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Abstract — We examine the structure of pseu-
docodewords in Tanner graphs and derive lower
bounds of pseudocodeword weights. The weight of
a pseudocodeword is related to the size of its support
set, which forms a stopping set in the Tanner graph.

I. Introduction

Recent works [1][2][3][4] have revealed that pseudocode-
words of Tanner graph play analogous roles in determining
convergence of an iterative decoder as codewords for a max-
imum likelihood decoder. The mimimal weight pseudocode-
word [3] is more fundamental than the minimal weight code-
word in the context of iterative decoding. In this note, we
study the structure of pseudocodewords of an LDPC graph
and derive lower bounds on the minimal pseudocodeword
weight, assuming min-sum iterative decoding as in [1]. It has
been observed that pseudocodewords are essentially stopping
sets [3] in the case of the binary erasure channel (BEC), and
hence the minimal pseudocodeword weight wmin is equal to
the minimum stopping set size smin. This prompts us to ex-
amine how wmin and smin relate over other channels such as
the BSC and the AWGN channels.

II. Stopping Sets and Pseudocodewords

Let G be a bipartite graph representing a binary LDPC
code C. Then a stopping set in G is a subset S of variable
nodes whose neighbors are each connected to S at least twice.
The smallest stopping set, with size denoted by smin, is called
the minimum stopping set, and is not necessarily unique.

We refer to [4] for the definition of a degree � cover (lift)
Ĝ of G. A pseudocodeword p = [p1, p2, . . . , pn] is a vector
of integer entries where pi represents the number of variables
nodes of value 1 in a lift Ĝ that are lifts of the node vi of the
base graph G, where the values assigned to the variable nodes
in the lift correspond to a valid codeword configuration [2]. We
will refer to [3] for the definition of pseudocodeword weights
on different channels. The minimal pseudocodeword weight of
G is the minimum weight over all pseudocodewords that occur
over all possible lifts of G, and is denoted by w

BSC/AWGN
min for

the BSC/AWGN channel.

III. Bounds on Minimal Pseudocodeword
Weights

We first observe that the support of a pseudocodeword p
forms a stopping set in G. The support size of a pseudocode-
word p has been shown to upper bound its weight on the
BSC/AWGN channel [3], implying w

BSC/AWGN
min ≤ smin. We

establish the following lower bounds for the minimal pseu-
docodeword weight:
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Theorem III.1 Let G be a d-left regular bipartite graph with
girth g. Then the minimal pseudocodeword weight is lower
bounded by

w
BSC/AWGN

min ≥
{

1 + d + d(d − 1) + .. + d(d − 1)
g−6
4 , g

2 odd

1 + d + .. + d(d − 1)
g−8
4 + (d − 1)

g−4
4 , g

2 even

Note that this lower bound holds analogously for smin and the
minimum distance dmin of G. For generalized LDPC codes,
wherein the right nodes in G of degree k represent constraints
of a [k, k′, εk] sub-code, the above result is extended as:

Theorem III.2 Let G be a (d, k)-regular bipartite graph with
girth g and the right nodes represent constraints of a [k, k′, εk]
subcode. Then:

wmin ≥
{

1 + dx + d(d − 1)x2 + .. + d(d − 1)
g−6
4 x

g−2
4 , g

2 odd

1 + dx + .. + d(d − 1)
g−8
4 x

g−4
4 + (d − 1)

g−4
4 x

g
4 , g

2 even

for the BSC/AWGN channels, where x = (εk − 1).

In the generalized case, a stopping set may be defined as a
set of variable nodes S whose neighbors are each connected at
least εk times to S in G. By this definition, a similar lower
bound holds for smin also.

Lemma III.1 Suppose in an LDPC contraint graph G every
irreducible pseudocodeword (generalizing the definition in [1])
p = [p1, p2, . . . , pn] with support set V has components 0 ≤
pi ≤ t, for 1 ≤ i ≤ n, then: (a) wAWGN (p) ≥ 2t2

(1+t2)(t−1)
|V |,

and (b) wBSC(p) ≥ 1
t
|V |.

It is worth noting that for any pseudocodeword p,
wBSC/AWGN (p) ≥ wmax−frac(p), where wmax−frac(p) is the
max-fractional weight of p as introduced in [5]. Therefore,

w
BSC/AWGN
min ≥ dmax

frac, the max-fractional distance which is
the minimum max-fractional weight over all p. Consequently,
the bounds established in [5] for dmax

frac are also lower bounds
for wmin. In addition,

Theorem III.3 For an (n, k, d) code represented by an
LDPC constraint graph G: (a) if p is a good pseudocodeword
[2] of G, then wBSC/AWGN (p) ≥ wmax−frac(p) ≥ dmin, and (b)
if p is a bad pseudocodeword [2] of G, then wBSC/AWGN (p) ≥
wmax−frac(p) ≥ 2smin

t
, where t is as in the previous lemma.
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[2] G. Horn, Iterative Decoding and Pseudo-codewords. PhD thesis,
California Institute of Technology, Pasadena, CA, 1999.

[3] G.D. Forney, Jr., R. Koetter, F. Kschischang, and A. Reznik, On the
effective weights of pseudocodewords for codes defined on graphs
with cycles, vol. 123 of Codes, systems, and graphical models, IMA
Vol. Math. Appl., ch. 5, pp. 101–112. Springer, 2001.

[4] R. Koetter and P. O. Vontobel, “Graph-covers and iterative de-
coding of finite length codes,” in proc. of the IEEE International
Symposium on Turbo Codes and Applications, (Brest), Sept. 2003.

[5] J. Feldman, Decoding Error-Correcting Codes via Linear Pro-
gramming. PhD thesis, Massachussets Institute of Technology,
Cambridge, MA, 2003.

ISIT 2004, Chicago, USA, June 27 – July 2, 2004


	footer1: 


