and S and K on d and R. Finally, λ0 depends on d, S, R and ε.

We can also prove this Theorem for d ≥ 5 in the case that S is symmetric and rotationally

invariant (an thus κ = 0). This is stated in Chapter 10.

6.3 Strategy of the Proof

Consider the lace expansion formula for the Cn's:

Cn = uSCn−1 +

n∑
m=2

ΠmCn−m.
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Now suppose that Cn grows exponentially. Ie. Cn = µnAn for some µ > 0 (the so called

Connective Constant), such that an =
∑
x∈Zd An(x) tends to some α > 0, for n→∞. Then we

can re-write the lace expansion, setting Bm := Πm
λcm

for all m ≥ 2, as

An = uµ−1SAn−1 + λ

n∑
m=2

amBmAn−m, (6.3.1)

and for the mass sequence:

an = uµ−1an−1 + λ

n∑
m=2

ambman−m. (6.3.2)

In this way, we cancel all the exponential growth out of the involved quantities (Cn)n≥0 and

(Πm)m≥2. Now, the proof is split into several parts. In a �rst step, we have to show the existence

of the connective constant µ and the limit α. This is done by showing that if the bm's decay fast

enough, the sequence (an)n≥0 given above is the unique �xed point of a certain operator in a

normed Banach space of sequences. This has already been done by Ritzmann in [32] but will for

completeness be included here in Chapter 7. In that Chapter, we also give explicit equations for

α and µ as well as the convergence speed for an → α. In a second step (Chapter 8) we assume

more speci�c pointwise decay rates for a general sequence (Bm)m≥1. With these estimates in

hand, we obtain a local CLT for An, again by showing that the sequence (An)n≥0 is a �xed

point of some operator. As in the case of the mass sequence, we use Banach �xed point theorem.

This is our main result. It is more general than Theorem 6.1 but tailored to be applied to that

Theorem. Finally, in order to show that Theorem 6.1 is true, we use the pointwise estimates

of the Πm's in terms of the Cn's from the Appendix A and apply an iterative procedure to

show that the Bm's in question for the perturbed weakly self-avoiding walk indeed have the

good decay needed for the local CLT in Chapter 8. This iterative procedure also yields the

correct connective constant µ for the perturbed WSAW and a sequence of real-valued vectors κi
converging to the correct asymptotic drift κ of the distribution Cn/cn. This is Chapter 9. The

method we use is an adaption from the one used by Ritzmann in [32]. Finally, in Chapter 10,

we show that in the case where S is rotationally invariant and symmetric in each coordinate, we

obtain the main Theorem of Chapter 8 and Theorem 6.1 (with a slightly di�erent norm than in

the general case) down to dimension d ≥ 5.



Chapter 7

The Mass Constant

This Chapter is taken from Ritzmann's thesis [32]. We need Propositions 7.1 and Corollary 7.5

for later purposes. The Chapter is merely for completeness of the thesis.

7.1 Existence and Uniqueness

Proposition 7.1. Consider a real-valued sequence (bm)m≥1 with β :=
∑∞
m=1m|bm| <∞. Then,

there is a λ0 = λ0(β) > 0 such that for all λ ∈ [0, λ0], there exists a unique real-valued sequence

(an)n∈N0
with a0 = 1, and for n ≥ 1

an = (1− λ
∞∑
m=1

ambm)an−1 + λ

n∑
m=1

ambman−m, (7.1.1)

such that
∑
n≥1 |an − an−1| <∞.

The proof of this Proposition is done via a �xed point argument. Thus we need to introduce

a Banach space and an appropriate operator. Let (l∞, ‖.‖∞) be the Banach space of bounded

real-valued sequences g := (gn)n∈N0
with the supremum norm. The di�erence operator 4 :

RN0 → RN0 is de�ned by (4g)0 := g0 and

(4g)n := gn − gn−1, for n ∈ N.

For g a sequence with
∑
n≥0 |(4g)n| <∞, de�ne the norm

‖g‖D :=
∑
n≥0

|(4g)n|.

Furthermore, de�ne the operator .̃ on sequences by

g̃0 :=g0, and

g̃n :=g̃n−1 − λ

 n∑
m=1

gmbm(gn−1 − gn−m) + gn−1

∞∑
j=n+1

gjbj

 . (7.1.2)

This is the correct operator to use for the Banach �xed point Theorem. The following Lemmas

prove that the necessary conditions for the �xed point Theorem are ful�lled on an appropriate

subspace of l∞.

Lemma 7.2. Let g ∈ l∞ with ‖g‖D <∞. Then we also have ‖g̃‖D <∞.

Proof. Let g with ‖g‖D <∞. We have to show that
∑
n≥0 |(4g̃)n| is �nite. First notice that

‖g‖∞ = sup
n∈N0

|gn| =
∑
n∈N0

∣∣∣∣∣
n∑
k=0

(4g)k

∣∣∣∣∣ ≤ ‖g‖D. (7.1.3)
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From (7.1.2) we have∑
n≥0

|(4g̃)n| =|g0|+
∑
n≥1

|g̃n − g̃n−1|

=|g0|+ λ
∑
n≥1

∣∣∣∣∣∣∣∣
n∑

m=1

gmbm( gn−1 − gn−m︸ ︷︷ ︸
=
∑m−1
l=1 (4g)n−l

) +

∞∑
j=n+1

gjbjgn−1

∣∣∣∣∣∣∣∣
≤|g0|+ λ

‖g‖∞
∑
n≥1

n−1∑
l=1

|(4g)n−l|
n∑

m=l+1

|bm|︸ ︷︷ ︸
≤
∑
m≥l+1 |bm|

+‖g‖2∞
∑
n≥1

∑
j≥n+1

|bj |︸ ︷︷ ︸
≤
∑
j≥2 j|bj |≤β


≤|g0|+ λ

‖g‖∞∑
l≥1

∑
m≥l+1

|bm|
∑
n≥1

|4gn|+ ‖g‖2∞β


≤|g0|+ 2λβ‖g‖2D, (7.1.4)

where we used (7.1.3) in the last line.

Lemma 7.3. Let DL := {g ∈ l∞ : g0 = 1 and ‖g‖D ≤ L}, where L is a constant greater than

or equal to 3/2. Then for all λ ∈ [0, 1/(6βL)] the operator .̃ is a contraction with respect to ‖.‖D
on DL.

The value 3/2 above is chosen to keep the constants simple. An analogous statement holds as

long as L is bounded away from one.

Proof. We have to show:

1. g ∈ DL ⇒ g̃ ∈ DL, and

2. there exists some ε < 1 positive such that ‖g̃ − h̃‖D ≤ ε‖g − h‖D for all g, h ∈ DL.

To see 1., let g ∈ DL be given. We know g̃0 = g0 = 1. According to (7.1.4) we have

‖g̃‖D ≤ 1 + 2λβL2 ≤ 2

3
L+

1

3
L,

whenever λ ≤ 1/(6βL).

To see 2., take g, h ∈ DL. Since g0 equals h0, we have ‖g̃− h̃‖D =
∑
n≥1 |(4(g̃− h̃))n|. We have

from the de�nition of the operator .̃ in (7.1.2):

∑
n≥1

|(4g̃)n − (4h̃)n| = λ
∑
n≥1

∣∣∣∣∣
n∑

m=1

(gm − hm)bm(gn−1 − gn−m)

+

n∑
m=1

hmbm[gn−1 − hn−1 − (gn−m − hn−m)]

+
∑

j≥n+1

bj [gj(gn−1 − hn−1) + (gj − hj)hn−1]

∣∣∣∣∣∣
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We estimate the absolute values of the three summands individually. The �rst one can be treated

analogously to (7.1.4):

λ
∑
n≥1

n∑
m=1

|bm||gm − hm||gn−1 − gn−m| ≤ λβ‖g − h‖∞‖g‖D.

Similarly, we obtain for the second one:

λ
∑
n≥1

n∑
m=1

|bm||hm||gn−1 − hn−1 − (gn−m − hn−m)| ≤ λβ‖h‖∞‖g − h‖D,

and for the third one:

λ
∑
n≥1

∑
j≥n+1

|bj ||gj(gn−1 − hn−1) + (gj − hj)hn−1| ≤ λβ‖‖g − h‖∞(‖g‖∞ + ‖h‖∞).

Since both g and h are in DL and λ ≤ 1/(6βL), this yields

‖g̃ − h̃‖D ≤ 4λβL‖g − h‖D ≤
2

3
‖g − h‖D.

It remains to show the completeness of the space.

Lemma 7.4. The elements of l∞ with �nite ‖.‖D-norm form a Banach space with this norm,

and DL is a closed subset of this space.

Proof. Clearly the set {g ∈ l∞ : ‖g‖D < ∞} is a linear subspace of l∞. Now let (g(m))m∈N be

a Cauchy sequence in this space. Since ‖g‖∞ ≤ ‖g‖D (see (7.1.3)), (g(m))m∈N is also a Cauchy

sequence in (l∞, ‖.‖∞). Therefore it has a limit g ∈ l∞, and it su�ces to show that ‖g‖D <∞.

Since the di�erence operator 4 is continuous on l∞, for each n, the term ‖(4(g−g(m)))n‖∞ will

tend to zero as m → ∞. Now choose a subsequence (g(mi))i∈N with ‖g(mi) − g(mi−1)‖D ≤ 2−i

for all i ∈ N. Then we have for each i ∈ N:∑
n≥0

|(4g)n| ≤
∑
n≥0

|(4g)(mi)
n |+

∑
n≥0

|(4(g − g(mi)))n|

≤‖g(mi)‖D +
∑
n≥0

∑
j≥i+1

|(4(g(mj) − g(mj−1)))n|

≤‖g(mi)‖D +
∑
j≥i+1

‖g(mj) − g(mj−1)‖D︸ ︷︷ ︸
≤2−j

<∞.

The closedness of DL follows from an analogous argument.

Proof. (Proof of Proposition 7.1). Using Lemmas 7.2�7.4, the Banach �xed point theorem yields

for small enough λ the existence and uniqueness of an element a ∈ DL with ã = a. Furthermore,

the repeated iteration of .̃ with starting point (1, 1, . . .) converges to a. As long as L ≥ 3/2, the

value of L has an in�uence only on the upper bound for λ. This proves the Proposition.
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7.2 The Connectivity µ, the Limit α and the Convergence

Speed

We investigate the limit and the convergence behavior of the ��xed sequence� of Proposition

7.1 in a more particular setting. By choosing L = 3/2 we obtain for all λ ≤ 1/(9β) a sequence

(an)n≥0 with a0 = 1,
∑
n≥1 |(4a)n| ≤ 1/2 and for all n ∈ N

an = uµ−1an−1 + λ

n∑
m=1

ambman−m,

where

uµ−1 = 1− λ
∑
m≥1

ambm. (7.2.1)

Hence, we have proved the existence and determined the value of the connectivity constant µ,

because a is bounded and
∑
n≥1 |bn| < ∞. Thus uµ−1 remains �nite. Note also that for all

n ∈ N0 we have

1/2 ≤ an ≤ 3/2.

We now investigate the limiting value α = limn→∞ an. Since the di�erence sequence of a is

absolutely summable, α exists and we have

α = lim
n→∞

an = lim
n→∞

n∑
m=0

(4a)m.

Now recall (7.1.1) and consider for �xed n ∈ N:

an =1 +

n∑
k=1

(4a)k

=1− λ
n∑
k=1

∑
m≥1

ambmak−1 −
k∑

m=1

ambmak−m


=1− λ

∑
m≥1

ambm

n∑
k=1

ak−1 + λ

n∑
m=1

ambm

n∑
k=m

ak−m

=1− λ
∑

m≥n+1

ambm

n∑
k=1

ak−1︸ ︷︷ ︸
=:F1

−λ
n∑

m=1

ambm

m−1∑
l=1

an−l︸︷︷︸
=α−(α−an−l)

=1− λF1 − λ
n∑

m=1

ambm(m− 1)α+ λ

n∑
m=1

ambm

m−1∑
l=1

∑
k≥n−l+1

(4a)k︸ ︷︷ ︸
=:F2

, (7.2.2)

where

|F1| =

∣∣∣∣∣∣
∑

m≥n+1

ambm

n∑
k=1

ak−1

∣∣∣∣∣∣ ≤
∑

m≥n+1

L|bm|nL ≤ L2
∑

m≥n+1

m|bm| → 0,
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as n→∞, and

|F2| =

∣∣∣∣∣∣
n∑

m=1

ambm

m−1∑
l=1

∑
k≥n−l+1

(4a)k

∣∣∣∣∣∣ ≤
n−1∑
l=1

∑
m≥l+1

L|bm|
∑

k≥n−l+1

|(4a)k|

≤L
n/2∑
l=1

∑
m≥l+1

|bm|︸ ︷︷ ︸
≤β

∑
k≥n/2

|(4a)k|+ L

n−1∑
l=n/2

∑
m≥l+1

|bm|
∑
k≥1

|(4a)k|︸ ︷︷ ︸
≤‖a‖D

→ 0,

as n→∞. Thus, letting n tend to in�nity in (7.2.2), we obtain:

α = 1− λ
∑
m≥1

(m− 1)ambmα,

which yields

α−1 = 1 + λ
∑
m≥1

(m− 1)ambm = uµ−1 + λ
∑
m≥1

mambm.

In case we know the rate of decay of the bm's, we can determine the speed of the convergence

an → α more precisely. This is the content of the following Corollary. It's proof is immediate

from (7.2.2), as long as we keep λ small enough.

Corollary 7.5. If there exist positive constants ε and β′ such that

|bm| ≤ β′m−2−ε for all m ∈ N,

we get a decay of order n−1−ε for the di�erence sequence 4a. More precisely we have

|(4a)n| ≤ β′Kn−1−ε for all n ∈ N,

where K is a positive constant not depending on λ and β′. In particular we have another constant

K such that

|α− an| ≤ β′Kn−ε for all n ∈ N.





Chapter 8

A General Local CLT on Zd � The
Main Result

In this Chapter we consider measures of the type given by the lace expansion formula (6.3.1).

The question we ask is: Considering such measures as the perturbation of the distribution of the

sum of independent identically distributed random variables, how close are they to the normal

density? We obtain a local CLT on Zd in dimensions d ≥ 9, with a correction term of order n−d/2

near the mean of the walk, and with exponential error decay, improved by a factor n−1/2 for x

far away from the mean. As already mentioned, we use a method similar to the one introduced

by Ritzmann in [32]. What we show here is more general than Theorem 6.1 but it is tailored to

�t the WSAW case.

8.1 The Model

For technical reasons we only treat the case of aperiodic initial distributions S. The two-periodic

case will be treated in a short Section at the end of this Chapter.

Let us start by introducing the ingredients we need. Consider at �rst some positive number

R ∈ N and ε > 0 arbitrarily small. Then choose a non-degenerate and aperiodic probability

measure S = s/u with bounded support Ω ⊂ B(0, R)\{0} in the set AN,ε (see Section 6.2).

Also, let (Bm)m≥1 be a sequence of �nite signed measures on Zd such that
∑
m≥1m|bm| < ∞

and
∑
m≥1 b

(i)
m < ∞, for i = 1, . . . , d. We apply Proposition 7.1 to obtain the existence of a

unique sequence (an)n≥0, with a0 = 1 and

an = uµ−1an−1 + λ

n∑
m=1

ambman−m,

where we write uµ−1 = 1 − λ
∑
m≥1 ambm for λ > 0 small enough. We also know that an ∈

[1/2, 3/2], for all n and we set

ρ :=
∑
m≥1

ambm (8.1.1)

for later use. We may de�ne the quantities

κ(i) :=
uµ−1s(i) + λ

∑
m≥1 amb

(i)
m

1 + λ
∑
m≥1 ambm(m− 1)

, for i = 1, . . . , d. (8.1.2)

Now, we assume that the Bm's have the following pointwise decay (uniformly for all m ≥ 1 and

x ∈ Zd):

|Bm(x)| ≤ Km−d/2
m/2∑
k=1

exp

(
−
√
m− k√
σ
‖κ‖
)
θkκ,kσ(x). (8.1.3)

Here, K is a positive constant whose value may from now on change from line to line and σ > 0

is to be determined later. Note that since d ≥ 9, Proposition 7.1 is satis�ed even if κ = 0 and

Corollary 7.5 holds with ε = 3/2.
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Using the above setting, we are able to de�ne a sequence of measures (An)n≥0 on Zd as follows:
Set A0 := δ0, and for n ≥ 1:

An := uµ−1SAn−1 + λ

n∑
m=1

amBmAn−m. (8.1.4)

One might worry that the use of the sequence (am)m is ambiguous here. But it is readily checked

by summing over all x ∈ Zd that (am)m is indeed the weight sequence corresponding to (An)n.

We are now interested in the asymptotic behavior of the sequence (An/an)n. We will see that

the right asymptotic drift (for large n) is given by nκ, κ from (8.1.2), and the right asymptotic

covariance matrix by n∆ = n(δij)
d
i,j=1, with

δij =
1

1 + λ
∑
m≥1(m− 1)ambm

uµ−1s(ij) + λ
∑
m≥1

amb
(ij)
m − κ(i)κ(j)

+λκ(i)κ(j)
∑
m≥1

(m− 1)2ambm − λκ(i)
∑
m≥1

am(m− 1)b(j)m − λκ(j)
∑
m≥1

am(m− 1)b(i)m

 ,

(8.1.5)

for i, j = 1, . . . , d (of course δij = δji). From now on, we will always assume that λ is small enough

to assure that |κ(i)| ≤ 2R, for i = 1, . . . , d, and δij ∈ [(s(ij) − s(i)s(j))/2, 2(s(ij) − s(i)s(j))], for

i, j = 1, . . . , d, where s(ij)−s(i)s(j) is the (i, j)-th entry in the covariance matrix of S. In fact it is

not important how big these intervals are chosen precisely as long as the bounds are determined

by R and S only. Note also that the de�nition of ∆ requires that if κ 6= 0, bm ≤ Km−7/2,

b
(i)
m ≤ Km−5/2 and b

(ij)
m ≤ Km−3/2 for all i, j = 1, . . . , d. This is of course guaranteed by the

exponential decay of the moments of the sequence (Bm)m in m (see (8.1.3)). However, we have

to make sure that ∆ does not explode, if κ tends to zero, or if κ = 0. In other words, we have to

check that the constant K is independent of κ. If κ = 0, we only need the term with b
(ij)
m in the

de�nition of ∆, but this term then decays like m2−d/2 which is fast enough if d ≥ 9. If κ 6= 0,

we have: |b(ij)m | ≤
∑
x |xixj ||Bm(x)| for i, j = 1, . . . , d. Combining with the bound (8.1.3), we

see that we have to �rst bound
∑
x |xixj |θkκ,kσ(x). But∑

x

|xixj |θkκ,kσ(x) ≤
∑
x

|xi − kκ(i) + kκ(i)||xj − kκ(j) + kκ(j)|θkκ,kσ(x)

≤
∑
x

θkκ,kσ(x)(|xi − kκ(i)||xj − kκ(j)|+ k|xi − kκ(i)|‖κ‖ . . .

. . .+ k|xj − kκ(j)|‖κ‖+ k2‖κ‖2)

≤K(k + k3/2‖κ‖+ k2‖κ‖2).

Therefore, |b(ij)m | ≤ K exp
(
−
√
m√
2σ
‖κ‖
)
m−d/2(m2 +m5/2 +m3) ≤ Km−3/2, as long as d ≥ 9 and

where K is independent of κ. Similar considerations for the terms involving bm and b
(i)
m show

that ∆ remains bounded for all values of κ near zero.

The goal of this Chapter is to prove the following Theorem:

Theorem 8.1. In the above setting, there exists λ0 > 0 such that for any λ ∈ [0, λ0], we have

∣∣∣∣An(x)

an
− φnκ,n∆(x)

∣∣∣∣ ≤ K
n−1/2θnκ,nσ(x) + n−d/2

n/2∑
j=1

j2 exp

(
−
√
n− j√
σ
‖κ‖
)
θjκ,jσ(x)

 ,
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where the parameters κ and ∆ depend on λ, d, S and on the sequence (Bm)m≥1 and are de�ned

above in (8.1.2) and (8.1.5). K = K(R, d) and σ = σ(d, S) are positive constants independent

of the sequence (Bm)m and will be determined in the proof of the Theorem.

