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Abstract

In this paper, a numerical method to solve non-linear integral equations based on a
successive approximation technique is considered. A sequence of functions is produced
which converges to the solution. The process includes a fixed point method, a quadra-
ture rule, and an interpolation method. To find a total bound of the error, we investigate
error bounds for each approximation and by combining them, we will derive an estimate
for the total error. The accuracy and efficiency of the method is illustrated in some
numerical examples.

Keywords: Nonlinear quadratic Volterra integral equation; Fixed point theorem; Mea-
sure of noncompactness; Fixed point method; Adaptive quadrature; Nonuniform inter-
polation nodes.

1 Introduction

Integral equations play a very important role in nonlinear analysis and there are numerous
applications in engineering, mathematical physics, economics, etc. (cf. [18; 1, 9]). Some
problems considered in the vehicular traffic theory, biology, and queuing theory lead to the
following nonlinear functional-integral equation:

x(t) = f(t,x(t))/o v(t, T, x(7))dr,

where t € I = [0, 1] (cf.[11]). In this paper we will study the Volterra counterpart of the above
equation denoted by

2(t) = g(t) + f(t,2(2)) /0 ot 7, 2(7))dr, (1.1)
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where t € I = [0, 1].

Existence of solutions for nonlinear integral equations, which contain particular cases of
important integral and functional equations such as nonlinear Volterra integral equation,
Urysohn integral equation and integral equations of Chandrasekhar type, have been considered
in many papers and books [9],[3]-[15]. In [7] monotonicity properties of the superposition
operator has been applied in the investigations of the solvability of a nonlinear quadratic
integral equation of Volterra type. Also, authors have shown that under some assumptions
the mentioned integral equation has monotonic and nonnegative (or positive) solutions in the
space of real functions continuous on some bounded and closed interval.

Here, we investigate the smoothness property of the solution of the integral equation
(1.1). Then we extend the successive approximation technique based on a fixed point method
proposed in [16], and derive an error bound for the method. In Section 2 some preliminaries
are introduced. Existence of the solution and fixed point method for the integral equation (1.1)
are discussed in Sections 3 and 4. In Section 5, the smoothness of the solution is proved under
appropriate assumptions on the smoothness of the data. Section 6 is devoted to the numerical
solution based on a fixed point method, a quadrature rule, and an interpolation method. Then
the convergence and error analysis of this numerical technique will be discussed in Section 7.
For this purpose, we derive bounds for quadrature and interpolation errors, separately. Then
we will find a total error for the iterative method. Next, adaptive quadrature will be presented
in Section 8 to reduce the cost of computations. Section 9 is devoted to numerical examples to
illustrate the accuracy of the numerical method. Finally, in the Appendix we will prove some
stability and convergence estimates for cubic spline interpolation under assumptions which
allow for adaptive mesh refinement.

2 Preliminaries

Let us introduce some necessary tools which have been mentioned in ([7]). The superposition
operator is one of the simplest nonlinear operator used in nonlinear functional analysis. On
the other hand it is very important in the theory of integral and differential equations (cf.
[2]). In order to define this operator assume that J is a nonempty subset of the real line R.
Consider the set X of real functions acting from the interval [a, b] into the set J . Further,
let f:]a,b] x J — R be a given function. Then, to every function = € X we may assign the
function Fx defined by the formula

(Fa)(t) := f(t,z(t), t€ [a,b].

The operator F' defined in such a way is called the superposition operator generated by the
function f = f(t,x).

The main tools used in our considerations are the concept of a measure of noncompactness
and the concept of degree of monotonicity of a real function. In order to present the first
concept mentioned above suppose that E is a real Banach space with norm || - ||. For a given
nonempty subset X of E denote by X, conv (X) the closure and the closed convex hull of
X, respectively. Further, let Mg denote the family of all nonempty and bounded subsets of
E and by Ng its subfamily consisting of all relatively compact sets. We recall the following
definition from [3].

Definition 2.1 A mapping i : Mg — RT = [0,400) is said to be the measure of noncom-
pactness in E, if it satisfies the following conditions



(1) the family ker (1) = {X € Mg : u(X) = 0} is nonempty and ker (u) C Ng;
(2) XCY = pu(X) < p(Y);

(8) w(X) = p(conv (X)) = u(X);
(4) pAX + (1 =N)Y) < Au(X)+ (1 =N)u(Y) for X €]0,1];

(5) if (X,) is a sequence of closed sets from Mg such that X,41 C X, forn=1,2,..., and if
lim,, o (X)) = 0, then the set Xoo = [,y Xy is nonempty.

A measure p is said to be sublinear if it satisfies the following two conditions:
(6) n(AX) = \[u(X) for A € R;
(7) p(X+Y) < p(X) +p(Y).

The family ker (1) described in Definition 2.1(1) is called the kernel of the measure of
noncompactness p. More information about measures of noncompactness and their properties
can be found in [3]. For our purposes we will only need the following fixed point theorem [3].

Theorem 2.2 Let () be a nonempty bounded closed convex subset of the Banach space E and
let T : Q — Q be a continuous mapping and p(X) be the measure of noncompactness in E.
Assume that there exists a constant k € [0,1) such that u(TX) < ku(X) for any nonempty
subset X of Q. Then T has a fixed point in the set Q).

In what follows let I = [0, 1] be a fixed interval in R. Denote by C' = C(I) the classical
Banach space of all continuous real functions on I equipped with the standard norm ||z| =
max{|z(t)| : t € I}. Now, let us fix a set X € Mc. For z € X let us define the following
quantities (cf. [5]):

d(z) :=sup{|z(s) — z(t)| — [z(s) —x(t)] : t,s € [,t < s}.

Analogously, put
d(X) :=sup{d(x) : x € X}.

Observe that d(z) = 0 if and only if = is nondecreasing on /. Similarly, d(X) = 0 if and
only if all functions belonging to X are nondecreasing on /. Thus the index d(z) represents
the degree of decrease of the function = on I. Analogously, the quantity d(X) measures the
degree of decrease of functions from the set X.

