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Abstract

In this paper, we will consider hypersingular integrals as they arise by trans-
forming elliptic boundary value problems into boundary integral equations.
First, local representations of these integrals will be derived. These representa-
tions contain so-called finite-part integrals. In the second step, these integrals
are reformulated as improper integrals. We will show that these integrals can
be treated by cubature methods for weakly singular integrals as they exist in
the literature.

1 Introduction

In this paper, we will consider Fredholm integral equations on two-dimensional sur-
faces in R® which typically arise by applying the boundary element method to bound-
ary value problems (see, e.g. [8], [27]).

With raising interest in the numerical solution of these integral equations the need
of appropriate cubature' methods for computing the elements of the system matrix
arises.

For weakly or Cauchy singular integrals, there exist appropriate cubature methods
for approximating the elements of the system matrix (see [2], [25], [21], [9], [26], [4],
[15], [17]). For many important problems as, e.g., mixed boundary value problems
or transmission problems, the kernel functions are not integrable in the sense of
Cauchy principal values. They are hypersingular and have to be regularised in the
sense of Hadamard (see [8], [24]). For these kinds of integrals, cubature methods for
Galerkin discretisations are missing in the literature. To overcome this difficulty a
regularisation on the continuous level is often applied rendering the integrals weakly
or Cauchy singular (see [20], [11], [8]). The drawback of this technique is that it has
to be worked out for each kernel function separately, i.e., is not fully implicit. Here
and in the following, the term fully implicit is used in the sense that the definition
of the cubature method does not depend on the explicit form of the integrand but
works as a black-box method for all kernel functions specified in Section 3. Only the

Tn more than one dimension the term quadrature is replaced by cubature.



subroutine for evaluating the kernel function in pairs of cubature points has to be
exchanged.

In our paper we present a direct approach for evaluating hypersingular integrals
which are efficient in the sense that this family of cubature rules is

1. fully implicit,
2. exponentially convergent (with respect to the order of the rule),
3. uniformly stable (with respect to the order of the rule).

For collocation methods such techniques are described in [7], [6], [25], [13]. We will
use these results to analyse the behaviour of the integrand for the outer integration
appearing for the Galerkin method. For piecewise flat surfaces and the hypersin-
gular kernel function corresponding to the Laplace operator, semi-analytic cubature
techniques for the Galerkin method are worked out in [14].

The paper is organised as follows. In Section 2, we will specify the class of bound-
ary integral equations which will be considered and formulate the Galerkin discreti-
sation of the arising weak formulation.

In Section 3, properties of boundary integral equations and corresponding kernel
functions are collected.

Then, in Section 4, it is explained how the arising finite-part integrals (over the
whole surface) can be localized as finite-part integrals over pairs of panels.

In the next section, the local finite-part integrals are reformulated as a sum of
weakly singular integrals by analysing the singular behaviour of the arising integrands.

Finally, in Section 6, families of cubature rules are defined for the approximation
of the derived weakly singular integrals which converge exponentially with respect to
the order.

2 The boundary element method

Let T' be a piecewise analytic, orientable Lipschitz surface of a bounded domain
Q) C R3. The assumption on the analyticity of I' is merely imposed for convenience.
We expect that this condition can be replaced by “sufficiently smooth” in a similar
fashion as worked out in [19]. However, the detailed extension of the theory below to
that more general case is not worked out yet.

Let L*(T') denote the space of all measurable functions v : I' — C which are
square integrable with respect to the surface measure dI'. H' (T') is defined as usual
by employing a Lipschitz atlas and a partition of unity. The intermediate spaces
H* (T'), 0 < s < 1, are defined via interpolation while, for —1 < s < 0, H* (') is the
dual space of H=*(I") with respect to the L*-scalar product.

We consider Fredholm integral equations in the variational form. For given

[ € H(T) (1)
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for the definition of 3, sy, s2, see (4), (5), and (6)), we are seeking u € H*' (I') such
g
that
(v, M)y + (v, Kyu)y = (v, A2, [y + (0, K2 f)g Vo e H* (T) (2)

holds, where the L? (T')-scalar product (-, -), is identified with its extension to H** (I')x
H=*" (') by means of Riesz’ representation theorem. In (2), A, A, are analytic on
smooth parts of the surface and the integral operators K;, 1 = 1,2, are given by

Ki[w] () :p.f.Aki (z,y,y —z)w(y)dl,. (3)

If the kernel function contains non-integrable singularities, then, the integral (3) has
to be understood in the regularised sense of Hadamard which will be explained in
Section 3.2.

For 1 = 1,2, we assume that the mapping

)\Z[—I-ICZH& — H™* (4)
is continuous and 3 in (1) has to satisfy
s = 282 — S1. (5)

Furthermore, we assume that the operator A\ I + K; satisfies a Garding inequality,
i.e. there exist ¢ > 0 and constants ¢, ¢3 such that

(u, (M T+ Ka)u)y 2 e fJully, = ealull;, _. (6)

is satisfied for all v € H*' (T'). The left-hand side of (2) defines the bilinear form
a: H* (T') x H* (') — C and the right-hand side the functional F' € H=* (T').
Throughout this paper we assume that

1 1
S1, 52 S {_5707 5}

holds (this requirement is satisfied for most practical applications in three dimen-
sions). However, we hasten to say that our theory is by no means limited to this case
and can be generalised to more general integral operators (see Remark 5).

The Galerkin discretisation of (2) is given by replacing the Sobolev space H*' (1)
by a finite dimensional subspace which will be constructed below.

Let ' be the (piecewise plane) surface of a polyhedron which interpolates I'. Let
T {]xl,fxg, .. ]&N} denote a grid on the surface r consisting of plane (open)
triangles and parallelograms satisfying

P = Uge: K.
KNK' =0, VK,K'e7 with K # K".



The following assumption links the true surface I" with the auxiliary surface I. We
assume that there exists a bi-Lipschitz mapping n: I' — I' having the property that,

for all K € 7, the restriction n |z can be extended to an analytic mapping n: K — T
and the inverse n~! has the analogue property.
The grid 7 induces a grid on the true surface I' by

r={n () K e},

The space of finite element functions on the surface I' is defined as usual by lifting
polynomial spaces on a reference element onto the true surface. For r € Ny, let

StPi={ueC"(I') |[VK €T:ul|x onokr € Px} (7)
where )
kK Qr — K (8)
is an affine-linear mapping and

0 { (0, 1)2 if K is a parallelogram,
K =

triangle with verices (8), ((1)), ((1)) if K is a triangle.