8.2 The Distribution pt(x)

Before turning to the proof of Theorem 8.1 we need to introduce a new distribution on Zd.
Consider (Yi)i≥1 a sequence of iid random variables on Zd with the following distribution: Let

ei be the standard i-th unit vector in Zd (or Rd), and choose πi, i = 1, . . . , d, and πij , 1 ≤
i < j ≤ d, in [0, 1]. Moreover, let di, i = 1, . . . , d, and dij , 1 ≤ i < j ≤ d, be in [0, 1] with∑d
i=1 di +

∑
1≤i<j≤d dij = 1. The distribution of Y1 is de�ned by

P [Y1 = ei] := πidi, i = 1, . . . , d

P [Y1 = −ei] := (1− πi)di, i = 1, . . . , d

P [Y1 = ei + ej ] = P [Y1 = −ei − ej ] :=
1

2
πijdij , 1 ≤ i < j ≤ d

P [Y1 = ei − ej ] = P [Y1 = −ei + ej ] :=
1

2
(1− πij)dij , 1 ≤ i < j ≤ d.

Now set Sn :=
∑n
i=1 Yi for n ∈ N, and consider another parameter η > 0. Then, for t ≥ 0, the

distribution pt(x) on Zd is de�ned by p0(x) := δ0(x), and for t > 0,

pt(x) :=
∑
n≥0

e−ηt
(ηt)n

n!
P [Sn = x]. (8.2.1)

That is, pt is the distribution of a random walk (Xt)t≥0 = (X
(1)
t , . . . , X

(d)
t )t≥0 with jumps

Yi and a Poisson distributed number of jumps up to time t (with parameter tη). Note that

pt ∗ ps(x) = pt+s(x). Indeed, we use Fubini to get

pt ∗ ps(x) =
∑
y∈Zd

pt(y)ps(x− y) =
∑
y

∑
n≥0

e−ηt
(ηt)n

n!
P [Sn = y]

∑
m≥0

e−ηs
(ηs)m

m!
P [Sm = x− y]

= e−η(t+s)
∑
n,m≥0

ηn+m t
nsm

n!m!

∑
y

P [Sn = y]P [Sm = x− y]

= e−η(t+s)
∑
k≥0

ηkP [Sk = x]

k∑
l=0

tlsk−l

l!(k − l)!
k!

k!
=
∑
k≥0

e−η(t+s) (η(t+ s))k

k!
P [Sk = x]

= pt+s(x).

It is also immediate to see that E[X
(i)
t ] = tηE[Y

(i)
1 ] = tη(2πi − 1)di, for i = 1, . . . , d. Moreover,

using the formula of the total covariance, we have cov(X
(i)
t , X

(j)
t ) = tηE[Y

(i)
1 Y

(j)
1 ] = tη(2πij −

1)dij , for 1 ≤ i < j ≤ d, and for i = 1, . . . , d, var(X
(i)
t ) = cov(X

(i)
t , X

(i)
t ) = tηE[Y

(i) 2
1 ] = tηdii,

where dii := di +
∑
j:j<i dji +

∑
j:i<j dij . We can show the following Lemma:

Lemma 8.2. Setting κ := η(d1(2π1 − 1), . . . , dd(2πd − 1)), and ∆ = (δij)
d
i,j=1, with δii := ηdii,

for i = 1, . . . , d, δij := ηdij(2πij − 1), and δji = δij for 1 ≤ i < j ≤ d, we have for all x ∈ Zd,

|pn(x)− φnκ,n∆(x)| ≤ K√
n
θnκ,nσ′Idd(x), for all n > 0,

where K > 0 and σ′ > 0 have to be chosen big enough and depend only on d and an upper bound

for η.
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In the remainder of this chapter, we will write φtκ,t∆ =: φt and θtκ,tσ′Idd =: θt. Also, K and σ′

might have to be adapted but will always only depend on d and the distribution of pt (that is

on an upper bound for η).

Proof. The proof of the Lemma is a combination of large deviation theory and tilting of the

measure pn.

Let Z1 ∼ p1(x). Then, Z(t) :=
∑
x∈Zd exp (〈t, x〉) p1(x) exists for all t ∈ Rd, and we may de�ne

the entropy function I(ξ) := supt∈Rd{〈t, ξ〉 − logZ(t)}. By standard large deviation theory (see

eg. Ellis [13]) the laws of pn(nx) = p∗n1 (nx), n ∈ N, obey a large deviation principle with entropy

function I and rate n. The following properties of I and Z are then easily obtained: I is strictly

convex on Rd with I(κ) = 0 and I ≥ 0 on Rd. This implies that κ is a global minimum for I

and therefore, the �rst partial derivatives of I vanish at κ.

The function t 7→ ∇ logZ(t) is an analytic di�eomorphism in Rd (see Ellis [13] and note that Z is

analytic). Thus, for any ξ ∈ Rd, there exists a unique tξ ∈ Rd such that ∇ logZ(tξ) = ξ. Finally,

the following points are easily obtained by the aforementioned facts and simple calculations:

• ∇ logZ(0) = κ,

• ∇2 logZ(0) = ∆ = Cov(Z1) (here, ∇2 = ∇t · ∇),

• I(ξ) = 〈tξ, ξ〉 − logZ(tξ) for any ξ ∈ Rd, and

• ∇2I(κ) = ∆−1.

Moreover, for k = 3, 4, 5, ∇kI(κ) depend only on the moments of Z1 up to order 5.

Now, for t ∈ Rd, set

Pt(x) :=
p1(x) exp (〈t, x〉)

Z(t)
.

Then, for ξ = x/n, we can write

pn(x) = exp (−nI(ξ))P ∗ntξ (x), (8.2.2)

and we have E[Z(Ptξ )] = ∇ logZ(tξ) = ξ, if Z(Ptξ ) ∼ Ptξ .
We now consider ξ such that ‖ξ − κ‖ ≤ n−5/12. Denoting by ∆ξ the covariance matrix of Ptξ ,

we have ∆κ = ∆ and ∆ξ depends analytically on ξ. Setting δ1 the smallest eigenvalue of ∆, we

consider the set RP of all ξ such that the smallest eigenvalue of ∆ξ is greater or equal to δ1/2.

This is a closed neighborhood of κ, and for ‖ξ − κ‖ ≤ n−5/12, ξ is in RP for almost all n. More

precisely, there is some N ∈ N such that ξ ∈ RP , for all n ≥ N . We only prove the estimate for

such ξ since the remaining cases are contained in a compact and bounded set and may be dealt

with by simply choosing K large enough.

Thus, let ξ = x/n ∈ RP with ‖ξ − κ‖ = ‖(x− nκ)/n‖ ≤ n−5/12. We estimate the two factors in

(8.2.2) separately. For the �rst one we get, doing a Taylor expansion for I around κ and then a

Taylor expansion of exp around 0:

exp (−nI(ξ)) = exp

(
− 1

2n
(x− nκ)t∆−1(x− nκ) + n

5∑
i=3

T (i)(ξ − κ) + nO((ξ − κ)(6))

)

= exp

(
− 1

2n
(x− nκ)t∆−1(x− nκ)

)[
1 +

1√
n
T (3)

(
x− nκ√

n

)
+

1

n
T (4)

(
x− nκ√

n

)
+

1

n3/2
T (5)

(
x− nκ√

n

)
+O(n−3/2)

]
, (8.2.3)
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where T (i) denotes a polynomial containing i-th order terms only. The coe�cients of the poly-

nomials are rational functions of the moments of Z1 up to order 5.

We still need to estimate the second factor in (8.2.2). For that, we use Corollary 8.3 stated

below. Using the notations of that Corollary, we obtain∣∣∣∣∣P ∗ntξ (x)− n−d/2
3∑
r=0

n−r/2Pr(−φ0,∆ξ
: {χν})((x− nξ)/

√
n)

∣∣∣∣∣ = o(n−(d+3)/2). (8.2.4)

Note that the constant on the right-hand side of (8.2.4) needs to be independent of ξ which is a

priori not guaranteed by Corollary 8.3. However, calculating the constants in the proof of that

Corollary given by Bhattacharya and Rao in [2], it can be shown that they only depend on the

moments of Z1 up to order 5.

Now, in the above so called Edgeworth polynomials Pr(−φ0,∆ξ
: {χν})((x − nξ)/

√
n), the co-

e�cients of Pr depend on the moments of Ptξ up to order 5, and since ξ = x/n, only Pr(.)(0)

appear in (8.2.4). But P0(.)(0) is the centered normal density with covariance matrix ∆ξ itself.

Thus, Taylor expansion around κ yields P0(.)(0) = 1√
2π
d|∆|1/2

+ T (2) (ξ − κ) + O((ξ − κ)(4)),

and P2(.)(0) = K√
2π
d|∆|1/2

+ O((ξ − κ)(2)). Moreover, P1 and P3 vanish at zero because the

odd derivatives of a centered normal density do so. K and the error term depend only on the

moments of Z1 up to order 5. Thus, (8.2.4) simpli�es to

Ptξ(x) =
1

√
2πn

d|∆|1/2

[
1 + T (2) (ξ − κ) +O((ξ − κ)(4)) + n−1T (0) (ξ − κ)

+O(n−1(ξ − κ)(2)) + o(n−3/2)
]

=
1

√
2πn

d|∆|1/2

[
1 + n−1T (2)

(
x− nκ√

n

)
+ n−1T (0)

(
x− nκ√

n

)
+O(n−3/2)

]
. (8.2.5)

Inserting (8.2.3) and (8.2.5) into (8.2.2) yields the desired estimate whenever σ′ is chosen large

enough (depending on ∆ and thus on an upper bound for η) and ‖ξ−κ‖ ≤ n−5/12 with ξ ∈ RP .
Note that the constants only depend on the �rst �ve moments of Z1 and therefore only on η since

the πi's and the πij 's as well as the di's and the dij 's which are also involved in the de�nition of

the distribution of Z1 are contained in a bounded compact set.

It remains to check the case ‖ξ − κ‖ ≥ n−5/12. We estimate pn(x) and φn separately. For φn,

since n1/2 ≤ ((x− nκ)/
√
n)6, and ‖x‖k exp(−x2) ≤ K exp(−x2/

√
2) for any �xed k ∈ N and for

all x ∈ Zd, we have
φn(x) ≤ Kn−1/2θn(x), (8.2.6)

for σ′ > 0 large enough depending on ∆ and thus again on an upper bound for η. For pn(x),

we note that I is strictly convex with I(κ) = 0 a global minimum. Thus, we may bound I(ξ)

away from zero by I(ξ) ≥ 1
c‖ξ−κ‖ = 1

c
‖x−nκ‖

n , for some c > 0. c will again depend on an upper

bound for η. Thus, with (8.2.2), we obtain

pn(x) ≤ exp

(
−n
c

‖x− nκ‖
n

)
≤ exp

(
−1

c

‖x− nκ‖√
n

)
.

Choosing σ′ > 0 large enough and using the same argument as for (8.2.6), we obtain the desired

estimate in the latter case. This �nishes the proof.

The following Corollary is from Bhattacharya and Rao [2].

Corollary 8.3. Let (Xj)j≥1 be a sequence of iid lattice random vectors with values in Rk.
Assume that E[X1] = µ and that Cov(X1) = TT t = V , where T is a nonsingular k × k-matrix,
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and P [X1 ∈ Zk] = 1, Zk being also the minimal lattice of X1. If ρs := E[‖X1 − µ‖s] < ∞ for

some integer s ≥ 2, then

sup
α∈Zk

(1 + ‖yα,n‖s) |pn(yα,n)− qn,s(yα,n)| = o
(
n−(k+s−2)/2

)
,∑

α∈Zk
|pn(yα,n)− qn,s(yα,n)| = o

(
n−(s−2)/2

)
(n→∞),

where

yα,n =n−1/2(α− nµ), pn(yα,n) = P (X1 + . . .+Xn = α) (α ∈ Zk),

=P

n−1/2
n∑
j=1

(Xj − µ) = yα,n

 ,

qn,s = n−k/2
s−2∑
r=0

n−r/2Pr(−φ0,V : {χν}),

χν being the ν-th cumulant of X1 and Pr(−φ0,V : {χν}) the r-th Edgeworth polynomial (see also

[2] for a de�nition of these polynomials). In particular, P0(−φ0,V : {χν}) = φ0,V .

Note that in our case, X1 = Z1, V = ∆, µ = κ and all cumulants χν exist.

Now consider a function f on Zd. We de�ne the forward di�erence of f in direction i, i = 1, . . . , d,

by 4if(x) := f(x + ei) − f(x), where ei is the i-th unit vector in canonical coordinates. We

also denote 4ijf(x) := 4i(4jf)(x), for i, j = 1, . . . , d, and similarly for higher order di�erences

(note that 4ij = 4ji). We get the following Lemma for forward di�erences of pt(x):

Lemma 8.4. For all x ∈ Zd and all t > 0, we have the following estimates:

|4ipt(x)| ≤ K√
t
θt(x) for i = 1, . . . , d (8.2.7)

|4ijpt(x)| ≤ K

t
θt(x) for i, j = 1, . . . , d (8.2.8)

|4ijkpt(x)| ≤ K

t3/2
θt(x) for i, j, k = 1, . . . , d, (8.2.9)

where θt(x) = θtκ,tσ′(x). σ′ > 0 and K > 0 have to be chosen large enough.

Proof. For (8.2.7), recall from Lemma 8.2 that |pt(x) − φt(x)| ≤ K√
t
θt(x). This immediately

implies that for i ∈ {1, . . . , d},

|pt(x+ ei)− pt(x)| ≤
∫ 1

0

|φ(i)
t (x+ yiei)|dyi +

K√
t
θt(x+ ei) +

K√
t
θt(x) ≤ K√

t
θt(x).

Here, φ
(i)
t is the partial derivative of φt in the direction of ei.

For (8.2.8) and (8.2.9), we �rst note the following relation valid for all x ∈ Zd, t > 0 and

i = 1, . . . , d:

4ipt(x) =4i

∑
y∈Zd

pt/2(y)pt/2(x− y)

 =
∑
y

pt/2(y)4ipt/2(x− y)

=
∑
y

4ipt/2(y)pt/2(x− y).
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Using this relation, we obtain for i, j ∈ {1, . . . , d},

|4ijpt(x)| = |
∑
y

4ipt/2(y)4jpt/2(x− y)| ≤ K

t

∑
y

θt/2(y)θt/2(x− y) ≤ K

t
θt(x),

where we use Lemma B.1 for the last inequality and of course (8.2.7). This proves (8.2.8) and a

similar procedure yields (8.2.9).

We also need a �di�usion equation�, ie. an expression for the time derivative of pt(x) in terms

of the forward di�erences of pt(x):

Lemma 8.5. We have

1

η

∂

∂t
pt(x) =

d∑
i=1

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

4iipt(x)−
d∑
i=1

di(2πi − 1)4ipt(x)

+
∑

1≤i<j≤d

dij(2πij − 1)4ijpt(x) + E(p, t, x),

E(p, t, x) being the error term. For this error term the following estimate holds:

|E(p, t, x)| ≤ K

t3/2
θtκ,tσ′(x),

where K > 0 and σ′ > 0 have to be chosen large enough.

Proof. We have

∂pt
∂t

(x) =
∑
n≥0

∂

∂t

(
e−ηt

(ηt)n

n!

)
P [Sn = x] = η

∑
n≥0

(
−e−ηt (ηt)

n

n!
+ e−ηtn

(ηt)n−1

n!

)
P [Sn = x]

=η
∑
n≥0

e−ηt
(ηt)n

n!
P [Sn+1 = x]− ηpt(x)

=η
∑
n≥0

e−ηt
(ηt)n

n!

{
d∑
i=1

di (P [Sn = x− ei]πi + P [Sn = x+ ei](1− πi)− pt(x))

+
∑

1≤i<j≤d

dij
2

(πij(P [Sn = x− ei − ej ] + P [Sn = x+ ei + ej ])

+(1− πij)(P [Sn = x− ei + ej ] + P [Sn = x+ ei − ej ])− 2pt(x))}

=η

d∑
i=1

di(πipt(x− ei) + (1− πi)pt(x+ ei)− pt(x)) (8.2.10)

+ η
∑

1≤i<j≤d

dij
2

[πij(pt(x− ei − ej) + pt(x+ ei + ej))

+(1− πij)(pt(x− ei + ej) + pt(x+ ei − ej))− 2pt(x)] . (8.2.11)
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Hence, for the �rst sum over the i's we have:

1

η
(8.2.10) =

d∑
i=1

(1− πi)di4iipt(x− ei) + 2

d∑
i=1

(1− πi)dipt(x)−
d∑
i=1

(1− πi)dipt(x− ei)

+

d∑
i=1

πidipt(x− ei)−
d∑
i=1

dipt(x)

=

d∑
i=1

(1− πi)di4iipt(x− ei)−
d∑
i=1

(2πi − 1)di4ipt(x− ei)

=

d∑
i=1

di(πi4iipt(x)− (2πi − 1)4ipt(x)) +

d∑
i=1

E1(p, t, x, i),

with E1(p, t, x, i) = −πidi4iiipt(x−ei). Using Lemma 8.4, we can bound this error by K
t3/2 θt(x).

It remains to check the second summand (8.2.11): Note that for any 1 ≤ i < j ≤ d, we have

4ijpt(x− ej) = pt(x+ ei)− pt(x)− pt(x− ej + ei) + pt(x− ej),

and

4ijpt(x− ei) = pt(x+ ej)− pt(x− ei + ej)− pt(x) + pt(x− ei).

Moreover,

4ijpt(x) = pt(x+ ei + ej)− pt(x+ ej)− pt(x+ ei) + pt(x),

and

4ijpt(x− ei − ej) = pt(x)− pt(x− ei)− pt(x− ej) + pt(x− ei − ej).

Thus, in (8.2.11), we have for each summand:

πij(pt(x− ei − ej) + pt(x+ ei + ej))

+ (1− πij)(pt(x− ei + ej) + pt(x+ ei − ej))− 2pt(x)

=πij(4ijpt(x) + pt(x+ ej) + pt(x+ ei) +4ijpt(x− ei − ej) + pt(x− ei) . . .
. . .+ pt(x− ej)− 2pt(x))

+ (1− πij)(−4ijpt(x− ei) + pt(x+ ej) + pt(x− ei)−4ijpt(x− ej) + pt(x+ ei) . . .

. . .+ pt(x− ej)− 2pt(x))− 2pt(x)

=πij(4ijpt(x) +4ijpt(x− ei) +4ijpt(x− ej) +4ijpt(x− ei − ej))
−4ijpt(x− ei)−4ijpt(x− ej) + pt(x− ej) + pt(x+ ej) + pt(x− ei) + pt(x+ ei)

− 4pt(x).

The last expression is equal to

=4πij4ijpt(x)− 24ijpt(x) +4iipt(x) +4jjpt(x) + E2(p, t, x, i, j)

=2(2πij − 1)4ijpt(x) +4iipt(x) +4jjpt(x) + E2(p, t, x, i, j).