In what follows € > 0 and denote by w(z,e) the modulus of continuity of the function =z,
ie.

w(z,e) :=sup{|z(s) —x(t)| : t,s € I, |t — s| < e}.
Similarly, let us put

w(X,e) :=sup{w(z,e) :x € X} and wo(X) :=limw(X, e).

e—0

Finally, the function p is defined on the family My by putting
1(X) = wo(X) + d(X).

It can be shown [5] that the function u is a measure of noncompactness in the space C/(I)
with the kernel ker (1) consisting of all nonempty and bounded sets X such that functions
from X are equicontinuous and nondecreasing on I. For other properties of p see [5].
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3 Existence of the Solution

For the nonlinear Volterra integral equation (1.1), existence of the monotonic solution has
been proved by Bana$ and Sadarangani [7] and we sketch, for convenience, the main ideas of
the general theory.

Assume that f is a real function defined on the set I x J, where J is an arbitrary real
interval. We consider the superposition operator (F'z)(t) = f(¢,z(t)) under the following
assumptions.

Assumption 3.1

(o) The function f is continuous on the set I X J.
(B) The function t — f(t,z) is nondecreasing on I for any fized x € J.
(v) For any fized t € I the function x — f(t,z) is nondecreasing on J.

(0) The function f = f(t,z) satisfies the Lipschitz condition with respect to the variable x,
i.e. there exists a constant k > 0 such that for any t € I and for x1,x5 € J the following
wequality holds

|f(E,w2) = f(t, 21)] < Elwg — 2],
Then the following result is implied.
Theorem 3.2 Let Assumption 3.1 be satisfied and x € X; C C(I). Then
d(Fz) < kd(x).

For a proof, we refer to [7].

The above theorem implies for any function f which satisfies the Lipschitz condition with
a constant k < 1 (cf. the Assumption 3.1(¢)) that the superposition operator F', generated by
the function f, improves the degree of monotonicity of any subset X of X ; with the coefficient
k.

Corollary 3.3 Suppose the function f(t,x) = f : I x J — R satisfies Assumption 3.1(«), (3).
Moreover, we assume that the partial derivative Oy f of f exists, is nonnegative, and bounded
on the set I x J. Then f satisfies the assumptions () and (6) with the Lipschitz constant k
defined by

k= sup{Oaf (t,x) : (t,x) € I x J}.

Using the measure of noncompactness and the results established in this section, Banas
and Sadarangani in [7] showed that (1.1) has monotonic and nonnegative solutions under the
following assumption.

Assumption 3.4

(i) g € C(I) and g is nondecreasing and nonnegative on the interval I.

(i) The function f : I x J — R satisfies the conditions (a) — (0), where J C RT is an
unbounded interval and gy € J, where go = ¢g(0) = min{g(t) : t € I}. Moreover, f is
nonnegative on I X J.



(i1i) There exists a nondecreasing function k(r) =k : [go, +00) — R such that
[f(t, 1) = [t 22)] < E(r)]zy — a2 (3.1)
for any t € I and for all x1,x2 € [go,T].

(iv) v:IxIxR — R is a continuous function such that v : I x I x R™ — R* and for
arbitrarily fived T € I and x € R the function t — v(t, T, ) is nondecreasing on I.

(v) There exists a nondecreasing function p : R™ — RY such that
v(t,1,2) < p(x), (3.2)
fort,m €1l and x > 0.
(vi) There exists a positive solution ro for the inequality
lgll + (rk(r) + Fo)p(r) <, (3.3)
where Fo = ||f (+,0)||. Moreover, k(ro)p(ro) < 1.
This assumption implies the existence of a solution as stated in the next theorem.

Theorem 3.5 Let Assumption 3.4 be satisfied. Then, equation (1.1) has at least one solution
x = x(t) which belongs to the space C(I) and is nondecreasing and nonnegative on the interval
I.

For a proof, we refer to [7].

4 Fixed Point Method and its Convergence

In this section, we present some assumptions to guarantee the unique solvability of equation
(1.1) and then show that the fixed point method converges to this solution. For this purpose
we follow the notation in [7]. Let us take the subset S of the space C(I), S = {z € C(I) :
z(t) > go = g(0) for ¢ € I'}, and define the operator T' on the set S by the formula!

Tx:=g(t)+To(f,v,x) with (T (h,w,x))(t) := h(t,z(t)) /Ot w(t, 7, z(7))dr.  (4.1)

From the proof of Theorem 3.5 it follows that 7" transforms the set S into itself as well as the

set
Sry ={z € S [lz]| <o}, (4.2)

where ry > 0 is as in Assumption 3.4(vi). S,, is nonempty. Since ry > go, and S,, is a
bounded, closed, and convex subset of C'(/), also 7" is continuous on the set S,, and has at
least one fixed point in this set.

We choose the initial function z, € S,, and generate the sequence (z,(t)),-, by the
recursion

Tas1(t) = (Tza)(t) = g (1) + f(t, (1) /0 o(t,Tan(r))dr, tel, n>0.  (4.3)

o0

We show in the following theorem that under the given assumptions the sequence (z,(t)),_,

generated by T': S,, — S, converges to the unique fixed point z(t) of 7.

For h = f and w = v we write Tyz short for Ty (f,v, ).
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Theorem 4.1 Let the function T : E — E have a fixed point z, i.e., T(x) = x. Further let
Sr(x) ={ye E:|y—=z| <r} be a neighborhood of x such that T is a contractive mapping
in S,(x), that is,

IT(z) =Tl < Lz —yll, 0<L<1,
for all x,y € S,(x). Then for any xy € S,(x) the sequence x,+1 =T (x,), n = 0,1, ..., has the
properties

(a) z, € Sy(x) for alln =0,1,....