We emphasize that throughout the paper the reference domains () are considered to
be open sets. For triangles, Pk is the space of bivariate polynomials of total degree p
while, for quadrilaterals Pk, is the space of polynomials of degree p in each variable.
For r = —1, the condition u € C" (I') in (7) has to be replaced by v € L* (I'). For
continuous finite elements, i.e. r > 0, we assume that, for all K, K’ € 7, K’ # K,
the intersection K N K’ is either empty, a common vertex, or a common edge. In the
following, we write V; short for S77.
The Galerkin discretisation of (2) is given by finding ug € V; such that

a(ug,v) = F(v), Yo e V. (9)

This problem can be reformulated as a system of linear equations by introducing
the basis representation of ug :

ug (z) = 3 wigi (v)
i=1
where n := dim V;. Then, (9) is equivalent to
Au=F,
where the system matrix A €C**” and the vector F €C" are given by

A;; = alpipi),
F; = F(p).
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To compute the matrix entries A and the right-hand side F fast cubature techniques
are needed for the evaluation of

[ ¢i(@) g (@) A (@) d,
i@ pt. [ k(ey.y =), (y) dr,dr, (10)

where X is analytic on smooth parts of the surface and the kernel function k is either
ky or ky. The evaluation of the first integral is not problematic and we will discuss
in the following only the second one. In this paper, we will focus on the definition of
cubature rules for the numerical integration of (10) which approximate (10) to any
required accuracy with a priori known convergence behaviour. The effect of replacing
the true Galerkin matrix by a cubature approximation on the discretisation error is
not the topic of this paper but is studied thoroughly in [22], [5].

3 Properties of boundary integral equations

3.1 The kernel function

The properties of an integral operator

Klu] (2) = pf. [ e (a,yy = 2)u(y)dr, (11)

are determined by the kernel function & : I' x ' =& C. We assume that k& has the
following representation

b

E(e.2) = 2™ Y wi () oy (u) A (qu,

2,j=0

i)a VI,yEF,Z:y—CL’,l’?éy,

(12)
where b is a finite number and A;; (r,£) is analytic with respect to r in any compact
neighbourhood of zero and analytic with respect to ¢ in a neighbourhood of the sphere
Sy. The functions k;,p; are assumed to be in L> (I') and analytic on analytic parts
of the boundary. To be more precise we assume that, for all K € 7, the restrictions

=]

ki |z and p; |7z are analytic. We state that practically all kernel functions arising by
transforming elliptic boundary value problems into integral equations are of the form
(12) (see [5] and the references therein). The kernel functions are associated with
fundamental solutions to differential equations. The following examples illustrates
that the fundamental solution of elliptic, scalar differential operators in R® are of the

form (12).

Example 1 Let G € R3**3 be a symmetric and posilive definite matriz, let 3 € R?
and ¢ € R. Consider the differential operator

Lu = —div (Ggrad u) + 2 (8, grad u) + cu.
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Let B € R®*® be a malriz salisfying BTB = G~'. Then, the fundamental solution
of L (satisfying LS = 6y with &y denoting Dirac’s functional centred at the origin) is
given by

|detB| (BA,B
IS B,Bz)=\/c+||BB|P||B=|| 13
(2) = B (13)

This function can be rewritten as

1™ 4 (1 5 )

with the function A defined by
Ar, ) = 19t BlL - (1BoBe—/erliBAFBEN)
4 || BE]|

Hence, S (z) is of the form (12) and salisfies the analyticity properties due to the
reqularity of B.

Example 2 The kernel of the classical double layer potential for Laplace’s equation
in 3-d is the normal derivative of (13) with A=1, 3=0, ¢=0:

(n(y).z)

k(x,y,z)=—
(29 2) = = o

This function can be rewritten as

E(a,y.2) = — |z H*Z( (y)) R

=1

Since the components of the normal vector n are piecewise analytic the kernel function

is of the form (12).

Finally, we remark that the kernel functions arising from the Lamé equation and
the velocity part of kernel functions corresponding to the Stokes equation satisfy our
general assumptions on k., too.

In our paper, we will concentrate on elliptic boundary value problems of second
order. In [5], it is explained that for such problems the order of singularity s in (12)
typically satisfies

s < 3.
For s < 2 (in combination with the so-called Giraud-Mikhlin condition, see [24, for-
mula (11)] and [18, Chap. 9]), the finite-part integral reduces to a Cauchy principal

value where transformation rules and cubature techniques already exist in the liter-
ature (see [8], [21], [9], [26], [4]). In this paper, we will assume throughout that

s =3

holds. We state that all our statements remain valid also for s < 3 while some of the
assumptions can be weakened and formulae simplified. In Remark 5. it is explained
how our results can be extended to the case s > 3.



3.2 Finite-part integrals

We come now to the definition of the finite part integral involved in (11). For this, let
z € I' be a point inside a smooth part of the surface and, for ¢ > 0, let B. (z) denote
the (three-dimensional) ball with radius ¢ centred at z. Let 4 C I' be a measurable
subset of I' satisfying « ¢ dv. We consider a function u € L* () being smooth in a
neighbourhood of 2 (Hélder continuous with exponent A > 1 is sufficient). Since the
kernel function k (z,y,y — ) is bounded for y # z the following integral exists as a
usual Riemann integral

Iau:r:::/ k(x,y,y—x)u(y)dl,.
al(@)= [ @y —2)uly)d,
In [24] and [12], it was shown that the functional I.. admits an expansion as

Leq [ul () = Aoy [u] (2) €7 + Awogy [u] (2) log e + Aoy [u] (2) + Ry [u] (2)

where R. ., [u](z) — 0 as ¢ — 0. The finite part integral then is defined by

p.f. / kE(z,y,y—x)u(y)dly := Ao [u] (x).
¥
In [24] and [12], it was proved that the right-hand side above is finite.
The following general assumption on the integral operator K in (11) is assumed
throughout the paper. K is a bounded operator from H* onto H™* with u €
—%, 0, %} For the computation of the matrix elements, the integrals

(pe: Klerl)y  1<gr<n (14)

have to evaluated. For an arbitrary function v € H*, the image K [v] lies in H~*
and, for 4 = 1/2, does not belong necessarily to L?. This would complicate the
development of cubature techniques for approximating the dual pairing (w, K [v]), =
(w, K [v]) substantially. In particular, the splitting

BX—p

(w, K [v]), = /leC [v]de =Y /K wk [v]dr = > (w,K (D) 2()

Ker Ker

is not valid for all functions v,w € H* (I'). However, in many cases the operator
K satisfies a so-called shift property, i.e. K is a bounded operator from H**? into
H~F*7 for a certain range of o. For our purpose, it is sufficient to assume throughout
the paper that

K : H"(T)— H"(T) (15)
K : H'(I')— L*(I) (16)

is bounded.



Corollary 3 Let (15) and (16) be satisfied. The definition (7) of the finite-dimensional
spaces V. and V. C H* implies that

Klul € L* (), Yu e V. (17)
Proof. For y <0, the assertion follows from (17) and V., C H* via
K[V;,]cK[H")c H* c L*(I).

For y = 1/2, all functions in V; are Lipschitz continuous and the result follows from
(16) by using V. C C°(I') C H'(T'). =

A comment on the validity of (16) is given below.

Remark 1 Assumption (16) is salisfied, e.q. for the hypersingular integral opera-
tors corresponding to elliptic boundary value problems of 2nd order with the Laplace
operator as the principal part, discretised by ST for r > 0 (for a proof, see [3]).

4 Local representation of hypersingular integrals

For the approximation of the integrals (14), it is important to localize the integrals
over the whole surface I' by splitting it into a sum over the panels and to transform
these local integrals onto fixed reference panels. Then, it suffices to develop cubature
rules on these reference elements. In view of the finite part integrals, this splitting
and transformation is much more delicate as for weakly singular integrals where such
transformations are straightforward. For simplicity, we abbreviate the integrand in
(14) with
K" (2, y,2) =g () r (y) k (2., 2)

and skip the superscript new in the following. For K;, K; € 7, we define the function

Hm‘ K, —» C by
Hiﬂ. (.ZL‘) = pf /K k (xvyvy - J;) dFy, Vz € K;.