As for the error E1, we can write this error in terms of 3rd order forward di�erences and

thus |E2(p, t, x, i, j)| ≤ K
t3/2 θt(x) for all 1 ≤ i < j ≤ d. Together with the calculation on the

term (8.2.10), this �nishes the proof of the Lemma by setting E(p, t, x) :=
∑d
i=1E1(p, t, x, i) +∑

i<j
dij
2 E2(pt, t, x, i, j).
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Finally, we need to establish a �discrete Taylor Theorem� for pt(x+ y), x, y ∈ Zd, t > 0, yielding

a development of pt(x + y) around x in a forward di�erences series. We also need to estimate

the error terms in these series. Let us �rst consider the case d = 1. In this case, pt(x+ y) may

be written in the following way:

pt(x+ y) =pt(x) + yvt(x, y) (8.2.12)

=pt(x) + y4pt(x) + y(y − 1)4vt(x, y) (8.2.13)

=pt(x) + y4pt(x) +
y(y − 1)

2
42pt(x) +

y(y − 1)(y − 2)

2
42vt(x, y), (8.2.14)

where for the error terms we have:

vt(x, y) =
pt(x+ y)− pt(x)

y
(8.2.15)

if y 6= 0, and vt(x, x) ≡ 0. Moreover,

4vt(x, y) =
pt(x+ y)− pt(x+ 1)

y − 1
− pt(x+ y)− pt(x)

y

=
pt(x+ y)− pt(x)− y(pt(x+ 1)− pt(x))

y(y − 1)
, (8.2.16)

if y 6∈ {0, 1} (vt(x, y) ≡ 0 in that case) and

42vt(x, y) =
pt(x+ y)− pt(x+ 2)

y − 2
− 2

pt(x+ y)− pt(x+ 1)

y − 1
+
pt(x+ y)− pt(x)

y

=
1

y(y − 1)(y − 2)
(y(y − 1)(pt(x+ y)− pt(x+ 2)) . . . (8.2.17)

. . .− 2y(y − 2)(pt(x+ y)− pt(x+ 1)) + (y − 2)(y − 1)(pt(x+ y)− pt(x))) ,

if y 6∈ {0, 1, 2} (vt(x, y) ≡ 0 again in that case). These developments can be found in Boole [3].

Note that in the above, 4 acts on the �rst coordinate of vt(., q) = pt(q)−pt(.)
q−. .

We turn to the estimate of the error terms above. In the following, we freely use Lemma 8.4.

For (8.2.15) we have (again with θtκ,tσ′ =: θt):

|vt(x, y)| =

∣∣∣∣∣1y
y−1∑
i=0

4pt(x+ i)

∣∣∣∣∣ ≤ 1

y

K√
t

y−1∑
i=0

θt(x+ i)

≤ K√
ty

∫ y

0

θt(x+ i)di ≤ K√
t

∫ 1

0

θt(x+ iy)di. (8.2.18)

For the error (8.2.16), we may write

pt(x+ y)− pt(x)− y(pt(x+ 1)− pt(x))

=

y−1∑
i=0

(pt(x+ i+ 1)− pt(x+ i)− (pt(x+ 1)− pt(x)))

=

y−2∑
j=0

j∑
i=0

42pt(x+ i).

Using this, we obtain:

|4vt(x, y)| ≤

∣∣∣∣∣∣ 1

y(y − 1)

y−2∑
j=0

j∑
i=0

42pt(x+ i)

∣∣∣∣∣∣
≤ 1

y(y − 1)

∫ y−1

0

dj

∫ j

0

di
K

t
θt(x+ i) ≤ K

t

∫ 1

0

(1− i)θt(x+ iy)di. (8.2.19)
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Finally, for the last error (8.2.17), we obtain similarly:

|42vt(x, y)| =

∣∣∣∣∣∣ 2

y(y − 1)(y − 2)

y−3∑
j=0

y−2−j∑
l=1

j∑
i=0

43pt(x+ i)

∣∣∣∣∣∣
≤ 2

y(y − 1)(y − 2)

∫ y−3

0

dj

∫ y−2−j

1

dl

∫ j

0

di
K

t3/2
θt(x+ i)

≤ K

t3/2

∫ 1

0

dl(1− l)2θt(x+ ly). (8.2.20)

For higher dimensions d > 1, one can apply the development in (8.2.12)�(8.2.14) iteratively to

each coordinate of pt(x) to obtain:

pt(x+ y) =pt(x) +

d∑
i=1

yiv
(i)
t (x, y) (8.2.21)

=pt(x) +

d∑
i=1

yi4ipt(x) +

d∑
i=1

yi(yi − 1)4iv(i)
t (x, y) +

∑
i<j

yiyjv
(4ij)
t (x, y) (8.2.22)

=pt(x) +

d∑
i=1

yi4ipt(x) +

d∑
i=1

yi(yi − 1)

2
4iipt(x) +

∑
i<j

yiyj4ijpt(x)

+

d∑
i=1

yi(yi − 1)(yi − 2)

2
4iiv(i)

t (x, y) +
∑
i<j

yiyj(yj − 1)4jv(4ij)
t (x, y)

+
∑
i<j

yi(yi − 1)

2
yjv

(4iij)
t (x, y) +

∑
i<j<k

yiyjykv
(4ijk)
t (x, y). (8.2.23)

Here, we have for the error terms:

|v(i)
t (x, y)| =

∣∣∣∣ 1

yi
(pt(x1, . . . , xi−1, xi + yi, . . . , xd + yd)− pt(x1, . . . , xi−1, xi, . . . , xd + yd))

∣∣∣∣
≤ K√

t

d∑
i=1

∫ 1

0

dlθt(x1, . . . , xi−1, xi + lyi, xi+1 + yi+1, . . . , xd + yd) (8.2.24)

for the error terms in (8.2.21). For the error terms in (8.2.22), we have

4iv(i)
t (x, y) =

1

yi(yi − 1)
(pt(x1, . . . , xi−1, xi + yi, . . . , xd + yd) . . .

. . .− pt(x1, . . . , xi, xi+1 + yi+1, . . . , xd + yd) . . .

. . .− yi(pt(x1, . . . , xi−1, xi + 1, xi+1 + yi+1, . . . , xd + yd)− pt(x1, . . . , xi, . . . , xd + yd))) ,

and

v
(4ij)
t (x, y) =

1

yj
(4ipt(x1, . . . , xj−1, xj + yj , . . . , dd + yd) . . .

. . .−4ipt(x1, . . . , xj , xj+1 + yj+1, . . . , xd + yd)) .

Hence,

|4iv(i)
t (x, y)| ≤ K

t

∫ 1

0

dl(1− l)θt(x1, . . . , xi−1, xi + lyi, xi+1 + yi+1, . . . , xd + yd), (8.2.25)
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and

|v(4ij)
t (x, y)| ≤ K

t

∫ 1

0

dlθt(x1, . . . , xj−1, xj + lyj , xj+1 + yj+1, xd + yd). (8.2.26)

Finally, reasoning as before and extending the notation for the errors from (8.2.21) and (8.2.22)

in a natural way, we obtain for the error terms in (8.2.23):

|4iiv(i)
t (x, y)| ≤ K

t3/2

∫ 1

0

dl(1− l)2θt(x1, . . . , xi−1, xi + lyi, xi+1 + yi+1, . . . , xd + yd), (8.2.27)

|4jv(4ij)
t (x, y)| ≤ K

t3/2

∫ 1

0

dl(1− l)θt(x1, . . . , xj−1, xj + lyj , xj+1 + yj+1, . . . , xd + yd), (8.2.28)

|v(4iij)
t (x, y)| ≤ K

t3/2

∫ 1

0

dlθt(x1, . . . , xj−1, xj + lyj , xj+1 + yj+1, . . . , xd + yd), (8.2.29)

and

|v(4ijk)
t (x, y)| ≤ K

t3/2

∫ 1

0

dlθt(x1, . . . , xk−1, xk + lyk, xk+1 + yk+1, . . . , xd + yd). (8.2.30)

8.3 Proof of the Main Theorem 8.1

We prove Theorem 8.1 by establishing a norm on the space of sequences A = (An)n≥0 which

turns this space into a Banach space. Then, we de�ne a contraction operator on a subspace of

this Banach space of sequences and use Banach �xed point Theorem. Finally, we show that the

sequence de�ned in (8.1.4) is the limit point of a sequence of sequences given by the iterated

application of the contraction operator applied to a certain initial point.

Let

W :=

{
G = (Gn)n∈N0

∣∣∣∣∣ sup
n≥1, x∈Zd

|Gn(x)|
χn(x)

+ sup
x∈Zd

|G0(x)| <∞, Gn a signed measure on Zd

}
,

(8.3.1)

where

χn(x) := n−1/2θnκ,nσ(x) + n−d/2
n/2∑
j=1

j2 exp

(
−
√
n− k√
σ
‖κ‖
)
θjκ,jσ(x).

σ > 0 is to be determined later (this is the same σ as in Theorem 8.1). On this space, we de�ne

the obvious norm ‖G‖1/2 := supn≥1, x∈Zd |Gn(x)|/χn(x) + supx∈Zd |G0(x)|. Then,
(
W, ‖.‖1/2

)
is a Banach space. Now consider F := (Fn)n∈N0

a sequence of probability distributions on Zd
with F0 = δ0, and de�ne the operator ψF acting on elements of W by ψF (ξ)0 := ξ0, and for

n ≥ 1:

ψF (ξ)n := Fnξ0 +

n∑
l=1

ξn−l

[
(1− λρ)SFl−1 − Fl + λ

l∑
m=1

amBmFl−m

]
, (8.3.2)

for any ξ ∈ W. The sequence F we will use from now on is:

Fk :=

(
1− k

N

)
Sk +

k

N
pk, for k ≤ N,

Fk := pk, for k > N,

where N ∈ N has to be chosen large enough and will be determined later. Sk stands for the

k-fold convolution of S with itself. The distribution of pt, t ≥ 0, will be chosen such that its
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mean is exactly tκ and its covariance t∆ at time t, where κ and ∆ are given in (8.1.2) and

(8.1.5). This is why we have to choose S ∈ AN,ε. Moreover, this also poses restrictions on the

size of λ as we will see in (8.3.25)�(8.3.27). To simplify notations, we set ψ := ψF . We now

show that ψ is a contraction on the subspace W0 := {ξ ∈ W| ξ0 = 0} ⊂ W.

Lemma 8.6. Let ξ ∈ W0. Then, for N big enough and λ small enough (depending on N), there

exists ε ∈ (0, 1) with

‖ψ(ξ)‖1/2 ≤ ε‖ξ‖1/2.

Recall that K denotes a positive constant, possibly changing from line to line, and depending

only on d, on S and on an upper bound for η. But due to the choice of S and because δij ∈
[(s(ij) − s(i)s(j))/2, 2(s(ij) − s(i)s(j))], we obtain that η is bounded by 2R and K depends on d

and R only.

Proof. Let us do some preliminary calculations around pl: Using (8.2.23) we have

Spl−1(x) =
∑
y∈Zd

S(y)pl−1(x− y) = pl−1(x)−
d∑
i=1

s(i)4ipl−1(x)

+
1

2

d∑
i,j=1

s(ij)4ijpl−1(x) +
1

2

d∑
i=1

s(i)4iipl−1(x)

+
∑
y

S(y)Ep(x, y, l − 1), (8.3.3)

where

Ep(x, y, l − 1) =

d∑
i=1

−yi(yi + 1)(yi + 2)

2
4iiv(i)

l−1(x,−y) +
∑
i<j

yiyj(−yj − 1)4jv(4ij)
l−1 (x,−y)

+
∑
i<j

yi(−yi − 1)

2
yjv

(4iij)
l−1 (x,−y) +

∑
i<j<k

(−yiyjyk)v
(4ijk)
l−1 (x,−y). (8.3.4)

But the support of S is a bounded set around 0. Therefore, we can bound the error in (8.3.3)

simply by

|
∑
y

S(y)Ep(x, y, l − 1)| ≤ K

t3/2
θtκ,tσ′(x), (8.3.5)

using (8.2.27)�(8.2.30) and choosing K and σ′ large enough. From Lemma 8.5, we also have:

ṗl−1(x) =η

d∑
i=1

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

4iipl−1(x)− η
d∑
i=1

di(2πi − 1)4ipl−1(x)

+ η
∑

1≤i<j≤d

dij(2πij − 1)4ijpl−1(x) + E(p, l − 1, x),

with |E(p, l − 1, x)| ≤ Kl−3/2θlκ,lσ′(x), and one more application of that Lemma together with

Lemma 8.4 yield:

p̈l−1(x) = η2
d∑
i=1

d2
i (2πi−1)24iipl−1(x)+η2

∑
i 6=j

didj(2πi−1)(2πj−1)4ijpl−1(x)+E2(p, l−1, x),

(8.3.6)
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where for the error E2 we again have |E2(p, l− 1, x)| ≤ K
l3/2 θlκ,lσ′(x). Hence, we get from Taylor

expansion of pl in time:

pl(x) =pl−1(x)− η
d∑
i=1

di(2πi − 1)4ipl−1(x) + η

d∑
i=1

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

4iipl−1(x)

+ η
∑

1≤i<j≤d

dij(2πij − 1)4ijpt(x) +
η2

2

d∑
i=1

d2
i (2πi − 1)24iipl−1(x)

+ η2
∑

1≤i<j≤d

didj(2πi − 1)(2πj − 1)4ijpl−1(x) + Etime(p, l − 1, x), (8.3.7)

with |Etime(p, l− 1, x)| = |E(p, l− 1, x) +E2(p, l− 1, x) +
...
p l−ξ(x)| ≤ K

l3/2 θlκ,lσ′(x), since ξ is in

[0, 1] and
...
p l−ξ(x) is bounded using Lemmas 8.4 and 8.5.

Similarly, for l/2 ≤ l −m < l − 1,

pl−m(x) =pl−1(x) + (m− 1)η

d∑
i=1

di(2πi − 1)4ipl−1(x) (8.3.8)

− (m− 1)η

d∑
i=1

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

4iipl−1(x)

− (m− 1)η
∑

1≤i<j≤d

dij(2πij − 1)4ijpt(x) +
(m− 1)2

2
η2

d∑
i=1

d2
i (2πi − 1)24iipl−1(x)

+ (m− 1)2η2
∑

1≤i<j≤d

didj(2πi − 1)(2πj − 1)4ijpl−1(x)

− (m− 1)E(p, l − 1, x) + (m− 1)2E2(p, l − 1, x) + (m− 1)3...p l−ξ(x),

where l − ξ ∈ [l/2, l − 1].

Finally, we have for q, r = 1, . . . , d,

Bmpl−1(x) =bmpl−1(x)−
d∑
i=1

b(i)m4ipl−1(x) +
1

2

d∑
i,j=1

b(ij)m 4ijpl−1(x)

+

d∑
i=1

b
(i)
m

2
4iipl−1(x) +

∑
y

Bm(y)Ep(x, y, l − 1), (8.3.9)

Bm4qpl−1(x) =bm4qpl−1(x)−
d∑
i=1

b(i)m4qipl−1(x) +
∑
y

Bm(y)E4qp(x, y, l − 1), (8.3.10)

Bm4qrpl−1(x) =bm4qrpl−1(x) +
∑
y

Bm(y)E4qrp(x, y, l − 1), (8.3.11)

where Ep(x, y, l − 1) is given in (8.3.4),

E4qp(x, y, l − 1) =
∑
i

yi(yi + 1)4iv
(4qi)
l−1 (x,−y) +

∑
i<j

yiyjv
(4qij)
l−1 vl−1(x,−y),

and

E4qrp(x, y, l − 1) = −
∑
i

yiv
(4qri)
l−1 (x,−y).
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Using these equations together with (8.3.8), we get

Bmpl−m(x) =bmpl−1(x) +

d∑
i=1

4ipl−1(x)
(
−b(i)m + bm(m− 1)ηdi(2πi − 1)

)
+

d∑
i=1

4iipl−1(x)

(
b
(ii)
m

2
+
b
(i)
m

2
− (m− 1)ηdib

(i)
m (2πi − 1)

−(m− 1)bmη

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

+
(m− 1)2

2
η2d2

i bm(2πi − 1)2


+

∑
1≤i<j≤d

4ijpl−1(x)
(
b(ij)m − (m− 1)ηb(i)m dj(2πj − 1)− (m− 1)ηb(j)m di(2πi − 1)

+bm(m− 1)2η2didj(2πi − 1)(2πj − 1)− bm(m− 1)ηdij(2πij − 1)
)

+
∑
y

Bm(y)E(m, p, x, y, l − 1). (8.3.12)

Here,

E(m, p, x, y, l − 1) = Ep(x, y, l − 1) + (m− 1)η

d∑
i=1

di(2πi − 1)E4ip(x, y, l − 1) (8.3.13)

+

d∑
i=1

−(m− 1)η

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

+
(m− 1)2

2
η2d2

i (2πi − 1)2

E4iip(x, y, l − 1)

−
∑
i<j

(
(m− 1)ηdij(2πij − 1)− (m− 1)2η2didj(2πi − 1)(2πj − 1)

)
E4ijp(x, y, l − 1)

− (m− 1)E(p, l − 1, x− y) + (m− 1)2E2(p, l − 1, x− y) + (m− 1)3...p l−ξ(x− y),

where l − ξ ∈ [l/2, l − 1], and the error terms are collected from the above calculations

(8.3.8)�(8.3.11). Note that there are two types of errors in the above formula. Ep(x, y, l − 1),

E4ip(x, y, l − 1), E4iip(x, y, l − 1) and E4ijp(x, y, l − 1) are coming from the discrete Taylor

development of pl−1(x− y) and its discrete derivatives, whereas the errors on the last line come

from the Taylor development of pl−m(x− y) in time.

We want to show that

∑
y

|Bm(y)E(m, p, x, y, l − 1)| ≤ K

m3/2l3/2
θlκ,lσ(x) +

K

m1/2l2
θlκ,lσ(x) (8.3.14)

for some σ > 0 large enough in order that
∑l/2
m=1

∑
y |Bm(y)E(m, p, x, y, l − 1)| ≤ K

l3/2 θlκ,lσ(x).

We check all terms in (8.3.13) separately, freely making reference to (8.2.21)�(8.2.30). The �rst

term, Ep(x, y, l − 1), can be bounded by:

K

l3/2

∑
i≤j≤q

|yiyjyq|
∫ 1

0

dsθlκ,lσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd). (8.3.15)

This has to be folded with Bm. But now recall the bound (8.1.3) for Bm and note that

|yiyjyq|θkκ,kσ(y) = |(yi − kκ(i) + kκ(i))(yj − kκ(j) + kκ(j))(yq − kκ(q) + kκ(q))|θkκ,kσ(y) ≤
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K(k3‖κ‖3 + k5/2‖κ‖2 + k2‖κ‖+ k3/2)θkκ,k
√

2σ(y). Thus, folding Bm with (8.3.15) we get:∑
y

|Bm(y)Ep(x, y, l − 1)|

≤ K

l3/2

∑
i≤j≤q

|yiyjyq|
∫ 1

0

ds
∑
y

Bm(y)θlκ,lσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd)|

≤ K

l3/2

∑
q

∫ 1

0

dsm−d/2
m/2∑
k=1

(k3‖κ‖3 + k5/2‖κ‖2 + k2‖κ‖+ k3/2) exp

(
−
√
m− k√
σ
‖κ‖
)

·
∑
y

θkκ,
√

2kσ(y)θlκ,lσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd).

We want to fold each of the d coordinates separately in the last line above (using Lemma B.1).

This can be done by multiplying the variances by 2 and bounding the above by a multiplication of

corresponding one-dimensional independent doubly-exponential distributions, since 1√√
2kσ
‖y‖ ≥

1√
2
√

2kσ
(|y1| + . . . + |yd|) and similarly for θlκ,lσ′(.). Special care has to be taken when folding

the q-th coordinate with the integral over s. For that coordinate we have (now assuming that

the θ's are one-dimensional):∫ 1

0

ds
∑
yq∈Z

θkκq,2
√

2kσ(yq)θlκq,2lσ′(xq − syq)

≤K
∫ 1

0

dss−1θkκq+lκq/s,2
√

2kσ+2lσ′/s2(xq/s)

≤K
∫ 1

0

dsθskκq+lκq,2
√

2s2kσ+2lσ′(xq)

≤K
∫ 1

0

dsθskκq+lκq,2
√

2kσ+2lσ′(xq)

≤K
∫ 1

0

dsθskκq+lκq,lσ(xq),

where we use that k ≤ m/2 ≤ l/4 and set σ ≥ σ′ 2
1−
√

2/2
. Now note that

sk|κq|√
lσ
≤
√
k|κq|√
σ

√
k√
l
≤

√
m|κq|

2
√

2σ
. Thus, using the subadditivity of any norm,

exp

(
−
√
m− k√

2σ
|κq|
)∫ 1

0

dsθskκq+lκq,lσ(xq)

≤ exp

(
−
√
m|κq|
2
√
σ

(1− 1/
√

2)

)
θlκq,lσ(xq).

