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Abstract — In [6] a new class of finite elements has been introduced for the coarse-scale discretization of partial
differential equations on complicated domains, In contrast to standard finite element discretizations, the minimal
dimension of these so-called composite finite elements is not linked to the number and size of the geometric details.
The approximation property of these finite element spaces can be proved in an analogous fashicn as for classical
finite elements while the constant in these estimates depend on the norm of the minimal extension operator.

This mativates the study of the dependence of the norm of extension operators on grometric details as e.g.
hales and rough boundaries. We alse consider the case of so-called cuspoidal domains and prove the existence of
extension operators in weighted Sobolev spaces.
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In many practical applications as e.g. in environmental modelling or simulation of complicated
engines, partial differential equations on complicated domains have to be solved numerically.
Such problems are usually discretized via the finite element method since, in contrast to finite
difference metheds, the use of non-uniform and adaptive meshes is straightforward. However,
the condition that a finite element mesh has to resolve the boundary of the domain links the
minimal dimension of finite elements spaces directly to the number and size of geometric de-
tails contained in the domain. On the other hand, the efficiency of many fast solution techniques
as e.g. multi-grid, extrapolation, wavelets, etc. depends on & multi-scale discretization of the
problem: Features of the solution which are visible also on coarse scales should be computed
cheaply on coarse scales.

In [4-7) composite finite elements have been introduced for coarse-level discretizations of
PDEs on complicated domains. It was proved that the approximation property holds in an anal-
ogous way as for standard finite clements. The proof makes use of the existence of appropriate
extension operators of functions in Sobolev spaces. Hence, a key problem is the investigation of
the dependence of extension operators on e.g. small geometric details or the number of details.
In [11], it was proved that, for domains containing arbitrary many holes, there exist extension
operators for Sobolev spaces, where the operater norm is bounded independently of the size
and number of the holes as long as the holes satisfy an appropriate separation condition. In this
paper, we generalize these results to more general domains and study also the situation where
the separation condition is violated.

Furthermore, we also consider domains containing cusps and prove the existence of exten-
sion operators for weighted Sobolev spaces.

*Mathematisches Institut, Abteilung Numerik und Wissenschaftliches Rechnen, Universitit Leipzig, D-04109
Leipzig, Germany
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Our approach generalizes the technique developed in [10] for the extension of functions in
the Sobolev space H'! on domains with periodically distributed holes to more general domains
and to function spaces H™ for arbitrary m € Nj.

The paper is organized as follows.

In Section 1 we introduce necessary notations and specify the class of domains we are
dealing with. Furthermore, a simple finite element space is defined allowing coarse-scale dis-
cretizations of partial differential equations.

In Subsection 2.1 we intreduce an extension operator for functions in H™ which has the
property that the seminorms of the extended functions can be bounded by the seminorms of the
original function.

Using these results we will prove in Subsection 2.2 that, for domains which consist of sub-
domains which are locally scaled images of “nice” domains and satisfy an appropriate separa-
tion conditicn, there exists an extension operator which is independent of the size and number
of geometric details.

In Subsection 2.3 we consider the case that the separation condition is violated. We will
obtain a quantitative estimate describing the growth of the norm of the minimal extension
operator® with decreasing distance of two holes.

In Section 3 we will consider cuspoidal domains and prove that there exist extension oper-
ators for functions in weighted Sobolev spaces.

1. PRELIMINARIES

In this Section we will introduce necessary notations and collect well-known properties about
classical extension operators. Furthermore, we define a simple finite element space for coarse-
scale discretizations of boundary value problems on complicated domains.

1.1. Lipschitz continuous domains

Throughout the paper, @ C R? denotes a bounded open set. Mostly, we will assume that Q is a
bounded domain or a Lipschitz domain. The precise definition is given below,

Definition 1.1. A domain is an open, connected subset of R?.
Definition 1.2, A subset A C R? is a special Lipschitz domain if there exists an orthogonal
mapping & and a function ¢ : R*"! x R — R satisfying the Lipschitz condition:
lo(z) — (2| € M|z —z'| foralz,z’ € R*?
and
A=9% ({(:c,y) ERTIXR: y> (p(.’r)}) .

For z € R™, the m-dimensional ball with radius s about z is denoted by B} (z) or just by
B, (z).

