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Abstract

We present a range of mesh�dependent inequalities for piecewise constant and continuous piecewise
linear �nite element functions u de�ned on locally re�ned shape�regular �but possibly non�quasiuniform�
meshes� These inequalities involve norms of the form kh�uk

Ws�p��� for positive and negative s and �� where
h is a function which re�ects the local mesh diameter in an appropriate way� The only global parameter
involved is N � the total number of degrees of freedom in the �nite element space� and we avoid estimates
involving either the global maximum or minimum mesh diameter� Our inequalities include new variants
of inverse inequalities as well as trace and extension theorems� They can be used in several areas of �nite
element analysis to extend results � previously known only for quasiuniform meshes � to the locally re�ned
case� Here we describe applications to� �i� the theory of nonlinear approximation and �ii� the stability of
the mortar element method for locally re�ned meshes�
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� Introduction

Many classical a priori estimates for the error in a �nite element approximation u to a solution v of an
operator equation take the form kv � ukHt��� � C�hmax�

s�t kvkHs���� for some s � t� where hmax is the

global maximum mesh diameter and Hs��� is the usual Sobolev space of index s on a domain � � Since
modern applications produce meshes with signi�cant local variation of mesh size� many authors avoid the
introduction of hmax and use instead localised estimates� such as

kv � ukHt��� � C

�X
��T

h��s�t�� kvk�Hs���

����

� �����

with � denoting a typical element of the mesh T and h� the diameter of � � Other authors work with estimates
of the form ���h��s�t��v � u�

���
Ht���

� C kvkHs��� � �����
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where h�x� is some positive �mesh�size� function� designed to re�ect the local mesh diameter near each point
x � Estimates such as these allow quite general mesh re�nement procedures including some produced by
adaptive algorithms �e�g� ������

Some �nite element error analyses require� as an additional ingredient� certain fundamental inequalities
which have to be satis�ed by the �nite element functions� Examples are inverse estimates� which bound the
Sobolev norm of a �nite element function in terms of its Sobolev norm of lower index� multiplied by a mesh�
dependent constant� These are used in many classical analyses� for example uniform norm error estimates for
�nite elements ����� and sti�ness matrix conditioning analysis in boundary elements �e�g� ��	��� More recently�
inverse estimates have appeared also in the analysis of the mortar element method for PDEs� where negative
index spaces on lower dimensional manifolds appear naturally ��	���

Classical inverse estimates �like classical a priori error estimates� are usually global� The mesh�dependent
constant in the bound grows as an inverse power of hmin �the global minimum mesh diameter�� If the mesh
is strongly locally re�ned this bound is large and may not be useful� Thus analyses which make use of inverse
estimates often make the additional mesh assumption of global quasiuniformity �i�e� hmin � hmax�� and so
most interesting adaptive procedures are then ruled out�

In this paper we prove a range of inequalities� including localised inverse estimates which apply to both
piecewise constant and continuous piecewise linear functions de�ned with respect to meshes of simplices on
domains in R

d � The meshes are assumed shape�regular but need not be quasi�uniform� Our results include
estimates of the form

kh�ukW s�p��� � Ckh��sukLp��� � for a range of nonnegative s �����

and

khs��ukLq��� � Ckh�ukW�s�q��� � for all nonnegative s � ���	�

where � � R and h is the mesh�size function mentioned above� If the mesh is quasiuniform then h is bounded
above and below in terms of either hmin or hmax and these bounds reduce to standard inverse estimates� In
the locally re�ned case they represent localised inverse inequalities which may be considerably less pessimistic
than the classical ones�

While some particular localised inverse estimates have been developed in the literature in connection with
special applications �e�g� ���� proved special cases of ����� and ���� proved special cases of ���	��� we know
of no source in the literature for the general inequalities presented here� In fact ����� and ���	� are only
examples of a range of inequalities which we prove� Some of these are elementary and others depend on a
rather more delicate analysis� A recurring elementary tool throughout the analysis is the use of mesh�size
dependent discrete �p norms de�ned on the degrees of freedom of the �nite element functions� Preliminary
manipulations using such �� norms can be found in �����

A more sophisticated tool which we need is the scale of Besov spaces Bs
q �L

p���� of smoothness s and
primary index p� in which are embedded the Sobolev spaces W s�p���� In fact we prove ����� by obtaining its
more general analogue in the Besov scale� which allows even p � � and a range of s up to the regularity limit
of u� On the other hand� ���	� is proved using a separate and non�standard duality argument and holds for
all negative s and all � � q � ��

A range of elementary inequalities �involving relations between di�erent Lp and �p norms� are given in
xx�� �� while the inverse estimates ������ ���	� are proved in x	� In x� we give localised versions of trace and
extension theorems for �nite element functions using the same Lp norm on the ambient space and on the
lower�dimension manifold�

The rest of the paper is devoted to applications of these inequalities� As mentioned above� one application
�in particular of ���	�� is in the analysis of boundary element methods for operators on negative order spaces�
Since this is described in some detail in ���� �
�� here we restrict ourselves instead to describing two other
applications�

Our �rst application is to the Jackson and Bernstein inequalities which arise in the theory of adaptive �nite
element approximation� Recall that in a quasiuniform mesh we have h� � N���d� where N is the number of
degrees of freedom in the �nite element space� The estimate ����� then reads �e�g� in the case t � ���

kv � ukL���� � CN�s�d kvkHs��� � �����

When v fails to be in Hs���� but still possesses enough Besov regularity� then it is known �e�g� ����� that
adaptive processes exist which ensure that the rate of convergence N�s�d of best �nite element approximation
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to v is still attained� but with kvkHs��� on the right�hand side of the error estimate replaced by kvkBs
q�L

������

This variant of the classical �Jackson�type� approximation estimate is given as part of the Appendix �in
fact for primary index � replaced by general p�� The Jackson inequality is classically accompanied by the
�Bernstein�type� inverse inequality�

kukBs
q�L

p���� � CNs�dkukLp��� � for �nite element functions u �

This is proved as the �rst application of our inverse inequalities in x��
Our second application �x
� concerns the stability of the mortar element method in the case of non�

quasiuniform meshes on the subdomains� The mortar method seems to be particularly well suited for problems
with strong jumps in coe�cients� Since one therefore expects to deal with possibly irregular solutions� the
use of nonuniform meshes appears to be very desirable� The so called dual basis mortar method has indeed
recently been shown in ���� to lead to stable and accurate discretisations for the much more �exible class of
shape regular meshes provided that a certain weak matching condition on adjacent meshes hold along interface
boundaries� Our objective here is to establish stability for this version of the mortar method without requiring
this matching condition� Aside from the inverse estimates from x� we also make essential use of the extension
theorem in x��

� Preliminaries

��� Meshes and �nite elements

Throughout this paper � denotes either an open polyhedron or �a connected subset of� the surface of a
polyhedron� In both cases� the dimension�surface dimension of � is denoted by d � N� Although most of our
results extend to general dimension d� we give the proofs for the cases d � f�� �� �g�

A mesh T on � is a decomposition

� � �f� � � � T g �

where the elements � are either intervals� triangles or tetrahedra� The elements have nodes and edges and
also �when they are tetrahedra� they have faces� For convenience we will always consider the elements to be
closed sets� We assume throughout that our meshes are conforming� i�e� if �� � � T � with � �� � � then � � �
is either a vertex� an edge or a face� We identify two sets of points in � which are useful as index sets�

Let N� denote the set of centroids of elements of T � We identify cj � N� with its counting index j and we
write j � N� as well as cj � N�� The sets T and N� are in one�one correspondence and for j � N�� we denote
the element of T which contains cj by �j �

Also we let N� denote the set of nodal points of T � Similarly� we write i � N� as well as xi � N��
Each element � has a diameter denoted h� and a volume j� j �

R
�
dx�

We are concerned with inequalities for piecewise polynomial functions on T in the two most important
cases�

S��T � �
�
v � �� R � vjint��� is constant� � � T

�
�����

S��T � � fu � �� R � u is continuous and uj� is a�ne� � � T g � �����

For each j � N�� let �j � S��T � denote the characteristic function of �j and for each i � N�� we de�ne
	i � S��T � to be the �hat� function with values 	i�xj� � 
i�j � for i� j � N�� Each u � Sk�T � then has the
familiar expansion�

u �
X
j�N�

uj�j � with uj � u�cj� � u � S��T � � �����

u �
X
i�N�

ui	i � with ui � u�xi� � u � S��T � � ���	�

If � is a d�dimensional surface in R
d�� � the surface derivatives of a su�ciently smooth function u � � � R

on �plane� surface elements � � T are de�ned by introducing local �d� ���dimensional Cartesian coordinates
so that the �rst d coordinates lie in the tangential plane through � � Let �� denote the mapping from local to
global coordinates and put �u� �� u 	 �� � Then� for any � � N

d
� � we de�ne

��uj� �� ����u� � 	 �
��
� � � � R

�



Similarly� we put

ru �� �r�u� � 	 �
��
� � � � R

d �

Note that� by using this de�nition� Leibniz� rule for di�erentation of products of functions holds as usual� At
various places in the text� we consider polynomials on elements � � T � In the case of surfaces this notation
has always to be understood in the sense that the function� in local coordinates is a polynomial�

��� Mesh regularity

De�nition ��� Two vertices xi� xj are called neighbouring if there is an element � � T such that xi� xj � �
�i�e� xi and xj are connected by an edge of the mesh�� Two elements �� � � T are called neighbouring if
� � � �� 
�

We shall consider classes of meshes which satisfy the following weak regularity assumptions�

De�nition ��� For K � � and 
 � �� MK�� denotes the class of meshes T which satisfy

h� � Kh� � for all neighbouring elements �� � � T �����

and j� j � 
hd� � for all � � T � �����

When d � �� it may be shown that for the conforming meshes considered here� the �shape regularity�
assumption ����� implies the �local quasiuniformity� or �K�mesh� condition ������ and so in this case the
meshes could be characterised by the single parameter 
� However in other situations it is of interest to
consider locally quasiuniform meshes which are not shape regular� and so we choose to keep the parameters
K and 
 separate in our analysis�

Notation ��� Throughout the paper� if A�T � and B�T � are two mesh�dependent properties� then the inequality