Together with much simpler calculations for the remaining coordinates (we do not have to

integrate over [0, 1]!) and again with the subadditivity of the norm we end up with:∑
y

|Bm(y)Ep(x, y, l − 1)|

≤ K

l3/2
m−d/2 exp

(
−
√
m

2
√
σ
‖κ‖(1− 1/

√
2)

)
(m4‖κ‖3 +m7/2‖κ‖2 +m3‖κ‖+m5/2)θlκ,lσ(x)

≤ K

m3/2l3/2
θlκ,lσ(x),
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since d ≥ 9. Thus (8.3.14) is satis�ed. This �nishes the calculation for the �rst term in the error

(8.3.13). We turn to the second term in that error. Recall from the beginning of this Section

that by choice of the distribution of pt, ηdi(2πi − 1) = κ(i) for all i = 1, . . . , d. Therefore, the

second term in the error can be bounded by terms of the form

m‖κ‖ K
l3/2

∑
i≤j

|yiyj |
∫ 1

0

ds
∑
y

|Bm(y)|θlκ,lσ′(x1, . . . , xj−1, xj − syj , xj+1 − yj+1, . . . , xd − yd).

Similar considerations as for the �rst term again lead to the desired bound (8.3.14). Alike

calculations lead to the desired bounds for all errors on the �rst three lines of (8.3.13).

We turn to the last line of (8.3.13). For the �rst summand on that line, we have (m− 1)E(p, l−
1, x − y) ≤ m K

l3/2 θlκ,lσ′(x − y) by Lemma 8.5. Thus, folding with Bm, we have (again using

Lemma B.1): ∣∣∣∣∣∑
y

Bm(y)m
K

l3/2
θlκ,lσ′(x− y)

∣∣∣∣∣
≤ K

l3/2
m1−d/2

m/2∑
k=1

exp

(
−
√
m− k√
σ
‖κ‖
)∑

y

θkκ,kσ(y)θlκ,lσ′(x− y)

≤ K

l3/2
m1−d/2

m/2∑
k=1

exp

(
−
√
m

2
√

2σ
‖κ‖
)
θlκ,lσ(x)

≤ K

l3/2
m2−d/2 exp

(
−
√
m

2
√

2σ
‖κ‖
)
θlκ,lσ(x)

≤ K

l3/2m3/2
θlκ,lσ(x),

since d ≥ 9 and σ ≥ σ′ 2
1−
√

2/2
, and using again that k ≤ m/2 ≤ l/4 and the subadditivity of the

norm. To handle the second term on the last line of (8.3.13), we need to look at the error term

in (8.3.6). Analyzing this error term shows:

E2(p, l − 1, x− y) ≤ K
(

1

l2
+ ‖κ‖ 1

l3/2

)
θlκ,lσ′(x− y).

Folding this bound with Bm, we obtain by similar arguments to the ones use for the �rst error on

the last line of (8.3.13) that the second error on the last line is also bounded by (8.3.14). Finally,

for the last error, we obtain by a still more careful analysis of the iterated time derivatives in

Lemma 8.5:

|
...
p l−ξ(x− y)| ≤ K

(
1

l3
+ ‖κ‖ 1

l5/2
+ ‖κ‖2 1

l2
+ ‖κ‖3 1

l3/2

)
θlκ,lσ′(x− y),

and folding this with Bm again leads to the good bound (8.3.14).

Therefore, we obtain for the error in (8.3.12),

|
∑
y

Bm(y)E(m, p, x, y, l − 1)| ≤ K

m3/2l3/2
θlκ,lσ(x) +

K

m1/2l2
θlκ,lσ(x), (8.3.16)

for all values of κ (in particular also for κ = 0), as long as d ≥ 9. Moreover we set from now on

σ = σ′ 2
1−
√

2/2
.

With these preliminary calculations in hand, we turn to the main part of the proof.
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What we need to show is |ψ(ξ)n| ≤ ε‖ξ‖1/2χn, for all n ∈ N and some ε ∈ (0, 1). For this we

split (8.3.2) as follows:

|ψ(ξ)n| ≤
n∑
l=1

|ξn−l| ∗

∣∣∣∣∣∣
(1− λρ)SFl−1 − Fl + λ

l/2∑
m=1

amBmFl−m

∣∣∣∣∣∣
+

n∑
l=1

|ξn−l| ∗

∣∣∣∣∣∣λ
l∑

m=l/2

amBmFl−m

∣∣∣∣∣∣ . (8.3.17)

We start with the second term. Note that |ξn−l| ≤ ‖ξ‖1/2χn−l and split χn−l into (n−l)−1/2θn−l

and (n − l)−d/2
∑(n−l)/2
j=1 j2 exp

(
−
√
n−l−j√
σ
‖κ‖
)
θj , where for simplicity, θk := θkκ,kσ and θ′k :=

θkκ,kσ′ in the following. For the �rst part this leads to

n−1∑
l=1

(n− l)−1/2θn−l ∗
l∑

m=l/2

am|Bm| ∗ Fl−m

≤K
n−1∑
l=1

(n− l)−1/2
l∑

m=l/2

m−d/2
m/2∑
k=1

exp

(
−
√
m− k√
σ
‖κ‖
)
θn−l ∗ θk ∗ θ′l−m︸ ︷︷ ︸
≤Kθn−m+k

≤Kn−1/2θn

n/2∑
l=1

l∑
m=l/2

m−d/2
m/2∑
k=1

1

+Kn−d/2
n−1∑
l=n/2

(n− l)−1/2
l∑

m=l/2

m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θn−m+k

≤K

n−1/2θn + n−d/2
n−1∑

m=n/4

m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θn−m+k

n−1∑
l=m

(n− l)−1/2

︸ ︷︷ ︸
≤n−m


≤K

n−1/2θn + n−d/2
n−1∑

m=n/4

n−m/2∑
k=n−m+1

k exp

(
−
√
n− k
σ
‖κ‖

)
θk



≤K

n−1/2θn + n−d/2
7n/8∑
k=1

kθk exp

(
−
√
n− k
σ
‖κ‖

)
n−1∑

m=n−k+1︸ ︷︷ ︸
≤k


≤Kχn,
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where we use σ > σ′ and d ≥ 9. For the second part, we split the sum and �nd

n/2∑
l=1

(n− l)−d/2
(n−l)/2∑
j=1

j2 exp

(
−
√
n− l − j

σ
‖κ‖

)
θj ∗

l∑
m=l/2

am|Bm| ∗ Fl−m

≤Kn−d/2
n/2∑
l=1

(n−l)/2∑
j=1

j2 exp

(
−
√
n− l − j

σ
‖κ‖

)

·
l∑

m=l/2

m−d/2
m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θj+k+l−m

≤Kn−d/2
n/2∑
m=1

m−d/2

·
(n/2)∧(2m)∑

l=m

m/2∑
k=1

(n−l)/2+k∑
j=1+k

j2 exp

(
−
√
n− l − j + k

σ
‖κ‖ −

√
m− k
σ
‖κ‖

)
︸ ︷︷ ︸

≤exp
(
−
√

n−l−j+m
σ ‖κ‖

)
θj+l−m

≤Kn−d/2
n/2∑
m=1

m1−d/2
(n/2)∧(2m)∑

l=m

(n+l−m)/2∑
j=1+l−m

j2 exp

(
−
√
n− j
σ
‖κ‖

)
θj

≤Kn−d/2
3n/4∑
j=1

j2 exp

(
−
√
n− j
σ
‖κ‖

)
θj

≤Kχn,

again using d ≥ 9, and �nally

n−1∑
l=n/2

(n− l)−d/2
(n−l)/2∑
j=1

j2︸︷︷︸
≤(n−l)2

exp

(
−
√
n− l − j

σ
‖κ‖

)

·
l∑

m=l/2

m−d/2
m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θj+k+l−m

≤K
n−1∑
l=n/2

(n− l)2−d/2
l∑

m=l/2

m−d/2
m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)

·
(n−l)/2∑
j=1

exp

(
−
√
n− l − j

σ
‖κ‖

)
θj+k+l−m

≤Kn−d/2
n−1∑
l=n/2

(n− l)2−d/2

·
l/2∑
m=0

(l−m)/2∑
k=1

(n−l)/2∑
j=1

exp

(
−
√
l −m− k

σ
‖κ‖ −

√
n− l − j

σ
‖κ‖

)
︸ ︷︷ ︸

≤exp
(
−
√

n−m−k−j
σ ‖κ‖

)
θj+k+m
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≤Kn1−d/2
n−1∑
l=n/2

(n− l)2−d/2
l/2∑
m=0

(n+m)/2∑
j=1+m

exp

(
−
√
n− j
σ
‖κ‖

)
θj

≤Kn1−d/2
n−1∑
l=n/2

(n− l)2−d/2
(2n+l)/4∑
j=1

exp

(
−
√
n− j
σ
‖κ‖

)
θj

j−1∑
m=0

1

≤Kn−d/2
3n/4∑
j=1

j2 exp

(
−
√
n− j
σ
‖κ‖

)
θj

≤Kχn,

where in the ninth line we use d ≥ 9. Thus we get

second summand of (8.3.17) ≤ Kλ‖ξ‖1/2χn,

and it su�ces to choose λ small enough.

It remains to check the �rst summand of (8.3.17). For this summand we have that it is equal to

(n−1)∧N∑
l=1

|ξn−l| ∗
∣∣∣∣(1− λρ)(1− l − 1

N
)Sl + (1− λρ)

l − 1

N
Spl−1 − (1− l

N
)Sl − l

N
pl . . .

. . .+ λ

l/2∑
m=1

amBm(1− l −m
N

)Sl−m + λ

l/2∑
m=1

amBm
l −m
N

pl−m

∣∣∣∣∣∣ (8.3.18)

+

n−1∑
l=N+1

|ξn−l| ∗

∣∣∣∣∣∣(1− λρ)Spl−1 − pl + λ

(l/2)∧(l−N)∑
m=1

amBmpl−m . . .

. . .+ λ

l/2∑
m=l−N+1

amBm

(
(1− l −m

N
)Sl−m +

l −m
N

pl−m

)∣∣∣∣∣∣ . (8.3.19)

For the moment, we are interested in the second sum which is present only if n > N + 1. We

have:

(8.3.19) ≤
n−1∑

l=N+1

‖ξ‖1/2χn−l ∗

∣∣∣∣∣∣(1− λρ)Spl−1 − pl + λ

l/2∑
m=1

amBmpl−m

∣∣∣∣∣∣
+

∣∣∣∣∣∣λ
l/2∑

m=l−N+1

amBm

(
(1− l −m

N
)(Sl−m − pl−m)

)∣∣∣∣∣∣
 . (8.3.20)

Now we use the calculations from (8.3.3) to (8.3.16) and collect terms coming with the same
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discrete derivatives to write:

(1− λρ)Spl−1 − pl + λ

l/2∑
m=1

amBmpl−m

=

(1− λρ)− 1 + λ

l/2∑
m=1

ambm

 pl−1 (8.3.21)

+

d∑
i=1

ηdi(2πi − 1)− (1− λρ)s(i) − λ
l/2∑
m=1

amb
(i)
m + ληdi(2πi − 1)

l/2∑
m=1

ambm(m− 1)

4ipl−1

(8.3.22)

+

d∑
i=1

 (1− λρ)

2
s(ii) − η2d2

i (2πi − 1)2

2
+
λ

2

l/2∑
m=1

amb
(ii)
m − ληdi(2πi − 1)

l/2∑
m=1

amb
(i)
m (m− 1)

+
λ

2
η2d2

i (2πi − 1)2

l/2∑
m=1

ambm(m− 1)2 − η

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2


−λη

diπi +
∑
j:j<i

dji
2

+
∑
j:j>i

dij
2

 l/2∑
m=1

ambm(m− 1) +
s(i)

2
(1− λρ) +

λ

2

l/2∑
m=1

amb
(i)
m

4iipl−1

(8.3.23)

+
∑

1≤i<j≤d

(1− λρ)s(ij) − η2didj(2πi − 1)(2πj − 1)− ηdij(2πij − 1) + λ

l/2∑
m=1

amb
(ij)
m

− ληdj(2πj − 1)

l/2∑
m=1

amb
(i)
m (m− 1)− ληdi(2πi − 1)

l/2∑
m=1

amb
(j)
m (m− 1)

+λη2didj(2πi − 1)(2πj − 1)

l/2∑
m=1

ambm(m− 1)2 − ληdij(2πij − 1)

l/2∑
m=1

ambm(m− 1)

4ijpl−1

(8.3.24)

+ E(l)(.),

where |E(l)(.)| ≤ K
l3/2 θlκ,lσ(.) due to (8.3.16) and the bounds on all other errors at the beginning

of the proof. We analyze the terms above separately: For the term in front of pl−1 in (8.3.21),

we have:

∣∣∣∣∣∣(1− λρ)− 1 + λ

l/2∑
m=1

ambm

∣∣∣∣∣∣ ≤ K
∞∑

m=l/2

|bm| = O(l−3/2),

using the de�nition of ρ in (8.1.1) and the decay rate of the bm's. For the remaining terms, we

ask η ∈ [a, 2R], πi ∈ [0, 1], i = 1, . . . , d, πij ∈ [0, 1], 1 ≤ i < j ≤ d, di ∈ [0, 1], i = 1, . . . , d,

and dij ∈ [0, 1], 1 ≤ i < j ≤ d, to satisfy the following system of equations (recall that
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dii = di +
∑
j:j<i dji +

∑
j:j>i dij):

d∑
i=1

di +
∑

1≤i<j≤d

dij = 1,

κ(i) :=ηdi(2πi − 1) =
uµ−1s(i) + λ

∑
m≥1 amb

(i)
m

1 + λ
∑
m≥1 ambm(m− 1)

, (8.3.25)

δii :=ηdii =
1

1 + λ
∑
m≥1 ambm(m− 1)

uµ−1s(ii) + λ
∑
m≥1

amb
(ii)
m − κ(i) 2

+λκ(i) 2
∑
m≥1

(m− 1)2ambm − 2λκ(i)
∑
m≥1

am(m− 1)b(i)m

 , (8.3.26)

δij :=ηdij(2πij − 1) =
1

1 + λ
∑
m≥1 ambm(m− 1)

uµ−1s(ij) + λ
∑
m≥1

amb
(ij)
m − κ(i)κ(j)

+λκ(i)κ(j)
∑
m≥1

(m− 1)2ambm − λκ(i)
∑
m≥1

amb
(j)
m (m− 1)− λκ(j)

∑
m≥1

amb
(i)
m (m− 1)

 .

(8.3.27)

Thus as already mentioned, the mean and the covariance of pt should be exactly the (scaled)

asymptotic mean and covariance of An/an. We now need λ � 1 in order that these equations

can be satis�ed. In fact, the above system of equations should be viewed as a perturbation of the

same system with λ = 0. One has to �rst make sure that the system with λ = 0 has a solution.

This will work only, if S is in AN,ε. Then, after �xing such an S, one may increase λ slightly in

order to perturb that initial system of equations. In order that this is always possible, we took

away an ε boundary from the set C (see Section 6.2).

Plugging the κ(i)'s into (8.3.22), we get that the terms in front of the 4ipl−1's are of order l
−3/2.

Plugging the δi's and κ
(i)'s into the terms in front of (8.3.23), and using that for i = 1, . . . , d,

the last four terms in that summand converge to −ηdii/2 at rate l−3/2, we have that for each

summand, the term inside the bracket converges to 0 at rate l−1/2. The same is true for (8.3.24).

Thus, collecting the above and combining with the bounds on pl−1 and its discrete derivatives

from Lemma 8.4, we have:

∣∣∣∣∣∣(1− λρ)Spl−1(x)− pl(x) + λ

l/2∑
m=1

amBmpl−m(x)

∣∣∣∣∣∣ ≤ K

l3/2
θlκ,lσ(x),
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and hence the �rst summand in (8.3.20) can be bounded by

K‖ξ‖1/2
n−1∑

l=N+1

1

l3/2
χn−l ∗ θlκ,lσ

≤K‖ξ‖1/2
n−1∑

l=N+1

l−3/2

·

(n− l)−1/2θnκ,nσ + (n− l)−d/2
(n−l)/2∑
j=1

exp

(
−
√
n− l − j

σ
‖κ‖

)
j2θ(l+j)κ,(l+j)σ


≤‖ξ‖1/2

·

N−1/2Kn−1/2θnκ,nσ +Kn−d/2
n/2∑

l=N+1

l−3/2

(n−l)/2∑
j=1

exp

(
−
√
n− l − j

σ
‖κ‖

)
j2θ(l+j)κ,(l+j)σ

+ N−1/2Kn−1
n−1∑

l=(n/2)∨(N+1)

(n− l)−d/2
(n−l)/2∑
j=1

exp

(
−
√
n− l − j

σ
‖κ‖

)
j2θ(l+j)κ,(l+j)σ


≤C(N)K‖ξ‖1/2χn,

where C(N) goes to zero when N →∞, and hence C(N)K ≤ ε, if N is large enough.

For the second summand in (8.3.20) we have:

n−1∑
l=N+1

‖ξ‖1/2χn−l ∗

∣∣∣∣∣∣λ
l/2∑

m=l−N+1

amBm

(
(1− l −m

N
)(Sl−m − pl−m)

)∣∣∣∣∣∣
≤λK‖ξ‖1/2

n−1∑
l=N+1

(n− l)−1/2

l/2∑
m=l−N+1

m−d/2
m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θk+n−m

+ λK‖ξ‖1/2
n−1∑

l=N+1

(n− l)−d/2
(n−l)/2∑
j=1

j2

l/2∑
m=l−N+1

m−d/2

·
m/2∑
k=1

exp

(
−
√
n− l +m− j − k

σ
‖κ‖

)
θk+j+l−m.

We need to make a distinction again. Suppose at �rst that n ≥ 2N and note that the sum over

m is empty as soon as l > 2(N −1). Then, it follows that (n− l)−α ≈ n−α. Therefore, it is clear

that the above can be bounded by ε‖ξ‖1/2χn if λ is chosen small enough (reasoning similarly

as for the second part of (8.3.17)). On the other hand, if n ∈ [N + 2, 3N ], it su�ces to choose

λ = N−ke−sN for some k and s large enough to get the desired bound. Thus, we end up with

(8.3.19) ≤ ε‖ξ‖1/2χn.
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We turn to the term (8.3.18). It can be rewritten in three sums as follows:

(8.3.18) ≤ 1

N
‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗

∣∣∣∣∣∣(1− λρ)Sl − (1− λρ)Spl−1 + λ

l/2∑
m=1

amBmmS
l−m

−λ
l/2∑
m=1

amBmmpl−m

∣∣∣∣∣∣ (8.3.28)

+ ‖ξ‖1/2
(n−1)∧N∑

l=1

χn−l ∗

∣∣∣∣∣∣−λρSl + λ

l/2∑
m=1

amBmS
l−m

∣∣∣∣∣∣ (8.3.29)

+ ‖ξ‖1/2
(n−1)∧N∑

l=1

χn−l ∗
l

N

∣∣∣∣∣∣λρSl + (1− λρ)Spl−1 − pl − λ
l/2∑
m=1

amBmS
l−m

+λ

l/2∑
m=1

amBmpl−m

∣∣∣∣∣∣ . (8.3.30)

The three sums have to be treated separately. Let us �rst consider the last one (8.3.30). We

have:

(8.3.30) ≤‖ξ‖1/2
(n−1)∧N∑

l=1

χn−l ∗
l

N
λ

∣∣∣∣∣∣ρSl −
l/2∑
m=1

amBmS
l−m

∣∣∣∣∣∣
+ ‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗
l

N

∣∣∣∣∣∣(1− λρ)Spl−1 − pl + λ

l/2∑
m=1

amBmpl−m

∣∣∣∣∣∣ .