(b) Hxn—l—l - x” < LHxn - x” < LnJrleO - x“>
as well as

T, — x| <
= ll < 5
i.e., (xy), converges at least linearly to x.
For a proof, we refer, e.g., to [19].
Theorem 4.2 Let the operator T, as in (4.1), satisfy the following assumptions

(a) The function v(t,T,z) satisfies the Lipschitz condition with respect to variable x with
constant ¥ > 0, i.e.,

Vi,7 €1 Vri,29 €S,y lo(t, T, 22) — v(t, 7, 21)| < O|ag — 2] (4.5)

(b) 7o satisfies Assumption 3.4(vi) as well as the following inequality
p(’l“o)k’(’l“o) + (7"0]{7(7“0) + Fo)’(9 < 1.
This relation implies k(ro)p(ro) < 1 (mentioned in Assumption 3.4(vi)) automatically.

Then the operator T is a contractive mapping in Sy,, so it has exactly one fixed point and
the generated sequence (x,(t)), -, is converging to this fived point, i.e.

lim x,(t) = z(t), Vtel, (4.6)
where (Tx)(t) = x(t), and
o — 2 < —2r s — o] (4.7

where 0 < L < 1.

Proof. Suppose that x,y € S,,, then for ¢t € [ it holds

(Ta)(t) — (Ty)(b)] < 'f(m(t)) / olt, s, 2(s))ds — F(t,y(t)) / o(t, s, y(s))ds

S'f(t,x(t))/o u(t, s,x(s))ds—f(t,y(t))/o v(t, s, x(s))ds

n 'f(t,y@)) / olt, s, 2(s))ds — F(t,y(t)) / o(t, 5, y(5))ds

—y@)l / olt,s,2(5)) + F(t,y(1)) / [o(t, 5, 2(5)) — v, 5, y(s))|ds

|
=(p(ro)k(ro) + (rok(ro) + Fo)d)||lz(t) —y (@)
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Let L := p(ro)k(ro) + (rok(ro) + Fo)¥. From Assumption (b) we conclude that L < 1 holds.
Hence the operator T satisfies the Lipschitz condition, i.e.

[Tz — Tyl < Ljjz —yl|. (4.8)
Now, suppose z,y € S, be the fixed points of 7. Then
|7 —yll =Tz - Ty| < Lf|z — yl|.

From 0 < L < 1, one concludes that * = y holds. Hence, T" has a unique fixed point in .S, .
The combination of (4.8) with Theorem 4.1 implies (4.6) and (4.7) with £ = C(I).
O

Remark 4.3 Assume that v(t,s,x) has a continuous partial derivative 2% in its domain D,, =

oz
[0,1] x [0,1] x J. Then v is Lipschitz continuous in x.

5 Properties of the Solution

In this section, we prove that for m-times differentiable functions ¢(t), f(¢,z), and v(¢, s, x),
the corresponding solution x(¢) has m derivatives, too. For d € N and ¢ € Ny, we introduce
the index set

d
= {neNg |l <0} with |u] =),
=1

while, for dq,ds € N, we put

i = {(v) € i xR |l + v < £}

For a d—dimensional domain D C R? and a function ¢ € C* (D), we set

ol = max 0%l and [l = ma %]
HEL, neL,
=2
Theorem 5.1 Let Assumption 3.4 be satisfied and let g € C™(I), f € C™( x J), v €

C™(I? x J). Assume
10211 llv]] < 1. (5.1)

Then xz € C™(I), and
" L— [0 f vl

with a polynomial p,,. Thus,

1
el < o (sl T ol - 77707 ) (53)

where 1, 1s a polynomial in each variable.



Proof. According to Theorem 3.5, we know x € C'(I). Then by induction, suppose that
(5.2) holds for all j =0,...,m — 1. We write the equation in the following way:

r=g+FV (5.4)
where .
V() = / o(t,s,2(s))ds and F = f(x (). (5.5)
0
By using Leibniz’ rule for the m-th derivative of a product we obtain from (5.4)
2 = gt £ N () Py, (5.6)
=0
It is easy to see via induction that for 0 </ <m

£ s—1
FO = (01) (o () + 303 pows (o0 a®19) (01057°) (oa (D). (5.7a)
s=1 =0
where py; is a polynomial in each variable. In particular, we have p1 (ZL‘/, - ,x(é)) = z(0
so that for £ > 1
-1
FO =208, (2 () + Ry ((a:< Doy ((07) (2 (-)))M@g) : (5.7b)
where, for x = (:Br)fjl
L s—1 ‘ ‘
R (X, ((8“f) (.’ T (')))u@?) — (aff) (.’ x ())—l—z Zp&&i (.T/, ey ;(;(€+lfs)) (aiasfzf) (,’ T ())
s=2 1=0
(5.7¢)
is a polynomial in each variable which contains only derivatives of x up to an order ¢ — 1.

Note that R, is linear with respect to f, i.e., for x = (l‘r)ﬁii

R (3, (0" i+ £2) (22 () ) = MR (% (0 F0) (oo ()yer)  (5:7d)
+Re (% (0" () (27 (D) et ) -

Next, we will consider the (-th derivatives of V. We set wy, (t) = 0%v (t,t,z (t)) and write

=
VO (t) = Zw}f—l ) / v (t,s,x(s))ds.
k=0

We set Wy, (t,y) := Ofv (t,t,y). Asin (5.7a) we get

J

wi = (O]We) (o () + D0 D P (s, aT) (81057 W) (o () -

s=1 =0
On the other hand, we have
QWi (t,y) = Vipdfuwy (t,t,y)  with Vi, => ()ojos

r=0



so that

= Vi (- +Zzpw e 2T (DEVL,0570) (- 2 (7))

s=1 1=0

This leads to the representation

VO =k, (( (r) (0 (-, - ua / v (s)) ds,

where ky is a polynomial in each variable (") and linear with respect to v (in an analogous
way as (5.7d)).
The representations for V¥ and F® allow for a representation of 2("™. We introduce the

operator
HO (f7 va) = f ('7'T ()) v ('7 T ()) .
Then, it holds for ¢/ > 1
(g+ FV)Y = ¢ 4 20T (95 f, v, z) (5.8)
.y -1
+ Q§ ((HO (aﬂf’ a v, x))(u,y)eifl ) (.flj( ))7’:1>
v r -1
+ C]? (TO (aﬂf’ alv)(#,y)givl ) (Zlf( ))7":1> )

where qé’H are polynomials with respect to each argument z(") while they are linear with
respect to the first arguments:

a: ((Ho (0 (M + £2),00)) ez, +x) = Mt ((Ho ("1, 00)),pc0, %)
+a ((Ho (9" (f2),00) uupezs, %) -