Fort € {i, 7}, let Q, := (m)_l K denote the reference element (either the unit square
or the unit triangle) where 1, := no kg, (see (8)). For the following, it is important
that the reference elements Q¢ (like the surface elements K;) are assumed to be open
sets.

The local kernel function is defined by

kij (2,9) =k (i (2),n; (9),n; (9) —ni (2)) gi (%) g; (9)

where, for t € {i,7}, the function g; denotes the surface area element corresponding
to the chart 7. The local version of H;; is defined by

[A{Z"j : Qz — C

- . A . 18
Hij (2) :=p.f. Jo, kig (2,9)dy, Vi€ Qi (18)
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Note that, for the regularisation of the finite-part integral in (18), an e-ball in the
parameter plane has to be subtracted. It is not necessary to perform the limit with
respect to the distorted ball 7' (B. () N K;). This fact will simplify the treatment
of the hypersingular integrals substantially.

The connection of H; ; and [:]” is expressed by the formula

gi (&) (Hijom)(3) = Hiy(3),  VieQ
which is proved in [24, Theorem 5]. The sum

S Hiy(d) = Hi(3), Vi€

Kjer

can be regarded as a local version of the integral operator K (up to a bounded factor):

g: (&) pq (@) K o] (2) = H; ()

for all 2 € Q and = = n; (). )
The mapping property of K (see 17) implies H; € L*(T'). Tt follows that the
integral (14) equals

> [ @) di (19)

K;er Qi K er

In Lemma 12, we will prove that ]:]” is possibly singular only if # — 0Q);. In this
light, we define, for § > 0, the reduced element Q?,

1. for Q; = (0,1)%, by

Q! = {3 € Qi | dist (#,0Q:) > 5}

2. for ); =unit simplex, by

Q5'—{5<£1<1_25 }

0 <To<1l—6—124

/ b (3)di = nm/§ S () di < oo, (20)
Qi Q;

Since [:]m- is possibly singular only if # — 0Q); (see Lemma 12), the integrand is
bounded on Q! and we may interchange the summation with the integration:

H; ; (#) di.
Kjer Q;



In Lemma 6(c), Lemma 8, and Lemma 11, we will prove that the integrals on the
right-hand side above have an expansion of the form

/Qé iy (#) di = T log 6 + 137 + 107 (5) (21)
where I}/ (§) = 0 as § — 0. From the boundedness of the integral (20), it follows

that N
>l =0
Kjer

holds. This motivates the definition of a further finite-part integral:
pf/H” d:u:—[’]
Lemma 4 The integral

/pf/k;z;yy )dl,dT,,

has the local representation

S X v v [, ks 6 9) dids. (22)
K;er K;er
The inner finite-part integral reduces to the usual Riemann integral if K; # K; holds.
The ouler finile-part inlegral reduces to an improper integral if K;, K; share al most
one point.

Proof. Let K; # K; and z € K;. The pull back & := n; ' (z) satisfies # € Q;.
For sufficiently small ¢ > 0, the ball B. (&) has positive distance from 9Q);. Hence,
the transformed ball n; (B. (%)) has positive distance from JK; and, consequently,
also positive distance from K;. Therefore, the integrand is bounded and the integral
converges to the usual Riemann integral as ¢ — 0.

If K; and K; share at most one point the result follows from Lemma 6 (b), (c). B

Remark 2 Formula (22) is a local representation of hypersingular kernel functions.
The elements Q;, Q; are fized reference elements (either the unil square or the unit
triangle). Thus, il is sufficient to develop cubature rules on these reference elements

(see Section 6).

Remark 3 In [14], a splitting of (14) into local quantities is derived and worked out
in the case of flat triangular panels. The approach in the cited paper is different from
(22); the local quantities are of the form

pf/ / ..dxdy
¢ JK; JK,

llz—yl|2e

while additional line functionals (which can be evaluated efficiently) appear in the
local representation.
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5 Finite-part-free representation of hypersingular
integrals

As mentioned before, the single terms ]:]” are not integrable in general and, hence, the
inner sum in (19) may not be interchanged with the outer integral. In the following, we
will work out the character of the singularity of ]3]” in detail. These results will play
the key role in Section 6 for constructing appropriate variable transforms rendering
the integrands analytic such that the integrals can be approximated efficiently by
(tensor versions) of Gaussian quadrature rules.

In order to characterise the regularity of the function ]:]” we will distinguish the
following three cases.

I. K; and K; share at most one common point.
I1. K; and K; share exactly one edge.
II. K; = Kj.

Case I:

From the analyticity of the charts n;, n; it follows that the functions g¢;, g; and
the coefficients k;, p; from (12) are analytic in local coordinates. The pull backs of
the basis functions ¢; o n;, ¢; o n; are analytic, too. Thus, the singular behaviour
of the kernel function is characterized by the singular behaviour of the function?
H2H_3 A (Hz” , ﬁ) in local coordinates. If K; N K; = ) the kernel function is analytic
in local coordinates. Therefore, we assume for the following that the panels share
exactly one point: K; N K; = P. In local coordinates, the difference z = y — z takes
the form

2= (§) —ni (%) .
Without loss of generality we assume that n; (8) =n (8) = P. Obviously, z = 0 if
and only if y = 2 = (0, O)T. Taylor expansion of n; and n; about the origin results in

o ) ()~ (2.9)" 0 0) .

m! ’

m=1
where the differential operator (g, V)™ is defined by
. oy N\ ke —
(9, V)" n; = Z( P )yfyz F(afoy ).
k=0

Let 2 = (Z,y). We introduce four-dimensional polar coordinates by

Z=rf (24)

2For simplicity, we write A instead of A; ;.



with r = ||2]| and £ = 2/ ||2]| € S3. Then, (23) becomes
=1 ) " (&) = ray (r,€) (25)
m=0
with

(a0, V)™ 0 (0)) = ({602, V)™ i (0))
(m+1)!

b (€) :=

and &g = (&, ft)T. The function a; (r,§) is analytic in any compact neighbourhood
of r = 0 and is analytic in £ in a suitable neighbourhood of S3. As in [24, Lemma 1,
Remark 7] one can show that a; (r, &) has no zero in a neighbourhood of r = 0 and
¢ € ;5. Consequently, ||z||”* admits the local representation about r =0 :

12177 = r~*az, (r,€) (26)

where a, ; is analytic in a neighbourhood of r = 0 and £ € S3. The ratio Hz_ll similarly

can be expanded by multiplying (25) with (26) (choosing s = 1) resulting in
z
M = da2;1 (T, 5) ay (Tv 5) =:das (T, 5) )

where the function as (r, £) is analytic with respect to r in a neighbourhood of r =0
and with respect to € in a neighbourhood of S5. Combining these expansions we have
proven that, for sufficiently small r and £ € S5, the kernel function k; ; (z,y) can be
expressed in local coordinates by

kij(2,9) =1 as(r,§). (27)

where a4 is analytic for r < § with sufficiently small § > 0, and analytic in £ in a
neighbourhood of S5. On the other hand, r > §/2 implies that ||z — y|| > €6 holds.
Hence, in this case the kernel function is analytic, too. It follows that a4 (r,§) is
,E=2/ with 2 = (2,7) and all # € Q;, ¥ € Q;.