Using again the calculations from (8.3.3) to (8.3.16) we can regroup the terms on the second line

as in (8.3.21)�(8.3.24) to get

(8.3.30) ≤‖ξ‖1/2
(n−1)∧N∑

l=1

χn−l ∗
l

N

λ
∣∣∣∣∣∣ρSl −

l/2∑
m=1

amBmS
l−m

∣∣∣∣∣∣+Kl−3/2θlκ,lσ

 (8.3.31)

≤K
N
‖ξ‖1/2

(n−1)∧N∑
l=1

l−1/2χn−l ∗ θl +
λ

N
‖ξ‖1/2

(n−1)∧N∑
l=1

lχn−l ∗

∣∣∣∣∣∣ρSl −
l/2∑
m=1

amBmS
l−m

∣∣∣∣∣∣ .

The �rst term above is easily bounded by ε‖ξ‖1/2χn by considering the two cases n ≤ N + 1 and

n > N + 1 separately and by noting that in the �rst case,
∑n−1
l=1 l

−1/2(n− l)−1/2 is of order one,

whereas in the latter case the same sum is of order n−1/2
√
N when folding with the �rst part of

χn−l (ie. with (n−l)−1/2θn−l), and by splitting the sum in two cases with n ≥ 2N and n < 2N for

the folding with the second part of χn−l (ie. with (n− l)−d/2
∑(n−l)/2
j=1 j2 exp(−

√
n−l−j√
σ
‖κ‖)θj).
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For the second term, we get

λ

N
‖ξ‖1/2

(n−1)∧N∑
l=1

lχn−l ∗

∣∣∣∣∣∣ρSl −
l/2∑
m=1

amBmS
l−m

∣∣∣∣∣∣ (8.3.32)

≤K λ

N
‖ξ‖1/2

(n−1)∧N∑
l=1

lχn−l ∗ θl (8.3.33)

+K
λ

N
‖ξ‖1/2

(n−1)∧N∑
l=1

l

l/2∑
m=1

χn−l ∗ |Bm| ∗ θl−m (8.3.34)

≤ε‖ξ‖1/2χn,

where (8.3.33) is bounded using Lemma 8.7 and choosing λ small enough for the folding with

the �rst part of χn−l and again by splitting into the cases n ≥ 2N and n < 2N for the folding

with the second part of χn−l. (8.3.34) is similar to the second term in (8.3.17). Thus, we get

that (8.3.30) ≤ ε‖ξ‖1/2n−1/2.

Let us look at the second term (8.3.29). This one is essentially equivalent to (8.3.32) and using

again Lemma 8.7, we obtain (8.3.29) ≤ ε‖ξ‖1/2χn.
Finally, for the �rst term (8.3.28), we have

(8.3.28) ≤K
N
‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗ |Sl−1 − pl−1|

+ 2‖ξ‖1/2
λ

N

(n−1)∧N∑
l=1

χn−l ∗
l/2∑
m=1

amm|Bm| ∗ θl−m

≤K 1

N
‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗ |Sl−1 − pl−1|+ ε‖ξ‖1/2χn, (8.3.35)

where we have to choose N large enough and λ small enough and the second term is dealt

with similarly as the term (8.3.34). For the �rst summand in (8.3.35), we are using the fact

that |Sl − pl| ≤ |Sl − φ̃l| + |φl − pl| + |φl − φ̃l|, where φ̃l is a normal density with mean vector

l(s(1), . . . , s(d)) and covariance matrix lCov(S), and φl is a normal density with mean lκ and

covariance matrix l∆ = l(δij)
d
i,j=1. Using Lemma 8.2 and an argument similar to the one in

the proof of that Lemma for the di�erence |Sl − φ̃l|, we get that |Sl − φ̃l|+ |φl − pl| ≤ K
l−1/2 θl.

Moreover, since (κ,∆) → ((s(1), . . . , s(d)),Cov(S)) as λ → 0, it follows that |φl − φ̃l| ≤ C(λ)θl,

where C(λ) is a quantity tending to zero as λ→ 0. Thus,

K
1

N
‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗ |Sl−1 − pl−1|

≤K
N
‖ξ‖1/2

(n−1)∧N∑
l=1

l−1/2χn−l ∗ θl +
C(λ)

N
‖ξ‖1/2

(n−1)∧N∑
l=1

χn−l ∗ θl ≤ ε‖ξ‖1/2χn,

where we argue for the two terms separately as for the second term in (8.3.31) and for the term

in (8.3.33) (without l here!) respectively. This implies (8.3.28) ≤ ε‖ξ‖1/2χn, and the proof of

Lemma 8.6 is �nished.

Lemma 8.7. If N is large enough, then

1

N

(n−1)∧N∑
l=1

(n− l)−1/2 ≤ 4n−1/2.
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Proof. If n ≥ N + 1, then

1

N

N∑
l=1

(n− l)−1/2 ≤ 1

N

∫ n

n−N−1

x−1/2dx =
2

N
[n1/2 − (n−N − 1)1/2]

= 2
N + 1

N
n−1/2

[
n

N + 1
−
(

n

N + 1

)1/2(
n

N + 1
− 1

)1/2
]
.

If N is large enough, we have 2N+1
N ≤ 4, and since for t ≥ 1,

t

(
1−

(
1− 1

t

)1/2
)
≤ 1,

we get the desired bound in this case.

If n ≤ N , we simply get

1

N

n−1∑
l=1

(n− l)−1/2 ≤ 2

N
n1/2 ≤ 2n−1/2.

We also need the following Lemma to prove Theorem 8.1:

Lemma 8.8. Let ξn = anFn. Then,

‖ψ(ξ)− ξ‖1/2 ≤ K,

where K is a positive constant depending on R and on the constant N .

Proof. First of all, we note that we can re-write ψ(ξ)n given in (8.3.2) in the following way:

ψ(ξ)n = ξn −
n∑
l=1

Fn−l

[
ξl − (1− λρ)Sξl−1 − λ

l∑
m=1

amBmξl−m

]
. (8.3.36)

Thus, it su�ces to show that

n∑
l=1

∣∣∣∣∣Fn−l
[
alFl − (1− λρ)Sal−1Fl−1 − λ

l∑
m=1

amal−mBmFl−m

]∣∣∣∣∣ ≤ Kχn. (8.3.37)

Now it is obvious that it su�ces to consider the case Fn−l = pn−l and Fl = pl since for the �nite

number of remaining cases it follows immediately that if l ≤ N , |Fn−lFl| ≤ Kpn, using the fact

that Sl has compact support for l ≤ N and vice versa if n− l ≤ N . Then the left hand side in

(8.3.37) is bounded by

n∑
l=1

∣∣∣∣∣∣alFn − (1− λρ)Sal−1Fn−1 − λ
l∧(n/2)∑
m=1

amal−mBmFn−m

∣∣∣∣∣∣
+ λ

n∑
l=n/2

l∑
m=n/2

|amal−mBmFn−m| . (8.3.38)
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For the second term in (8.3.38) we get:

λ

n∑
l=n/2

l∑
m=n/2

|amal−mBmFn−m|

≤λK
n∑

l=n/2

l∑
m=n/2

m−d/2
m/2∑
k=1

exp

(
−
√
m− k
σ
‖κ‖

)
θk+n−m

≤λKn−d/2
n∑

m=n/2

(n−m)

n−m/2∑
k=1+n−m

exp

(
−
√
n− k
σ
‖κ‖

)
θk

≤λKn−d/2
3n/4∑
k=1

θk exp

(
−
√
n− k
σ
‖κ‖

)
n∑

m=(n/2)∨(n−k+1)

k

︸ ︷︷ ︸
≤k2

≤λKχn.

It remains to check the �rst term in (8.3.38). Writing d̃i = πidi +
∑
j:j<i

dji
2 +

∑
j:j>i

dij
2 , that

term is given by

n∑
l=1

∣∣∣∣∣∣alpn − (1− λρ)al−1Spn−1 − λ
l∧(n/2)∑
m=1

amal−mBmpn−m

∣∣∣∣∣∣ (8.3.39)

≤
n∑
l=1

∣∣∣∣∣∣al − (1− λρ)al−1 − λ
l∧(n/2)∑
m=1

al−mambm

∣∣∣∣∣∣ |pn−1|

+

n∑
l=1

d∑
i=1

∣∣∣∣∣∣(1− λρ)s(i)al−1 + λ

l∧(n/2)∑
m=1

al−mamb
(i)
m − ηdi(2πi − 1)al

−ληdi(2πi − 1)

l∧(n/2)∑
m=1

(m− 1)al−mambm

∣∣∣∣∣∣ |4ipn−1|

+

n∑
l=1

d∑
i=1

∣∣∣∣∣∣η
2d2
i (2πi − 1)2

2
al −

1− λρ
2

s(ii)al−1 −
λ

2
η2d2

i (2πi − 1)2

l∧(n/2)∑
m=1

(m− 1)2amal−mbm

+ληdi(2πi − 1)

l∧(n/2)∑
m=1

amal−m(m− 1)b(i)m −
λ

2

l∧(n/2)∑
m=1

al−mamb
(ii)
m

+ηd̃ial + ληd̃i

l∧(n/2)∑
m=1

amal−mbm(m− 1)− s(i)

2
(1− λρ)al−1 −

λ

2

l∧(n/2)∑
m=1

amal−mb
(i)
m

∣∣∣∣∣∣ |4iipn−1|



8.3. Proof of the Main Theorem 8.1 87

+

n∑
l=1

∑
1≤i<j≤d

∣∣∣η2didj(2πi − 1)(2πj − 1)al − (1− λρ)s(ij)al−1 + ηdij(2πij − 1)al

− λ
l∧(n/2)∑
m=1

amal−mb
(ij)
m + ληdj(2πj − 1)

l∧(n/2)∑
m=1

amal−mb
(i)
m (m− 1)

+ ληdi(2πi − 1)

l∧(n/2)∑
m=1

amal−mb
(j)
m (m− 1)− λη2didj(2πi − 1)(2πj − 1)

l∧(n/2)∑
m=1

amal−mbm(m− 1)2

+ληdij(2πij − 1)

l∧(n/2)∑
m=1

amal−mbm(m− 1)

∣∣∣∣∣∣ |4ijpl−1|+ E(n)(.),

where we use the calculations from (8.3.3) to (8.3.16) in the proof of Lemma 8.6 and regroup

terms according to their discrete derivative in the place variable as in that Lemma. Similarly to

those calculations we have E(n)(.) ≤ K
n1/2 θn(.). We check the remaining terms above separately.

For the term in front of |pn−1|, we get∣∣∣∣∣∣al − (1− λρ)al−1 − λ
l∧(n/2)∑
m=1

al−mambm

∣∣∣∣∣∣ ≤ λ
l∑

m=n/2

amal−mbm ≤ Kn−3/2,

using the decay of the bm's, (6.3.2) and Proposition 7.1. Thus,
∑n
l=1 |.||pn−1(x)| ≤ Kn−1/2θn(x).

For the terms in front of the |4ipn−1|'s, i = 1, . . . , d, we use the fact that al → α when l →∞,

for some α > 0, and |al − α| ≤ Kl−3/2, which follows directly from Corollary 7.5 with d ≥ 9, to

get∣∣∣∣∣∣(1− λρ)s(i)al−1 + λ

l∧(n/2)∑
m=1

al−mamb
(i)
m − ηdi(2πi − 1)al − ληdi(2πi − 1)

l∧(n/2)∑
m=1

(m− 1)al−mambm

∣∣∣∣∣∣
≤ α

∣∣∣∣∣∣(1− λρ)s(i) + λ

l∧(n/2)∑
m=1

amb
(i)
m − ηdi(2πi − 1)− ληdi(2πi − 1)

l∧(n/2)∑
m=1

(m− 1)ambm

∣∣∣∣∣∣+Kl−3/2

≤ Kl−3/2,

where the last line follows from the de�nition of η, di and πi in (8.3.25), and the decay rates for

the moments of the Bm's. Thus,
∑n
l=1

∑d
i=1 |.||4ipn−1(x)| ≤ Kn−1/2θn, because |4ipn−1(x)| ≤

K√
n
θn(x), for i = 1, . . . , d (see Lemma 8.4). By the same Lemma, |4ijpn−1(x)| ≤ K

n θn(x) for

i, j = 1, . . . , d, and using the same considerations for the terms in front of the |4iipn−1(x)|'s as
for the terms in front of the |4ipn−1(x)|'s we obtain for any i = 1, . . . , d:∣∣∣∣∣∣η

2d2
i (2πi − 1)2

2
al −

1− λρ
2

s(ii)al−1 −
λ

2
η2d2

i (2πi − 1)2

l∧(n/2)∑
m=1

(m− 1)2amal−mbm

+ληdi(2πi − 1)

l∧(n/2)∑
m=1

amal−m(m− 1)b(i)m −
λ

2

l∧(n/2)∑
m=1

al−mamb
(ii)
m

+ηd̃ial + ληd̃i

l∧(n/2)∑
m=1

amal−mbm(m− 1)− s(i)

2
(1− λρ)al−1 −

λ

2

l∧(n/2)∑
m=1

amal−mb
(i)
m

∣∣∣∣∣∣ |4iipn−1(x)|

≤ Kl−1/2n−1θn(x).
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Thus
∑n
l=1

∑d
i=1 |.||4iipn−1(x)| ≤ Kn−1θn(x)

∑n
l=1 l

−1/2 ≤ Kn−1/2θn(x). With the same argu-

ments, the terms in front of the |4ijpn−1(x)|'s (i < j) are also of order l−1/2, implying that also∑n
l=1

∑
1≤i<j≤d |.||4ijpn−1(x)| ≤ Kn−1/2θn(x), and hence (8.3.39) is bounded by Kn−1/2θn(x)

and �nally by Kχn as desired. This �nishes the proof of Lemma 8.8.

Using Lemmas 8.6 and 8.8, we are now able to prove Theorem 8.1:

Proof. (Proof of Theorem 8.1).

Let λ0 > 0 be such that for λ ∈ [0, λ0], Lemma 8.6 and Proposition 7.1 hold. Now, taking (an)n≥0

from that Proposition and (Fn)n≥0 from below (8.3.2) with κ and ∆ from (8.1.2) and (8.1.5),

we set F := (anFn)n≥0. Then, by Lemma 8.8, ψ(F ) − F ∈ W0. Hence we may apply Banach

�xed point Theorem to the sequence (ψ(k)(ψ(F ) − F ))k≥0 in the Banach space (W0, ‖.‖1/2) to

�nd that it converges to the unique �xed point (Gn)n≥0 ∈ W0. But that �xed point is G with

Gn ≡ 0, for all n ≥ 0. Since ψ is linear this implies that the sequence (ψ(k)(F ))k≥0 converges to

a (unique) limit, say (An)n≥0, satisfying

1. A0 = δ0,

2. ψ(A)n(x) = An(x), for all n ≥ 0 and x ∈ Zd, and

3. ‖F −A‖1/2 ≤ K.

The last point follows because

‖F −A‖1/2 = ‖
∑
l≥1

(ψ(l)(F )− ψ(l−1)(F ))‖1/2 ≤ ‖ψ(F )− F‖1/2
∑
l≥1

εl ≤ K,

using Lemma 8.6 in the �rst inequality and Lemma 8.8 in the last inequality. But clearly,

(An)n≥0 is the sequence de�ned in (8.1.4). Thus, |An(x) − anFn(x)| ≤ Kχn(x), for all n ≥ 1,

and using Lemma 8.2 we get |anFn(x) − anφn(x)| ≤ Kn−1/2θn(x), for all n ≥ 1. This implies

Theorem 8.1 with the parameters λ, κ and ∆ given above.

8.4 The Two-Periodic Case

In case we start with an initial distribution S ∈ PN,ε which is two-periodic, and also with a

two-periodic sequence (Bm)m≥1, we obtain the following variant of our main Theorem 8.1:

Theorem 8.9. In the above setting, there exists λ0 > 0, such that for any λ ∈ [0, λ0], we have

that if n and ‖x‖1 have same parity:

∣∣∣∣An(x)

an
− 2φnκ,n∆(x)

∣∣∣∣ ≤ K
n−1/2θnκ,nσ(x) + n−d/2

n/2∑
j=1

j2 exp

(
−
√
n− j√
σ
‖κ‖
)
θjκ,jσ(x)

 ,
where the parameters are as in Theorem 8.1.

The only change is that we have a factor 2 in front of the approximating normal density due

to the parity issue. The proof is exactly the same as for the Theorem in the non-periodic case,

except that we plug in 2pt instead of pt. This is in particular necessary at the end of the proof

of Lemma 8.6 where instead of |Sl − φ̃l|, one plugs in |Sl − 2φ̃l| in order to make the argument

in Lemma 8.2 work. The reason for this is that the minimal lattice changes if one starts with a

two-periodic distribution S (see Bhattacharya and Rao [2] for details).



Chapter 9

Application to Perturbed Weakly

Self-Avoiding Walks

We come back to the speci�c context of the perturbed weakly self-avoiding random walks, where

the main objects of study are the two-point functions Cn with total mass cn. Recall that they

satisfy the lace expansion formula (6.2.3). That is,

Cn = uSCn−1 +

n∑
m=2

ΠmCn−m.

In order to prove Theorem 6.1, we have to show that Bm := Πm/(λcm) actually has the decay

behavior assumed in (8.1.3) for any S ∈ AN,ε, respectively S ∈ PN,ε and λ small enough.

Lemma 9.1. There are positive constants λ0, σ and L, such that for all λ ∈ [0, λ0] and for all

m ≥ 2 we have, setting Bm(x) := Πm(x)
λcm

,

|Bm(x)| ≤ Lm−d/2
m/2∑
k=1

exp

(
−
√
m− k√
σ
‖κ‖
)
θkκ,kσ(x),

with κ = (κ(1), . . . , κ(d)) and where

κ(i) =
uµ−1s(i) + λ

∑
m≥1 amb

(i)
m

1 + λ
∑
m≥1 ambm(m− 1)

for i = 1, . . . , d. (9.0.1)

Proof. We construct a sequence κi ∈ Rd converging to κ as i → ∞ and show that the Bm's

have the right decay both at the same time via a double iteration technique. For notational

convenience, we set

ψ(i)
m (x) := m−d/2

m/2∑
k=1

exp

(
−
√
m− k√
σ
‖κi‖

)
θkκi,kσ(x).

Note �rst that to be consistent with the de�nition of the sequence (Bm)m≥1 in the last Chapter

8, we may set B1(x) ≡ 0. Now consider κ1 := s(1), s(1) being the expectation of S. We easily

have

|B2(x)| ≤ L(1)ψ
(1)
2 (x),

for L(1) = L(1)(S, d, σ) large enough, since ψ
(1)
2 (0) ≤ 2−d/2K(d)√

σd
e−2‖κ1‖/

√
σ, and B2(x) = 0 if x 6=

0. Now, choose B
(1)
3 (x) in such a way that κ1 can be de�ned via the sequence (B2, B

(1)
3 , 0, 0, . . .).

Ie., for i = 1, . . . , d,

κ
(i)
1 =

uµ−1s(i) + λ
∑
m≥2 amb

(i) (1)
m

1 + λ
∑
m≥2 amb

(1)
m (m− 1)

,
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where the quantities with a bar (.) are the usual quantities de�ned via the auxiliary sequence

(B
(1)
2 , B

(1)
3 , 0, , 0 . . .), with B

(1)
2 = B2 and B

(1)
k ≡ 0 for k > 3. Note that B

(1)
3 can be chosen with

support in the whole of Zd and such that |B(1)
3 (x)| ≤ 2L(1)ψ

(1)
3 (x), if λ is small enough. An

application of the main Theorem 8.1 and then of Lemma A.2 yields

|B3(x)| ≤ KL1
µ3

c3
3−d/2

3/2∑
k=1

e
−
√

3−k√
σ
‖κ1‖θkκ1,kσ(x) ≤ Lµ

3

c3
ψ

(1)
3 (x), (9.0.2)

where K does not depend on L(1), if λ is chosen small enough (see Lemma 10.5 for some more

details on this step). The second inequality follows by choosing L large enough. We �x this L

for the rest of the proof.