Analogous relations hold if v is replaced by )\vl + vy and also for ¢f'. Hence, there exist
polynomials p} (z) and pi! (z) with z = (z,)'_} such that for & = () (uyei2e, and ¢ =

) -1
(Cﬂ,y)(u’y)@?,l it holds

& (&.2) < €]l p} (2)
' (¢ )| < 1Kt (=)

Hence, the estimate

lg + FV|£ < ‘g‘z + |5L°‘z HaZfH HU” + ||f||z ||U||H§€ (||xHe—1) (5.9)

follows for some polynomial p,. This implies

1
rl, < ————— Ugl, + [l vl De (lzll,—1)) -
‘ |é 1_ Ha2fH HUH (‘ ‘z H Hé H Hé 4 (H ||z 1))

and the assertion follows by induction.



6 Numerical Solution Method

In this section, we will present a fully discrete fixed point method for the integral equation
(1.1). We approximate the function x (t) by cubic spline collocation and employ a quadrature
method to approximate the integral.

Continuous non-linear Volterra integral equation of second kind:

x(t) = g(t) + f(t,x(t))/o v(t,s,x(s))ds, tel=1]0,1]. (6.1)

Fixed point iteration: By choosing the initial function xy = ¢, the corresponding fixed
point iteration is:

Tnr1(t) = g(t) + f(t,:nn(t))/o v(t, s, n(s))ds,

forn =0,1,..., which converges to the solution under the assumptions as stated in Theorem
4.2.

Spline collocation: We choose collocation points tg = 0 < t; < -+ < t,_1 < ty =1
and define a partition A = {7y, 79,...,7n} of the interval I into subintervals 7; = (x;_1,x;),
1 <4 < N. The space of cubic spline functions subordinate to A is denoted by Sa. For nodal

N
values w(™) = (wz(n)> at time points ¢,, we denote the cubic spline interpolation operator
i=0

by Ia. Then, the fixed point iteration with spline collocation is given by setting 25 = ¢ and
determining, for n = 0,1, ..., the functions xﬁﬂ = Ia (x("“)) € S by their nodal values

2" = g(t:) + f (ti, ] )/“vui,s,xﬁs))ds, i=0,....N. (6:2)
0

Quadrature Approximation: To approximate the integral in (6.2) we use the following
quadrature rule. Let @ (u) = Z?Ql wju (&) be a fixed quadrature rule to approximate the

integral [~ 11 u and let @,y denote the scaled version for the interval [a,b], i.e., Q) (u) =

boa S wiu (1—1a+ —lb> For ¢ € ]0,1], define ¢ = i (t) by t € |t;_1,t;] and define the

quadrature approximation by

/Ov(t,s,:c())dSNQt ZQTJ t.x()), where7, ::{Tj I<h (g3

[tifl,t] ] =1

We use the short hands Q;, w;;, sij, n; if t = t; is a collocation point. By substituting this
approximation into equation (6.2) we obtain the following recursion;

Initialization: Q A g

forn=0,1,... X (tz)+f<tZ,X("))Qi(:c§7A), i=0,... N (6.4)

7

2@ = Iy (XD

7 Error Analysis

In this section, we will derive a bound for the total error by analyzing the three approximation
steps (fixed point iteration/spline collocation/quadrature). First we are concerned with the
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convergence of the method and start to prove a version of Theorem 4.2 for the fully discrete
case. We introduce

g=(g(t), and Q(x)=g+Q(x) with Qo(z):= (f (i (1) Qi(x)y. (7.1)

so that the iteration (6.4) can be written in the form: z® := g and

ngl =1AQ (xS’A) . (7.2)
Theorem 7.1 Let (4.5) and Assumption 3.4 be valid. Let

and Cq := max
vERN+1\{0} HVHmax

CA =
1<i<N ZJ owm

and assume (cf. Assumptions a,b of Theorem 4.2)
L = CACQ (k’ (’f‘o)p(’f‘o) + (’I“()/{? (7“0) —I—Fo) 19) < 1. (73)

Then, the operator InQ s a contraction in S,,, so it has exvactly one fized point and the
generated sequence (x32) (cf. (7.2)) is converging to this fived point, i.e.,

lim 794 = @4,

n—oo

where 2% = IAQ (xQ’A) and

Hx%’A QAH < :UQ’AH for some 0 < L < 1. (7.4)

LH 0

Remark 7.2 In Theorem A.1, we will prove that Ca can be bounded always in terms of the
global quasi-uniformity of the mesh or, alternatively, under some mild assumptions, in terms
of the local quasi-uniformity of the mesh.

Proof of Theorem 7.1. Let z,y € S,,. It holds

1(1aQ) (z) = (1aQ) W)l < CallQ (2) = Q (1)l max

The difference in the right-hand side can be written in the form

Q) —Q(y); = (f (ti,z () — f (ti,y (t))) Qi (2)
+ (f (t,y (t:)) — f (£:,0) + f (£:,0)) (Qi (z) — Qi (y)) -

From (3.1) and (3.3), we conclude that

(Q(z) — Q)] <k (ro)[lz —yl Qi (2)]
+ (rok (ro) + Fo) |Qi (z) — Qi (y)] -

Next we estimate the terms related to the quadrature method. It holds

(3.2)
Qi (z wav tysij o (sig))| < Cap(ro)
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with the stability constant Cq of the quadrature method. Furthermore, we get

Qi (x) = Qs W) <D wisl [ (8,515, (1)) — v (505, (s15))] < Cqi |z —yll  (7.5)
=0

for all z,y € S,,. Thus

17aQ) () = (1aQ) (W)[| < Calq (k (ro) p (ro) + (rok (ro) + Fo) 9) [l — y/| - (7.6)

Hence, the assertion follows by using the same arguments as in the proof of Theorem 4.2.
O
In the following theorem, the total error x — 294 will be estimated.