Proposition 5 Let K; and K; share al most one common point (Case I). Then, the
integral

z

analytic for all r = ||2

| i () dydi (28)
i J
exists as an improper integral.

Proof. Due to the analyticity of a4, the integrand can be estimated by er=°. By
introducing four-dimensional polar coordinates (#,9) = 7 (a1, a2, as) with r? =

W T
| + ||y >and ¢ = % € S5 the integrand in the new variables can be estimated
by the constant ¢ from which the integrability follows. B

.,2.2
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Lemma 6 (a) If K; and K; share al most one point then the function ]—A]” has the
representalion

Hij (%) :/ ki (2,9)dg,
Qj
where, for all * € Q);, the integral exists as a usual Riemann integral.

(b) The function ]:]” (2) is weakly singular, i.e.
i ; (i) d
|, s (@)

coincides with (28).

(¢) Expansion (21) is valid with [f(;]é =0:
|,y = [ d () di+ R(6) (29)
Q; Qi

where R(8) — 0 as § — 0.
(d) The function H;; (%) is analytic in Q;.

Proof. The first assertion follows from (12) since, for fixed & € @;, the integrand is
bounded and the finite part integral coincides with the usual Riemann integral. The
second assertion follows from Proposition 5 and Fubini’s theorem.

Expansion (29) follows from statement (b) as in [8, Chap. 6.1.3].

The analyticity of ]:]” is a direct consequence of (27).

|

This result will later be the base for the construction of the cubature method.

Case II:

In the following, we will investigate the singular behaviour of H; ; in the case that
K; and K share exactly one edge. Without loss of generality we assume that the
charts n;, n; mapping the reference elements @);, Q; onto K;, K; satisfy

n(5) =ni(})  vielo1]. (30)

Hence, the difference
z=n; (§) —mi (%)
is zero if and only if the three-dimensional relative coordinates
g1 — &
Z = o (31)
T2

equals zero. The difference z then can be rewritten as

) ()
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Using the abbreviation r = ||2]| and £ = 2/r and expanding z about r = 0 yields the

representation
B2 T SN
z= m( 2 1) —772'(23) =r Z_:OT Am (1, €)
with

(€19, V>m+1 7; (5001) - (5382)m+1 ni (%1)
(m+1)! .

Similarly as in Case I, the following expansion is derived

kij (2,9) = r7°b(21,7,¢), (32)

/\m ('%175) =

where b (21, r,£) is analytic with respect to
1. 27 in a neighbourhood of (0,1),
2. r in a neighbourhood of {r ER|TT€Q;,0€Q; :r*=23+05+ ()1 — :%1)2},
3. ¢ in a neighbourhood of ;.

In contrast to the result of Proposition 5, the function ]—A]” () contains non-
integrable singularities for 2, — 0. In this light, we will investigate the integrals

/Qé i, (8) dé

as 0 — 0 (cf. (%1)) In Lemma 7, we will prove that Q! can be replaced by the
simpler domain Q? defined by

@f ={z € Q;

Ty > 48} (33)
Lemma 7 The difference

R(8) := /Q? iy (#) di — /Q? i1 (#) di
converges lo zero as § — 0.

Proof. Let Q! denote the triangle with vertices (O,O)T, (1,O)T, and (1/4,1/4)T.
The complement is denoted by QI := QZ\Q_ZI It suffices to prove that ]:]” is weakly
singular on Q!I. The assertion then follows from [8, Chap. 6.1.3]. From (32), it
follows

A

H;; ()

1/1 c dA
= . . . . 3/2 y
0 -0 ($ 1= $1)2 + y%)



Introducing polar coordinates about (z, O)T results in

m rR(a,Z1)
S / / Lmdrda
o b G

where R (o, ;) denotes the upper limit of the r-integration. Performing the r-
integration analytically yields

T 1 1
§C/ — da<7rc.
0

T2 i3+ R(a,in) T ®2

A

H;;(2)

A

H;;(2)

The weak singularity of ]:]” on QM follows from
11 1,1
/ di< [ Zdis [ i = re2+m3).
QU 0 J# T3 0 J(1-%1)/3 T2
|

In view of (21), we have to show that

H;; ()

16):= [, ? / i (39) didi (34)
admits an expansion of the form
I(0) = hoglogé + Iy + 1, (4) (35)

where [ (§) converges to zero as § — 0. Since the integrand in (34) is analytic the
transformation rule of variable applies and the domain of integration can be split into
appropriate subdomains. We introduce relative coordinates by

2 1000 2
| .. o100 2,
0 =Mz=1 g 24
Us 000 1 2,

As an abbreviation we write k (2) =ki; (M2),,,(M2),,). The domain of integration
is given by

(36)

where, for t € {1,7},

L 1 if Qt = (071)27
G (w) = { 1 —w if @y is the unit triangle. (37)
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The integrand ks singular only if (24, 22, 2?3)T =0 (cf. (31)). Since i is smooth with
respect to 21, we interchange the ordering of integration such that the 2, becomes the
innermost integration (cf. [21] and [9]). In order to characterize D by a system of
inequalities, where Z; stands at the last position, one has to split D into subdomains:

D = U Dy,
m=1
1) = §:/ b (2)dz,
m=1 m
where v = 2 if Q; = Q; = (0, 1)2, v = 5 if both reference elements are triangles and

v = 3 otherwise. These subdomains are given explicitly below.

Case a: (); = @); = (0, 1)2 :

§< 2 <1 §< 2 <1
-1 <23<0 0<23<1
Dy = 0<%, <1 [’ D = 0<2,<1
—23< 2 <1 0<2 <1—2
Case b: Q; = (0,1)*, Q; =unit triangle:
§< 2 <1 §< 2 <1
—-1<23<0 —-1<23<0
Dy = > T Dy = N
! 0<24< 23 7 2 —23< 24 <1 7
-2 < 5 <1 =23 <5 <1 —23—2
§< 5 <1
0<23<1
D=1 0<h<i-g
0<2 <1 —23—24
Case c: (); =unit triangle, @; = (0, 1)2 :
§<2,<1 §<2,<1
_ 29 —1<23<0 _ 0 <23 <2
D o<n<t (0 2Ty o=a=r (¢
—23< 2 <1 -2 0<2<1-2
§<2,<1
_ 23 <23 <1
Ds = 0<% <1
0<2 <1—2
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Case d: (); = (J; =unit triangle:

0<z,<1 0<z,<1
2 —1< %<0 2, —1< %<0
D, = R ST, ; Dy = f s N ;
0<24< 2 — 23 Z9—23< 24 <1
—23< 5 <1-4 —23 <5 <1—2— 2%
0< 2z, <1 0<2,<1
0< 2<% 0<23< %
D3: N N N D4: N N N N
0<24< 2 — 23 29— 23<2z4 <1 —23
0<2<1-2 0<2<1—-23—2%
0<z,<1
29 < 23<1

