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Abstract

In this paper a new finite element approach is presented which
allows the discretization of PDEs on domains containing small micro-
structures with extremely few degrees of freedom. The applications of
these so-called Composite Finite FElements are two-fold. They allow
the efficient use of multi-grid methods to problems on complicated
domains where, otherwise, it is not possible to obtain very coarse dis-
cretizations with standard finite elements. Furthermore, they provide
a tool for discrete homogenization of PDEs without requiring period-
icity of the data.

1 Introduction

Before the mid-sixties the finite difference method was the standard dis-
cretization method for differential equations. The following two severe draw-
backs of finite differences lead to the development of the finite element
method. First, the use of Cartesian difference quotients made the treatment
of complicated and curved boundaries difficult and many technical tricks
have to be employed to overcome this problem. Furthermore, it turned out
that only the variational setting of the continuous problem leads to satisfac-
tory existence and uniqueness results in appropriate function spaces, usually
the convergence results of FDM require too much smoothness. Nowadays,
we know that the question whether a discretization method is a FDM or a
FEM is often only a matter of interpretation. In numerical linear algebra
where one is interested in the algebraic properties of the linear system as,
e.g., the M-matrix property, it is, in many case, very useful to interpret the



discretization as a discrete, FD-like method while for the estimates of the
discretization error the powerful apparatus of finite elements is employed.

An advantage, however, of FDM is the easy regular structure of the grid.
Hence, the matrix pattern has a very regular structure, too. We know that
this is very essential in the performance of iterative solvers as, e.g. ILU-
like methods, while in an a priori unstructured FE mesh, sometimes, big
effort has to be spent to find an advantageous numbering of the grid points.
Furthermore, the simple structure of the matrix pattern makes the imple-
mentation of FDM much easier compared to FEM. Additionally, the efficient
use of high performance computers as, e.g., vector computers, favorites such
simple data structures.

On the other hand, the FEM has big advantages compared to FDM,
namely, it provides a powerful apparatus for convergence analysis and is
very flexible with respect to an appropriate geometric discretization of the
domain allowing adaptive refinement strategies and proper resolution of the
boundary.

However, the latter mentioned feature is true, only, if the grid size is
small enough resolving essentially all micro-structures of the domain and
differential equation. Very coarse discretizations (step size much larger than
the geometric details) are not possible. In the context of homogenization
and in order to apply multi-grid methods where the efficiency depends on
how coarse the coarsest grid can be chosen this is a severe drawback. The
Shortley-Weller FDM [11] which is in the literature since 1938 allows that the
Cartesian grid overlap the boundary and appropriate weights are introduced
in the difference quotients. The first multi-grid computations [3] use this
discretization method in order to get very coarse coarse-grid approximations.

Since recently, various approaches have been presented in the literature
concerning coarsening strategies for finite element spaces or, more general,
discretizations with only few degrees of freedom which have already the
asymptotic accuracy. In [1], [2], and [8], approaches are presented which
can be used in the context of BPX-multigrid methods and hierarchical basis
multigrid methods.

An approach which is based on pure algebraic considerations is the so-
called Algebraic Multigrid Method (AMG) where only the information of the
system matrix is used to obtain matrices of lower dimension. For details see
[10]. A further related paper in this context is [9].

Composite Finite Elements were first presented by the authors in [7] and
[6] where the aim was to define finite element spaces which have the asymp-



totic approximation property and the possibly low number of unknowns is
independent of the shape of the domain. They can be used for both pure
Galerkin discretization and in combination with standard multigrid methods
and are not necessarily linked to a special solver.

In the present paper, we will, in the light of the Shortley-Weller discretiza-
tion, define a new class of finite elements which is appropriate to resolve
complicated geometries with very few degrees of freedom.

The paper is organized as follows. First, we recapitulate the principle
of the Shortley-Weller method within an elementary setting. Then, we will
introduce the new class of finite elements called Composite Finite Elements
which resolves complicated boundaries with a very small number of degrees
of freedom satisfying the usual asymptotic approximation property. We will
show that the implementation of this method is very easy and the application
to 3-d problems does not involve further difficulties compared to the 2-d
version.

2 Shortley-Weller Finite Difference Discretiza-
tion

In this section we recall the principles of the Shortley-Weller method for finite
difference discretization of partial differential equations (PDEs) on domains
having complicated boundary. The basic principles of this method will be
used for the design of the new class of Composite Finite Flements.