A �T � � B�T �

will mean that there is a constant C depending on K and 
 such that

A�T � � CB�T � � for all T � MK�� �

Also the notation

A�T � � B�T �

will mean that A�T � � B�T � and B�T � � A�T ��
In some situations we will be considering other parameters as well� If the constants in the estimates are

independent of another parameter� say � � ��� ��� we shall write explicitly� �A�T � � B�T � uniformly in � �
��� ��� or �A�T � � B�T � uniformly in � � ��� ���� as appropriate� This means that the equivalence constants
may depend on � and � but not on � � ��� ���

For our later estimates we need to introduce a mesh dependent function h on �� such that the value of h
on any � � T is proportional to the size of elements of T near � � To this end� for i � N�� we introduce the
subsets of T �

T �xi� �� f� � T � � has a corner at xig � ���
�

Then we set

hi �� maxfh� � � � T �xi�g �

and we de�ne h � S��T � to be the interpolant of these values� i�e�

h �
X
i�N�

hi	i � �����

	



Our aim in this paper is to create methods of analysis which are relevant to locally re�ned meshes and to
exploit them in several applications� To this end� information about the mesh being used will be contained
in the function h de�ned above and this plays a key role in most of our estimates� In some situations we also
need to include a global mesh parameter� For this we avoid using the maximum or minimum mesh diameters�
given by hmax � maxfh� � � � T g and hmin � minfh� � � � T g� but choose instead to use the cardinality
of the mesh N �� �N�� Note that asymptotically it is unimportant whether N is de�ned as the number of
nodes or elements since it follows from the conformity of the meshes that

�N� � �N� � ���
�

Since adaptive techniques try to construct a good approximation for a minimal N � estimates involving N are
more natural in the context of adaptivity than those involving hmin or hmax�

Remark ��� Since min
x��

h�x� � min
i�N�

hi � � any power hs is well�de�ned� for s � R�

Throughout the paper we will frequently use the estimates in the following proposition without further
reference�

Proposition ��� Let T � MK��� Then
�a� h� � hi � Kh� for all � � T �xi�� i � N�

�b� K��hi� � hi � Khi� � for all pairs of neighbouring vertices xi and xi� � N��
�c� For all j � N��

h�j � min
i��j�N�

hi � h�cj� � max
i��j�N�

hi � Kh�j �

�d� For all j � N��

�hd�j � j�j j � hd�j �

�e� For any two points x� y � �� let j� �x� y�j denote the length of the minimal path in� connecting x and y
and C� denote the minimal constant such that� for all x� y � �� j� �x� y�j � C� jx� yj� The function h is
Lipschitz continuous with Lipschitz constant satisfying

L � C �K � �� �
� uniformly in K � ��

where C depends only on C� and d�

Proof� The proofs of �a� � �d� are trivial� To obtain �e�� �rst observe that by the de�nition of h we have� for
any j � N� and any x � �j �

rh�x� � rh�cj� � r�h� h�cj���cj� �
X

i��j�N�

�hi � h�cj��r	i�cj�

Now using the shape regularity property ������ it follows that jr	i�cj�j � C��h�j �
�� where C only depends

on d� Also� for i � �j � N�� we have

���K�h�j � min
i��j�N�

hi � max
i��j�N�

hi � hi � h�cj� � max
i��j�N�

hi � min
i��j�N�

hi � �K � ��h�j �

and thus

krhkL���� � C�K � ����

uniformly in K �
Now take any x� y � � and recall that � is connected� Let � denote a shortest path in � connecting x and

y� Since the element in T are simplices the restriction of � to any � is either empty or a straight line� Choose
a minimal sequence ��i�

m
i�� in T such that �i � � �� AiAi�� for � � i � m� � and A� � x� Am � y� Then�

jh �x�� h �y�j �
m��X
i��

jh �Ai�� h �Ai���j �
m��X
i��

krhkL���i�
jAi �Ai��j � krhkL���� j�j

� C� krhkL���� jx� yj � CC�
K � �



jx� yj �

�



��� The Sobolev norms

For � � p � �� we introduce the usual space Lp��� with norm k�kLp���� Extending this de�nition to � � p � �
we obtain a quasi�norm which satis�es the modi�ed triangle inequality ku� vkLp��� � C�kukLp����kvkLp����

with C �� ���p��� For further details on Lp spaces with p � �� see ���� �	� and the references therein� The
case p � � will become important in x��

We introduce the usual Sobolev spaces W s�p��� and we note that for s � ��� ��� these are equivalently
de�ned using the Slobodeckij norm �

kvkW s�p��� ��

���kvkpLp��� �
Z Z
���

jv�x� � v�y�jp

jx� yjd�ps
dxdy

�	

��p

�see� e�g�� ���� Section ����	��� In the special case p � �� we write k�kHs��� �� k�kW s������ For negative �s�

W�s�q��� is the dual space W�s�q��� �� �W s�p����� with �
p � �

q � �� p � �� endowed with the dual norm�

The norms can also be used when � is a d�dimensional manifold in Rd�� � d � �� � �see� e�g�� ����� ��
���

��� The �p norms

Let v � �vi�i�I � RI be a vector with I denoting its index set� Then� as usual� we write

kvk�p�I� �
�X

i�I
jvij

p
���p

� for p � ����� � and kvk���I� � maxfjvij � i � Ig�

If w � �wi�i�I � then we de�ne the �� inner product and the pointwise product� respectively� by�

�v�w����I� �
X
i�I

viwi � vw � �viwi�i�I �

If f is any function on �� we introduce the discrete norm of f on N� and on N� de�ned by

kfk�p�N�� �

���X
j�N�

jf�cj�j
p

�	

��p

� kfk�p�N�� �

�X
i�N�

jf�xi�j
p

���p

�

when these quantities are well�de�ned�

� Estimates in �
p and L

p norms

��� Relations between discrete and continuous norms

Proposition ��� Let p� � � and � � � be given� Then� for i � � or ��

kh�ukLp��� � kh��d�puk�p�Ni� � uniformly in u � Si�T �� p � �p���� and � � ��� �� � �����

Proof� Throughout this proof the relations � and � will hold uniformly in p � �p���� and � � ��� ��� First
consider p� � p ��� observe that for any f � Lp���� we can write

kh�fkLp��� �

���X
j�N�

h�p�j

Z
�j

jf jp

�	

��p

� �����

Thus if we consider any u � S��T �� we have�

kh�ukLp��� �

���X
j�N�

h�p�j j�j j ju�cj�j
p

�	

��p

�

���X
j�N�

h�cj�
�p�dju�cj�j

p

�	

��p

� kh��d�puk�p�N�� �

�



This estimate is uniform in u � S��T �� p � �p���� and � � ��� ���
On the other hand� suppose u � S��T �� Since� for all j � N�� uj�j is a polynomial of degree �� it follows

by a simple scaling argument that�Z
�j

ju�x�jpdx

���p

� j�j j
��p

��� X
i��j�N�

ju�xi�j
p

�	

��p

� uniformly in j� p � �p���� �

�Note that the usual scaling argument is still valid even for p � �� since the function u 
� kukLp���� although
not a norm� is still a continuous function of u �� Hence� inserting this in ������ we get� uniformly in u � S��T ��

kh�ukLp��� �

���X
j�N�

h�p�j j�j j
X

i��j�N�

ju�xi�j
p

�	

��p

�

�X
i�N�

h�p�di ju�xi�j
p

���p

� kh��d�puk�p�N�� �

as required� �In the second last step we have used the fact that the mesh is conforming and shape regular and
so the number of elements attached to any given node is bounded over all meshes in the class MK����

The remaining case of p �� follows by similar arguments�
The following corollary identi�es two simple special cases of Proposition ����

Corollary ��� There holds X
j�N�

h�cj�
d �

X
i�N�

hdi � ��

���h�d�p���
Lp���

� N��p � uniformly in p � �p���� �

��� Estimates between di�erent �p norms

First we recall some inequalities satis�ed by �p norms�

Proposition ��� a� Let � � p � p� ��� Then� for any index set I�

kuk�p� �I� � kuk�p�I� � �����

b� Let � � � � � �� and � � p � �� Then

kuk�p�I� � kuk����I� kuk
���
���I� with � �



�
p
��p
��� � �� �

p
p��
��� if � ���

��p if � ���
���	�

Proof� To prove ���	�� we use H older�s inequality to obtain �for �nite ���

kukp�p�I� � �juj�
��p
��� � juj�

p��
��� ����I� � kjuj�

��p
��� k

�
���
��p �I�

kjuj�
p��
��� k

�
���
p�� �I�

�

On the other hand� if � �� we can write

kuk�p�I� � kuk��p���I� kuk
����p
���I� � �����

and together these two estimates prove ���	��
It can be easily checked that kuk���I� � kuk���I� for any � � � � �� Inserting this inequality into ������

one obtains kuk�p�I� � kuk���I� and hence ����� follows�

The next two propositions contain inverses of inequality ������ These can only be obtained at a cost of
either an N �dependent factor �Proposition ��	� or a weighting by a negative power of h �Proposition �����

The exponent p��p
pp� appearing below should be understood as ��p� if p� ���

Proposition ��� Let � � p � p� � �� Then� if i � � or ��

kuk�p�Ni� � N
p��p
pp� kuk�p��Ni�

� �����






Proof� Recalling ���
� we have

kukp�p�Ni�
� ��� jujp����Ni� � k�k

�
p�

p��p �Ni�

kjujpk
�
p�

p �Ni�
� N

p��p
p� kukp

�p��Ni�
�

Proposition ��� For i � �� ��

kuk�p�Ni� � kh�
d�p��p�

pp� uk�p��Ni�
� uniformly in u � R

Ni and p� � p � p� � �� ���
�

Proof� We give the proof for i � �� The case i � � is analogous� Take any u � R
N� and de�ne u � S��T �

by requiring u�cj� � uj � j � N�� Then� by Proposition ��
 below� we have kukLp��� � kukLp����� Using