Theorem 7.3 Let the assumptions of Theorems 4.2 and 7.1 be satisfied. Then, the error
eQA 1= 1, — 292 satisfies

HGS’AH < max 0y,

1 — La 0<t<n
with

0 = [lg = Lagll + [[To (x2) = 1aQo (/)| (7.7)
and La as in (7.3).

Proof. Recall the definition of g, Q, and Qg as in (7.1) and the fully discrete iteration
:L’Sfl = 1AQ (222 . (7.8a)

Also recall (cf. (4.1)) that the (n+ 1)st iterate (without interpolation and quadrature) is
given by
Tp+1 = g + Toxy. (78b)

The interpolation operator I was defined for pairs (¢;, fi)i]io and we extend the definition to
continuous function by setting

Inf:=1Ia(f) with f:=(f(t:)),.

From (7.8) we conclude the relation

e =9—Iag
+ TO (xn) - IAQO (xn)
+ 1A (Qo () — Qo (%?A)) .

For the third summand, we get (cf. (7.6))

175 (Qo (@) — Qo (299))| 'S La [l — 222

so that

38 <o a1
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By using eOQ’A = 0, we get by induction

n—1
[e2]] <> Labnae <
=0

max 0,
— LA 0<t<n "

g

We are left with an estimate of §,, and first consider the second summand in the definition
of §,,. We split the quadrature error from the interpolation error via the estimate

176 (2n) = IaQo (wn)|| < [I(1 = 1a) To ()] + Ca [[(To (2n) — Qo (xn))l, (7.9)

where Ty (z,) == ((To (z,)) (t;))Y,. These terms are small only if x,, and Tj (z,) are (uni-
formly) smooth with respect to n. In this light, we will investigate a recursion for the deriva-
tives of x,,. The iteration for 93%), ¢ > 1, can be written in the form

1 = g9+ (F )¢ (7.10)
where (cf. (5.5))
Vo (t) == /0 v(t,s,zn(s))ds and F,:= f(-,2,(-)).

From (5.8) we conclude that

o)y = go (z) + 20Ty (0 f, v, 20) (7.11)
with
©® wr av ()t
ge (2) i= 9 + g} ((Ho (9,00, 2)) pcs, - (2), ) (7.12)

g (T (0 ,050,2)) pezr - (27), 1))

Theorem 7.4 Let (3.1) and (3.2) be satisfied. Let xo = go. Let the assumptions of Theorems
4.1, 4.2, and Theorem 5.1 be satisfied for some m > 1. Let By := 1o + po, where 1y is as in
Theorem 4.2 and (cf. (5.3))

1
pr:w(g S v —) 0<l<m.
e (e
Forn >0 and ¢ € Ny, let
Cy (D) = {ue (1) | lul, <n}.
We assume that the functions f € C™ (I x [—fo, fo]) and v € C™ (I x I X [—fo, Po]) satisfy
[0f (8,€) = 0" (£: )| < Couga 16 = and - [0"F (1)l < Cpirg, (7.13)

1070 (¢, 5,€) = v (t, 5, Ol < Couy, 1€ — €I and [|0v (¢, 5, )|l < T g,

for all £,¢ € [—Bo,Bo), t,s € I, p € (2, and v € 13,. Then, x € C™(I) and the iteration
(7.11) converges towards x for all 0 < ¢ < m:

o =2 < Cen+ ymg

for some my € 10,1] and Cy > 0. Furthermore, there are constants B¢ > 0 such that
x, €CH (I)NCY, (I) YVneN  VO<(<m.

13



Proof. We apply Theorem 4.2 to conclude that Hx(z)H < p¢ holds for all 0 < 7 < m.
Theorem 4.1 implies z,, € Sy, (z) C S, (z) so that

[2n]l < ln =[] + l|2]] < Bo = 70 + po.

Note that T and Hj are Lipschitz continuous with respect to the last argument: For functions
z,y € C§ (I) it is easy to see that

|0 (91, 040.2) = T0 (.00, 9) | < €L,y Tl =l .
HHO (a)\fv aV'U,.T) HU (a)\f 81}1} y)“ < Cakfauv Bo H'T - y“ ) .

and o 11
T
I O(aAﬁ 1:’ )| < Caﬁfa]vﬁo (7.14b)
1o (21,00, 2) || < C s vy

for all (i, ) € ¢ and (\,v) € 122 | with (cf. (7.13))
Chago = ChgoCugy T Chipyr Cugy and Chly 5 7= Chigy Cuy -

For 1 </ <m, let

H, (x) = (Ho (0" f,0"v,x)) 25 and T, (x) = (To (0" f, 81”U,x))(%y)@tg,1 .

(p,v)eL

For x,y € C} (I) and 1 < ¢ < m, we conclude from (7.14) that

1L (2) = e ()]l < Chrprgp, Iz — oyl and  [[He ()] < Creoy g,
ITe (@) = Te ()| < Crpg, |z =yl and [T (2)]| < Crypp,

holds with

LI L LI LI LI
Che-160 = WX Coupovng and Cpyg = max Cgupo, g,
(/‘7”)6%771 (/L,V)GLZ

Let x = (z,)'_] € R with x|, < 8 for 8> 0. Since ¢;"" in (5.8), (7.12) are polynomials,
there exists constants C}ﬁ, C’gﬁ depending only on 3 such that

0(¢.%) — g€ )] < Lyl — Ellpa Y€ = (G reaz, & = ) oo
08 (€ %) — @ (6.3 < O 1IC — €l YE = (o)t € = (€ ez,

Hence, for z,y € C§ (I) N C§, (I) it holds

l9e () — g¢ ()| < Chg He () — Hy ()] + Clg || Te () — Ty (y)
< Cureppllz =yl with Cuxepgp = Cgﬁoﬁ,@lﬂo + C CT(BO