Ds=3 o<z <i-z

0<z <l—-23—%4
By applying suitable four-dimensional rotations these subdomains can be mapped

onto four-dimensional polyhedrons having the property that the origin is a corner
point. We will need the following reference elements

< <1 0<uv <1 0<v <1 )
0<wv; <1 0<v <1 0<wvy,<1
B=vocw<t [ T 0<m<n [ T 0wy
vz <wvg < 1) v vy <1 ) vy Swg <1
0<wv <1 ) d<v <1 ) < < 1)
Ry — d<wvy <1 R: — 6 <wvy < Re — d<wvy <o
T §d <z <y o d <z <y o 0 <wvs< v
vy <vg < 1) vy Svg <1 ) vp Svg < 1)
0<v; <1 ) 0<uv <1
0< vy <y d <wvy <y
=V 0<m<on [ ™ ) 0wy
vy <wvg < 1) vy <wvg <1

The integral over D can be rewritten as
o
/ F(2)di =Y / o (v) dv, (38)
D m=1 m

where D, is one of the above reference elements. More precisely

o if Q; = Q; = (0,1)° then



with

0 0 0 1 0 0 -1 1
1 0 0 0 1 0 0 O
Mi=14 0 21 0] Ma=19 0 1 o]
01 0 O 01 0 O
o if Q; = (0,1)%, Q; =unit triangle then
I[{:
DlzRQ
kl (U) =k (Mlv) + k (MQ’U) + k (Mgv)
with
0 0 01 0 -1 1 1 0 -1
1 0 00 1 0 0 0 1 0
Mi=14 Z1 0 0] Mo=1yo 0 —1 0] Ms=1g o
0 0 1 0 0 1 0 0 0 1
e if ); =unit triangle, @; = (0, 1)2 then
p=2
D1:R4, D :Rg,
k‘l (’U) =k (Mlv) + k (MQU), kg (’U) =k (Mg?))
with
0O 0 -11 0 —1 0 1 0 —1
0 O 1 0 0 0 1 0 0 1
Mi=19 1 1 o Mo=19 1 00 Ms=19 o
1 0 0 O 1 0 00 1 0
o if (); = (); =unit triangle then
po=4,
D1 = RS, Dm = Rm+4, m = 2,3,4
ki (v) =k (M) + k(Myv),  kn(v)=Fk(Mpuv),
with
-1 1 -1 1 [—1 0 0 117 —1
0 0 1 0 0 0 1 0 0
Mi=1g 20 1 o M= g 1 00| M=
| 1 0 0 O | 1 -1 0 0 | 1
—1 0 0 1 0 -1 0 117
1 0 0 0 0 1 0 0
Mi=1"9 0 1 o0 Ms=1_1 1 0 ¢
. 0 1 =1 0 | 0 0 1 0 |
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The linearity of the transformations M,, implies that the kernel function ke is
singular if and only if (vl,vg,vg)T = 0 (cf. (31)). Furthermore, the smoothness
behaviour of ]%m can be derived from the smoothness behaviour of the function k; ;
of (32). In particular, ke is analytic in the variable vy (which corresponds to the
behaviour of k;; (Z,y) with respect to #1). Hence, the innermost integration (with
respect to vy) in (38) defines a function &, (v1, ve, Ug) which has the same smoothness
behaviour as k; ; as a function of Z (see (31)). Let D denote the domain D,, reduced
by the last variable:

lA); = {wER3|E|v€Dm,Vi: 1,2,3:wi:v2}

resulting in
/A ko (v)dv = /A_ Rm (W) dw. (39)

For the further examination of the last integral we introduce spherical coordinates.

Let
cos a cos 3

Y (a,3) =] sinacosf
sin 3

and the permutation operator II; ; x : R® — R? be defined by
i jx = (e, €5, €x),

where (e,,) = 6., and d,, denotes the Kronecker delta. In order to describe
the domains D in spherical coordinates (r,a,3) we will employ the following six
three-dimensional parameter domains Py, (6), 1 <8 <3, 1 <m < 2. Let

a; =0, ay = a3 = arctan ¢,
by (o) = by () =0, bs (e) := arctan (4 cos o), (40)
By (a) := arctan cos a, Bs () := arctansin a.
Then,
ag <a< g
P@m: b@(d)SﬁSBm(Q)
)
Yo (a,B) <r< cos a cos f3

We do not indicate explicitly the dependence of Fj,, on ¢, while, for § = 0, we write
P, instead. Then, the integral (38) can be written in the following form

M

/ v)dv = Z/ m (1) r? cos BdrdBda. (41)

More precisely

19



(0, 1)2 then

o ifQ;=0Q;=
A=2
Dl_ :Pl,la DQ_ :PQJ,
R (w) = k1 (w), k2 (w) =Rk (lz13w) 4+~ (Hs12),

if ; =unit triangle, Q);

Since the transformation
coordinates (32) is analytic,
Ry (1)) carries over from the

2
=P, Dy =Py,
(w) = Ry (w), ko (w) =Ry (Ily30),
= (0,1)* then
D3 = P, D3 =Py, Dy = Py,
fio (w) = Ri(w), F3(w)= ke (Ilz13w), Fq(w)= ke (w),

of the spherical coordinates appearing in (41) onto the
the smoothness and singular behaviour of the function
behaviour of k; ; (see (32) and the remarks thereafter).

This means that r2#,, (r¢) cos 3 can be represented by

i () cos = " g1 ),
where
Fo )+ =lim (7 (rp) cos B) (42)
R (100) 1 = Fo (1) — R, () (43)

are analytic with respect to

r, a, 3. The domain D_ depends on §. Since k! is

m

analytic the coefficient ., in (35) depends only on the integral

R (¥)

r

drdadf.

/'771
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The r-integration can be carried out analytically. We obtain

/D ) Fn ) hrdads = —log / m /b P 0 () dads

/4 Bia v0 ¢0 (avﬁ)
+/ae /be(a) 7 () log 2P 0dg,

cos a cos 3

m

where ag,bg, B; are as in (40) and (6,1) is determined by
D = Py (44)

The first integral defines the coefficient [i,q,, while the second integrand is weakly
singular. From [8, Chap. 6.1.3], it follows that

/V_ kmﬁb)drdadﬂ = liogm log 6 + /OW/4 /()Bt(a) i (1) log %dadﬁ +hm (9)
(45)

holds, where [y ,, (6) — 0 as § — 0. The considerations above are summarized in the
next lemma.

m

Lemma 8 Lel K;, K; € 7 share exactly one edge. Then

8 H;; (&) di = Loglog d + Iy + 11 (9)

holds, where I, (6) — 0 as 6 — 0 and

[log = Z;Zl ]log,ma
=" [P 50 () 10g 2228 o g 4 L (r) drdfda.
0= m=1 J g 0 m g cos a cos 3

The function By and indices (0,t) are defined as in (44) and D?n is obtained by setling
0 = 0 in the definition of Py;.

Proof. The proof follows from the representation (45).
Cubature rules for computing the integrals appearing in the definition of Iy will
be presented in Section 6.