The next step is to de�ne κ2 in the same way as κ in (8.1.2), but using the sequence

(B2, B3, 0, 0, . . .) and to set L(2) = L(2)(S, d, σ) such that |B2(x)| ≤ L(2)ψ
(2)
2 (x). We now choose

B
(2)
3 (x) with support in Zd such that κ2 is de�ned via the sequence (B2, B

(2)
3 , 0, . . .), where

for λ small enough, we may assume that |B(2)
3 (x)| ≤ 2L(2)ψ

(2)
3 (x). Applying again Theorem

8.1 and Lemma A.2, we obtain |B3(x)| ≤ Lµ
3

c3
ψ

(2)
3 (x) for λ small enough. We thus have that

|Bk(x)| ≤ Lµ
k

ck
ψ

(2)
k (x), k = 2, 3 and one more application of Theorem 8.1 and Lemma A.2 yields

|B4(x)| ≤ Lµ
4

c4
ψ

(2)
4 (x). We now de�ne κ3 via the sequence (B2, B3, B4, 0, 0, . . .).

Continuing this scheme, we assume that for some general k ≥ 3, we are given κk via the

sequence (B2, . . . , Bk+1, 0, 0, . . .), and we have L(k) = L(k)(S, d, σ) such that |B2(x)| ≤ L(k)ψ
(k)
2 .

Now suppose that for some m ≤ k + 2, |Bl(x)| ≤ Lψ
(k)
l (x), for 2 ≤ l ≤ m − 1 and choose B

(k)
m

with support in Zd in such a way that κk is de�ned via the sequence (B2, . . . , Bm−1, B
(k)
m , 0, . . .)

where we assume λ small enough such that |B(k)
m (x)| ≤ 2L(k)ψ

(k)
m (x). Use once more Theorem

8.1 and Lemma A.2 to obtain |Bm(x)| ≤ Lψ(k)
m (x) for λ small enough. The procedure is repeated

up to m = k+ 2. Then, we de�ne κk+1 via the sequence (B2, . . . , Bk+2, 0, 0, . . .) and restart the

procedure.

By repeatedly applying Theorem 8.1 and Lemma A.2, we thus obtain

|Bm(x)| ≤ Lµ
m

cm
m−d/2

m/2∑
i=1

e−
√

m−i
σ ‖κ

(k)‖θiκ(k),iσ(x),

where we still have to show that µm

cm
remains bounded in order to prove the Lemma. However,

de�ning Cn via the sequence (B2, . . . , Bm−1, B
(k)
m , 0, 0, . . .) in the m-th step of the k-th iteration

by setting Cn = µnAn, we have Cn = Cn for n < m, by an application of the lace expansion

formula (6.2.3). Now apply the lace expansion formula to the total weight sequence to obtain:

cm =ucm−1 +

m∑
k=2

πkcm−k

=uµm−1am−1 +

m∑
k=2

πkµ
m−kam−k, (9.0.3)

where πk denotes the total mass of Πk. An application of Lemma A.2 to πk yields |πk| ≤
λKL1µ

kk1−d/2. Inserting this into equation (9.0.3) leads to

cm
µm
≥ 1

2
uµ−1 − λKL1 ≥ K,

if λ = λ(d, S, L1) is small enough. Hence, µ
m

cm
does remain bounded.
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With the above procedure we obtain κ(k) → κ and the bound in the Lemma for L large enough

and λ ∈ [0, λ0], for some λ0 > 0, if the sequence (L(k))k remains bounded. However, this

sequence does remain bounded because of the decay of the moments of the Bm's. This proves

the Lemma.

Proof. (Proof of Theorem 6.1). Using Lemma 9.1, the second part of the Theorem follows

directly from either Theorem 8.1 (non-periodic case) or from Theorem 8.9 (two-periodic case).

Using Corollary A.3, the �rst part follows from Corollary 7.5.





Chapter 10

Restriction to the Symmetric Case

As already mentioned, we can extend both, the local CLT 6.1 for perturbed weakly self-avoiding

walks and the main Theorem 8.1 (8.9 respectively) to dimensions d ≥ 5 in case we start the walk

with an initial distribution S which is symmetric in each coordinate and rotationally invariant. In

case of the weakly self-avoiding walk, this implies that the Bm's are also rotationally invariant

and symmetric. Also, there is considerable simpli�cation of the main proof in this case. In

fact, this extension is true not only in the above case, but whenever we know a priori that the

asymptotic drift is equal to zero (ie. κ = 0). However, this is essentially impossible to know

from the initial setting unless we are in the symmetric and rotationally invariant case.

The main reason why the results can be extended to dimensions d = 5, 6, 7 and 8 is because we

can apply Lemma A.4 instead of Lemma A.2 where we gain an extra k1−d/2 in the bound for

the Πm's. Moreover, we never have to account for corrections in the mean and in Lemma 8.8,

it su�ces that |α − an| ≤ K
n−1/2 and it need not to be summable since in (8.3.39), the term in

front of 4ipn−1 vanishes for all i = 1, . . . , d, and n ≥ 1. We give the proof of the local CLT in

this special case in the following.

10.1 The Main Theorem in the Symmetric Case

For the entire Chapter, d ≥ 5. Consider a positive number R ∈ N. Then choose an aperiodic sym-

metric and rotationally invariant probability measure S with bounded support Ω ⊂ B(0, R)\{0}
(in the following, we abbreviate rotationally invariant and symmetric by simply writing sym-

metric). As in the non-symmetric case we only treat aperiodic measures, but the extension to

the two-periodic case is again a triviality. Now let (Bm)m≥1 be a sequence of symmetric and

rotationally invariant measures with

|Bm(x)| ≤ Km−d/2
m/2∑
k=1

k1−d/2θkσ(x), (10.1.1)

where we write θkσ := θ0,kσ and K is a positive constant whose value may change from line to

line. Again, σ > 0 will be determined later. This de�nition of the Bm's immediately implies

that |bm| ≤ Km−d/2 and b
(ii)
m ≤ Km−(d−1)/2, for all i = 1 . . . , d, and of course the �rst moments

vanish. Thus, Proposition 7.1 and Corollary 7.5 are satis�ed and we may de�ne the mass

sequence (an)n≥0 with a0 := 1 and for n ≥ 1:

an := uµ−1an−1 + λ

n∑
m=1

ambman−m, (10.1.2)

where uµ−1 = 1 − λρ and an ∈ [1/2, 3/2]. Using this mass sequence, we de�ne the sequence of

measures (An)n≥0 by A0 := δ0 and for n ≥ 1:

An := uµ−1SAn−1 + λ

n∑
m=1

amBmAn−m. (10.1.3)
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In this case, the right covariance matrix to approximate the asymptotic behavior of the sequence

(An/an)n is given by ∆ = δIdd, where

δ :=
uµ−1s(11) + λ

∑
m≥1 amb

(11)
m

1 + λ
∑
m≥1(m− 1)ambm

. (10.1.4)

Of course we have s(11) = s(ii) for any i = 2, . . . , d, and s(ij) = 0 if i 6= j. The same applies to

all Bm's. We assume from now on that λ is small enough such that s(11)/2 ≤ dδ ≤ 2s(11).

The main Theorem then states as:

Theorem 10.1. In the above setting there exists λ0 > 0, such that for any λ ∈ [0, λ0], we have

that ∣∣∣∣An(x)

an
− φnδ(x)

∣∣∣∣ ≤ K
n−1/2θnσ(x) + n−d/2

n/2∑
j=1

jθjσ(x)

 ,
where the parameter δ depends on λ, S and the sequence (Bm)m≥1 and is de�ned above in

(10.1.4). K = K(R, d) and σ = σ(d, S) are positive constants independent of the sequence

(Bm)m and will be determined in the proof of the Theorem.

10.2 The Symmetric Distribution pt(x)

We again need the distribution pt(x) of Chapter 8. However, we may �x d1 = . . . = dd = 1/d

and π1 = . . . = πd = 1/2. Also, we set dij = 0, for all i, j = 1, . . . , d. Then, E[X
(i)
t ] = 0, for any

i = 1, . . . , d, and var(X
(1)
t ) = . . . = var(X

(1)
t ) = tη/d. Of course, all o�-diagonal entries in the

covariance matrix of pt now vanish. The relation between the time derivative and discrete space

derivatives of pt given in Lemma 8.5 changes to:

Lemma 10.2. We have

1

η

∂

∂t
pt(x) =

d∑
i=1

1

2d
4iipt(x) + E(p, t, x),

where |E(p, t, x)| ≤ K
t3/2 θtκ,tσ′(x), for K > 0 and σ′ > 0 large enough.

Note that in the case of symmetric and rotationally invariant initial distributions, we automati-

cally have that S ∈ AN,ε for any small ε > 0, and also, we may even choose ε = 0 (see equation

(10.3.19)).

10.3 Proof of Theorem 10.1

This time we set

W :=

{
G = (Gn)n≥0

∣∣∣∣∣ sup
n≥1,x∈Zd

|Gn(x)|
χn(x)

+ sup
x∈Zd

|G0(x)| <∞,

Gn a signed symmetric and rotationally invariant measure on Zd
}
,

with

χn(x) := n−1/2θnσ(x) + n−d/2
n/2∑
j=1

jθjσ(x).

σ is to be determined. The operator ψ from Chapter 8 remains unchanged.

The contraction Lemma still holds:
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Lemma 10.3. Let ξ ∈ W0. Then, for N big enough and λ small enough (depending on N),

there exists ε ∈ (0, 1) with

‖ψ(ξ)‖1/2 ≤ ε‖ξ‖1/2.
The proof of this Lemma is almost a copy of the proof of the corresponding Lemma 8.6:

Proof. Let us do the same preliminary calculations around pl as in the proof of Lemma 8.6:

Using (8.2.23) we have

Spl−1(x) =
∑
y∈Zd

S(y)pl−1(x− y) = pl−1(x)

+
1

2

d∑
i=1

s(11)4iipl−1(x) +
∑
y

S(y)Ep(x, y, l − 1), (10.3.1)

where again

Ep(x, y, l − 1) =

d∑
i=1

−yi(yi + 1)(yi + 2)

2
4iiv(i)

l−1(x,−y) +
∑
i<j

yiyj(−yj − 1)4jv(4ij)
l−1 (x,−y)

+
∑
i<j

yi(−yi − 1)

2
yjv

(4iij)
l−1 (x,−y) +

∑
i<j<k

(−yiyjyk)v
(4ijk)
l−1 (x,−y), (10.3.2)

and we get

|
∑
y

S(y)Ep(x, y, l − 1)| ≤ K

t3/2
θtσ′(x), (10.3.3)

using (8.2.27)�(8.2.30) and choosing K and σ′ large enough. From Lemma 10.2, we have:

ṗl−1(x) = η

d∑
i=1

1

2d
4iipl−1(x) + E(p, l − 1, x),

with |E(p, l − 1, x)| ≤ Kl−3/2θlσ′(x). Hence, we obtain, doing a Taylor expansion in time,

pl(x) =pl−1(x) + η

d∑
i=1

1

2d
4iipl−1(x)

+ Etime(p, l − 1, x), (10.3.4)

with |Etime(p, l− 1, x)| = |E(p, l− 1, x) + p̈l−ξ(x)| ≤ K
l3/2 θlκ,lσ′(x) since ξ is in [0, 1] and p̈l−ξ(x)

is bounded using Lemmas 10.2 and 8.4. Note here that we only have to expand pl to the �rst

time derivative instead of the second one as in Lemma 8.6. Similarly, for l/2 ≤ l −m < l − 1,

pl−m(x) =pl−1(x)− (m− 1)η

d∑
i=1

1

2d
4iipl−1(x)

− (m− 1)E(p, l − 1, x) + (m− 1)2p̈l−ξ(x), (10.3.5)

where l − ξ ∈ [l/2, l − 1].

Finally, we have for q, r = 1, . . . , d,

Bmpl−1(x) =bmpl−1(x) +
1

2

d∑
i=1

b(11)
m 4iipl−1(x)

+
∑
y

Bm(y)Ep(x, y, l − 1), (10.3.6)

Bm4qqpl−1(x) =bm4qqpl−1(x) +
∑
y

Bm(y)E4qqp(x, y, l − 1), (10.3.7)
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where Ep(x, y, l − 1) is given in (10.3.2), and

E4qqp(x, y, l − 1) = −
∑
i

yiv
(4qqi)
l−1 (x,−y).

Using these equations together with (10.3.5) we get

Bmpl−m(x) =bmpl−1(x) (10.3.8)

+

d∑
i=1

4iipl−1(x)

(
b
(11)
m

2
− (m− 1)bm

η

2d

)
+
∑
y

Bm(y)E(m, p, x, y, l − 1).

Here,

E(m, p, x, y, l − 1) = Ep(x, y, l − 1)−
d∑
i=1

(m− 1)η
1

2d
E4iip(x, y, l − 1)

− (m− 1)E(p, l − 1, x− y) + (m− 1)2p̈l−ξ(x− y), (10.3.9)

where l − ξ ∈ [l/2, l − 1], and the error terms are collected from the above calculations

(10.3.1)�(10.3.7). We again need to show that
∑
y |Bm(y)E(m, p, x, y, l− 1)| ≤ K

m3/2l3/2 θlσ(x) +
K

m1/2l2
θlσ(x) for some σ > 0 large enough. Thus we again check all terms in (10.3.9) separately.

The �rst one, Ep(x, y, l − 1), can be bounded by:

K

l3/2

∑
i≤j≤q

|yiyjyq|
∫ 1

0

dsθlσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd). (10.3.10)

This has to be folded with Bm. But recalling the bound on Bm from (10.1.1) and noting that

|yiyjyq|θkσ(y) ≤ Kk3/2θk
√

2σ(y) we get:

∑
y

|Bm(y)Ep(x, y, l − 1)|

≤ K

l3/2

∑
i≤j≤q

|yiyjyq|
∫ 1

0

ds
∑
y

Bm(y)θlσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd)|

≤ K

l3/2

∑
q

∫ 1

0

dsm−d/2
m/2∑
k=1

k3/2k1−d/2

·
∑
y

θ√2kσ(y)θlσ′(x1, . . . , xq−1, xq − syq, xq+1 − yq+1, . . . , xd − yd).

We want to fold each coordinate separately above (as in the corresponding Lemma 8.6). As in the

proof of that Lemma, this is done by multiplying the variances by 2 and bounding the above by a

multiplication of corresponding one-dimensional independent doubly-exponential distributions.

Again, special care has to be taken when folding the q-th coordinate with the integral over s.
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Here, we have (now assuming the θ's are one-dimensional):∫ 1

0

ds
∑
yq∈Z

θ2
√

2kσ(yq)θ2lσ′(xq − syq)

≤K
∫ 1

0

dss−1θ2
√

2kσ+2lσ′/s2(xq/s)

≤K
∫ 1

0

dsθ2
√

2s2kσ+2lσ′(xq)

≤K
∫ 1

0

dsθ2
√

2kσ+2lσ′(xq)

≤K
∫ 1

0

dsθlσ(xq)

≤Kθlσ(xq),

where we use that k ≤ m/2 ≤ l/4 and set σ ≥ σ′ 2
1−
√

2/2
. As in Lemma 8.6 we end up with:∑

y

|Bm(y)Ep(x, y, l − 1)|

≤ K

l3/2
m−d/2θlσ

m/2∑
k=1

k5/2−d/2

≤ K

m3/2l3/2
θlσ(x), (10.3.11)

since d ≥ 5. This �nishes the calculation for the �rst term in the error (10.3.9). For the second

error term, similar considerations as for the �rst term again lead to the desired bound (10.3.11).

We turn to the second line of (10.3.9). For the �rst error on that line, we have (m− 1)E(p, l −
1, x− y) ≤ m K

l3/2
θlσ′(x− y) by Lemma 10.2. Thus, folding with Bm, we have:∣∣∣∣∣∑

y

Bm(y)m
K

l3/2
θlσ′(x− y)

∣∣∣∣∣
≤ K

l3/2
m1−d/2

m/2∑
k=1

k1−d/2
∑
y

θkσ(y)θlσ′(x− y)

≤ K

l3/2
m1−d/2

m/2∑
k=1

k1−d/2θlσ(x)

≤ K

l3/2
m1−d/2θlσ(x)

≤ K

l3/2m3/2
θlσ(x),

since d ≥ 5 and σ ≥ σ′ 2
1−
√

2/2
. To handle the second term on the last line of (10.3.9), we note

that | 1
η2

∂2

∂(l−1)2 pl−1(x)| ≤ K
l2 θlσ′ . Folding this bound with Bm, we obtain by similar arguments to

the ones used for the former error that the second error on the last line is bounded by K
l2m1/2 θlσ.

Therefore, we obtain in (10.3.8),

|
∑
y

Bm(y)E(m, p, x, y, l − 1)| ≤ K

l3/2m3/2
θlσ(x) +

K

l2m1/2
θlσ(x), (10.3.12)
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as long as d ≥ 5, and we set from now on σ = σ′ 2
1−
√

2/2
.

We now turn to the main part of the proof.

Again, we need to show that |ψ(ξ)n| ≤ ε‖ξ‖1/2χn, for all n ∈ N and some ε ∈ (0, 1). Thus we

split (8.3.2):

|ψ(ξ)n| ≤
n∑
l=1

|ξn−l| ∗

∣∣∣∣∣∣
(1− λρ)SFl−1 − Fl + λ

l/2∑
m=1

amBmFl−m

∣∣∣∣∣∣
+

n∑
l=1

|ξn−l| ∗

∣∣∣∣∣∣λ
l∑

m=l/2

amBmFl−m

∣∣∣∣∣∣ . (10.3.13)

As in the non-symmetric case, we start with the second term. Note that |ξn−l| ≤ ‖ξ‖1/2χn−l and
we split χn−l into (n − l)−1/2θn−l and (n − l)−d/2

∑(n−l)/2
j=1 jθj , where for simplicity, θk := θkσ

and θ′k := θkσ′ in the following. For the �rst part this leads to

n−1∑
l=1

(n− l)−1/2θn−l ∗
l∑

m=l/2

am|Bm| ∗ Fl−m

≤K
n−1∑
l=1

(n− l)−1/2
l∑

m=l/2

m−d/2
m/2∑
k=1

k1−d/2 θn−l ∗ θk ∗ θ′l−m︸ ︷︷ ︸
≤Kθn−m+k

≤Kn−1/2θn

n/2∑
l=1

l∑
m=l/2

m−d/2
m/2∑
k=1

k1−d/2

+Kn−d/2
n−1∑
l=n/2

(n− l)−1/2
l∑

m=l/2

m/2∑
k=1

k1−d/2θn−m+k

≤K

n−1/2θn + n−d/2
n−1∑

m=n/4

m/2∑
k=1

k1−d/2θn−m+k

n−1∑
l=m

(n− l)−1/2

︸ ︷︷ ︸
≤n−m


≤K

n−1/2θn + n−d/2
n−1∑

m=n/4

n−m/2∑
k=n−m+1

k(k − (n−m))1−d/2θk



≤K

n−1/2θn + n−d/2
7n/8∑
k=1

kθk

n−1∑
m=n−k+1

(k − (n−m))1−d/2

︸ ︷︷ ︸
≤K


≤Kχn,
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where we use σ > σ′ and d ≥ 5. For the second part, we split the sum and �nd

n/2∑
l=1

(n− l)−d/2
(n−l)/2∑
j=1

jθj ∗
l∑

m=l/2

am|Bm| ∗ Fl−m

≤Kn−d/2
n/2∑
l=1

(n−l)/2∑
j=1

j

l∑
m=l/2

m−d/2
m/2∑
k=1

k1−d/2θj+k+l−m

≤Kn−d/2
n/2∑
m=1

m−d/2
(n/2)∧(2m)∑

l=m

m/2∑
k=1

k1−d/2
(n−l)/2+k∑
j=1+k

jθj+l−m

≤Kn−d/2
n/2∑
m=1

m−d/2
(n/2)∧(2m)∑

l=m

(n+l−m)/2∑
j=1+l−m

jθj

≤Kn−d/2
3n/4∑
j=1

jθj

≤Kχn,

again using d ≥ 5 and �nally

n−1∑
l=n/2

(n− l)−d/2
(n−l)/2∑
j=1

j︸︷︷︸
≤n−l

l∑
m=l/2

m−d/2
m/2∑
k=1

k1−d/2θj+k+l−m

≤K
n−1∑
l=n/2

(n− l)1−d/2
l∑

m=l/2

m−d/2
m/2∑
k=1

k1−d/2
(n−l)/2∑
j=1

θj+k+l−m

≤Kn−d/2
n−1∑
l=n/2

(n− l)1−d/2
l/2∑
m=0

(l−m)/2∑
k=1

k1−d/2
(n−l)/2∑
j=1

θj+k+m

≤Kn−d/2
n−1∑
l=n/2

(n− l)1−d/2
l/2∑
m=0

(n+m)/2∑
j=1+m

θj

≤Kn−d/2
n−1∑
l=n/2

(n− l)1−d/2
(2n+l)/4∑
j=1

θj

j−1∑
m=0

1

≤Kn−d/2
3n/4∑
j=1

jθj

≤Kχn.