Next, we consider the convergence of the recursion (7.11). It holds

Hx(@ - x(}rl ‘ S ||g€ (Zlf) — ¢ (CL“n)H—I-,Og HTO (ana U,Zlf) - TO (agf,'l},l'n)H‘l‘Hl'(é) - x%)H HTO (an? v, Zlfn)H .
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Since z,z, € Cj (I) we conclude that
|To (D2 f,v,2) — T (Oof, v, 20)| < Cézf,vﬂo |z — 2| and ||To (Oaf, v, 2,)|| < C, Bzfvﬁo

holds and (cf. (4.7))
-,

+ 10 |29 — 2| (7.15)
with

1
CH7T7Z75750 _'_ pZCBnyvvﬁo
1—-L ’

By induction we obtain from (7.15) the convergence of xfﬁrl towards z(¥

‘ <,WznkLn k n+1Hx(Z)_x(()f)H‘

(5.1)
Mo = Caypupp = 02f | 0l <"1, 5e:=2r Bi= Nzl eatsupllonls

6)
H - anrl

Let 7 := max {no, L} € ]0, 1] and observe H:U(Z) — 93(()@” < pe + ||g®]|- Then,

wa) - xﬁfil” <%Cr(n+1)n7 with Co=~+m0 (pe+ [|g“]]) -

In addition it holds
Sup |29 < pe+ 1 Ce sup ((n+1)nt).

O
In order to estimate the quantities d, in (7.7) we have to impose some concrete assumption
on the quadrature method ;. We assume that

max
1<i<N

/ti v (t, 7,2, (1)) dT — Q; ()| < Chfyy (7.16a)
0

holds for 0 < ¢ < ¢y, where ¢, depends on the exactness degree of the quadrature (); and the
smoothness of v and x:

v@H with Vi (s) i= v (£, 5,2 (5)) . (7.16b)

Vp := Imax ’ f

0<i<N

Theorem 7.5 Let the assumptions of Theorems 7.3, 7.4, and A.1 be satisfied. Then, for
1 < /¢ <min{4,m} with m as in Theorem 7.4, it holds

<1 (MH+WMMM)

lew

Proof. Note that z,, € C§, (I) N C’go (I) for all 0 < ¢ < min{m,ly} (cf. (7.16)) and

(To (zn) — Qo (zn)) ]| <C'f5 max

0<i<N

ti (7.16)
/ v (t, Ty, (7)) dT — Qi (x)] < C}fﬁOChél/g.
0

Similarly as for the considerations (5.7) related to F*) in the proof of Theorem 5.1 we conclude
that

|| < Celizl, o], < Cope ol

15



holds so that
||<T0 (SCn> - QO (xn))H S C]Ifago Hng Cgnghz.

Since g € C* for 0 < ¢ < m < 4 we can apply (A.1) to get
lg — Iag| < CR*||g"Y]|.
Finally, we observe that
(T = 18) To () | < OB [(Towa) |

Since Tp (z,,) = F,V,, (cf (7.10)), we conclude from (5.9) that

| )| < Coelisl ol

i

8 Adaptive Techniques for Quadrature and Spline Col-
location

In this section, we will introduce an adaptive strategy for the iteration (6.4). Such an approach
is preferable compared to the use of uniform meshes if the solution z (¢) has large derivatives
only in a local part of the interval such as t* for non-integer or large «. In such cases,
non-uniformly spaced quadrature and interpolation points can be much more efficient.

To set up an (heuristic) strategy in order to balance and to estimate the different errors
we recall that the total error consists of the following four terms:

El = 1[_/"[/ ’ 8 — :UOQ’AH (cf. (7.4)),

B = g~ Lagl (et (7)), o
B = o U= I @)l (e (mD)/(79),

B = 2 (T ) — Qo ()| (ef. (7.0)/(7.9)

Let € > 0 denote a given tolerance. Our goal is that each of these four error terms is of order

e/4. After x?’A is computed, the total number n of iterations is determined by the condition
Ln

1—-L

Hx?’A — x(?’AH <e/4.

The initial mesh A, with, possibly, variable mesh widths, is chosen such that F% < e/4. A
very simple adaptive procedure for this purpose is given by starting with a coarse mesh G
and determining the quantities?

V71 € G A= lg — IAQHCO(T) and  Apax = mMax \,.

1—La

2Note that in compuations the evaluation of ||g — Ia gHCo(T), typically, has to be replaced by the maximum
over |(g — Iag) ((t;))] for a finite set {t;;:1 <i<n.} CT.
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Then those intervals 7 are bisected which satisfy A, > aAy.x for some given threshold o €
10,1[. The resulting mesh is denoted by G; and this refinement step is repeated until Apay <
e/4. This gives the starting mesh A for the iteration (6.4).

Since the accuracy of the quadrature method is related to the smoothness of both functions,
v and @2, we will base the mesh adaptation on an error indicator for the local quadrature:
If a new quadrature point is added to the mesh by this indicator, then, the spline space for
the next iteration will be enriched as well by this quadrature point as a new collocation point.

In order to get an indication on the size of ERX", we evaluate the new iterate :cgﬁ at the
midpoints of the intervals m; := % (t; + t;—1) and compare these values with

x7?+1 (mi) =g (mi) + f (mufﬂg’A (mi)) Qum, (CUS’A) :

Then we use

1

Q QA
1—1In 12.?](\[ Ty (M) — 257 (M)
as an indicator for the quantity Eﬁtn The following section is concerned with the quadrature

error Fauad,

8.1 Adaptive Quadrature

An adaptive quadrature method has been introduced, e.g., in [17] and we briefly sketch the
procedure which takes into account that, locally, the variations of the function could require a
higher resolution by the nodal points while in other parts a lower resolution might be sufficient.
The proposed method is based on Simpson’s rule. Simpson’s rule on an interval 7 = (a,b) is
given by
h

Sz (f) = 5 (f (@) +4f (mr) + [ (b)), (8.2)
where m, = (a + b) is the midpoint of 7. It is well known that, for f € C*(7), there exists
a value d; € 7 so that:

5 [ (dy)

I (f) = / f@)dz = S, (f) = B (8.3)

Refinement

A composite Simpson rule for 7 is given by splitting 7 = 71 U 71! with 71 = (a,m,) and
11

T = (m,,b)

I () % St (1) 4 S (1) = o (F (@) 47 (m0) 42 (me) 4 4F (o) + £ () (8.4)