Definjtion 1.3. A bounded domain 2 is a Lipschitz domain if, for all z € 8Q, there is a
neighborhood U, of = and a special Lipschitz domain A; such that

U.nQ=U,NA,.

*Here and in the following the term “minimal extension operator” stands for “extension operator with minimal

"

norm .
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1.2. Sobolev spaces

Throughout this Subsection we assume that {2 is a bounded open set. Let C™ (2) denote the
space of all functions having infinitely many derivatives. The spaces O™ (ﬁ) and CF° () are

defined by
c= (ﬁ) = {f[g : feEC™® (]Rd)}

Ce () = {f e ™ (R“) s suppf C Qis cornpact} .
The space of functions defined on £ with bounded L?-norm:

1/2
fllpaqy = {flf (z)[* dI}
!

is denoted by L (£2). For & € N, the Sobolev space H* () is defined by:
H* (@) :={feL*(): Yae N, la|<k:8°f e L’ @)}
The space H* (Q) is a Hilbert space with scalar product
' Dawey = L [ (@) (@) ez
lal<k n
and norm
1/2
”f”H*(ﬂ) = (f, f)j!{i(ﬂ] . (1.1)
For latter purpose, we define the bilinear form (-, -)_, 5 by
(9= [@ N0
lal=k o
and the seminorm | - | iy by
|f|Hk(n) = (f, f)gf_n .

For Lipschitz domains  the space H* (Q)} can be defined in an equivalent way by using a
simpler norm as in (1.1).

Definition 1.4. Let 2 be a bounded open set. Fork € N, let
VEQ) = {f e L*(D): VaeN], jo|=k: 8°f e L2 (Q)} .
The norm on V* () is defined by:

1/2

W gy = {IF 2y + 1 rney} - (1.2)

Theorem 1.1. Let Q be a bounded Lipschitz domain. Then, H* (2) = V*(Q) and the
norms || - | gy and ||| - [l| s (o) are equivalent, ie. there exists a constant K > 0 such that

Ml griny < Nellgeny € Hlllullgeq foral u€ H*(Q) .
Proof. See [8, 1.1.11]. O

Finally, we will introduce the Sobolev spaces which vanish on a certain part of the boundary.
For this purpose, let {2 denote a bounded set and I' C 852 denote a closed subset with bounded
(d — 1)-dimensional measure. Then, we define :

Q) ={feC®(): V]|a|<k: 8f=0 inaneighborhood of I'}.

The Sobolev space HE () is then obtained as the closure of C5, (£2) with respect to the norm
|+ gy I T = O, we write HE (§2) instead of HE ().



TIB HANNOVER +495117628998 Thu Feb 19 08:58:08 2015 Seite 5 von 18

64 S.A. Sauter and R. Warnke

1.3. A simple finite element space

In this Subsection a simple finite element space for the discretization of PDEs on compiicated
domains will be introduced. This space can be regarded as a course scale generalization of
classical finite element spaces where the condition that the finite element mesh has to resolve
the boundary is relaxed, The relation to composite finite element spaces which have been
introduced in [4-7] is explained at the end of this Subsection.

To avoid technicalitics we restrict here to two-dimensional problems and triangulations
while more general situations can be treated in the same way.

Definition 1.5. The union G = {r},7s,..., 7.} of triangles ; is a triangulation if, for all
7,1 € G, either 7 = ¢ holds or the intersection T N  is either empty, a common vertex, or a
common edge.

The domain covered by a finite element mesh is denoted by Q; := UG and the set of vertices
of G by Og. The slep size kg is given by hg := max,cg h, with k, := diam(7).

For the approximation property of finite element spaces the quality of the mesh plays an
important role.

Definition 1.6. Let G denote a triangulation. G has quality C, > 0if, forall T € §:
Pf/ h-r 2 Cr

holds where p; denotes the diameter of the maximal ball contained in 7.
On triangulations, continuous, piecewise kinear finite element spaces can be defined.

Definition 1.7. Let & be a finite element mesh. The space of continuous, piecewise linear
finite elements is given by

S¢ = {u €C(Q): VTeG: ul,is afﬁ‘nc}.

Note that, for the definition of S, the domain 2 was never used. For classical finite ele-

ments, the condition
‘ Q=0g

usually appears. This condition links the minimal possible dimension of Sg to the number and
size of geometric details. For the definition of the new finite element space for coarse-scale
discretizations, this condition is replaced by an overlap condition.