Thus we get

second summand of (10.3.13) ≤ Kλ‖ξ‖1/2χn,

and it su�ces to choose λ small enough.

It remains to check the �rst summand of (10.3.13). For this summand we again have that it is
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equal to

(n−1)∧N∑
l=1

|ξn−l| ∗
∣∣∣∣(1− λρ)(1− l − 1

N
)Sl + (1− λρ)

l − 1

N
Spl−1 − (1− l

N
)Sl − l

N
pl

+λ

l/2∑
m=1

amBm(1− l −m
N

)Sl−m + λ

l/2∑
m=1

amBm
l −m
N

pl−m

∣∣∣∣∣∣ (10.3.14)

+

n−1∑
l=N+1

|ξn−l| ∗

∣∣∣∣∣∣(1− λρ)Spl−1 − pl + λ

(l/2)∧(l−N)∑
m=1

amBmpl−m

+λ

l/2∑
m=l−N+1

amBm

(
(1− l −m

N
)Sl−m +

l −m
N

pl−m

)∣∣∣∣∣∣ . (10.3.15)

For the moment, we are interested in the second sum which is present only if n > N + 1. We

have:

(10.3.15) ≤
n−1∑

l=N+1

‖ξ‖1/2χn−l ∗

∣∣∣∣∣∣(1− λρ)Spl−1 − pl + λ

l/2∑
m=1

amBmpl−m

∣∣∣∣∣∣
+

∣∣∣∣∣∣λ
l/2∑

m=l−N+1

amBm

(
(1− l −m

N
)(Sl−m − pl−m)

)∣∣∣∣∣∣
 . (10.3.16)

Now we use the calculations from (10.3.1) to (10.3.12) and again collect terms coming with the

same discrete derivatives to write:

(1− λρ)Spl−1 − pl + λ

l/2∑
m=1

amBmpl−m

=

(1− λρ)− 1 + λ

l/2∑
m=1

ambm

 pl−1 (10.3.17)

+

d∑
i=1

 (1− λρ)

2
s(11) +

λ

2

l/2∑
m=1

amb
(11)
m

−η 1

2d
− λη 1

2d

l/2∑
m=1

ambm(m− 1)

4iipl−1 (10.3.18)

+ E(l)(.),

where |E(l)(.)| ≤ K
l3/2 θlσ(.) due to the error bound in (10.3.12) and the bounds on the other

errors at the beginning of the proof. We analyze the terms above separately: For the term in

front of pl−1 in (10.3.17) we have:∣∣∣∣∣∣(1− λρ)− 1 + λ

l/2∑
m=1

ambm

∣∣∣∣∣∣ ≤ K
∞∑

m=l/2

|bm| = O(l−3/2),

using the de�nition of ρ in (8.1.1) and the decay of the bm's. For the remaining terms, we choose

η > 0 such that

δ :=
η

2d
=
uµ−1s(11) + λ

∑
m≥1 amb

(11)
m

1 + λ
∑
m≥1 ambm(m− 1)

. (10.3.19)
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Plugging δ into the terms in (10.3.18), we get that for each summand, the term inside the bracket

converges to 0 at rate l−1/2. Thus, collecting the above and combining with the bounds on pl−1

and it's discrete derivatives from Lemma 8.4 we have:∣∣∣∣∣∣(1− λρ)Spl−1(x)− pl(x) + λ

l/2∑
m=1

amBmpl−m(x)

∣∣∣∣∣∣ ≤ K

l3/2
θlσ(x),

and hence the �rst summand in (10.3.16) can be bounded by

K‖ξ‖1/2
n−1∑

l=N+1

1

l3/2
χn−l ∗ θlσ

≤K‖ξ‖1/2
n−1∑

l=N+1

l−3/2

(n− l)−1/2θnσ + (n− l)−d/2
(n−l)/2∑
j=1

jθ(l+j)σ


≤‖ξ‖1/2

N−1/2Kn−1/2θnσ +Kn−d/2
n/2∑

l=N+1

l−3/2

(n−l)/2∑
j=1

jθ(l+j)σ

+ N−1/2Kn−1
n−1∑

l=(n/2)∨(N+1)

(n− l)−d/2
(n−l)/2∑
j=1

jθ(l+j)σ


≤C(N)K‖ξ‖1/2χn,

where C(N) goes to zero when N →∞, and thus C(N)K ≤ ε, if N is large enough.

The remainder of the proof essentially carries over word by word from the proof of Lemma 8.6

(setting κ = 0 and changing the norm appropriately).

We still also have the symmetric version of Lemma 8.8:

Lemma 10.4. Let ξn := anFn, for all n ≥ 0. Then,

‖ψ(ξ)− ξ‖1/2 ≤ K,

where K is a positive constant depending on R and on the constant N .

Proof. Again, the proof carries over almost word by word from the proof of Lemma 8.8: First

of all, we note that it again su�ces to show that

n∑
l=1

∣∣∣∣∣Fn−l
[
alFl − (1− λρ)Sal−1Fl−1 − λ

l∑
m=1

amal−mBmFl−m

]∣∣∣∣∣ ≤ Kχn.
But the left hand side above is again bounded by

n∑
l=1

∣∣∣∣∣∣alFn − (1− λρ)Sal−1Fn−1 − λ
l∧(n/2)∑
m=1

amal−mBmFn−m

∣∣∣∣∣∣
+ λ

n∑
l=n/2

l∑
m=n/2

|amal−mBmFn−m| , (10.3.20)
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and we may assume that Fn = pn, for all n as in Lemma 8.8. For the second term in (10.3.20)

we get:

λ

n∑
l=n/2

l∑
m=n/2

|amal−mBmFn−m|

≤λK
n∑

l=n/2

l∑
m=n/2

m−d/2
m/2∑
k=1

k1−d/2θk+n−m

≤λKn−d/2
n∑

m=n/2

(n−m)

n−m/2∑
k=1+n−m

(k − (n−m))1−d/2θk

≤λKn−d/2
3n/4∑
k=1

θk

n∑
m=(n/2)∨(n−k+1)

(k − (n−m))1−d/2k

≤λKχn.

It remains to check the �rst term in (10.3.20):

n∑
l=1

∣∣∣∣∣∣alpn − (1− λρ)al−1Spn−1 − λ
l∧(n/2)∑
m=1

amal−mBmpn−m

∣∣∣∣∣∣ (10.3.21)

≤
n∑
l=1

∣∣∣∣∣∣al − (1− λρ)al−1 − λ
l∧(n/2)∑
m=1

al−mambm

∣∣∣∣∣∣ |pn−1|

+

n∑
l=1

d∑
i=1

∣∣∣∣∣∣−1− λρ
2

s(11)al−1 −
λ

2

l∧(n/2)∑
m=1

al−mamb
(11)
m

+η
1

2d
al + λη

1

2d

l∧(n/2)∑
m=1

amal−mbm(m− 1)

∣∣∣∣∣∣ |4iipn−1|

+E(n)(.),

where we use the calculations from (10.3.1) to (10.3.12) in the proof of Lemma 10.3 and regroup

terms according to their discrete derivative in the place variable as in that Lemma. Similarly

to those calculations, E(n)(.) ≤ K
n1/2 θn(.). We check the remaining terms above separately. For

the term in front of |pn−1|, we get∣∣∣∣∣∣al − (1− λρ)al−1 − λ
l∧(n/2)∑
m=1

al−mambm

∣∣∣∣∣∣ ≤ λ
l∑

m=n/2

amal−mbm ≤ Kn−3/2,

using the decay of the bm's, (10.1.2) and Corollary 7.5. Thus,
∑n
l=1 |.|pn−1(x) ≤ Kn−1/2θn(x).

By Lemma 8.4, |4iipn−1(x)| ≤ K
n θn(x) for i = 1, . . . , d, and using again Corollary 7.5 we have

for i = 1 . . . , d,∣∣∣∣∣∣−1− λρ
2

s(11)al−1 −
λ

2

l∧(n/2)∑
m=1

al−mamb
(11)
m + η

1

2d
al + λη

1

2d

l∧(n/2)∑
m=1

amal−mbm(m− 1)

∣∣∣∣∣∣ |4iipn−1(x)|

≤ Kl−1/2n−1θn(x).
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Thus
∑n
l=1

∑d
i=1 |.||4iipn−1(x)| ≤ Kn−1θn(x)

∑n
l=1 l

−1/2 ≤ Kn−1/2θn(x). Therefore (10.3.21)

is bounded by Kn−1/2θn(x) and hence by Kχn as desired. This �nishes the proof of Lemma

10.4.

The proof of Theorem 10.1 is now a copy the proof of Theorem 8.1.

10.4 Application to Symmetric Weakly Self-Avoiding Walks

It remains again to apply Theorem 10.1 to weakly self-avoiding walks with symmetric and

rotationally invariant initial distributions S. The Lemma corresponding to Lemma 9.1 giving

the good decay for Πm/(λcm) now states as:

Lemma 10.5. There are positive constants λ0, σ and L, such that for all λ ∈ [0, λ0] and for all

m ≥ 2 we have, setting Bm(x) := Πm(x)
λcm

,

|Bm(x)| ≤ Lm−d/2
m/2∑
k=1

k1−d/2θkσ(x).

The proof of this Lemma is a lot simpler than the proof of Lemma 9.1, since we already know

the correct asymptotic mean (it is zero!). Therefore, we do not need to make a second iteration.

The proof can also be found (with Gaussian decay and for S the symmetric nearest neighbor

distribution only) in Ritzmann [32].

Proof. For convenience, we set

ψm(x) := m−d/2
m/2∑
k=1

k1−d/2θkσ(x).

It is easy to see that |B2(x)| ≤ Lψ2(x), for L large enough (depending on d, σ and S). The

induction now goes as follows: For m ≥ 3, assume that |Bk(x)| ≤ Lψk(x) for all 2 ≤ k < m.

De�ne the truncated sequence (Bn)n≥2 by

Bn(x) :=

{
Bn(x), if |Bn(x)| ≤ Lψn(x),

Lψn(x), else.

This sequence satis�es Theorem 10.1 and we thus obtain a sequence (An)n≥0 of measures with∣∣∣∣An(x)

an
− φnδ(x)

∣∣∣∣ ≤ K
n−1/2θnσ(x) + n−d/2

n/2∑
k=1

kθkσ(x)

 . (10.4.1)

(In the two-periodic case, put a factor 2 in front of φnδ and consider only n and ‖x‖1 of same

parity). As long as λ is small enough, the positive constants K and σ do not depend on L.

De�ning Cn := µAn, and using (10.4.1) as well as the fact that δ ≤ σ and both are of comparable

size, we have

Cn(x) ≤ Kcnθnσ(x) ≤ K(α+Kn−1/2)µnθnσ(x) ≤ Lµnθnσ(x),

where L is a positive constant. But since Bn = Bn, if n < m, we also have Cn = Cn, for n < m,

using the lace expansion formula (6.2.3). Therefore, applying Lemma A.4 we have

|Bm(x)| ≤ KL1
µm

cm
m−d/2

m/2∑
k=1

k1−d/2θkσ(x).
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It remains to show that µm/cm is bounded. But this is done exactly as in the proof of Lemma

9.1. This �nishes the proof.

With this Lemma, the second part of the local CLT-Theorem for symmetric distributions follows

immediately:

Theorem 10.6. Let d ≥ 5 and let R ∈ N. Then, for any symmetric and rotationally invariant

distribution S with support in B(0, R)\{0}, there exists λ0(S) > 0, such that for all λ ∈ [0, λ0],

and for all n ∈ N,
cn = αµn(1 +O(n−1/2)).

Moreover, for if S is aperiodic, we have for x ∈ Zd and n ∈ N,

∣∣∣∣Cn(x)

cn
− φnδ(x)

∣∣∣∣ ≤ K
n−1/2θnσ(x) + n−d/2

n/2∑
j=1

jθjσ(x)

 ,
and if S is periodic and n− ‖x‖1 even,

∣∣∣∣Cn(x)

cn
− 2φnδ(x)

∣∣∣∣ ≤ K
n−1/2θnσ(x) + n−d/2

n/2∑
j=1

jθjσ(x)

 .
The constants α > 0 and µ > 0 and the variance δ depend on λ, d and S, whereas σ depends on

d and S and K only depends on d and R.

The �rst part of the Theorem again follows from Corollary 7.5.



Appendix A

The Lace Expansion and Bounds for

the Lace Expansion

A.1 The Lace Expansion

We give a short introduction to the Lace Expansion and show how equation (6.2.3) is obtained

in the �st part below. For more details on this topic we refer to the book by Slade [33] or by

Madras and Slade [24]. The lace expansion was �rst introduced by Brydges and Spencer in [9].

The following Subsection is an adaption of van der Hofstad, den Hollander and Slade [40] (they

deal with the symmetric nearest neighbor initial distribution only). The second part is devoted

to bounds for the lace expansion in terms of the connectivity.

A.1.1 De�nition

First, we introduce some terminology. Given an interval of integers I = [a, b] ⊂ Z with 0 ≤ a < b,

we call the pair {s, t} =: st (s < t) in I an Edge. A set of edges is called a Graph. A graph Γ

on [a, b] is said to be connected if both a and b are endpoints of edges in Γ and if, in addition,

for any c ∈ (a, b) there is an edge st ∈ Γ such that s < c < t. The set of all graphs on [a, b]

is denoted by B[a, b], and the subset consisting of all connected graphs is denoted by G[a, b]. A

Lace is a minimally connected graph. That is a connected graph for which the removal of any

edge would result in a disconnected graph. The set of laces on [a, b] is denoted by L[a, b], and

the set of laces on [a, b] consisting of exactly N edges is denoted by L(N)[a, b]. It is possible to

associate a unique lace LΓ to each connected graph Γ in the following way: LΓ consists of the

edges s1t1, s2t2, . . ., with t1, s1, t2, s2, . . . determined in that order by

t1 := max{t : at ∈ Γ}, s1 := a,

ti+1 := max{t : ∃s < ti such that st ∈ Γ}, si+1 := min{s : sti+1 ∈ Γ}.

Given a lace L, the set of all edges st 6∈ L such that LL∪{st} = L is denoted by C(L). Edges in

C(L) are said to be compatible with L.

Recall the de�nition of Cn from (6.2.1). We can rewrite that de�nition as:

Cn(x) =
∑
ω:0 x
|ω|=n

K[0, n](ω)

n∏
r=1

s(ω(r)− ω(r − 1)), (A.1.1)

where the sum is over all permissible paths from 0 to x of length n and for a < b,

K[a, b](ω) :=
∏

a≤s<t≤b

(1− λUst(ω)) =
∑

Γ∈B[a,b]

∏
st∈Γ

(−λUst(ω)). (A.1.2)

We also de�ne a similar quantity in which the sum is restricted to connected graphs:

J [a, b](ω) :=
∑

Γ∈G[a,b]

∏
st∈Γ

(−λUst(ω)). (A.1.3)
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This last de�nition leads us to the de�nition of the Lace Functions:

Πm(x) :=
∑
ω:0 x
|ω|=m

J [0,m](ω)

m∏
r=1

s(ω(r)− ω(r − 1)), (A.1.4)

for any m ≥ 2 and x ∈ Zd. Note here that Π1 ≡ 0 since ω(i+ 1) 6= ω(i), for any path ω and any

i ≥ 0. The lace expansion formula (6.2.3) is given in the following Lemma:

Lemma A.1. For n ≥ 1 and x ∈ Zd,

Cn(x) = u
∑
y:y∈Ω

S(y)Cn−1(x− y) +

n∑
m=2

∑
z∈Zd

Πm(z)Cn−m(x− z).

Proof. It su�ces to show that for each path ω we have (suppressing ω in the formulas):

K[0, n] = K[1, n] +

n∑
m=2

J [0,m]K[m,n]. (A.1.5)

Indeed, the Lemma is obtained by summing on both sides over all paths ω of length n, going

from 0 to x, multiplying each summand with the product
∏n
r=1 s(ω(r)−ω(r−1)) and factorizing

the sum. To prove (A.1.5), we note from (A.1.2) that the contribution to K[0, n] from all graphs

Γ for which 0 is not in an edge is exactly K[1, n]. For the contribution of the remaining graphs,

we proceed as follows: If Γ does contain an edge starting at 0 we suppose that m ≤ n is the

largest integer such that the set of edges in Γ with at least one end in the interval [0,m] forms

a connected graph on [0,m]. Then, resummation over graphs on [m,n] gives

K[0, n] = K[1, n] +

n∑
m=2

∑
Γ∈G[0,m]

∏
st∈Γ

(−λUst)K[m,n].

Together with (A.1.3) this proves (A.1.5).

Note that this Lemma is of course valid in the particular case where S = 1
2d1{x: ‖x‖=1} (symmetric

nearest neighbor initial distribution).

We need to bound the lace functions (A.1.4) in a good way. This in fact turns out to be rather

tricky and we have to rewrite the de�nition of these functions: First, we rewrite the right-hand

side of (A.1.3) to obtain

J [a, b] =
∑

L∈L[a,b]

∑
Γ:LΓ=L

∏
st∈L

(−λUst)
∏

s′t′∈Γ\L

(−λUs′t′)

=
∑

L∈L[a,b]

∏
st∈L

(−λUst)
∏

s′t′∈C(L)

(1− λUs′t′). (A.1.6)

For 0 ≤ a < b, we de�ne J (N)[a, b] to be, up to the factor (−λ)N , the contribution to (A.1.6)

coming from laces consisting of exactly N edges (N ≥ 1):

J (N)[a, b] :=
∑

L∈L(N)[a,b]

∏
st∈L

Ust
∏

s′t′∈C(L)

(1− λUs′t′).

Then,

J [a, b] =

∞∑
N=1

(−λ)NJ (N)[a, b],
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and de�ning

Π(N)
m (x) :=

∑
ω:0 x
|ω|=m

J (N)[0,m](ω)

m∏
r=1

s(ω(r)− ω(r − 1))

=
∑
ω:0 x
|ω|=m

∑
L∈L(N)[0,m]

∏
st∈L

Ust
∏

s′t′∈C(L)

(1− λUs′t′)
m∏
r=1

s(ω(r)− ω(r − 1)), (A.1.7)

we have together with (A.1.4)

Πm(x) =

∞∑
N=1

(−λ)NΠ(N)
m (x). (A.1.8)

A.1.2 Bounds on the Lace Expansion

We bound the Πm's in terms of Cn's. This allows us to give speci�c bounds for Πm(x) if we

assume Exponential decay for the Cn's in x. We bound the terms in the sum (A.1.8) separately.