Proposition ��� we obtain khd�puk�p�N�� � khd�p
�

uk�p� �N��
� Then ���
� follows by replacing u by h�d�pu�

From this we have the immediate corollary�

Corollary ���

kh�uk�p�Ni� � kh��
d�p��p�

pp� uk�p� �Ni�
� uniformly in u � R

Ni � � � R and p� � p � p� �� �

��� Estimates between di�erent Lp norms

The following result is obtained directly from H older�s inequality�

Proposition ��	

kukLp��� � kukLp���� � uniformly in p� � p � p� � � and u � Lp
�

���� �����

In the following generalisation of Proposition ��
� we balance powers of h inside the right�hand norm with
an appropriate power of the global parameter N outside�

Proposition ��
 For i � �� �� the estimate

kukLp��� � N	khd	ukLp���� � ���
�

holds uniformly in u � Si�T �� p� � p � p� � � and � � � � p��p
pp� �

Proof� We give the proof for i � �� The case i � � is very similar�
�a� Let u � S��T �� Then using ����� with i � � and with u replaced by hd�pu and then ������ we obtain

the required result in the case � � p��p
pp� �

�b� More generally� consider � � � � p��p
pp� � Then we can choose p�� � �p� p�� such that � � p��p��

p��p� � Then by

����� and part �a�� we have kukLp��� � kukLp�� ��� � N	khd	ukLp����� as required�
Finally we obtain an inverse to the inequality in Proposition ���� As in Proposition ���� we pay the penalty

of a negative power of h on the right�hand side�

Proposition ��� For i � �� � the estimates

kh�ukLp� ��� �

����h�� d�p��p�

pp� u

����
Lp���

�

hold uniformly in u � Si�T �� � � ��� �� and p� � p � p� �� �

Proof� Combine ����� and ������

�



� Inverse estimates in Sobolev norms

In this section we prove two types of inverse estimate in Sobolev norms� The �rst two subsections concern
upper bounds for the W s�p norm of a function �s � �� in Si�T �� i � �� � in terms of the Lp norm of an
appropriately weighted function� The range of s is naturally restricted by the regularity of the spaces Si�T ��
In the case of S��T � our results are a generalisation of those already given in �����

In the third subsection we obtain lower bounds for the W�s�q norm �for s � �� of a function in Si�T �
in terms of the Lq norm of an appropriately weighted function� These are obtained by direct estimation
of negative norms� The range of negative �s which can be reached is unlimited and again the argument
generalises that in ����� in which only the cases u � S��T � and � � s � � were covered�

��� Inverse estimates for u � S��T � in W s�p��� � s � �

�

Theorem ��� Suppose that � � p � � and that � � s � � � ��p� Then the estimate

kh�ukW s�p��� �
��h��su��

Lp���
�	���

holds uniformly in u � S��T �� � � ��� �� and � � p ���

Proof� We give an elementary proof for range � � s � �� The proof for the extended range of s requires the
introduction of Besov norms and follows from Theorem A��� In fact Theorem A�� even allows an extension
of �	��� to the case p � �� provided the Sobolev norm appearing on the left�hand side is replaced by an
appropriate Besov norm�

Throughout this proof the inequality � will be uniform in u � S��T �� � � ��� �� and � � p � ��
Suppose s � � and � � T � The product rule yields r �h�u� � �h���urh� h�ru on � � Since Proposition

��� �e� shows that j �rh�j� j � �� it follows that
���h���urh��

Lp���
�
��h���u��

Lp���
� Moreover a simple scaling

argument shows that kh�rukLp��� � h��� kh�ukLp��� �
��h���u��

Lp���
� Summing the pth powers of these

inequalities over all � � T and taking the pth root� we obtain

kh�ukW ��p��� �
��h���u��

Lp���
� �	���

Interpolating this result with the trivial estimate kh�ukLp��� � kh�ukLp��� �for s � ��� we obtain �	���
for general s � ��� ��� �Note that here we have used the fact that the norm interpolating kh���ukLp��� and
kh�ukLp��� is kh

��sukLp��� �see Triebel ���� ��������	����

��� Inverse estimates for u � S	�T � in W s�p���� s � �

Analogously to Theorem 	��� we have the following estimate for piecewise constant functions�

Theorem ��� Suppose that p� � p � � and � � s � ��p� Then

kh�ukW s�p��� � kh��sukLp��� � �	���

uniformly in u � S��T �� � � ��� ��� and p� � p � ��

We give the proof for p � � only since it provides explicit constants based on the localisation of the
Slobodeckij norm given in the following lemma� Remarks on the proof in the case p �� � are given at the end
of this subsection�

Lemma ��� Let � � R
d be a bounded domain and let T be any conforming mesh on � � Any function

v � Hs���� s � ��� ��� satis�es

kvk�Hs��� �
X
��T

h
c 
��s� kvk�L���� �

X
���T
���� ���

Z
�

Z
� �

jv�x�� v�y�j�

jx� yjd��s
dx dy

i
� �	�	�

where 
� �� dist���D� � and D� ��
S
f� � � T � � � � � � 
g � For a domain � � Rd � the constant c is

explicitly given by c � �� �
s for d � � and by c � �� �


s for d � f�� �g� provided that 
� � �� The constant
c is more involved for a d�dimensional surface � � but still independent of v� T�K� 
 �






The proof of Lemma 	�� can be found in ���� for d � � and in ��
� for d � �� The ��dimensional case can
be shown analogously to the ��dimensional one� Note that �	�	� holds for any conforming triangulation and
the requirement that T � MK�� is not needed for Lemma 	���
Proof of Theorem ��	 �restricted case�� As mentioned above� we restrict to the case p � �� In addition we
describe here only the case d � �� The proofs for d � � and d � � are similar� So� let u � S��T �� Since we
are considering meshes from the class MK��� �	�	� implies that

kh�uk�Hs��� � kh��suk�L���� �
X

j�j��N�
�
j�
��j ���

Z
�j

Z
�j�

j�h�u��x�� �h�u��y�j�

jx� yj���s
dxdy � �	���

Observe that by elementary arguments j�h�u� �y�j � h��j ju �cj�j� for y � �j � Using this in �	���� we obtain

kh�uk�Hs��� � kh��suk�L���� �
X

j�j��N��j ��j
�

�
j� ��j ���

n
h���j� ju�cj��j

� � h���j ju�cj�j
�
o
J�j ��j� �	���

�
X
j�N�

ju �cj�j
�
H�j

with

J��� � ��

Z
�

Z
� �
jx� yj����s dx dy and H� ��

Z
�

Z
�

jh� �x�� h� �y�j

jx� yj���s dxdy� �	�
�

Since the summand in �	��� is symmetric with respect to j� j�� we may write

kh�uk�Hs��� � kh��suk�L���� �
X
j�N�

h���j ju�cj�j
�

X
j��N��j ��j

�

�
j� ��j ���

J�j��j� �
X
j�N�

ju �cj�j
�
H�j � �	���

We begin with the estimate

H� � kr �h��k�L����

Z
�

Z
�

jx� yj��s dxdy�

Now� using polar coordinates with respect to y � � � it follows that
R
�
jx� yj��s dx � h���s� � This� together

with kr �h��kL���� � h���� yields H� � h
����s�
� j� j and the last term in �	��� satis�esX

j�N�

ju �cj�j
�
H�j � kh��suk�L�����

We �nish the argument by showing that

J��� � � h��s� j� j � for all �� � � � T with � � � � �� 
 and � �� � �� �	�
�

If �	�
� holds then� since the number of triangles � � with � � � � �� 
 is bounded independently of h� �	���
implies that

kh�uk�Hs��� � kh��suk�L���� �
X
j�N�

h����s�j ju�cj�j
� j�j j

� kh��suk�L���� � kh��s��uk����N��
� kh��suk�L���� �

by Proposition ��� yielding the required result�
It remains to show �	�
�� Let y be an interior point of �� Then � � � R

� nBr�y� with r �� dist�y� ��� � � �
Using polar coordinates with respect to y showsZ

� �
jx� yj����s dx �

Z
R�nBr�y�

jx� yj����s dx �
�

s
r��s �

�

s
dist�y� �����s �

��



p	 � p�

p�

p

�

��
��

��

p�

�j

p

pj�� q pj

Figure �� Subdivision of � into �j � j � �� �� �

hence

J��� � �

Z
�

dist�y� �����s dy �� � � � T with � � � � �� 
 and � �� � �� �	����

Let pj � j � �� �� �� be the vertices of � and let p be the centre of the largest circle inscribed inside � � This
circle has radius �� which� by the non�degeneracy condition ������ satis�es �� � h� � Also� each of the sides of �
are tangent to this circle� For the further estimation of J��� � � we split � as in Fig� � �left� into three triangles
�j � j � �� �� �� with vertices pj��� pj and p � Then there is one and only one q � �pj��� pj � �here �pj��� pj �
is the line connecting pj�� and pj � satisfying jp� qj � �� and p � q � pj � pj�� �see Fig� � �right��� For
y � �j � we have dist�y� ��� � fj�y� with the function fj�y� �� dist�y� �pj��� pj �� � i�e�� dist�y� ��� is constant
on the level lines parallel to �pj��� pj � � Therefore� we introduce the following transformation of coordinates

T ��� �� pj�� � ���p� q� � ���pj � pj��� for � � ���� ��� � ��� ��� �

Since p� q � pj � pj�� � we get for � � ��� ��� that

fj�T ���� � dist�T ���� �pj��� pj �� � �� jp� qj � �� ��

and

j det�T �����j � j det�p� q pj � pj���j � jp� qj jpj � pj��j � � j�j j �

Since dist��� ��� � fj on �j and �j � T ���� ���� � we obtainZ
�j

dist�y� �����s dy �

Z
T �
������

fj�y�
��s dy �

Z

�����

fj�T ����
��s j det�T �����j d�

� � j�j j �
��s
�

Z �

�

���s� d�� �
�

�� �s
���s� j�j j �

Hence� substituting this in �	����� we obtain

J��� � �
	X

j��

Z
�j

dist�y� �����s dy � ���s� j� j

which� by the non�degeneracy assumption� yields the estimate �	�
��

Remark ��� The full assertion of Theorem ��
 for the extended range s � � � ��p and even for p � �� as
well as the proof of Theorem ��	 for p �� � follows from a more general class of inverse inequalities for certain
Besov norms that will be formulated and proved later in Appendix A�
�

��



��� Inverse estimates in W�s�q� s � �

In this section we extend the estimates of xx	��� 	�� to negative norms� Our main result is Theorem 	�
� which�
for example� can be used to estimate the W�s�q norm of a �nite element function u from below by the Lq

norm of hsu� Unlike the previous section� where p � � was allowed� the argument in this section is restricted
to � � q � ��

Our result in this section is a generalisation of one obtained in ����� where we considered only the case
q � �� �s � ���� �� and u � S��T �� For our proof in ���� we used a duality argument� with test functions
chosen to be suitably weighted functions from S��T �� The range of negative �s which can be reached using
this argument is restricted� As we shall see such restrictions are arti�cial and we can obtain our inverse
estimates for �s inde�nitely negative and for functions u � S��T � as well as u � S��T �� The key to the
proof is to consider more general test functions in the duality argument� These are built from the �bubble
functions� introduced in the following preliminary lemma�

Lemma ��� Let t be any closed simplex in �� not necessarily an element of the mesh T � Let ht denote its
diameter and jtj denote its volume� Then� for any s � �� there exists a function Ps�t on � with the following
properties�

�a� Ps�t � � on ��
�b� supp Ps�t � t�
�c� There exist constants C�� C� such that� for all � � p � ��

C� jtj
��p � kPs�tkLp�t� � C� jtj

��p
!