Case III:
It remains to discuss the case of coinciding panels K; = K;. The function H;; is
defined as a finite-part integral

i1y (#) :—pf/ i (8,1) di.
The integrand is singular only if y = z. The difference
z=ni (§) — ni ()
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is zero only if § = 2. In this light, we introduce the following two-dimensional relative
coordinates (cf. [21], [9])

t=g—&

resulting in
z=ni (& +2) —mi(2).
Using the abbreviation r = ||2]| and £ = 2/r and expanding z about r = 0 yields the

representation
z=ni(F+7rE) —ni(2) =71 Y r"xm (&,€),
m=0
where o
. V)T (&
g 2 e )
(m +1)!
Similarly as in Case I, the following expansion is derived
kii(2,9) =r""c(&,1,¢), (46)

where ¢ (&, r,§) is analytic with respect to

1. & in a neighbourhood of @,

2. r in a neighbourhood of {r € R

} b

LjgeQiir=|§—2
3. ¢ in a neighbourhood of S;.

Due to the analyticity of ¢ we can define the following functions

co (2,6) = lg%c(:%,r,f) (47)
a (2,8 = P_I)%arc(ivrag) (48)

by (3,54 rg) = @O (@O —ra (B0

(49)

r

In view of the analyticity of the coefficients ¢, ¢y, ¢, and of the kernel function,
Ereg (2, & + 1r€) can be written as

kreg (Zi', T+ 'rf) = M7 (50)

where ¢ has the same analyticity behaviour as the function ¢ from (46). Similarly as
worked out in Proposition 5 and Lemma 6 one proves that

2 (@) = | Kooy (36) d
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exists as an improper integral and is weakly singular with respect to z. Altogether,
the representation

[3[2»,2» (#) = p.f. Mf(a))drda—l- p.f. / Mdrda + ]:[;fg (%)
5 JP; r 5 P r

— A0 (3) + A1 (3) + A (2) (51)

b= )

and P; denotes the domain (Q); — &) in polar coordinates:

D - 0<a<2n
"l e<r<R(a,) |7

is proved, where

The function R («, %) is defined as follows. Let v € {3,4} denote the numbers of
corners of Q;, { P}, _, the corner points of @; (counterclockwise ordering and P; =
(0, O)T), and e,, = P11 — P, the edges of Q;. The distance of 2 € ); from the mth
edge is given by

dy, (%) := inf ||Pn +ten —

te(0,1)

and the auxiliary functions a,, (%), p,, () by

) : :
Qi =(0,1) (); =unit triangle
m | ap (&) = Pm (@) = | am (£) = Pm (@) =
0
HA] Al
X9 . () .
1 | —arctan ~ —sin « — arctan ~ —sin o
— —
1 — 29 1—29 | cosa+sina
2 | arctan — cos o m — arctan —
1-— 1 a1 \/§
1-— ) T3
3 m — arctan sin o 7 + arctan — — Cos &
z Al
4 — cos «
Zy

Then, R (a, ) is given by

R(a,d) = Vo € (amor (2) ,am (£)).

The r-integration in the definition of [A{ZOZ and 1":]}Z can be performed analytically and
the finite-part process as well:

@ = s [ Tl rle) ))drda_—/%co(wda

T, i" a)
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i@ = Y[ e () log o, (53)

The properties of the functions [A{ZOZ and 1{1212 are collected in the following Lemma.

Lemma 9 The integrands in (52) and (53) are weakly singular (with respect to a).

The function Hl» is weakly singular while the function H?» contlains non-integrable
singularities as x — 0Qi. The function C,, in (52) is analytic. More precisely, the
function g—: is strongly singular only if * — P, P41 and analytic in ();.

Proof. These statements follows directly from (52) and the analyticity of p,, and c.
|
Next, we have to prove that

/Q I (2) b = Doglog §+ Iy + Ty (9) (54)

holds with 7, (6) — 0 as § — 0. Similarly as in the case of a common edge (cf.
Lemma 7), this problem can be simplified. Let Q¢ be defined as in (33) and W,,
Q; — Q; denote the affine-linear, orientation preserving function which maps the

edge (0,1) x {0} onto the mth edge P,, P41 of Q; and

[ V2 if Q; is a triangle and m = 2,
Gm = { 1 otherwise. (55)
Lemma 10 The difference
R((S)I:/é . {/ Hreg ;% _I_Hl (:i‘ d:L‘—I— ng/~ Mdi}
Q i T2

converges lo zero as § — 0.

Proof. We have to show that

];’(5) = gm/@5 mdm—/@ Cm (JA;)d:?:

T2 b dy (7)

converges to zero as § — 0. We observe that W,, maps Q? onto Q°. Since d,,, (W, %) =
%9/ gm, it suffices to prove that

/~ Cr (W, x)da;—/ Cr (me)d;?;
Q¢ Q!

1’2 T2

converges to zero as ¢ — 0. This can be proved as Lemma 7. B
Now we can prove that (54) holds.
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Lemma 11 The integral [qs [:]“ () dz can be written as

/Q 0 (3) di = Toglog 6+ Io + I (9)

where I (§) — 0 as § — 0.

Proof. Due to the analyticity of C,, the functions

Co (1) - =,1i§09m0m(Wmi‘)7 (56)
A _ 0 A

ol (3) : = InCn (W) = C (81) (57)
T2

are analytic, too. Therefore
Om Wm T A 1 A A 1 A A A
Im /~ de = —10g5/ CO (1) diy —I—/ C (21)log g; (21) d2, (58)
Q¢ To 0 0
+ [ CL(@)di+R),
Qi
where ¢; is as in (37) and R(6) > 0asd —0. H

Remark 4 The second term in (58) vanishes if QQ; is the unit square due to log ¢; =
log1 =0.

As a side result we obtain a statement on the analyticity of ]:[u

Lemma 12 The function ]:]” (Z) is analytic in Q; and is possibly singular as & —

9Q;.

Proof. Let B C Q;. For K; # K;, the function k;; : B x Q; — C is analytic since
dist (n; (B), K;) > 0. Hence, H; ; (&) = I, ki (Z,9) dy is analytic in B.
Now, let K; = K;. We employ the splitting (51). The term ]:]ffg was defined by

e (@) = | 2” / M e (2, (222)) drda

with ¢ as in (50). The integrand is analytic in all variables and the upper bound
R (a, ) for the r-integration is also analytic in ();. Hence, the same holds for H; ;.

The term ]31202 can be written in the form 377 _, gm((;))

denoting the distance to the mth edge. Hence, [—A]ZOZ has also the asserted analyticity
properties.

with analytic €, and d,,

Taylor expansion of the function ¢ (Z,% («)) of (53) with respect to Z and inte-
grating the coefficients with respect to o implies that H}Z has the asserted analyticity
properties, too. B
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The following remark concerns the extension of the presented analysis to the
case that the kernel function contains stronger singularities: s > 3. However, we
emphasize that, in most applications in R?, s < 3 holds and the modifications below
are irrelevant.

Remark 5 Let the kernel function be of the form (12) with s > 3. If K;, K; share
exactly one common point, the kernel function in (27) is no longer integrable. One has
to subtract a Taylor expansion of a4 (r,€) about r =0 (of order s —3), i.e. introduce
a further finite part process similarly as in the case of a common edge and s = 3.

In the case of a common edge or for identical panels, the orders of the Taylor
expansions appearing in (43), (49), and (57) have to be increased. Furthermore, the
replacement of the domain Q° by the simplified domains Qf are no longer possible
due to the arising stronger corner singularities. Instead one has to carry out the
integration over Q° explicitly and introduce appropriate regularisations for both, edge
and corner singularities.