Definition 1.8. Let £ be a domain. Let G be a triangulation satisfying the overlap condition
QcCQ.
Then, S3 is given by
S8 = Sgla 1= {u eCH)): I eS;: u= u“'|n} :

Composite finite elements are defined in [6], {12], and [7]. They can be regarded as per-
turbations of the simple finite element space S5. This modification is motivated by practical
reasons: composite finite elements are defined on a hierarchy of (refined) finite element grids
overlapping the domain. They have the property that the spaces are nested and an intergrid
transfer operator can be defined which is stable in the A'-norm. We do not go into these details
here but turn now to the proof of the approximation property. We state that the proof of the
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approximation property of composite finite elements is based on the approximation property of
S5 and a perturbation argument which is independent of the physical domain €.

Theorem 1.2. Let ) be a domain, sufficiently smooth such that a@ continuous extension
operator € : H?()) = H? (]Rd) exists. Let G denote a triangulation with quality C,. For

u € H? (), there exists ug € S so that, form =0, 1.

||u - U-G”H"'(n) < Ch%”“ ”u"fn(n)

is satisfied where C only depends on C, and the norm of the minimal extension operator:

Cei= sup inf llu*|| y2gay - (1.3)
%€ Hg(n] u* 3 H:m:I) H (R )
““’"H’[n) =1 u"ln =u

Proof. Let v ¢ H? (£1) and u* := €u. From the standard approximation property for finite
element functions (see [3, Theorem 3.2.11) it is well known that there exists a function uj; € S;
satisfying

* * 2—
v ugllﬂm(ns) < Chg™™ el wacap -

Let ug := u}ln € 5§ and Cl as in (1.3). Then:

0t = 0| gy < O™ 1y S CCeRE™ il -

flu — uG”Hm(n) <

|

From this proof it is clear that the dependence of the norm of the minimal extension oper-
ator on the geometric properties of the domain plays an important role for the approximation
property of the space S and also for composite finite element spaces. This motivates the study
of the dependence of this norm on various parameters characterizing the domain £.

2. EXTENSION OPERATORS FOR DOMAINS CONTAINING SMALL GEOMETRIC
DETAILS

In many practical applications (e.g. environmental modelling or composite materials) the phys-
ical domain contains geometric details. These details might be holes of various size as in porous
media, or rough boundaries as e.g. the shore of a lake, or thin but long holes appearing when
thin wires are imbedded in isolating materials. In this Section we will discuss the existence of
extension operators for such domains and the dependence on various parameters.

Let §2 be a Lipschitz domain. In [13], for all k € N, an extension operator

& HE () — H* (RY) (2.1)
is constructed explicitly satisfying
”EOUHH"(R"] < Co |lullgreqy forall ue H" (Q)
where Cy depends on k but is independent of u. However, it turns out that Cp depends critically

on various parameters describing the domain, e.g. the size of holes. Hence, we will modify this
extension operator for different situations considered below.
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2.1. A first extension operator

In this Subsection we will describe the basic extension operator which wil] be used on scaled
domains later on. We study the local situation of one geometric detail.

Assumption 2.1. Let k € N. Let ,w, * € R? be bounded domains satisfying
e Q. .wC O
e 3 = Q*\ @is a Lipschitz domain and
e meas([’) 3 0 for [ := dw N NQ*,
Theorem 2.1. Let §t and 3" be as in Assumption rm2.1 and k € N, Then there exists an
extension operator €y 1 H* (1) — H* ((0*) (depending on k) sarisfying
leaull ey S Cillulgny  Sorali ue H*(Q)
|€at|suay < Co llgaqny forall u e H*(Q) 22

where C, Cy depend on k but are independent of u.

Proof. Let u € H*(Q). Since Q is a Lipschitz domain ug := € (1) o~ is well defined.
From Friedrichs’ inequality (see [9, Théoréme 1.9]) and, by induction, one concludes that
(-, ) k. 18 @ scalar product on HE (w). Hence, by Riesz’ tepresentation theorem it follows that

the problem: find z € HE (w) such that
(z.v) o = (w0, v)_y,, forall ve Hf(w) 2.3)
is uniquely solvable. This defines the projection P : H* (w) — HE (w) by
P (uply) :=z.
The extension operator &g is defined by:

& () (2) = {

u{x), r €l
up () = Pluols) (z), z€w.