Note that only two additional function evaluations (compared to (8.2)) are required. In
formula (8.4) the step size is h/2, which accounts for the factors h/6 on the right-hand side
of the equation. Furthermore, if f € C*(7), there exists some value dy € T so that:

B F@(dy) B FD (dyn)

IT(f):STI(f)+STII(f)

25 90 25 90
he fD(dy
=S (f) + S, (f) — 1_6 / 98 ) (85)

17



Assume that f®(d;) ~ f*(dy). Then, the right-hand sides of equations (8.3) and (8.5) are
employed to obtain the relation

(4) 5 £(4)
s/ P(de) b7 f(dy)
which can be written as
4)
st (d2) 16 _
Then (8.7) is substituted into (8.5) to obtain the error indicator:
1
|1 () = (S (f) + Seu ()] = 12 1501 (f) + S (f) = 57 ()] (8.8)
This justifies the following test.
Accuracy Test
Assume that the tolerance e, > 0 is specified for the interval 7 = [a, b]. If
1
—5\571 (f)+ S (f)=S:(f)| <e-, (8.9)
we infer that
17 (f) = (Sp (f) + Sen (F))] S er (8.10)
Thus the composite Simpson rule (8.4) is used to approximate the integral
I (f) = (Sm (f) + S7u (f)) (8.11)

and we use the computable value of ¢, (cf. (8.9)) as an error indicator.

The adaptive quadrature is based on Simpson’s rules (8.2) and (8.4) and controlled by the
accuracy test (8.9): Assume that a tolerance € > 0 is given for approximation the integral
fol f. For 0 < £ < ly,ax, we will generate recursively a sequence Gy = {7, : 1 <1i < N;} of sets
of disjoint subintervals in [0, 1]. We assume that Gy is a coarse (typically uniform) partition of
[0,1] and the approximate integral value is initialized by setting S := 0. At level  =0,1,...,
we compute for each interval 7,; € G, the quantity

1
5 i = T
AT
If §p; < ﬁ%e then S «— S + ST} (f)+ STZH. (f). Otherwise, we bisect the intervals 7,; and set

Ger1 — (Gepa\ {7e:}) U {7};,7/5}. The algorithm is terminated if no subinterval is refined
furthermore.
Now, in each fixed point iteration we use this method to approximate the integrals

Ser () + 5o (f) = 57, ()]

Tei

t;
/ v(ts, s, 22%(s))ds, i=1,...,N
0

with an accuracy of order ¢/4.
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9 Numerical Examples

In this section, some examples are presented to test the accuracy and application of the
proposed method.

Example 9.1 Consider the following quadratic Volterra integral equation with the exact so-

lution x(t) = %:

(1) :g(t)+f(t,x(t))/0 ot s,z (s)ds, tse[0,1],

where
g(t) :== /10 — t /(1 +t) In(1 + t1°/10)(¢3 /2 + t*1 /110),
flt,z):=({t/(1+1)In(l+2z),
v(t,s,x) :=ts+ x.
The function g is mondecreasing and nonnegative on I and gy = 0, |g|| = 0.0757. The

function f is nonnegative and nondecreasing with respect to both variables on I. Further, we
have Oof (t,x) = (t/(1+1)) /(1 + x) so that k(r) = sup{d2f(t,x) : (t,x) € I x J} = 1/2
for any v > 0. Moreover, the function t — v(t,s,z) is nondecreasing on I and we have
v(t,s,x) < 1+ x fort,s € I and x > 0, thus p(xr) = 1+ x. Further, v(t,s,x) satisfies
the Lipschitz condition with respect to variable x with Lipschitz constant 9 = 1. Finally,
consider the inequalities from the Assumption 3.4(vi) (cf. Theorem 3.5) and assumption (b)
in Theorem 4.2 which have the forms

1
0.0757 + Sr(1+7) <,

1 1

2(1+T)+ 5" < 1.

It is easy to check that rqo = 0.1862 s the minimal solution of this system of inequalities. Then
the integral equation has a unique continuous, monnegative and mondecreasing solution on
I =0,1] for which x € [0,0.1862]. We see that our theory gives us a range with is close to the
ezact range [0,0.1] of the exact solution x (t). To solve the equation by the fized point iteration,
we need to determine the iteration number n and the number of mesh points N by (8.1(1))
and (8.1(83)). Note that Ry = rok(ro) + Fo = 0.0931 and L = k(ro)p(ro) + Rov = 0.6862. To
simplify the consideration we use techniques as in [10] to derive a grading function I'(t) = £3
which determines the collocation points by

3
y 7
ti:(%) . i=01,... N. (9.1)

By (9.1), the number of grid points depending on the given error (8.1(3)) is obtained. Table
(1) shows the results. As the collocation points we choose

N —i\?
t,:1—( NZ> . i=0,1,...,N. (9.2)
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Table (1) shows that, in this case, the number of collocation points is less than for the other

cases.
¢ := Tolerance

Ny := Number of collocation points with uniform mesh

Ny := Number of collocation points with nonuniform mesh (9.1)
N3 := Number of collocation points with nonuniform mesh (9.2)
FE4 := FError in collocation points
FEs := Error on whole interval 1

IT := Number of iteration

Table 1: Results for example (9.1)

3 N1 N2 N3 E1 EQ IT
1077 || 110 74 | 45 | 1072 | 107® | 39
107 || 350 | 234 [ 130 | 1071 | 10719 | 51
1071 || 850 | 739 | 400 | 10713 | 1072 | 63
10712 || 1500 | 1314 | 700 | 10~ | 10713 | 69

A Stability and Convergence of Cubic Spline Interpo-

lation

Theorem A.1 For an interval partitioning

O=th<ti <...<ty=1,

7= [tic b, hr =t —ti

with corresponding function values f = ( fi)i]\;o: let up denote the cubic interpolating spline

with boundary conditions
U

a. Then,

o _ L= fo

ta — to

luallcory < € 11E ]l max -

and 5 (1)

_ In — N2
In —In—2

(A.1)

where C' depends on the global quasi-uniformity h/hmin with by, := min {h, : 7 € A}.
Let f € C*(I) for some 0 < ¢ < 4. Then