6 Cubature techniques

In this section, we will define families of cubature rules for the approximation of the
local, regularised integrals

p - [, I [ ks (6.) dids (59)
appearing in the sum (22). We distinguish the following four cases:
1. K;NK; =10,
2. K;, K; share exactly one point,
3. K;, K; share exactly one edge,
4. K; = K;.

Case 1:

In the first case, the integrand is analytic and both finite part integrals in (59)
reduce to usual Riemann integrals. Thus, four-dimensional tensor versions of properly
scaled GauB-Legendre quadrature rules are converging exponentially towards the true
integral.

Case 2:

The integrand in this case is weakly singular and we can write

ki;(z,9)dydz. 60
Jy v i (9 i (60)
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We have to discuss the different cases of (); separately.
Case 2a: (); = (); =unit triangle.
The domain of integration is given by

0 < i <1,
0 < & <1 —4ay,
0 < 4 <1,
0 < go<1—10.

As explained in [4], [21] the transformations

mw PR
I | w(d=m) T | omew (1 =m3)
X' (w,n) = M : X' (w,m) = o
Thw(l —773) W(l _771)

map the four-dimensional unit cube onto two disjoint domains Dy, D, satisfying @); x
@; = Dy U D,. The Jacobian of both mappings is given by w®n,. The integral in (60)
becomes

[ fs (o) + s (et )} Pty o

Since the transform of these coordinates onto the polar coordinates (24) is analytic
the integrand in (61) is analytic, too (cf. [8, Remark 9.4.2]). Thus, four-dimensional
GauB-Legendre formulae defines an exponentially convergent family of cubature rules
for approximating (60).

Case 2b: Q; =Q; = (0,1)%.

The mappings

w 773(.() ngw
I mw I w III nsw v
(W, = s X w, = , X w, = , w, =
X" (w,n) e |2 X (@) me | X (@) o (@)
UELY aw mw

map the four dimensional unit cube onto domains Dy, Dy, Dy, Dy which are mu-
tually disjoint and satisfy

Qi xQ;=DrUDrrU DU Dpy.

The Jacobian in all cases is given by w®. As before the integrand in

v

o 22 s ()

R=T

is analytic and can be approximated by tensor version of Gauf}-Legendre rules. This
family of rules is again exponentially convergent with respect to the order.
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Case 2c: (); =unit triangle, Q; = (0, 1)2.
The mappings

Naw URYPIS 213w
I N (1 —ms) I7 | T (1 —mn3) IIT | Tew (1 —mn3)
X (w,m) = e ;o X (wym) = " ;X (wyn) = e
772(.0 Thw w

map the four dimensional unit cube onto domains Dy, D7, Drrr which are mutually

disjoint and satisfy
Qi xQ; =DrU DirU Dy

The Jacobian in the first case is given by w® and, for the 2nd and 3rd case, by w?n;,.
As before the integrand in

/(0 Ly w {k i (X127X34) + Mok (XgaXéi) + noki ; (X{gvaﬁI)}dwdr]

is analytic and can be approximated by tensor versions of Gauf-Legendre rules. This
family of rules is again exponentially convergent with respect to the order.

Case 2d: @; = (0, 1)2, (); =unit triangle.

This case can be obtained directly from the previous one by interchanging the role
of the variables & and g, i.e. applying the transformation to the function 12” defined
by [{?2'7]‘ (:i‘, Q) = kiﬂ' (Q, :i‘)

We expect that the integral (60) can be treated with extrapolation techniques as
well (cf. [16], [15], [17], [25]) while the corresponding error expansions are not worked

out yet.

Case 3:

Now, we consider the case where K; and K share exactly one edge. The following
representation was proved in Lemma § where the quantities A, By, &%, ¢, D° are

also defined (for (6,1), see (44)):
/4 Bt ()

A
.. / o/ / koj (3,9) djdi = 3 / / 70 () 1og L) o day / kL () drdBda.
& Qz Q] m=1 0 77/} ( 75) BO
(62)
It was proved that the functions £%' are analytic. The domain of integration D is
given by
m
0 < a<-—
— a - 47
0 S 5 S Bt (a)v
1
0 < r<——m—.
= "= Cos acos 3

The integration bounds depend analytically on the parameters. Hence, the second
integral on the right-hand side above can be approximated by tensor versions of
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properly scaled GauB-Legendre quadrature rules. This family of quadrature methods
again is exponentially convergent with respect to the order.
For the first integral on the right-hand side of (62), we observe that,

o for § =1, the integral vanishes,
/4 Bi(a)
log tan a/ £ () dadf

o for § = 2, the integral can be rewritten as/
0

0

o for § = 3, the integral takes the form

m/4 Bi(a) tanﬁ
/ / 70 () log “ 2 Jads. (63)
o o COS &

For § = 2, the a-integration can be approximated by Gauf-like formula with loga-
rithmic weight (substituting tan o = s) as explained, e.g., in [1], while the integrand is
analytic with respect to 3. Hence, integration with respect to 3 can be approximated
with GaufB-Legendre quadrature rules.

For 6 = 3, we substitute the variable § by

arctan (£ cosa) if ¢ =1,

B, ) = { arctan (€sina) if t = 2.

Let the auxiliary function p and ® be defined by

P08) = i, ()i
(1) [~ — (cosoz,sinoz,{cosoz)T 2) [~ — (cosa,sina,{sina)T
¢ (075) ) \/1-}-{2 cos2a ¢ (075) ) \/1+§2 sin2a
Then, (63) can be rewritten as
1 /4
[ = 1 / log ¢ / pVRS, (vM) dade, (64)
0 0
1 /4 /4 1
f = 2. / log ¢ / pPRS, (v®) dadt + / (log tan a) / pDRS, (v®) déda.
0 0 0 0

Hence, GauB-Legendre rules can be used with respect to those variables where the
integrand is analytic and Gauf-like rules with logarithmic weight with respect to the
remaining variables.

We conclude this case by discussing how the function %2, (defined in (42)):

&2 () == lim (T'S/%m (rep) cos ﬁ) (65)

r—0
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can be evaluated in quadrature points where & was defined by (41). Since the expres-
sion in the brackets in (65) is analytic in r the function £2, can be approximated for

sufficiently small ¢ > 0 by

where the arising error is proportionally to €.
Case 4:
In the case of identical panels, we have proved that

rf | pf/ i1 (3,9) gd:f::/ b (3,9) djdi
Qi QixQ;
+ Z {/ / ))log Mdadx
+/ Cl (3) d;r;+/ C0 (31) log ¢ (:i;l)d:i;l}
Qi 0

=l Y (10 19 4 1)
m=1

holds, where all quantities are defined in Section 4, Case III. For the approximation
of Iy, we employ the transformations and cubature techniques as described in [4]
and [23, p. 203] which goes back to [21].

The functions C'!, are analytic on @; and, hence, I{?) can also be approximated by
tensor versions of properly scaled GauB-Legendre rules. The last integral I{?) vanishes
if Q; = (0, 1)2. If @; is the unit triangle, this integral can efficiently be approximated
by using GauB-like formulas with weight log (1 — #1).