In the first step we show that €q is continuous. Let u,, := wuyl,. Using Cauchy-Schwarz’
inequality one derives:

|P (uw”?{h(u) =(P (ou)sP(“w))=k,w = (uD,P(uw)]=krw
= (& (u) P {uw)) g € |0 (u)ih'"(w} IP(Uw)Im(wg-
Using Friedrichs’ inequality again, one cbtains
1P (M gy < 7120 ()]} aray

where 77 only depends on k and w. Let Cq = Cp(€2) denote the norm of the extension operator
&p as in (2.1). The continuity of €q follows from

llea (U)”ka[n-) = ”“”ir*(n) + ||up ~ P (Uu)”?qk(u)
< el + (ol ooy + 1P dlragey)”
< el + (180 Wil psgaey + 1 110 (Wl ragey)
< el gy + (141 CZ llullfny < CFlluliire

(2.4)
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where C; depends on the constant of Friedrichs’ inequality and the norm of the extension
operator €.

Now we estimate the seminorm separately. Let Pr_; denote the space of all polynomials in
d variables of total degree < k— 1. From the generalized Poincaré inequality (see [9, Théoréme
1.5]) one concludes that, for all u € H* (Q), there exists a polynomial p € P;_; such that

o = pll ey < Clulgegg, - (2.5)
In Lemma 2.1 it will be proved that:
eq(p)=p forallpe P_;. (2.6) -
Hence, from (2.4), (2.5), and (2.6) it follows that:

leq (u) a0y = |eq (u) —lem-) = |ea (u— P)|m(n-)
< l€a (x — Pl < Crllu = Pllasgy € CC ufgiqy -

It remains to prove (2.6).
Lemma 2.1. Ler k be as in the previous theorem. Let p € Pi_;. Then €a(p) = p.
Proof. For all v € Hf (w):

(p — € (p) :v):k,w = (p:'u)=k,m - (EO (p) !v)=k,u == (EU (.p] 'v)zk‘h} ' (27)
Formulae (2.3) and (2.7) imply |

{P(p), U)=1¢,u = (& (p), ""):k,u =—(p— & (p) ’v)=k'w .

From p — & (p) = 0 on Q one derives p — €& (p) € Hf (w} and, hence, P (p} = €, (p) — p.
From &q (p) = & (p) — P (p) = p on w the assertion follows. 0

2.2. Locally scaled domains

A scaling argument implies that the extension operator € is independent of the size of the
geometric detail w. In this light we introduce, for bounded domains a, A C R®, the scaling
¥a : R¢ = R® by :r

diam(a)

Xo (7) =

and the scaled domain A, := x.(A).
Remark 2.1. Let Q, w and 2* be as in Assumption 2.1. Then

éa (u) = (€, (40x3")) o xw-

Lemma 2.2. Let C, denote the operator norm of €q, and C» the bound of the H-seminorm
estimate for €q, (¢f. Theorem 2.1). Then €q satisfies:

lea)ll ey < (G2 + (1+ diam(w)*) C1) lulluiqy  forall ue H* ().
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Remark 2.2. The norm ||| - ||| was defined in (1.2). The result of Lemna 2.2 has an auxiliary
character. It is used in Theorem 2.2 to show that the “usual” operator norm of an extension
operator is independent of the size and number of geometric details.

Remark 2.3. The result of Lemma 2.2 is interesting especially for small geometric details:
diam(w) < €p. Then, the operator norm of €n can be bounded by a constant depending only
on g and the norm of the operator €, on the scaled domain.

Proof of Lemma 2.2. Let m < k be an integer, w € H*(Q) and ¢ := diam(w). The
transformation rule for integrals implies
_ Ldf2- -1
|En(u)!ff’“(ﬂ') =& " \E’nu (u’ o Xn'.u' )‘H’"(ﬂ;)
and, vice versa,
_ om—df2

|M ° XJIIHm(nu,) =€ IulH”‘(ﬂ) ‘

Using the assumption that the norm of €, is bounded by C4, the L?-norm can be estimated
by:
||Enﬂ|ﬁ,=(n~) =e?|len, (uo XJI)”?r,t(n;,) <efleq, (uo X;lmirk(n;)
1y —12
< eCtluo le”m(nw) = &0} Thma w0 lelH’“(ﬂw}
2 2 2
<} (1 + Ek) e [ulgmy = Ct (1 +Ek) uulﬁmn) .