�d� There exists a constant C	 such that� for all � � p � �� � � s� � s�

kPs�tkW s��p�t� � C	kh
�s�

t Ps�tkLp�t� �

The constants C�� C�� C	 are independent of p and C� and C� are also independent of t� Moreover C	 can be
chosen independent of t �but dependent on 
�� provided t is restricted to the set of all simplices satisfying the
shape�regularity assumption �	�
� for some 
 � � �

Remark ��� Note that putting p � � in �c� and using �a� implies

C� jtj �

Z
t

Ps�t � C� jtj �

Proof of Lemma ���� The proof employs the Bernstein representation of polynomials� Let i�� i�� � � � � id denote
the vertices of t and introduce the barycentric coordinates � � � �x� t� � ���� ��� � � � � �d� de�ned by

x �
Xd

j��
�ji

j �
Xd

j��
�j � ��

It is clear that each �j�x� t� is a polynomial of total degree � in x� Also� since t is the convex hull of the
points i�� i�� � � � � id� it follows that

�j�x� t� � � � x � t � �	����

Now� for given s � �� let r denote the smallest integer satisfying r � s and de�ne the multi�index � � Nd��

by �i � r � �� i � �� � � � � d� Then de�ne

Ps�t�x� �



���x� t� x � t�
� x � Rdnt �

�Here we have used the usual multiindex notation� i�e� �� � ���� ���� � � ���dd ��
Property �a� now follows from �	���� and� since t is closed� property �b� is trivial� Properties �c� and �d�

follow from standard scaling arguments �see� e�g� ���� Thms� ����� and ��������

Now we have the main theorem of this section�

��



Theorem ��	 Let s � � be given� Then��hs��u��
Lq���

� kh�ukW�s�q��� �	����

holds uniformly for u � Si�T �� i � �� � � � � q � � and � � ��� �� �

Proof� The result is clear for s � �� So� let s � �� let � � q � � and let p denote the conjugate index of q�
We will consider meshes T � MK�� and throughout the proof the constant involved in the relations � and �
may depend on d� s and �� � as well as on K and 
 �see Notation ����� but will always be independent of q
and u � Si�T � � i � �� ��

For any � � T � de�ne

�� �
��hs��u��

L����
� �	����

Then� simple geometric considerations show that it is always possible to construct a simplex t � t��� � � with
the properties

�A� u does not change sign on t����

�B� There exists a constant 
 � ��� �� depending only on d� s� �� � and 
 such that

min
x�t���

���hs��u� �x��� � 
�� � �	��	�

and

jt���j � 
 j� j � �	����

Note that �	����� together with T � MK�� implies

hdt��� � jt���j � 
 j� j � 

hd� � 

hdt���� �	����

Now consider �rst q in the range q � qmax ��� so that p � qmax��qmax � �� � �� Then de�ne coe�cients
b� � R by

b� � sign�ujt����



min
x�t���

���hs��u� �x����q�p � �	��
�

and then set �with Ps�t��� as de�ned in Lemma 	����

w �
X
��T

b�h
sPs�t���� �	����

We shall use w as test function to estimate the negative norm of h�u� i�e� we write

kh�ukW�s�q��� �
j�h�u�w�j

kwkW s�p���

� �	��
�

Now� to estimate the numerator in �	��
�� we use Lemma 	���a�� �	��
� and Remark 	�� to obtain

j�h�u�w�j �
���hs��u� h�sw��� � �����X

��T

Z
t���

hs��u b�Ps�t���

����� �X
��T



min
x�t���

���hs��u� �x����q jt���j �
and combining this with �	��	� and �	����� we obtain

j�h�u�w�j � 
q��
X
��T

�q� j� j � 
q��khs��ukqLq��� � �	����

Turning to the denominator in �	��
�� we �rst establish that

kwkW s�p��� � kh�swkLp���� �	����

��



To obtain this� consider �rst integer s and� for � � N
d
� � let �

� �� ���� ���� � � � ��dd � Then�

jwjpW s�p��� ��
X
��Nd�
j�j�s

k��wkpLp��� �
X
��T

jb� j
p ��hsPs�t�����pW s�p�t����

� �	����

Now recalling Proposition ����e�� which shows �rh�j� is constant and jrhj � �� and applying the Leibniz
formula� it is easy to show that��hsPs�t�����pW s�p�t����

� sup
j�������� �s

hjp�
��Ps�t�����pW j�p�t����

�

where the constant of equivalence only depends on s and jrhj� By Lemma 	�� and �	���� this supremum
may be bounded by

��Ps�t�����pLp�t���� and substituting in �	���� we obtain �	����� Arguing as in the proof of

Theorem 	�� we obtain �	���� for all s � R�� by interpolation�
Furthermore� by de�nition of w and by Lemma 	���c�� we have

��h�sw��
Lp���

�

�X
��T

jb� j
p kPs�t���k

p
Lp�t����

���p

�

�X
��T

jb� j
p jt���j

���p

�

�X
��T

j min
x�t���

�hs��u��x�jq jt���j

���p

�

�X
��T

khs��ukqLq�t����

���p

� khs��ukq�pLq��� � �	����

Combining �	����� �	���� and �	���� in �	��
�� we obtain the required result �	���� when q � qmax ���
To complete the proof� we consider the case q � �� p � �� Let �� � T satisfy ��� � max��T �� �

Then with the simplex t���� as de�ned above �and satisfying properties �A� and �B��� we de�ne w �
sign�ujt�����h

sPs�t���� � Then� using analogous arguments to those above� we obtain

j�h�u�w�j � j�hs��u� h�sw�j � min
x�t����

j�hs��u��x�j

Z
t����

Ps�t���� �
��hs��u��

L����

Z
t����

Ps�t�����

On the other hand� one can easily check that �	���� remains true for p � �� and so

kwkW s����� � kh�swkL���� �

Z
��
Ps�t���� �

These last two estimates imply the result �	���� for q ��� The result for q � �qmax��� follows by interpolation�

Remark ��
 We emphasise that the estimates ���
	� hold uniformly as q � �� However this does not prove
���
	� for q � �� Indeed� since L� is not the dual of L�� the proof given here fails when q � ��

� Traces and extensions

Suppose that � is a �d� ���dimensional domain �d � �� �� which is triangulated with a mesh T � MK�� and

that "� is a d�dimensional surface consisting of boundary faces of elements in T � Thus� the restriction of T to
"� de�nes a mesh "T on "�� Then "T � M �K��� with "K � K and "
 � 
� We can de�ne the function h � S��T �

exactly as in ������ Analogously we can de�ne "h � S�� "T �� The mesh regularity implies the estimate

h �x� � "h �x� � h �x� �x � "��

Suppose that the index sets of the elements and nodes of the meshes T and "T are denoted� respectively� by
Ni� "Ni� i � �� ��

�	



��� Traces

Every function u � S��T � has an obvious restriction "u � S�� "T �� de�ned by requiring the nodal values of "u to
coincide with those of u on the surface "�� i�e� "u is just the trace of u� For discontinuous functions u � S��T �
we can de�ne a restriction "u by requiring that the values of "u on each element of "� � "T should be the average
of the values of u over each � � T with "� � � � In each case� using Proposition ��� �twice� we obtain�

Lemma ��� For i � �� �� the estimates

k"h�"ukLp���� � k"h��
d
p "uk�p� �Ni�

� kh��
d
puk�p�Ni� � kh��

�
pukLp��� �����

hold uniformly in u � Si�T �� p � �p���� and � � ��� ���
Note also that the constants in ���
� are not dependent on the d�dimensional measure of "��

��� Extensions

With the same notation as above� suppose that "u � S�� "T � is given� We can again de�ne the obvious extension
u � S��T � by de�ning u to be zero at nodes of T n "T � For "u � S�� "T �� a suitable extension would be to de�ne
uj� � for each � � T � to be the average of the value�s� of "u on the elements of "T which intersect � and zero if
there are no such intersections� Then� analogously to ������ we have

Lemma ��� For i � �� �� the estimates���h�� �
pu
���
Lp���

�
���h�� d

pu

���
�p�Ni�

�
���eh�� d

p �u

���
�p� eNi�

�
���eh�"u���

Lp�e��

hold uniformly in u � Si �T �� p � �p���� and � � ��� ���

Notation ��� For future reference� we denote the extension operator from S�� "T � to S��T � described above
by #��

� Mixed norm estimates

It is well�known that when mth order �nite elements u are used to approximate the solution v �of some
di�erential equation� say� then� on quasi�uniform meshes Th of mesh size h� we obtain estimates of the form

kv � ukLp��� �
� hskvkW s�p��� � �����

for s � m and v � W s�p���� In the quasi�uniform case we have h � N���d �where N is the number of nodes
in the mesh� and so we have the �Jackson estimate�

kv � ukLp��� �
� N�s�dkvkW s�p��� � �����

which measures the accuracy in terms of the number of degrees of freedom used in the approximation� The
Jackson estimate often is accompanied by its companion �Bernstein estimate�

kukW s�p��� �
� Ns�dkukLp��� � �����

an inverse estimate holding for all u in the relevant �nite element space�
If we replace the right�hand of the estimate ����� by a sum of local error bounds hs�kvkW s�p���� then

quantitatively improved accuracy can be expected by choosing the mesh to equilibrate these local errors�
However� such a �theoretical� adaptive process still gives rise to meshes that stay asymptotically quasi�uniform
�with possibly large but uniformly bounded mesh size ratios� and therefore does not re�ect what one often
sees in practice when the O�N�s�d� convergence rate is attained even for quite badly�behaved functions
v ��W s�p����

Thus� to see under which circumstances non�quasiuniform meshes o�er a better asymptotic accuracy� one
has to abandon measuring error and smoothness in the same Lp metric� This is the point of view taken in the
�eld of nonlinear or best N�term approximation� See ���� for a recent excellent survey of relevant concepts�
One of the key results shows that the estimate ����� remains true even when the degree of smoothness s is

��



measured not in the Sobolev norm� but in an appropriate �weaker� Besov norm� de�ned in Appendix A���
This explains observed convergence rates for adaptive methods� for example in �nite element approximation
of elliptic problems with jumping coe�cients or on domains with re�entrant corners� Here� the solution does
not have W ��p��� regularity� but it still has regularity of order � provided we measure regularity in the weaker
Besov scale� see e�g� �����

The r�ole of the Besov spaces can be illustrated with reference to the Sobolev embedding theorem� which
states that if p � �� r � � and s � � satisfy the equality

�

r
�

s

d
�

�

p
� ���	�

then the spaces W s�r��� are embedded in Lp���� In fact� given the integrability index p and the smoothness
s� decreasing r so as to satisfy ���	� yields the largest Sobolev space of smoothness s that is still embedded
in Lp���� This can be illustrated with reference to a ���r� s��diagram� with the vertical axis corresponding
to smoothness s and the horizontal axis corresponding to integrability ��r� Let p and d be �xed we identify
W s�r��� with the corresponding point in the �rst quadrant of the ���r� s� plane� The critical line represented
by ���	� is then a line of slope d passing through ���p� �� and ���r� s�� In this diagram the spaces W s�p���
�for non�integer s� lie on the vertical line ��r � ��p� For �xed s � �� larger spaces which are still embedded
in Lp��� can be found between this vertical line and the critical line when moving to the right� decreasing
r� In particular the spaces W s�r with r� s and p given by ���	� slide up the critical line with increasing s�
They are much larger than W s�p �with increasing discrepancy for growing s� and permit singularities which
are prohibited in W s�p����

Note also that as s gets bigger then along the critical line r � � and so eventually we encounter r � ��
This picture can be re�ned somewhat by invoking the announced concept of Besov spaces �see� for example

���� p�
���� In fact� W s�r��� agrees for s �� N with the Besov space Bs
r�L

r����� With each point in the ���r� s�
diagram one actually identi�es the class of Besov spaces Bs

q�L
r����� where r is the primary index and the

secondary index q � ����� is �essentially� arbitrary� For points ���r� s� strictly above the critical line� the
corresponding Besov spaces are compactly embedded in Lp��� �irrespective of the secondary index q� and
moreover p and r �like s� are now required merely to be positive numbers ���	��� For points on the critical
line the embedding is only continuous and q may be constrained depending on the value of p�

A more general Jackson estimate than ����� is obtained by replacing the norm in W s�p��� by the norm
in Bs

q �L
r���� where r� p and s satisfy ���	�� Such estimates for one�dimensional problems can be found in

���� p������ In the present multidimensional case� following the arguments of ����� one can prove a Jackson
estimate of the following type�

Theorem ��� Suppose � � p �� and i � f�� �g� Let � � s � i� � and

�

r�
�

s

d
�

�

p
�

Then� for any v � Bs
q �L

r����� where � � q �� there exists a mesh T � MK�� and a projector QT � Lp����
Si�T � such that

kv �QT vkLp��� � N�s�dkvkBs
q�L

r� ���� �����

where N �� �T �

Some comments on the type of argument leading to the above result �for the more di�cult of the two cases
i � �� along with an idealized algorithm for generating appropriate meshes �for a model domain� are given in
Appendix A��� The main reason for including this result here explicitly is to motivate the use of the inverse
estimates developed in the earlier sections of this paper to prove the companion Bernstein estimate for ������
i�e� the analogy of ������ This is given in the following theorem�

Theorem ��� Let � � p ��� and assume that p� r� s satisfy �
��� and in addition that for i � f�� �g one has
� � s � i� ��r� Then

kukBs
r�L

r���� �
� Ns�dkukLp���� �����

uniformly in u � Si�T �� p and r�

��



Proof� By Theorem A�� and Proposition ���� one has

kukBs
r�L

r���� �
� kh�sukLr��� �

� kh�s�d�ruk�r�Ni� � ���
�

Using this and restricting to i � �� we write

kukBs
r�L

r���� �

�X
i�N�

jh
�s� d

r�
d
p

i jrjh
d
p

i uij
r

���r

�

�X
i�N�

jh
d
p

i uij
r

���r

�

�X
i�N�

�

�p�r
pr
�X
i�N�

jh
d
p

i uij
p

���p

�
� Ns�dkukLp����

where we have made use of ���	�� H older�s inequality and again Proposition ���� The proof for i � � follows
entirely analogous lines�

Remark ��� �i� The Besov norm on the left�hand side of �
�
� may be replaced by the Sobolev norm kukW s�r����
when r � �� The proof is analogous� but uses Theorems ��
 and ��	 instead of Theorem A�
�

�ii� In the proof we have made use of various results from Section � in the norms in �r and Lr� Here the
importance that these results hold for r � � becomes apparent�

Let us �nally obtain a Bernstein companion to the �almost optimal� Jackson estimate ������ Choose p� � p
such that �

r� �
s
d � �

p� � Then ����� combined with Proposition ��
 provides

kukBs
r�
�Lr� ����

�
� Ns�dkukLp���� �

� Ns�dkh�
d�p��p�

pp� ukLp��� � Ns�dkhs
��sukLp���� �����

where �
r� �

s�

d � �
p �

� Application to non�quasiuniform mortar elements

In this section we shall apply the inequalities derived above in the context of the mortar �nite element method�
see� e�g�� ��� �� �� ���� The mortar method seems to be particularly well suited for problems with strong jumps in
coe�cients� Since one therefore expects to deal with possibly irregular solutions� the use of highly nonuniform
meshes appears to be very desirable� When dealing with quasiuniform meshes certain mesh dependent norms
provide a convenient basis for the stability and accuracy analysis� Thus our main objective here is to extend
the stability analysis for the mortar method to the much more �exible class MK�� introduced above where
appropriate mesh dependent norms involve now mesh functions� Speci�cally� we will focus on the dual basis
mortar method ���� ��� which has been shown in ���� to yield stable and accurate discretisations also in
the three dimensional case provided that certain weak matching conditions along the boundary of interfaces
between adjacent subdomains hold� Here we employ concepts from the previous sections to establish stability
without any such matching conditions�

	�� The continuous problem

Consider the second order elliptic boundary value problem

� div a�x� gradu�x� � f�x� in ��
a�x��u��n �x� � g�x� on $N � ���

u � � on $D �� �� n $N �
�
���

where a�x� is a uniformly positive de�nite matrix with coe�cients in L� ���� the domain � � R
d is bounded�

$D is a subset of the boundary $ of � �with positive measure relative to $� and $N �� $ n $D� H�
��D���

denotes the closure in H���� �W ��� ��� of all C��functions vanishing on $D�
Suppose that � is decomposed into non�overlapping subdomains �k� k � �� � � � � kmax� i�e��

%� �

kmax�
k��

%�k� �k ��l � 
 for k �� l� �
���

�




For simplicity we will assume throughout the rest of the paper that the domain � � R
d and that the

subdomains �k in �
��� are polyhedral� If �k and �l share a common interface� we set %$kl �� %�k � %�l� The
interior faces form the skeleton

S ��
�
k�l

$kl�

$kl� $N � and $D will always be assumed to be the union of polyhedral subsets of the boundaries of the �k�
The mortar method is based on a variational formulation of �
��� with respect to the product space

X
 �� fv � L���� � vj�k � H���k�� k � �� � � � � kmax� vj�D � �g�

endowed with the norm

kvk��
 ��

�Xkmax

k��
kvk�H���k�

����

�

The space H�
��D��� is characterised as a subspace of X
 determined by appropriate constraints on jumps

across interfaces�
This suggests the following weak formulation of �
���� For a suitable pair of spaces X�M� �nd �u� �� �

X �M such that

a�u� v� � b�v� �� � �f� v���� � �g� v����N for all v � X�

b�u� �� � � for all � �M�
�
���

where �u� v���� and �g� v����N denote the L� inner products on � and $N � respectively and

a�u� v� ��
P

k

R
�k

�a�x�ru�x�� � rv�x�dx�

b�v� �� ��
P

�kl�S
��� �v�����kl �

The jump �v� of a function v � X is de�ned on S by

�v� �� vj�k � vj�l
on $kl

�see ��� for further background information�� It is important to note that therefore each interface $kl appears
only once� in the sum over S�

	�� Discretisation

In order to describe next the mortar method as a discrete version of �
���� we choose for each subdomain �k a
family of �conforming� simplicial meshes Tk independently of the neighbouring subdomains� This means that
the nodes in Tk which belong to $kl need not match with the nodes of Tl� Throughout the rest of this section
each family Tk will be assumed to lie in the class MK��� for some �xed K and 
� �Note that the mesh sizes in
the adjacent subdomains are not required to satisfy any compatibility condition�� The corresponding spaces
of piecewise linear �nite elements on Tk are denoted as before by S��Tk�� We set

Xh �� X
 �
kmaxY
k��

S��Tk�� �
�	�

where the index h is used to signify the mesh dependence� The crucial step is to �x the Lagrange multipliers
for each $kl �i�e� the discrete analogue of the space M in �
����� The corresponding domain �k is called the
non�mortar side� while �l is the mortar side� It is important to stress here the following implicit notational
convention to be used throughout the rest of the section� The indexing of the interface $kl �as opposed to
$lk� always expresses that �k has been chosen as the non�mortar side� We also emphasise that the choice of
the mortar side is actually arbitrary�

A common strategy is to choose the Lagrange multipliers also as continuous piecewise linear �nite elements
to keep them as close as possible to the traces on the non�mortar side� Here we consider an interesting

�Note that the indices k� l in �kl have a di�erent meaning� The �rst index will refer to the non�mortar side� as explained later�

��



alternative that has been recently proposed in ���� for the case d � � and in ���� for d � �� In these papers
the Lagrange multipliers are allowed to be discontinuous in favour of an additional practically very desirable
feature� namely the fact that the Lagrange multiplier spaces are spanned by a basis which is dual to those of
the corresponding trace spaces on the non�mortar sides� Let us brie�y recall the construction from ���� for
d � � and refer to ���� for d � �� De�ne the space

S�kl �� S�� "Tkl� �H
�
� �$kl��

where "Tkl denotes the restriction of the mesh Tk on the non�mortar side to $kl� The corresponding multiplier
space Mkl is most conveniently de�ned with the aid of the following mapping Fkl� Let � be any triangle in
"Tkl and� for any v � S�kl� let the values of v at the nodes xi of � be denoted by vi� Then Fklv � w is de�ned

as the unique piecewise linear function on "Tkl whose restriction to � is determined by its nodal values wi as
follows�

�i� wi �� �vi � vr � vs for all pairwise di�erent vertices xi� xr� xs of � when none of these vertices belongs
to �$kl!