For N = 1, we have:

Π(1)
m (x) =δ0x

∑
ω:0 x
|ω|=m

∏
0≤s′<t′≤m
s′t′ 6=0m

(1− λUs′t′(ω))

m∏
r=1

s(ω(r)− ω(r − 1))

≤δ0x
∑
y:y∈Ω

s(y)
∑
ω:y 0
|ω|=m−1

∏
1≤s′<t′≤m

(1− λUs′t′(ω))

m∏
r=2

s(ω(r)− ω(r − 1))

=δ0xuS ∗ Cm−1(0), (A.1.9)

where we use that (1 − λU0l(ω)) ≤ 1, for any l ∈ {1, . . . ,m − 1}. Turning to the case N ≥ 2,

we remark that a walk giving a non-zero contribution to Π
(N)
m must intersect itself at least N

times in order that Ust 6= 0, for all st ∈ L. Then we can split the walk into 2N − 1 subwalks

of lengths m1, . . . ,m2N−1, where only m3,m5, . . . ,m2N−3 may be zero, and
∑
imi = m. Using

again the fact that 1 − λUs′t′ ≤ 1, and replacing 1 − λUs′t′ by 1 if ω(s′) and ω(t′) belong to

di�erent subwalks, we get the estimate

Π(N)
m (x) ≤

∑
mi

∑
x1,...,xN−2∈Zd

Cm1(x1)Cm2(−x1)Cm3(x2)Cm4(x1 − x2)Cm5(x3 − x1) · · ·

· · ·Cm2N−3
(x− xN−3)Cm2N−2

(xN−2 − x)Cm2N−1
(x− xN−2), (A.1.10)

where the sum over the mi's is restricted to the set described above. Below, we give an example

of a trajectory for N = 7 (slashed lines denote subwalks which may be zero, non-slashed ones

must contain at least one step).

. / .

�����
/ .

������

0 / .

======
/ .

88888
/ x

Lemma A.2. Fix m ≥ 2, and d ≥ 5. Assume that for all x ∈ Zd, and n < m, n ∈ N,

|Cn(x)| ≤ L1µ
nθnν,nσ(x),
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with constants µ > 0, L1 ≥ 1 and θnν,nσ a �doubly-exponential� density with mean nν, ν ∈ Rd
and covariance matrix nσIdd, σ > 0 (see Section 6.2). Then, for λ = λ(d, σ, ν, L1) small enough,

we have

|Πm(x)| ≤ λL1Kµ
mm−d/2

m/2∑
k=1

exp

(
−
√
m− k√
σ
‖ν‖
)
θkν,kσ(x), (A.1.11)

where K = K(d, ν, σ, S) > 0.

Note that if ν = 0, the rate of decay of the sequence (Πm/µ
m)m is completely di�erent than if

ν 6= 0. In the former case, the decay is merely polynomially in m, whereas in the latter case, the

decay is exponential in m (see also Corollary A.3).

Proof. For notational convenience we set

ψm(x) := m−d/2
m/2∑
k=1

exp

(
−
√
m− k√
σ
‖ν‖
)
θkν,kσ. (A.1.12)

The idea is to again use the sum (A.1.8) and bound each term Π
(N)
m (x) separately by induction.

For N = 1, we have, using inequality (A.1.9) and the assumptions in the Lemma:

Π(1)
m (x) ≤ δ0xuL1µ

m−1
∑
y∈Ω

S(y)θ(m−1)ν,(m−1)σ(−y).

But since the support Ω of S is bounded,∑
y∈Ω

S(y)θ(m−1)ν,(m−1)σ(−y)

≤ K(d, S)√
(m− 1)σ

d
max
y∈Ω

exp

(
− 1√

(m− 1)σ
‖ − y − (m− 1)ν‖

)

≤K(d, S)

(mσ)d/2
max
y∈Ω

exp

(
− 1√

mσ
‖ − y − (m− 1)ν‖

)
≤K(d, S)

(mσ)d/2
exp

(
−
√
m− 1

σ
‖ν‖

)
max
y∈Ω

exp

(
1√
mσ
‖y‖
)

≤K(d, S, σ)

(mσ)d/2
exp

(
−
√
m− 1

σ
‖ν‖

)
.

Hence,

Π(1)
m (x) ≤ K(d, S, σ, ν)L1µ

mψm(x). (A.1.13)

For N ≥ 2, we set θ0,0(x) := δ0x and de�ne

P (N)
m (x) :=

∑
yi,mi

θm1ν,m1σ(y1)θm2ω,m2σ(−y1)θm3ω,m3σ(y2)θm4ω,m4σ(y1 − y2) · · ·

· · ·θm2N−3ω,m2N−3σ(x− yN−3)θm2N−2ω,m2N−2σ(yN−2 − x)θm2N−1ω,m2N−1σ(x− yN−2),

where y1, . . . , yN−2 ∈ Zd, and m1,m3,m5, . . . ,m2N−3 ∈ N0, m2,m4, . . . ,m2N−2,m2N−1 ∈ N
such that

∑
imi = m (note that in contrast to the lace expansion, we allow the �rst path to be

zero in order to give the induction below). With (A.1.10) and the assumptions in the Lemma it

follows that

Π(N)
m (x) ≤ L2N−1

1 µmP (N)
m (x). (A.1.14)
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We use induction to show that there is a constant L2 depending on d, σ and ν such that

P (N)
m (x) ≤ LN2 ψm(x). (A.1.15)

(A.1.13), (A.1.14) and (A.1.15) then imply

Π(N)
m (x) ≤ K(d, ν, σ, S)LN2 L

2N+1
1 µmψm(x).

The Lemma follows by plugging the above inequality into (A.1.8) and choosing λ = λ(d, σ, ν, L1)

small enough.

The induction step for N ≥ 3 reduces P
(N)
m to P

(N−1)
m by merging four subwalks in the lace into

two as shown in the following �gure:

y / w / .

/

0 / z

=====
/ .

merges to

w / .

0 / z / .
=

0 w / .

/

z / .

We use Cauchy-Schwarz inequality and abbreviate θt := θtν,tσ in what follows.∑
u1+u2=u
u1,u2≥0

∑
t1+t2=t
t1,t2≥1

∑
y∈Zd

θu1(y)θu2(w − y)θt1(−y)θt2(y − z)

≤
∑

u1+u2=u
t1+t2=t

t1,t2,≥1,u1,u2≥0


∑
y∈Zd

θ2
u1

(y)θ2
u2

(w − y)

︸ ︷︷ ︸
A


1/2 

∑
y∈Zd

θ2
t1(−y)θ2

t2(y − z)

︸ ︷︷ ︸
B


1/2

. (A.1.16)

If u = 0, u1 = u2 = 0, and A = δ0(w) = θ0(w), and hence, A1/2 ≤ Kθ0(w). If u > 0, and u1 = 0,

u = u2, and

A1/2 =

∑
y∈Zd

δ0(y)θ2
u2

(w − y)

1/2

= θu(w).

The case u > 0, and u2 = 0 is equivalent. Finally, if u1, u2 > 0, we use (B.0.1) and Lemma B.1

to get ∑
y∈Zd

θ2
u1

(y)θ2
u2

(w − y)

1/2

≤ K(d, σ)
[
θ2
u1
∗ θ2

u2
(w)
]1/2

≤K(d, σ)(u1u2)−d/4σ−d/2(θuν,(u/2)σ(w))1/2 ≤ K(d, σ)ud/4(u1u2)−d/4θu(w),

and therefore,

∑
u1+u2=u
u1,u2≥0

∑
y∈Zd

θ2
u1

(y)θ2
u2

(w − y)

1/2

≤K(d, σ)

(
2 + ud/4

u−1∑
u1=1

u
−d/4
1 (u− u1)−d/4

)
θu(w)

≤K(d, σ)θuν,uσ(w),
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where we use that d ≥ 5 and hence, ud/4
∑u−1
u1

u
−d/4
1 (u− u1)−d/4 can be bounded uniformly for

all u. For B, we apply the same reasoning as for A. Inserting these bounds into (A.1.16) yields∑
θu1(y)θu2(w − y)θt1(−y)θt2(y − z) ≤ K(d, σ)θu(w)θt(−z). (A.1.17)

Using (A.1.17) with y1, y3, y2, m1, m5, m2, and m4 instead of y, w, z, u1, u2, t1 and t2
respectively, we get

P (N)
m (x) =

∑
mi,yi

θm3(y2)θm4(y1 − y2)θm2(−y1)θm1(y1)θm5(y3 − y1)θm6(y2 − y3) · · ·

≤ K(d, σ)
∑

θm3
(y2)θm2+m4

(−y2)θm1+m5
(y3)θm6

(y2 − y3) · · ·

≤ K(d, σ)P (N−1)
m (x), (A.1.18)

�nishing the induction step.

It remains to show the case N = 2: In this case, the lace is three-legged and we have

P (2)
m (x) =

∑
k+l+j=m
l,j≥1,k≥0

θk(x)θl(−x)θj(x) = δ0xI + J,

where

I =

m−1∑
l=1

θl(0)θm−l(0)

=

m−1∑
l=1

K(d)

σd
1

(l(m− l))d/2
exp

(
− 1√

lσ
‖(−lν)‖ − 1√

(m− l)σ
‖(−(m− l)ν)‖

)

≤
m−1∑
l=1

K(d)

(l(m− l))d/2σd
exp

(
−
[

1

lσ
‖(lν)‖2 +

1

(m− l)σ
‖((m− l)ν)‖2

]1/2
)

≤ K(d, σ)

md/2

1

σd/2
exp

(
−
√
m

σ
‖ν‖
)

≤ K(d, σ, ν)ψm(0),

and

J =
∑

k+j+l=m
k,l,j≥1

θk(x)θl(−x)θj(x)

=
∑

k+j+l=m
k,l,j≥1

K(d)

σ(3/2)d(kjl)d/2
exp

(
− 1√

kσ
‖x− kν‖ − 1√

jσ
‖x− jν‖

− 1√
lσ
‖ − x− lν‖

)
≤K(d, σ)

∑
1≤k≤j

k+l+j=m

l−d/2m−d/2
1

(kσ)d/2
exp

(
−‖x− kν‖√

kσ

)

· exp

(
− 1√

σ

(
1

j
‖x‖2 − 〈x, ν〉+ j‖ν‖2 +

1

l
‖x‖2 + 〈x, ν〉+ l‖ν‖2

)1/2
)

≤K(d, σ)m−d/2
m/2∑
k=1

exp

(
−
√
m− k√
σ
‖ν‖
)
θkν,kσ(x)

≤K(d, σ)ψm(x),
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where we use the subadditivity of the square-root function. I and J together thus imply

P (2)
m (x) ≤ K(d, σ, ν)ψm(x). (A.1.19)

Setting L2 to be the maximum of the constant in (A.1.18) and (A.1.19), we get (A.1.15).

Under the assumptions of Lemma A.2, the next Corollary which gives explicit decay rates in m

for the moments of the Bm's follows immediately.

Corollary A.3. Let ν 6= 0. Then, for Bm de�ned by Bm(x) := Πm(x)
λµm for all m ≥ 2, with Cn,

λ and µ satisfying the assumptions of Lemma A.2, we have that the �rst three moments of the

Bm's decay exponentially in m. More precisely,

∑
x

|Bm(x)| ≤ K0 exp(−k0

√
m),∑

x

|xi||Bm(x)| ≤ K1 exp(−k1

√
m),∑

x

|xixj ||Bm(x)| ≤ K2 exp(−k2

√
m), and∑

x

|xixjxk||Bm(x)| ≤ K3 exp(−k3

√
m), for i, j, k = 1, . . . , d,

where K1,K2,K3, k1, k2, k3 are positive constants depending on d, σ, ν, S and L1.

If ν = 0, this changes completely. The �rst moments of course vanish. For the zeroth moments

we get a decay of order m−(d−2)/2, and for the second moments a decay of order m−(d−4)/2. The

decay of the third moments is then of order m−(d−5)/2.

The above Lemma A.2 is valid for any drift ν. However, in case ν = 0, we can give a slightly

better bound for the Πm's than the one stated above. This is the content of the next Lemma:

Lemma A.4. Under the same assumptions as in Lemma A.2 with ν = 0, and for λ = λ(d, L1, σ)

small enough, we have

|Πm(x)| ≤ λL1Kµ
mm−d/2

m/2∑
k=1

k1−d/2θ0,kσ(x), (A.1.20)

where K = K(d, σ, S) > 0.

Proof. The proof of this Lemma is essentially a copy of the proof of Lemma A.2. First, we

replace (A.1.12) by

ψm(x) := m−d/2
m/2∑
k=1

k1−d/2θ0,kσ, (A.1.21)

and put ν = 0 everywhere in that proof. The only place where things change is the calculation
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of J :

J =
∑

k+j+l=m
k,l,j≥1

θk(x)θl(−x)θj(x)

=
∑

k+j+l=m
k,l,j≥1

K(d)

σ(3/2)d(kjl)d/2
exp

(
− 1√

kσ
‖x‖ − 1√

jσ
‖x‖ − 1√

lσ
‖x‖
)

≤K(d, σ)
∑

1≤k≤l≤j
k+l+j=m

l−d/2m−d/2
1

(kσ)d/2
exp

(
− ‖x‖√

kσ

)

≤K(d, σ)m−d/2
m/2∑
k=1

k1−d/2θ0,kσ(x)

≤K(d, σ)ψm(x),

where we use the symmetry of J in k, l and j. This amounts for the change in the Lemma.

This of course also gives better bounds for the moments of the Bm's:

Corollary A.5. Under the hypotheses of the last Lemma and setting Bm(x) := Πm(x)
λµm for all

m ≥ 2, we have that the �rst moments of the Bm's vanish. The zeroth moments are of order

m−d/2, the second moments of order m−(d−3) and the third moments are of order m−(d−7/2).



Appendix B

The Discrete and the Continuous

Folding of �Doubly-Exponential�

Distributions

We explain here how to fold (or better bound the folding of) two �doubly-exponential� distribu-

tions on Rd. For that purpose, let t1, t2 ∈ N, µ1, µ2 ∈ Rd, and σ1, σ2 > 0. Then, for x ∈ Rd,∫
Rd
dyθt1µ1,t1σ1(y)θt2µ2,t2σ2(x− y) ≤ K(d)θt1µ1+t2µ2,t1σ1+t2σ2(x). (B.0.1)

Indeed, we have∫
Rd
dyθt1µ1,t1σ1(y)θt2µ2,t2σ2(x− y)

=

∫
Rd
dy

K(d)
√
t1t2σ1σ2

d
exp

(
− 1√

t1σ1
‖y − t1µ1‖ −

1√
t2σ2

‖x− t2µ2 − y‖
)

=

∫
Rd
dy

K(d)
√
t1t2σ1σ2

d
exp

(
− 1√

t1σ1
‖y‖ − 1√

t2σ2
‖x− t1µ1 − t2µ2 − y‖

)

=
K(d)

√
t1t2σ1σ2

d

∫
Rd
dy exp

− 1√
t1σ1

‖y‖ − 1√
t2σ2

(
d∑
i=1

(xi − t1µ1i − t2µ2i − yi)2

)1/2
 .

For simplicity, we set pi := xi − t1µ1i − t2µ2i for i = 1, . . . , d. In the following we change

variables from y1, . . . , yd to hyperspheric coordinates (r, φ1, . . . , φd−1), and denote by J :=

rd−1 sind−2(φ1) · · · sin(φd−2) the corresponding Jacobian. Moreover, I := [0,∞) × [0, π](d−2) ×
[0, 2π] is the area of integration under hyperspheric coordinates. The above then turns into:

=
K(d)

√
t1t2σ1σ2

d

∫
Rd
dy exp

(
− 1√

t1σ1
‖y‖ − 1√

t2σ2

(
‖y‖2 + ‖p‖2 − 2〈y, p〉

)1/2)
≤ K(d)
√
t1t2σ1σ2

d

∫
Rd
dy exp

(
− 1√

t1σ1
‖y‖ − 1√

t2σ2

(
‖y‖2 + ‖p‖2 − 2‖y‖‖p‖

)1/2)
=

K(d)
√
t1t2σ1σ2

d

∫
Rd
dy exp

(
1√
t1σ1
‖y‖ − 1√

t2σ2
|‖y‖ − ‖p‖|

)
=

K(d)
√
t1t2σ1σ2

d

∫
I

drdφ1 · · · dφd−1|J | exp

(
− 1√

t1σ1
r − 1√

t2σ2
|r − ‖p‖|

)
≤ K(d)
√
t1t2σ1σ2

d

∫
[0,∞)

drrd−1 exp

(
−
√
t2σ2√

t1t2σ1σ2
r −

√
t1σ1√

t1t2σ1σ2
|r − ‖p‖|

)
.
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It remains to integrate this. Assume that t2σ2 < t1σ1 and apply d− 1 times partial integration

to obtain:

=
K(d)

√
t1t2σ1σ2

d

( √
t1t2σ1σ2

d

(
√
t1σ1 +

√
t2σ2)d

e−‖p‖/
√
t1σ1 +

√
t1t2σ1σ2

d

(
√
t1σ1 −

√
t2σ2)d

(
e−‖p‖/

√
t1σ1 − e−‖p‖/

√
t2σ2

))

≤ K(d)
√
t1σ1 + t2σ2

d
e−‖p‖/

√
t1σ1+t2σ2 =

K(d)
√
t1σ1 + t2σ2

d
exp

(
−‖x− t1µ1 − t2µ2‖√

t1σ1 + t2σ2

)
.

This is precisely the desired result in (B.0.1). The reasoning for ttσ2 > t1σ1 is analogous.

Moreover, if t1σ1 = t2σ2, partial integration again yields the same result.

We still need to check that the discrete folding of two doubly-exponential distributions can be

bounded from above by a continuous folding of the same two distributions.

Lemma B.1. Let θt1µ1,t1σ1 and θt2µ2,t2σ2 be two doubly exponential densities with t1, t2 ∈ N,
µ1, µ2 ∈ Rd and σ1, σ2 > 0. Let x ∈ Zd. Then∑

y∈Zd
θt1µ1,t1σ1

(y)θt2µ2,t2σ2
(x− y) ≤K(d, σ1, σ2)

∫
Rd
dyθt1µ1,t1σ1

(y)θt2µ2,t2σ2
(x− y)

≤K(d, σ1, σ2)θt1µ1+t2µ2,t1σ1+t2σ2
(x).

Proof. Note that it is su�cient to prove the Lemma for µ1 = µ2 = 0. Let Id := [−1/2, 1/2]d

and y + Id be the shifted cube. Then, using (B.0.1) and Jensen's inequality on the third line,

θ0,t1σ1+t2σ2
(x) ≥K(d)

∑
y∈Zd

∫
y+Id

θ0,t1σ1
(s)θ0,t2σ2

(x− s)ds (B.0.2)

=C
∑
y∈Zd

∫
Id

exp

(
− 1√

t1σ1
‖s+ y‖ − 1√

t2σ2
‖x− s− y‖

)
ds

≥C
∑
y∈Zd

exp

(
−
∫
Id

1√
t1σ1
‖s+ y‖+

1√
t2σ2
‖x− s− y‖ds

)
,

where C = K(d)√
t1σ1

d√t2σ2
d . For the �rst term in the exponent, we use again Jensen to obtain

∫
Id

1√
t1σ1

(
d∑
i=1

(si + yi)
2

)1/2

ds ≤ 1√
t1σ1

(
d∑
i=1

∫
Id

(si + yi)
2ds

)1/2

=
1√
t1σ1

(
d∑
i=1

∫
Id
s2
i + 2siyi + y2

i ds

)1/2

≤ 1√
t1σ1

(
d∑
i=1

y2
i

)1/2

+K(d, σ1).

The second term is treated analogously. Reinserting into (B.0.2) gives

θ0,t1σ1+t2σ2
(x) ≥ K(d) exp (−K(d, σ1)−K(d, σ2)) θ0,t1σ1

(y)θ0,t2σ2
(x− y).

This �nishes the proof of the Lemma.
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