The H*-seminorm is estimated by:

2 d=2k -1y ]2 d—2k ;2 —12 212
leaulzuny = |E"‘w (uoxs’) may S€ O Iuoxwllmmw) = C3 [t puqay -

. O
Using the results of Theorem 2.1 and Lemma 2.2, the norm of extension operaters on do-
mains containing arbitrary many geometric details of various size can be estimated.

Assumption 2.2. Let k € Nand N C N. £,0* C R* are bounded domains and (w;),c i
a family of domains (geometric details) satisfying w; C Q" and @; Nw; = @ foralli,j € N,
i # j, such that
Q= \ U ;.
iEN
Furthermore, there exist constants C}, C35 > 0 and a family of disjoint domains (neighbor-
hoods) (£2}); v satisfying, for all i € IV, the following conditions (see Fig. 1).

1wy C 2 C O

2. ) ;= Q¥ \ @; is a Lipschitz domain.
3. meas([;) # 0 with [’ := 8w; N LY.
4

. Fori € N, the norm C ; of the extension operator of Theorem 2.1 applied to the scaled
domain §2; ., = X, (&):

ngi . H* (Qi,u.-) —+ H* (Q:,w.-)

is bounded by C} while the constant in the estimate for the H k-seminorm for €q;,, (cf.
(2.2)) is bounded by C3. '
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Figure I, The notation.

Under these assumptions one can proof the existence of an extension operator €, : H* Q) —
HE ().

Theorem 2.2, Let Assumption 2.2 be satisfied. Then, there exists an extension operator
€ : H*(Q) — H* (Q*) where the operator norm is bounded by a constant depending only on
the domain (¥ and the scaled domains € ,,, more precisely, on Ct and C} and the maximal
diameter of the holes w;.

Proof. Let v € H* (Q). Applying €q, : H* () — H* (0} to all subdomains €; results in
an extension operator €, : H* () — H* ((*). By using Lemma 2.2 its norm can be estimated
by:

2 2
e @l ey < Melllzrney + 3 Nea (@i
ieN

) "2

< lulfoqey + 3 (G5 + (1 + diam(w)*) G1)° T l1ulga,
EN

< C”u“?fk(n)

where C' depends only on C7, C3 and the maximal diameter of the holes w;. From Theo-
rem 1.1 it follows that the norm ||| - || (. is equivalent to the usual norm || - [| s (g-y. where
the equivalence constants only depend on * and are independent of the size and aumber of the
geometric details. O

We will illustrate Theorem 2.2 by two examples. First, a domain containing holes is con-
sidered.

Example 2.1. Let @ = (0,1) and (B, (2:));cn a family of balls with B, (z;) C 0
satisfying the following separation condition. There exists a constant C,,, > O such that, for
i,jEN,i#j:

dist ( Be,(x:), B, (25)) Z Ciepmax (g1, €5) 28
dist (B, (2;) ,00") > Cepti.- '

Then, the extension operator €, applied to the domain Q.= Q* \ U;ep B, (z;) is independent
of #N and e, i € N. Note that even #£N = 00 is allowed.
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Proof. Let w; := B, (z;). From@; C Q it follows that sup,. £; < 1. The domains Q}
can be chosen as the balls By, (z:) with p := (1 + C,.p/3). The scaled domains are given
by ... = By (z:) and x, (B, (z:)) = By2 (z;). Hence, Assumption 2.2 is satisfied and
Theorem 2.2 can be applied with a constant being independent of €; and #N, O

The following example shows that the norm of the minimal extension operator blows up if
the separation condition (2.8) is violated.

Example 2.2. Consider the domain (see Fig.2):
Qs = B\T  with Q= (—1-614+8% and w:=(-1,1)".

Let €nin : H'Y(S25) — HYY) denote the extension operator with minimal H-norm.

Then:
“'Emin”HI(ﬂ;)t—Hlm,s) > Cé12,
A
148
1
0 e
w
Qs
Q5

Figure 2. The domains.

Proof. It suffices to construct a function « € H'({2;) such that
N€mintill sy = C 672 fulimay -
This function v : s — R is given by
u(z) = sinh(z,).