�ii� If exactly one vertex� say xi lies on �$kl set wi �� �vr � vs���� wr �� ��vr � �vs���� ws �� ��vs� �vr���!

�iii� If exactly two vertices xr� xs belong to �$kl let wi � wr � ws �� vi!

�iv� If all vertices of � belong to �$kl set wi � wr � ws � vq where xq is a nearest interior node to � �

Of course� since w � Fklv is generally discontinuous the nodal values wi are to be understood as limit
values obtained when approaching the respective node from the interiour of the triangle under consideration�

Let Nkl denote the set of interiour nodes of "Tkl and let 	i denote the standard piecewise linear basis for
S�kl normalised by 	i �xr� � 
i�r for xr � Nkl� De�ning

�i �� Fkl	i� xi � Nkl�

it is not hard to show that

�	i� �j����kl � �� i �� j� �	i� �i���� �
j� j

�
�
���

holds for all � � "Tkl and xi � � � Hence setting Mkl �� span f�i � xi � Nklg� it follows that

dimMkl � dimS�kl� �
���

The following further facts will be needed later� Given any � � Mkl it has a unique representation
� �

P
xi�Nkl

�i�i and it follows from �
��� that

k�k�L���� � hd���

X
xj��

��j � � � "Tkl� k�k�L���kl� �
X

xi�Nkl

hd��i ��i � kh
d
��

�
��k����Nkl�

� �
�
�

Clearly the second estimate follows from the �rst one which has been established in ���� Eq� �	����� Moreover�
as a consequence one has �cf� ���� Eq� �	�����

kvkL���kl� � kFklvkL���kl�� v � S�kl� �
���

The space of discrete multipliers is now de�ned as

Mh ��
Y

�kl�S

Mkl� �
�
�

where� again� the index h indicate mesh dependence�
Viewing the mortar method as a nonconforming discretisation� the above dual basis variant has been shown

in ���� to be stable for d � � even for shape regular locally quasiuniform meshes provided that the meshes on
adjacent subdomains match on the boundary �$kl of the respective interface� see condition �M��� in ����� This

�




assumption allows to establish the stability of the Mortar element method without employing mesh�depending
norms�

The objective of this section is to establish stability of the above dual basis mortar discretisation also for
any locally quasi�uniform meshes� i�e�� for meshes in the classMK�� for arbitrary parameters K� �� but without
any additional constraints across the interfaces� thus retaining full mortar �exibility�

Here we follow the lines in ��� 	� ��� and adopt the above formulation as a mixed method� Thus the central
issue is now to see under which circumstances

a�uh� vh� � b�vh� �h� � �f� vh���� � �g� vh����N � vh � Xh�
b�uh� �h� � �� �h �Mh�

�
����

is a stable discretisation of �
���� In other words� one has to show that the operator

Lh ��

�
Ah B�

h

Bh �

�
� Xh �Mh � X �

h �M �
h �
����

induced by �
���� is uniformly bounded and has uniformly bounded inverses with respect to the underlying
meshes� Of course� this depends on the norms for Xh and Mh which have yet to be speci�ed� At the �rst
glance� k�k��
 seems to be a natural choice for Xh whileMh should be endowed with some sort of anH��� norm
on the skeleton S� However� this turns out to be inappropriate and we refer for the details to ����

	�� Stability

Our �ndings from the previous sections� in particular the inverse estimates allow us to handle mesh�dependent
norms that are suitable for the class of meshes MK��� To de�ne these norms one should note �rst that the
mesh size function h is de�ned separately for each subdomain �k� More precisely� de�ne h�k� � S� �Tk� by

����� with T replaced by Tk� Also de�ne h�kl� � S�
�
"Tkl
�
in an analogous way� Since Tk belongs to the class

MK�� the trace mesh "Tkl belongs to the class M �K��� with "K � "K and "
 � 
� The superscripts k� kl in h will
be suppressed whenever the reference of h to an interface or subdomain is clear from the context�

Guided by ��� 	�� we introduce the norms

kwk����h��kl �� kh����wkL���kl�� kwk�����h��kl �� kh���wkL���kl��

where the mesh function h � h�kl� is induced by the non�mortar side� Moreover� for any vh � Xh de�ne

kvhk
�
��h �� kvhk

�
��
 �

X
�kl�S

k�vh�k
�
����h��kl

� kvhk
�
��
 �

X
�kl�S

kh�����vh�k
�
L���kl�

� �
����

and �nally� for � �Mh�

k�k������h ��
X

�kl�S

k�k������h��kl �
X

�kl�S

kh����k�L���kl�� �
����

Let us address �rst the continuity of the bilinear forms a��� ��� b��� �� with respect to these norms� Since

j�v� �����kl j � j�h����v� h��������kl j � kvk����h��klk�k�����h��kl �

one has� in view of �
���� and �
����� for all u� v � Xh and � �Mh�

ja�u� v�j � kuk��hkvk��h� jb�v� ��j � kvk��hk�k�����h� �
��	�

The next step towards con�rming stability of the discretisation is to con�rm the ellipticity of the bilinear
form a��� �� on

Vh �� fv � Xh � b�v� �� � � for � �Mhg� �
����

Proposition 	�� The bilinear form a��� �� is elliptic on Vh� i�e��

a�v� v� � kvk���h for all v � Vh� �
����

��



Proof� The inequality

a�v� v� � kvk���
 for v � Vh �
��
�

has been used frequently in the analysis of mortar elements and� in particular� in ���� to verify stability of
the nonconforming method� It follows from a compactness argument given in ��� as often found in proofs of
non�standard inequalities of Poincar&e�Friedrichs type� The argument covers a wide class of multiplier spaces
including the present version� So the desired ellipticity estimate �
���� follows as soon as we have proved that
also X

�kl�S

k�v�k�����h��kl � kvk���
 for v � Vh� �
����

To this end� note that the quasi�interpolant

Qklv ��
X
i�Nkl

�
v�

�i
��� �i����kl

�
���kl

�i� �
��
�

takes L��$kl� intoMkl and is uniformly bounded with respect to the L� norm� The latter fact is a consequence
of �
��� and �
����

Moreover� Qkl reproduces constants� i�e��

Qkl�c� � c for all c � R� �
����

To see this note that

Qkl �c� � c
X
i�Nkl

�
��

�i
��� �i����kl

�
���kl

�i � c
X
i�Nkl

�i � c
X
i�Nkl

Fkl	i � cFkl

� X
i�Nkl

	i

�
� c�

by de�nition of Fkl� because
P

i�Nkl
	i takes the value one at each node i � Nkl� Furthermore� by de�nition

of Vh� one has Qkl��v�� � �� for v � Vh� Thus� for v � Vh�

k�v�k����h��kl � k�id�Qkl��v�k����h��kl � kh�����id�Qkl��v�kL���kl� � �
����

where id denotes the identity operator�
We now show that for any v � H����$kl� one has

kh�����id�Qkl�vkL���kl� � kvkH�����kl�� �
����

To prove �
����� consider any simplex � in the triangulation of $kl� Using �
����� the de�nition of Qkl and the
fact that T � MK��� it is straightforward to show that

kh�����id�Qkl�vk
�
L���� � h��� inf

c�R
kv � ck�L����� � kvk�H��������

where �� ��
S
f� � � "Tkl � � � � � �� 
g� �Here we have combined the standard estimate

infc�Rkv � ckL����� � h
���
� jvjH�������� valid since h� � diam�� � with an interpolation and density argument�� It

remains to observe that the �� overlap only a �nite number of times when � runs through the triangulation of
$kl to conclude that

P
� kvk

�
H�������

� kvk�
H�����kl�

�see ����� which proves �
�����

Now we combine �
���� and �
���� with the Trace Theorem to obtain

k�v�k����h��kl � kvkH���k� � kvkH���l� for v � Vh� �
����

which con�rms �
���� and proves the assertion�
It is well known that� once the continuity �
��	� and ellipticity �
���� have been established� it remains to

verify the validity of the LBB�condition to ensure the stability of the discretisation �
����� i�e�� the uniform
bounded invertibility of the mappings Lh in �
����� see� e�g� �
��

Theorem 	�� Consider the induced meshes "Tkl introduced in Section ��	� Suppose they all belong to MK��

�with K� 
 depending on $kl�� Then there exists a constant � � � depending only on the mesh parameters K� 

so that the pairs of spaces Xh�Mh de�ned above satisfy the LBB�condition

inf

�Mh

sup
v�Xh

b�v� ��

kvk��hk�k�����h
� �� �
��	�

��



The core ingredient in the proof of Theorem 
�� is the following result�

Lemma 	�� For every � �Mkl� there exists an element v � S�kl such that

�v� �����kl � c
�
kvk�����h��kl � k�k������h��kl

�
�
����

for some constant c � � independent of v and ��

Proof� Given � �
P

xi�Nkl
�i�i �Mkl de�ne v �

P
xi�Nkl

vi	i by

vi � hi�i� i � Nkl� �
����

Then� by �
��� and �
�����

�v� �����kl �
X

xi�Nkl

h��i v�i �	i� �i����kl � kh
d
���vk����Nkl�

�
��
�

� kh����vk�L���kl� � kvk�����h��kl �

where we have used Proposition ���� applied to the �d� ���dimensional domain $kl�
On the other hand� by �
�
��

kh
d
���vk����Nkl�

� kh
d
� �k����Nkl�

�
X
�� �Tkl

h�k�k
�
L���� � kh����k�L���kl� � k�k�����h��kl�

which together with �
��
� completes the proof�
We are now ready to complete the

Proof of Theorem ��	� Given � � Mh� let �kl denote its component corresponding to $kl � S� We de�ne a
suitable v � Xh as follows� For each $kl� let vkl � S�kl be the function constructed in Lemma 
�� �with v and
� in �
���� replaced by vkl and �kl� satisfying �
����� Recall that by our notational convention �k denotes the
non�mortar side of $kl� On any �k� we de�ne a function vk � S� �Tk�� �rst at the nodal points x � ��k by

vk �x� ��

�
vkl �x� if x � $kl for some l � f�� � � � � kmaxg�

� if x � ��kn
�Skmax

l�� $kl

�
and then� on �k� by #�

�
vkj��k

�
� where #� is the extension operator as in Notation ���� The global function

v � Xh is now de�ned by vj�k �� vk� � � k � kmax� This function v satis�es �v�j�kl � vkl and� in view of
�
�����

b �v� �� �
X

�kl�S

��v� � �����kl �
X

�kl�S

�
kvklk

�
����h��kl

� k�klk
�
�����h��kl

�
�
X

�kl�S

kvklk
�
����h��kl

� k�k������h�

To estimate the �rst sum in the right�hand side above we use Theorem 	�� and Lemma ��� to obtain

kvk�H���k�
�
��h��v���

L���k�
�
��h��#� �vk�

���
L���k�

�
���h������vk

����
L����k�

�
X

l��kl���k

���h����vkl����
L���kl�

�
X

l��kl���k

kvklk
�
����h��kl

�

Combining this estimate with the de�nition of the k�k��h�norm leads to

kvk���h �

kmaxX
k��

kvk�H���k�
�
X

�kl�S

k�v�k�����h��kl �
X

�kl�S

kvklk
�
����h��kl

�

Thus� we end up with

b �v� �� � kvk���h � k�k������h � kvk��h k�k�����h�

��



We conclude this section with a few remarks on error estimates� The standard starting point is Strang�s
second lemma� see e�g� ���� pp� ������	� ��� Proof of Theorem 	���� which says that

ku� uhk��h � c

�
inf

vh�Vh
ku� vhk��h � sup

vh�Vh

��R
S
a �u�n �vh�ds

��
kvhk��h

�
� �
����

The �rst term is referred to as the approximation error and the second one as the consistency error� Let us for
simplicity further assume that the solution u is in H���k� for each k� Since vh � Vh and hence is orthogonal
to Mh in the sense of �
���� we may subtract an arbitrary element �h � Mh from the conormal derivative of
u in the consistency error� to obtain����� X

�kl�S

�a
�u

�n
� �vh�����kl

����� � X
�kl�S

ka
�u

�n
� �hk�����h��klk�vh�k����h��kl

�

s X
�kl�S

ka
�u

�n
� �hk������h��kl kvhk��h � �
��
�

For the last estimate� we have applied a Cauchy Schwarz� inequality and the de�nition of the k�k��h�norm �cf�
�
������ The �rst factor in �
��
� can be estimated by the same arguments as those used in the proof of �
����
by employing a�u��n � H��� �$�� choosing �h �� Qkl �a�u��n� and a trace inequality for a�u��n at the end

ka
�u

�n
� �hk

�
�����h��kl

� kh��� �id�Qkl�

�
a
�u

�n

�
k�L���kl� �

%h�k

����a�u�n
�����
H�����kl�

� %h�k kuk
�
H���k�

� �
����

Here� %hk denotes the maximal mesh size in Tk� Combining �
��
� and �
���� results in the estimate of the
consistency term ����Z

S

a
�u

�n
�vh�ds

���� �kvhk��h �
�
kmaxX
k��

%h�kkuk
�
H���k�

����

�

Furthermore� it is well known �cf� ��� Remark III� 	���� that� due to the validity of the LBB condition�
the approximation error on the right hand side of �
���� can be bounded by the best approximation in the
unconstrained space Xh� i�e�� the approximation vh can be chosen independently on each subdomain� Recall
that u � H� ��k� and de�ne vk �� vhj�k � S� �Tk� as the nodal interpolant of u with respect to the grid Tk�
Then� the estimate of the �rst summand in the de�nition of the k�k��h�norm �cf� �
�����

inf
vh�Vh

ku� vhk��
 � C

�
kmaxX
k��

%h�kkuk
�
H���k�

����

follows by well�known approximation results in Sobolev spaces�
It remains to discuss the second summands k�u� vh�k����h��kl � Here� we have to assume a weak matching

condition for the mesh sizes of adjacent subdomains

h�lk� � h�kl� on $kl� �
����

Then employing �
����� well�known approximation results� and the trace theorem at the end� one obtains

k�u� vh�k����h��kl � k�h�kl�������u� vh�kL���kl�

�
� k�h�kl�������u� vk�kL���kl� � k�h�lk�������u� vl�kL���kl�

�
�

%h�kl�kukH�����kl� �
%h�lk�kukH�����kl�

�
�

%hkkukH���k� �
%hlkukH���l��

Thus� in summary� one obtains an error estimate for the discrete solution uh of �
���� of the familiar type

ku� uhk
�
��h

�
�

kmaxX
k��

%h�kkuk
�
H���k�

� �
����

��



where the constant� however� depends on the bound in �
�����
Assuming lower Sobolev regularity one obtains analogous bounds with a correspondingly lower power of

%hk�

Remark 	�� The matching condition ����
� allows meshes with possibly very di�erent mesh sizes by choosing
the Mortar sides in an appropriate way� The stronger condition

h�kl��h�lk���� � � on $kl

ensures convergence without any restrictions on the choice of the Mortar sides�

For highly non�uniform meshes� error estimates in terms of the number of degrees of freedom �cf� Theorem
��� and Appendix A��� are preferable compared to estimates in terms of the maximal step size� Here� our
main focus was to prove the unconditional stability of the dual basis Mortar method for rather general
meshes �without the matching condition �
����� and to derive usual convergence results under additional weak
assumptions on the meshes�

A Appendix

A�� Besov norms and proof of Theorems ��� and ����

There are various equivalent versions of Besov norms� To introduce one which is suitable for the present
purposes� for y � R

d and k � N� let 'k
yv denote the kth order forward di�erence of v in the direction y and

let �y�k �� fx � � � x � ly � �� l � N� � � l � kg� Then� for t � �� we de�ne the kth order Lp modulus of
smoothness of v by

�k�v� t���p �� sup
jyj�t

k'k
yvkLp��y�k� �

with the usual interpretation for p ��� Let s � �� Then� for any k � s� the quantity

kvkqBs
q�L

p���� �� kvkqLp��� �
�X
j��

�sqj�k�v� �
�j ���qp �A���

de�nes a norm for the Besov space of smoothness s in Lp���� Norms for di�erent k � s are equivalent� Here
p� q only need to satisfy � � p� q � � where as usual for p� q �� sums are replaced by sup� see e�g� ��	�� Of
prime importance for us is the fact that when p � q � � and s �� N� one has the norm equivalence�

kvkW s�p��� � kvkBs
p�L

p���� � �A���

When p � � the classical de�nition of Sobolev spaces has to be modi�ed� In view of �A��� it is natural to use
the expression �A��� with p � q as a de�nition in this case� Therefore we will prove now the following more
general statement which covers the assertions of Theorem 	�� as a special case�

Theorem A�� Suppose that � � p� � p �� and that � � s � i� ��p� Then the estimate

kh�ukBs
p�L

p���� �
� kh��sukLp��� �A���

holds uniformly in u � Si�T �� � � ��� ��� p� � p �� and i � f�� �g�

Proof� Let k be the smallest integer greater than or equal to i� ��p to obtain the required estimate for the
last term on the right�hand side of �A����

Note �rst that� since we are considering meshes T � MK��� there exists a � ��� �� such that� for each � � T
and each x � � � the ball B�x� kah� �� centred on x with radius kah� satis�es

B�x� kah� � � �� �� �f� � � � � � � �� 
g � �A�	�

For each j � N� �� N � f�g� let us de�ne

Tj �� f� � T � ��j � ah�g� �j ��
�
f� � T � � �� Tjg�

�	



With these preliminaries we can write

�X
j��

�sjp�k�h
�u� ��j ���pp �

�X
j��

�sjp sup
jyj���j

k'k
y�h

�u�kpLp��j��y�k�

�

�X
j��

�sjp
X
��Tj

sup
jyj���j

k'k
y�h

�u�kpLp����y�k�

�� A� �A� �

First we estimate A�� Note that� for each j� there exists y	 � y	�j� such that jy	j � ��j and

sup
jyj���j

k'k
y�h

�u�kLp��j��y�k� �
kX
l��

�
k

l

�
kh�ukLp��j�ly��j���� �

Now with the convention � � z � fx� z � x � �g� de�ne

Cj ��

�
� � T � � �

�
k�
l��

��j � ly	�j�� ��

�
�� 


�
�

For each � � T nTj � we have� by de�nition� ah� � ��j � Moreover� since T � MK��� we know that the �
in Cj must satisfy bh� � ��j � again with b depending only on the mesh regularity parameters� Hence with
� �� maxfa��� b��g we can write

A� � Cp
�X
j��

�spj
X
��T

h�����j

kh�ukpLp���

for some constant C depending only on k� If we now de�ne for each � � T an integer j� by requiring