It remains to consider the approximation of the integral I{). We employ the
transformation W, which was used in Lemma 10 and observe that d,, (W,,%) = Z2/gm

(cf. (55)) holds. This means that

y am(Wmz)

S = Z/ / er (Wi, ¥ () log — 2 dadi
m=1

m‘ m a
mEY ) GmPm (@)

holds, where the functions a,, are as in (53). In the next step, this integral will be
transformed onto a standard domain such that the singular behaviour of the integrand
is simplified. Let the constant v,, be defined,

1. for Q; = (0,1)%, by

s
fym:(m—2)§, m=1,2,3,4,
2. for (); =unit-triangle, by
"= 5% ’72—4, Y3 = .
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Substituting a < 4, + arctan é, we obtain
P (#)
M= / Em (2, 5) O (8, 3) d3d (66)
Qi p%,(£)
where the quantities p,,, ¢,,, and w,, are defined,

1. for Q; = (0,1)%, by

,00 = —3 m:17273747
m bl
2. for (); =unit triangle, by
pl = —ii, p1=1—11,
pg: —2.%1—:%2, ,0%22_2'%1_'%27
pa=—t1— 12,  py=1—i1— 1y

and
Cm ('%72) =0 (Wmi'ﬂvb (,-)/m + arctan Ai)) 3

L2
| LY
Om (2,2) @+ = 75 og P

Since the integrand in (66) is smooth with respect to Z;, we interchange the
ordering of integration such that z; is the innermost variable. Again the integration
domain has to be split into subdomains. Then, the following reference domains

0§v1§1 O§v1§1
R1:: Ogvggvl ; RQ:: OS’UQS’Ul
0<vs<1—n 0<wvs <1 —uw

are mapped onto these subdomains. Let transformations x; ,, numbers y;, and do-

mains D; be defined
1. for Q; = (0,1)%, by:

1 0 17 [ wn [0 0 17 (wn
X11 (’U) = 0 1 0 (%) s X12 (U) = 01 0 (%) s
10 0]\ vy 10 0]\ v
[0 1 1]/ wn [0 0 1]/ wn
X21 (’U) = 1 0 0 (%) , o X22 (U) = 1 00 (%) 5
0 —1 0]\ v 001 0\ v

and

H1 = 2, Ho = 2, Dy = Rh Dy = 327
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2. for Q; =unit triangle, by
M1 = 3, M2 = 0, D, = Rh
and

o for m =1, by:

1 =1 17 /(v 0 01 vy
Xll(v)|: 0 1 0 (Ug), X12(0)|:1 0 0](’02),
—1 1 0]\ v 01 0]\ v
0 01 vy
X13(U){0 1 0] U?)a
1 00 U3
o for m = 2, by:
0 01 vy 0 0 1 v1
Xll(v)|: 1 0 0](?)2), XIQ(U)|:O 1 0](?)2),
-1 2 0 v3 2 =1 0 v3

1 0 1/ v 0 0 1
X11 (U) = 0 1 Vo s X12 (’U) = 1 0 0
0 0 0

0 T (%]
X13 (U) = 0 1 (%) .
L 1 -1 ] U3

Now, integral (66) can be written in the form

o
OO = OO

2 t

33 [ (G o xen) (9) (En 0 xu) (v) do

t=1 u=1 D,

The transform v, = £vq leads to

2 1,1 pb(v,€) Jad
Z/ / / gfn E U1 (@m o Xm) (’Ulafvh ”03) (ém © Xm) (U1, v, ”03) dvsd€dv;.
t=170 J0 JO =1
(67)
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Now, these integrals can be integrated by standard formulae. Exemplarily, we study
only the case of the unit square and p =t =1, where

€ og ) N (flg— v1+f)

U1 ((bm 0 XW) (Ulvgvlav?)) = (1 n 62 1+ 52

holds. Hence, integral (67) can be decomposed into two integrals, where one inte-
grand is analytic in all variables and the other is analytic in ¢ and vs and contains a
logarithmic singularity of the form log v;. Thus, properly scaled Gauf-Legendre for-
mulae with respect to the smooth variables and GauB-like formulae with logarithmic
weight for the integral containing log v; converge exponentially.

As in the previous chapter we will finish this section by explaining how the func-
tions ¢y and ¢; appearing in (47) and (48) can be evaluated. Let a pair of points
T,y € @Q; be given. First, the quantities r = ||g—Z|, £ = (—2) /r, y = 0 (9),
x =mn; (&), and z = y — = have to be computed. As in (46) we define

c(z,r &) =r’k,; (2, ré+2).

Then, ¢y 1s given by
Co (:%75) = hmc(iara ‘f) :

r—0

We have proven that the function ¢ is analytic with respect to all variables. Hence,
for small ¢ > 0, the function ¢ (Z,£) can be approximated by

(c(d,2,€) +c(d,—,8) + 0 (e7).

DO | —

Co ({i’, f) =
For the evaluation of ¢; (Z, ) we use the formula

¢ (2,6) =1limd, (e(z,1,¢)).

r—0
For sufficiently small value of e, this quantity can be approximated by

c(z,e,8) —c(x,—¢,§)

&1 (%75) = %

+0 (£?). (68)

Note that these formulae are fully implicit; the derivatives of the kernel function
or special expansions are never used in the cubature rules. However, if the three-
dimensional derivatives of the kernel function & (z,y, z) are available and all 2nd order
derivatives of the chart n; as well, then, 0, (c¢(Z,r,£)) can be expressed explicitly
while the numerical evaluation then might behave more robustly with respect to
cancellation errors.

It remains to explain the approximation of the function C? (i) as defined in (56).

The limit @)

C% (1) = gm lim P (@) co (2,9 () da

z2—0 am—l("i')
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has to be computed. The integration bounds a,, () can be evaluated at 2, = 0. The
same holds for the function ¢g. Again, the integrand is analytic and can be evaluated
by properly scaled GauB-Legendre rules.

Summarizing, we have developed cubature formulae for all integrals appearing in
the context of hypersingular integral operators. First, appropriate variable transforms
are applied rendering the integrand either analytic or analytic with a logarithmic
weight. Such integrals finally can be treated by GaufB-like formulae. The algorithm is
fully implicit, we never made use of the explicit form of the kernel function and/or the
surface parametrisation. The transformations of the Gaussian points on true surface
points is easy to implement and to debug since these transformations are given either
by 4 x 4 or 3 x 3 matrices.

Concerning the work for assembling the system matrix we emphasize that the
number of singular cases, i.e. K; N K; # 0, is proportional to O (N) where N denotes
the number of panels. The integrand is regular in O (N?) cases. Hence, the overall
complexity is dominated by the regular or so-called farfield integrals. For the singular
cases, it is important to have robust cubature rules along with a proper convergence
analysis to control the perturbation error arising by replacing the true Galerkin matrix
by the cubature approximation (see [5]).

Alternative regularisation techniques like partial integration or global regulari-
sation (i.e. subtracting functions lying in the null space of the operator) have the
draw back that the evaluation of the integrand for the farfield integrals is possibly
more costly (cf. [10], [11]) compared to the evaluation of the original kernel function.
Hence, the work for approximating the farfield integrals could be substantially larger
compared to using the true kernel function.
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