By using arguments as in the proof of Theorem 2.1 one can show that the extension Emin{¥) is
characterized by a suitable projection operator. Let u* € H'(Q}) be any extension of u. Let
z € H}(w) be defined as the solution of

(2,0 gy = (W V)i forallve H) (w).

Then:
u(z), z € §s

uw(z)—z(z), z€w.

€min (u) (:E) = {
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For our example we choose u*(z) = sinh(z,). Using Green's formula we obtain by taking into
account —Au* + u* = 0 on w and v = 0 on fw:

du*
n vdr =0.

(v ¥) gy = / ({Vu", Vo) + u*v) dz = / (—Av* +u*)vdr -j—-/
w w B

Hence, z = 0 and &ia(w) (z) = sinh(z,).
Somewhat tedious calculations show that:

”emin(u)”?{l{n;) _ " Sinh(xl)”?‘?l(ng}
"u"%ﬂ(n‘;) I Sinh(‘”l)”i:l(n&)
_ (1 4+ &)sinh{1 + &) cosh(1 + 4)
dsinh(1 + &) cosh(1 + 8} + (sinh(1 + 8) cosh{1 + &) — sinh(1) cosh(1))
1 1
> =K.,
2 Kb+ Kb 5

2.3. Further estimates apd examples

In this Subsection we will define extension operators for long and thin holes. As an example
consider the domain (see Fig. 3):

:=0*\@ with Q*:=(-1,1)? and w:= B2{0) x (-1,1). (2.9)

Figure 3. Domain with thin long haole.

Such a domain does not satisfy Assumption 2.2 in the sense that C ; (see Condition 4) is
independent of . However, we will prove that, also for such domains, there exists an extension
operator with norm bounded independently of e, First, we will prove analogues of Lemma 2.2
and Theorem 2.2 where the norm || - || g+(q; is replaced by the simpler norm [[{ - [{[ yx () (see

(1.2)).

Lemma 2.3. Let C; and C; be as in Lemma 2.2 and let K be as in Theorem 1.1 applied to
the scaled domain 1. Then the operator €q satisfies

len(®)llgreay < (G2 + (14 diam(w)*) CLE) lulll gagny forall ue H*(Q).
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Proof. The proof is similar to the one of Lemma 2.2. Let v € H*(Q) and ¢ := diam(w).
Then:

~132 —1y)|2
leaullia. = €/ ll€a, (“C‘Xul)”;.z{n:,) < ef]len, (“°Xu1)”m(n;)

—1112 -
<eClluo leuﬁk{n.,) < eCHK fjuo le"ﬁrh(n._,]
_112 2
- EdC;"Kz Em:ﬂ,k |'u o waIH'“(Q,_,} S Csz (1 -+ Ek) Em:O,k |u|§i""'(ﬂ)
2 2
= C2K? (14 6% lullagny -

a
Assumption 2.3. Let Assumption 2.2 be satisfied and, fori € N, let K; denote the constant
of Theorem 1.1 applied to the scaled domain ;... Let

K*:=sup K; < o0.
ieN
Theorem 2.3. Let Assumption 2.3 be satisfied and €1 as in Theorem 2.2. Then
el < C liull g forall we HEQ)

where

C =1+sup (C3 + (1 + diam(w;)*)CTK*) .

icN
Proof. The proof is just a repetition of the proof of Theorem 2.2 while Lemma 2.2 has to
be replaced by Lemma 2.3, O

The following example is an application of the previous theorem. There, the extension
operator is defined in two steps.

Example 2.3. Let k € Nand ¢ € (0,3) such that 3(1 + 1) € N. Let 2 and Q* as in (2.9)
(see Fig.3). Then there exists an extension operator €ne : H®(Q) — H*(2*) bounded by a
constant independent of e.