1f —ual < CRE|FO. (A.2)

b. Let the constant of local quasi-uniformity be given by

R =

max

1<<N—

hy, o,
AU el Y
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and assume k% < 2. Then,

luallcoqy < Callfllpax with Ca < 57—, (A.4)
where C' only depends on k. Let f € C*(I) for some 0 < { < 4. Then
C
I = uall < 5——h ]| £ (A5)

Proof. For k,p € Ny, let
Skr = {v e CF(I) | Vr; v, € P,} and SpP = {ve S v (0)=v(1)=0}.
For simplicity we assume that N > 4. We construct a function .., € S*° such that
ull(t)=fix  0<k<4  0<i<N,

where, for 0 <7 < N and 0 < k < 4, the values f; are divided differences

fir = {

which are centered at

tj_k/g, N ,tj_;,_k/g} f k even,
tjf%,...,tj_l,tj“,...,tﬂ%] f kodd

51 <3l

Ji=din={ N=[5] i>N-[§] (A.6)

21
otherwise.

As usual for Hermite interpolation we initialize the divided differences by

toy.. s tel fi=fop ford=1—1iand0<k <4
———r

(k+1)x

and employ for the remaining differences the recursion

ticqy oo bim1, by eyt f— tict, .o bimt, by ooy b f
N e s N\
(m—1)-times n-times m-times (n—1)-times

hi

ticty - timi, iyt f =
—_———— ——

m-times n-times

for m > 1 and n > 1. On an interval 7 = [t;_1,t;], this leads to

4 4
Uux|,, = E fici Wiz, + E bicty oo tict b ooyt | | Wik,
—— e —~
k=0

k=0 5x (k+1)x
where, for 0 < k < 4,
(t—t;_1)" (=i—1,
t) =
e (1) {@—alf@—mk£:¢
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Thus, we get for 0 <m <4

0 m>kAl=i—1,
)Wk ‘<C1 Weem o < kAC=i—1,
h5+km /=i,

We introduce the index neighborhood (cf. (A.6))

ti=A{Jic1a—2,...,Jic1a+ 2} U{jia—2,...,jia+2}

which contains those indices which are involved in the definition of |t;_q,...t;_1,t;, ..., t;| f
N e N

m-times n-times

for 0 <m <4,0<n <4 with (m,n) # (0,0). We set
Rimin == min{h, : n € 1;}

and obtain

H<f”k)n@1
tifl,...tifl,ti,...,ti fSCQ hm+nk1max for0§k§m+n—1§4
—_—

) A 7,min
m-times n-times

Thus, for 0 < r < m <4, it holds

4 H(fn r)n 4 4 H(fn r)n y
H“aux“co SZTfhi;m+Zm+7;hf—j5_m, (A7)
s=m ,min s—0 i,min

<C\Cy (Z | o] (%)_ o

4 h 54s—1
e () )
s—0 2,min

SCBh::m H(fm)neti ’

max

where C3 only depends on the local quasi uniformity, i.e., on x. This leads to

HUAH < ||uaux|| + ||uA - uaux“
< C3 ||f|| + ||uA - uaux“ .

max

Proof of Case a. We employ [12, Theorem 2] and (A.7) to obtain

h 4
s = v = OB ) £ € (5 ) e (A3)

To prove (A.2) we assume f € C*(I) for some 0 < ¢ < 4. Then, well known properties of
divided differences imply

was {0 | Uehoea

1<i<N

b <onm 9 (A.9)

22



and similarly as in (A.8) we get

aux Y

lua — tael] < CR* [[ul8)]| < CBE || £©

where C' depends on the global shape regularity h/hpy.
Proof of Case b. From [12, Corollary] we conclude that on an interval 7 = [t;_1,¢;] it
holds

te{i—1,i}

L, (R :
[ua = tauxl[co(ry < ghi (§ HUgi)XHCo(T) + max { ul® () — u(A) (t@‘}) : (A.10)

The first term in the right-hand side of (A.10) can be estimated by using (A.7) with m = 4

, (A.11)

2\ @
(%) Ikl < €A,

max

where C4, again, only depends on the local quasi uniformity, i.e., on x. Let £ € {1,..., N — 1}
be such that

n?|dy?

= [n*a®,,
with
0 = u@ (1) —u? (1), h2d® = (h.?d@))N‘l py o= Tt P

aux i=1 2

Then, according to [12, (2)], the differences dl(-2) satisfy the relation

oudy?) + 24 + (1= ap) df, = (A.12)

hr,

—2* — and
hrythrg

with Qy =

re = agul) (ty) + 2ul) (te) + (1 — cg) ull (terr) — 6 [ty e, tea] f-
Multiplying (A.12) by hZ leads to®

Y,

2
h
hire = ay <_> h?f1d§2—)1 + Qh?df) + (1 —ay) (_g

ho_1 Pt

> h2d? (2 - K2).

2
2
) 2,042,

Hence,

*d®] (e I

maxgz_HQ

From [12, (2)] we conclude that

2 41,,4) o
n] < 20t ety < oG

max

3From (A.3) it follows

he hrpiy + hr < 1+k

= R.
hé—l h‘rg,l + h‘rg -1 + %
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with
wi=UJ{reAltier} and = | w.

1
kit €T

Thus, the second term in (A.10) can be estimated by

1
—h? max {
8 T refi—1,i}

u) (te) = u (t0)|} < Co s

and (A.4) follows.
To prove (A.5) we assume f € O (I) for some 0 < ¢ < 4 and estimate next the first term
in the right-hand side in (A.11) by using (A.7)

AN e
BN ol ey < ot 1)
For the second term in (A.10) we first observe that

max |hir;| <2 max h!|ull) (Agﬁ) it || £

1<i<N—1 1<i<N—1 a“XHCO(M)

holds so that the second term in (A.10) can be estimated by

aux

1
—h? max {
8 T refi—1,i}

u) () = ()|} < W' £

where C' only depends on the local quasi-uniformity of the mesh and (A.4) follows.
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