���j��� � h� � ���j� � �A���

then we have

A� � Cp
X
��T

j�X
j��

�spjkh�ukpLp��� � Cp
X
��T

�spj� kh�ukpLp���

� Cp�sp
X
��T

h�sp� kh�ukpLp��� � Cp�spkh��sukpLp��� �

the pth root of which is in the appropriate form� since s is bounded above and below� �Throughout the rest of
the appendix we use the convenient notation Ap � Bp when we actually mean that A � CB with a constant
C independent of p��

To estimate the quantity A�� consider y � R
d with jyj � ��j � Then� for � � Tj we have� by de�nition�

jyj � ��j � ah� � Consider the regions 
y�� �� fx � � � dist�x� ��� � kjyjg and set �� �� � n 
y�� so that

k'k
y�h

�u�kpLp��� � k'k
y�h

�u�kpLp���� � k'k
y�h

�u�kpLp��y�� �� �A���

On �� the function h�u is smooth and we can estimate kth order di�erences by kth order derivatives of h�u
on � times kth powers of the step size jyj � ��j � Taking the linearity of h and u on �� into account� recalling
the boundedness of rh and estimating the gradient of u �which is constant� by kukL����h

��
� � one obtains

k'k
y�h

�u�kpLp���� �
� ��kjph�kp� hd�kh

�ukpL�����

Now note that

��kjph�kp� hd� � ��jp�i�
�
p �hd�ip��� ��jh� �

��ip�kp�

��



Our choice of k ensures that ip � � � kp � �� Thus� making again use of the fact that for � � Tj one has
h��� � a�j � the factor in parentheses can be estimated by apk���ip� whence we conclude

k'k
y�h

�u�kpLp���� �
� ��pj�i���p�hd�ip��� kh�ukpL����� i � f�� �g� �A�
�

To estimate the second term on the right�hand side of �A��� note the volume of 
y�� is of the order of
��jhd��� � When i � � we estimate the kth order di�erence on 
y�� by a constant times absolute values which
yields

k'k
y�h

�u�kpLp��y�� �
�
� ��jhd��� kh�ukpL����� � �A���

where �� �
S
f
y�� � tky � � � t � �g�

When i � � the function h�u is Lipschitz continuous on the set �� � with Lipschitz constant of order
h��� kh�ukL����� �cf� proof of Lemma ��� �e�� and �by de�nition �A�	��� and the points x � ly� � � l � k�
all belong to �� � when x � � � Hence� estimating this time the kth order di�erence by a sum of �rst order
di�erences� we have the estimate

k'k
y�h

�u�kpLp��y�� � � ���jhd��� �h�p� jyjpkh�ukpL����� � ��j�jphd���p� kh�ukpL������ �A�
�

Note that �A��� and �A�
� can be combined as

k'k
y�h

�u�kpLp��y�� �
�
� ��jp�i�

�
p �hd���ipkh�ukpL������ i � f�� �g� u � Si�T �� �A����

which is valid for all � � Tj and which is exactly of the form �A�
�� Combining �A�
� and �A���� in turn
implies

A� �
�X
j��

X
��Tj

��pj�i���p�s�hd���ip� kh�ukpL����� � Cp
X
��T

hd���ip�

�X
j�j�

��pj�i���p�s�kh�ukpL����� � �A����

for some constant C� where j� is de�ned by �A���� but with � replaced by a���
The sum on the right�hand side of �A���� is convergent whenever s � i� ��p� allowing us to write

A� � Cp
X
��T

hd���ip� ��j�p�i���p�s�kh�ukpL���� � Cp
X
��T

hd���ip� hp�i���p�s�
� kh�ukpL�����

� Cp
X
��T

hd�ps� kh�ukpL����� �

Recalling Proposition ��
� we obtain

A� � Cp
X
��T

hd�ps� kh�d�p� h�ukpLp���� � Cp
X
��T

kh�s� h�ukpLp���� �
� Cpkh��sukpLp��� �

where we have used that� again due to the K�mesh property the overlap of the domains �� stays controlled�
This completes the proof�

A�� Comments on Theorem 
��

To see how the Besov scale enters the picture in connection with direct estimates we need �rst good local
regularity�free error bounds for Lp approximation on K�meshes� Recall that now p � �� We will only treat
approximations from S��T �� The case S��T � is analogous but simpler� To this end� let us denote by 	i� i � N�

�the set of nodes in T �� the standard �nite element hat functions normalized as before such that 	i�j� � 
i�j �
i� j � N�� One can construct piecewise linear �discontinuous� polynomials �i supported on supp	i such that

�	i� �j� ��

Z
�

	i�j � 
i�j � k�ikL���� � �� i� j � N�� �A����

�see �	� and the literature cited there� This requires shape�regularity�� Now consider the projector

QT v ��
X
i�N�

�v� �i�	i�

��



For every � � T let

�� ��
�
fsupp �i � � � supp	ig�

Since QT is a projector one has QT P � P for every polynomial P of maximal degree one� Thus for every
� � T one has

kv �QT vk
p
Lp���

�
� kv � PkpLp��� � kQT �v � P �kpLp��� � kv � PkpLp���

�

�� X
i���supp�i

kv � PkLp�supp�i�k�ikL�p�supp �i�k	ikLp���

�Ap

�

where �
p � �

�p � �� By the fact that T � MK��� it follows from �A���� that k�ikL�p�supp �i�k	ikLp��� � �� Hence

kv �QT vk
p
Lp���

�
� inf

P �degP��
kv � PkpLp����� �A����

Thus the local error can be estimated by best linear polynomial approximation on a somewhat larger domain�
We wish to estimate the local polynomial approximation in a possibly weak smoothness scale and consider
integrability indices r� satisfying now

�

r�
�

s

d
�

�

p
�A��	�

and recall that for equality in �A��	� one is on the critical line� Recall from the discussion in section � that for
strict inequality it is known that Bs

q �L
r����� is compactly embedded in Lp���� For convenience let us denote

the discrepancy


 �� s�
d

r�
�
d

p
� �A����

As in ���	� we will write r instead of r� when equality holds in �A��	��
Let us assume now that v � Lp��� �p � �� also belongs to the Besov space Bs

q �L
r����� where at this point

q is arbitrary when 
 � � and q � r when 
 � �� From Lemma ���� in ���� we know that for �A��	� �under
the assumption of shape regularity of the triangles�

inf
P �degP��

kv � PkLp���� �
� h��kvkBs

q�L
r� ������ �A����

Moreover� when p � � one can replace r� by r from ���	� in which case 
 � �� Clearly the smaller 
 the
larger the space Bs

r��L
r������ In particular� as mentioned earlier in section � Bs

r��L
r����� is then signi�cantly

larger than W s�p����
One expects to obtain a good mesh by equilibrating these local error bounds� This can be done by a simple

adaptive re�nement scheme� see ���� ���� We describe this for simplicity for the case that � is the unit d�cube
which will be successively subdivided into dyadic subcubes �� Each subcube is subdivided in a canonical way
into d( simplices so that the translates of all subcubes of �xed dyadic level induce a conforming �uniform�
triangulation of �� For each dyadic cube � let P ��� denote its parent and let U��� be the union of � and
all its neighbours on the dyadic level of �� Here neighbour of a cube means any other �closed� cube that
intersects that cube� Now �A���� suggests to associate with any dyadic cube � the error functional

E��� � E�v��� �� �diam���kvkBs
q�L

r� �U����� �A��
�

where we will always assume q � r when r� � r as in ���	��
Now �x a tolerance �� We create a collection G � G��� of )good� dyadic cubes as follows� Set B �� f�g�

G �� 
� If for � in the current set of )bad� cubes B one has E��� � � remove � from B and add it to G� If
E��� � � subdivide � into its �d children and replace � by these children in B� For any v � Bs

q �L
r����� this

process terminates after �nitely many steps� The resulting collection G is characterized by the fact that for
each � � G one has E��� � � while E�P ���� � �� Therefore the global error satis�es

�p�v� ��

�X
��G

E���p

���p

� ��G���p�� �A����

�




Since for P �� fP ��� � � � Gg one still has �P � N �� �G �
� �P � the fact that E�P ���� � � for any

� � G yields

�p�v�
r� �
� Nr��pE�P ����r

�

� N
r�

p ��
X

P ����P

E�P ����r
�

� �A��
�

Now suppose for a moment that r� � r satis�es ���	� �i�e� 
 � � in �A��
��� Then the above estimate provides

�p�v� �
� N

�
p�

�
r

�� X
P ����P

E�P ����r

�A��r

� N�s�d

�� X
P ����P

E�P ����r

�A��r

� �A����

Thus the question is how to bound the sum on the right�hand side of �A����� To this end� let us further assume
for a moment that only a uniformly �in �� bounded �nite number of the U�P ���� de�ned above overlap� Then
one can show by the arguments in ���� that the sum of local Besov norms can be bounded by the global one�

i�e��
�P

P ����P E�P ����r
���r

�
� kvkBs

r�L
r���� so that

�p�v� �
� N�s�dkvkBs

r�L
r����� �A����

which would give an optimal convergence rate for the above algorithm under weakest possible regularity s�
The problem is that the required �nite overlap property� which was needed to bound the sum of the

local Besov norms by a global one� will in general not hold� It is shown� however� in ���� ��� that slightly
more regularity does allow one to recover the rate N�s�d� More precisely� when r� satis�es �A��	� with strict
inequality so that 
 � � in �A��
� with 
 given by �A����� the above re�nement scheme produces for the
corresponding version of the error functional E��� a global error satisfying

�p�v� �
� N�s�dkvkBs

q�L
r� ����� �A����

with a constant depending on the discrepancy 
 � �� where � � q � �� This holds in the case of piecewise
linear approximations for the full range s � � even when the corresponding r� given by �A��	� is smaller than
one�

It is now easy to construct a K�mesh providing the above convergence rate� First one can show that since
U��� smears the error the dyadic re�nements produced by the above scheme are automatically graded �����
That means that neighbouring cubes di�er at most by one generation� Therefore the still nonconforming
triangulation induced by the collection G can easily be closed to a conforming one T satisfying the K�mesh
property� Moreover the above estimates �A����� �A���� ensure that still

kv �QT vkLp��� �
� �p�v� �

� N�s�dkvkBs
q�L

r� ����� �A����
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