Remark 2.4, The assumption 3(1 + 1) € N is only made for avoiding technicalities.
Proof. Let m := 1 € 2N~ 1 and N := Ngp. For i € N, we set:

), w; 1= B(0) x (‘_ 1,1) and Q, := QF \ T;.

m o m

1i—1 1
m 'm

Qr == B2 (0) x (
Let Noga := {i € N : iis odd} and Ne.., := {i € N : iis even}. For intermediate use, let

A=\ |J @.
1€ Neven

Let €o4q : H¥(92) — H*(A) be the extension operator of Theorem 2.2 with N of Assump-
tion 2.2 given by Nogs and €even : H (A) = HF{*) be the one with N given by N, For
u € H*(f1), we set

Enote (1) := Eeven (€oga(n2)) -

Since the domains w; are images of one reference domain via translation Assumptions 2.2 and
2.3 are satisfied. Thus, we may estimate €4 with Theorem 2.2 and €.y, with Theorem 2.3. It

follows: . \
2
|”€ho1c[u)|”m(n-) < Ciffl€oga(w)illzacay < Czﬂu”m(n}-
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From Theorem 1.1 one concludes that the norm ||| - || Hk(q+) 1 equivalent to the usual norm
Il - Il 3 -y - the equivalence constants only depend on 2* and are independent of . 0

Many further domains with different kinds of geometric details as e.g. domains with rough
boundaries, may be treated with this technique as well. We refer to [14] where further parameter
studies are worked out.

3. CUSPS

A domain which contains two holes touching each other in one point, say 2, is in general not a
Lipschitz domain. The boundary contains a so-called cusp at z.

In this Section we will study the existence and behaviour of extension operators in the
presence of cusps. As a model problem, we consider the domain with outward cusp (see Fig. 4):

Q= {(z1,22) € (0,1)* : 22 > z]}

where v € (0, 1).

Figure 4. The cuspoidal domain §).

In [8, 1.5.1] inward cusps are considered and extension operators from Sobolev spaces into
weighted Sobolev space are presented.
The following example, which is taken from [13], shows that there exists no extension
operator
€: HY) —» A

for any Lipschitz domain £2* with Q2 C Q*.

Example 3.1. Consider the cuspoidal domain Q with v = % and let )" be a Lipschitz
domain satisfying @ C 1*. On ), consider the function:

u(zr) = :rz_l“.

Then u € H'(Q) but u cannot be extended to (1*.
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Proof by contradiction. Assume that an extension u; = €u € H'({?*) exists. Then, u;
can be extended onto R? by Stein’s extension operator (cf. (2.1)) up = €u; € H 1(R?). Thus,
Sobolev’s theorem (see [13]) implies:

u=1ujq € L) forall l<g<oo. (3.1)

Explicit computation yields that u ¢ L'5((2) being a contradiction to (3.1). 0

Remark 3.1. Example 3.1 shows that an extension operator can only be defined on an
appropriate subspace of H*(£2). It tuns out that it is possible to define extension operators in
weighted Sobolev spaces.

For p € [1,c0) and an open set A C RY, let the Sobolev space WP(A) be defined as usual,
for example, see [1].

Definition 3.1. For p € [1,00), let o(x)} := 4”27} be a weight function and let

1/p
lellwism = (nf(lf(:r)l" + |6 f (2)[PYo(z) + |31f(3:)|”dz)

which is a norm on
Wl’p(ﬂ; 0') = {‘U- € Llloc(n) : ”‘U.le'p(n;‘,) < OO} .

Before we will give the definition of the extension operator, we shall introduce some nota-
tion.

Notation 3.1. Let
QL = {(:L'l,ﬂ':g) € (0,1)2 i o Il}, QE = {(I‘]_,Iﬂg) : (—xl,i'g) € QL}

and (see Fig. 5)
O =int(QUOL).

Note that £2* is not a cuspoidal domain but a Lipschitz domain.

A

Y

Figure 5. The Lipschitz domain *.

Let S denote the reflection operator S : Qp — Q7; (z1,%2) = (=Z1,Z2) andleta : Q@ —
O (21, T2) =+ (27, z2) be a transformation of 2 on (2.
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Theorem 3.1. Let p € (1, o0). The operator

¢: WLr(;0) > WIP(O*);
u on 1,

U €t 1= —
voa oS on Q

is an extension operator with norm bounded by (7P + 7' "?)!/7.

For the proof of Theorem 3.1 the following chain rule is required. In the Lemma the chain
rule from [8, 1.1.7] is generalized to a chain rule for transformations with unbounded deriva-
tives.

Lemma 3.1. Suppose p € [1,00) and u € WP{Q}; 0}, thenuoca™' € WIP(Qy) and the
weak derivatives can be computed according to the classical chain rule.

Proof. Let k € {1,2} and define v(z) := (Bxu}{a™*(x)) Bea; ' (z). Since ¢ and ¢~ map
sets of measure zero to sets of measure zero, the definition of v does not depend on any special
representative of . We will show that v = & (uoa™). Let ¢ € C§°(f2). Then there is an
¢ > 0 such that

suppe C £, := QN ((e, 1) x (g,1)).

On Q,, the transformation a is quasi-isometric and of the class C%!(£2,). Hence, the formula
of the chain rule may be applied (cf. {8, 1.1.7]). We have:

[ v@)ota)dz = [o@pte)ds =[O (e Bk el

(17 Qe

_[a,,(uoa )2)p( a:]d:z:——/(uoa 1Y(2)8p(z) dz =—[(uoa 2)Bep(z) dz .

Since u € W1#(; &), the W P-norm of u o ¢! is finite:

[luoa @ dz= [ lu(=)P |det(Da(e){dz = [ fu(z)P 7] dz
Sz n o

Dz} dz = w)(a(z 1 ’
Jituea@r o= [ o (3] e

- [iawr (Sat) mater <97 [19ntar e

i

[ 1Ba(u0 ™) @) dr = f |(B2) (o (@)IP dx = f (Bau(z)[P 721" do

Thus: ,
e 0 @™ By rpryy < ¥ Nl < 00 (32)

Proof of Theorem 3.1. Obviously, € is linear. Let u € W1?(2; o) and let

e on {2
" JuecaloS on Qf.
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Lemma 3.1 implies w o o~ € W'P(Q). This is equivalent to u o 2™t 0 § € W#(Qg).
Therefore, u* € L7(Q2).

First, we will prove the weak differentiability of u*. Since C°°(£1;) is dense in W11(12,),
welrln(ay) approximate u o a~! by v, € C({1;). We will show that v, o @ approximates u in
WHHQ):

[ 1= 0 a)(@)laz =nj (00 — u:)(x)] | det(Da""(2))| d=

-1 1 '-l','_l 1 -1 .
=n{ (woa™ ~ ) (z) i dxs;ﬂ{ (uoa™ - u)(z)| dz;

[1ia - v 0 a)@)dz = [ [Biu(z) - (Brw)(a(z)) va7 ™| d
a 7]

= 1o (=) - mnle) v ot do = [ i 6)(a) - ueta) s
i 1172

[ 18w — v 0 a)(@)| dz = [1Bu(z) ~ (Be) (ale)  do
9] 0
1.

=ﬂ[ |[(@au)(a™(2)) — Bve()| %zf 'dz =n{ Ba(uoa™t) - By, (z)] %175-’_1(111
s '}En{ [Ba( 007 — ve)(z)] dx.

Summarnzing, we have;
1 1
]Iu — U O allwl.l(g) < ;H’U. cq " — UEI[WI.I(QL] =0 fore—0. (3.3)

To prove the weak differentiability of u*, we approximate w*jo- by v, in W'(Qz). Thus, by
(3.3), w, := v 0 a o S approximates u*|n in W11((1). Let

. w, onf?
‘UE = -
v, onflg.

From a(0, z2) = (0, z) it follows that v, and w, equal for z; = 0. Hence, integration by parts
for the smooth functions gives:

f Aug{x) p(z)dz = f f O1ve(z) p(z) dz + f f G1we(z) p(z)dz
.

23 7,0 2 2,20

=f—v£(0, z3) @(0, T2) dz, —/ f ve(z) d1p(z) dx

T3 1) <0

+ [wl0,52) 00,z dza - [ [ wele)diele) do = - [ui(@) dro(z) da.

T3 21>0 -

The result for u* follows if we let £ tend to zero. For &, it follows similarly, with the simplifi-
cation that it is not necessary to split the domain in the parts z; < 0 and x; > 0.
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Tt remains to show that the W'P-norm of u* is finite. Using (3.2), we obtain:

16 Bingney = Bulfyrogey + w0 a0 SIE, 0 = Nullyrsy + o a™ IByioa,,
S I|u||£V1-F(ﬂ) + 71_17 ”u”&/hjﬂ(ﬂtg) S (pr + 71_P) “u”fdfl-v(n:u] '

Thus, & is bounded by (y~? + 41 ~P)1/?, 0
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