In order to approximate the second derivative of a function u at a point
z € R using a non-uniformly spaced grid, Newton’s divided second differ-
ences are employed
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Symbolically, the matriz stencil is given by
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The use of non-uniform spaced Cartesian grids for finite difference approx-

u(x — hy)

imation is necessary if non-rectangular geometries as depicted in Figure 1



Figure 1: Domain {2 with curved boundary and a small hole. The Carte-
sian grid does not fit in the domain and defines local stepsizes h; near the
boundary.

occur. A coarse Cartesian grid will overlap the domain substantially. Instead
of deforming the Cartesian grid we use 2-d analogues of (1). The arising sys-
tem matrix Lj has favorable properties. Lj is an M-matrix and has special
stability properties (see [5, Theorem 4.8.4]) which can be expressed by

L) <%

However, difficulties arise if the micro-structures of the grid are not visible
on the coarse grid. This would arise if, e.g., a hole lies in the interior of a
grid cell and no Cartesian line of the grid intersects the hole. To overcome
this problem we consider a hierarchy of Cartesian grids 7, of step size hy
satisfying

ho = O(1) = diam(Q),
hg = 276h0.

We assume that £,y is such that 7,_, resolves all necessary details of the
domain. Hence, the matrix L, . can be generated by using the Shortley-
Weller scheme. Matrices corresponding to coarser grids are then extracted
from the fine grid matrix by introducing prolongations py. , 1 and restrictions
74 1. linking grid functions on different grids 7, ; and 7, with each other.
Having defined these operators the coarse grid matrices are given recursively
by the Galerkin product

Loy =re g ebupeee .
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e : coarse grid points

o : fine grid points

Figure 2: Domain Q = [A, B] with non-fitting fine and coarse grids.

In standard cases, the prolongation and restriction can be defined, e.g., via
interpolation in the following way. First, we consider the one-dimensional
case which is illustrated in Figure 2. The prolongation in the case of
homogeneous Dirichlet boundary conditions is given for all fine grid points
x; by interpolating the neighbouring coarse grid values.

u(x;) if x; is also a coarse grid point,
2 (u(w;1) +u(zi41)) otherwise and i # 1, N,
[Peceyu] (z:) = B () i=1,
rn_1—B .
mpru(en) =N

In more than one-dimension one has to interpolate sequentially in all direc-
tions. We state that in regular situation, i.e., in the case of domain-fitting
grids, the prolongation is the bilinear interpolation. In any case the restric-
tion 7,_1., is defined as the adjoint of p,_, | with respect to the weighted
Fuclidean scalar product:

An important feature of the prolongation and restriction above is that the
sparsity of the system matrix is preserved and the regular distribution of
the non-zero entries as well. If L, is given by a 9-point stencil, i.e., 9 non-
vanishing entries per matrix line, then, the same is true for L, 1.

Using these system matrices {L‘f}0<é<émax in a multi-grid method one
observes the typical convergence rates even if the coarse grid contains only
one degree of freedom and the domain contains many very small geometric
details (cf. [3]).

The purpose of this section was to elucidate some key principles how
very coarse discretizations of domains having complicated micro-structures



can be obtained. The consideration was quite elementary but it will turn out
that the principles can be used to define a new class of finite elements which
includes the advantages of the Shortley-Weller FDM but can be applied to a
much bigger class of problems.

3 Composite Finite Elements

In this section we will introduce so-called Composite Finite Elements. First,
we will explain how grids can be generated such that geometric coarsen-
ing is straightforward. Then, the finite element spaces are defined on these
coarsened grids as subspaces of the fine grid space by specifying appropriate
inter-grid prolongations. The following considerations do not depend on the
space dimension and hence are formulated in an abstract way.

We start recalling some basic definitions of finite element spaces. Let T
denote a partitioning of a domain {2 into small elements {Kj}lgjgn' The
finite element space V corresponding to this grid is defined as

V= {u €C"(Q) :u |k is a polynomial of maximal degree p for all K € T} .

Let © = {z,},_,  denote the set of nodal points and {®;},_, the corre-
sponding Lagrangian nodal basis of V' given by

P, € V,
3, (a;) = {1 i~ 2)

0 otherwise.

Then, each function u € V' has a unique basis representation by

u(r) = ; u; ; (x) (3)

with u; = u (z;). Equation (3) provides a canonical interpretation of a (dis-
crete) vector of nodal values u € R" as a finite element function.

In the following we will describe a method how a sequence of grids can
be constructed such that geometric coarsening is straightforward.

3.1 Construction of the Grids and Definition of Com-
posite Finite Elements

The following formal setting is illustrated in Figures 3-6. First, we have to



Figure 3: Domain ) containing a rough boundary piece.

construct a sequence of auxiliary grids {7 }g<,c, . Let Qo be a rectangle
resp. a cuboid containing the domain Q. Choose an arbitrary partitioning
of Qg as the initial grid 7. Refine 7y for several times by any common
refinement strategy as, e.g., combining the midpoint of triangles, the faces
of hexahedrons, etc. to obtain a physically and logically nested sequence
of grids {7 }g<ycy. . - This means that any element K of 7 has a certain
numbers of children given by

Kefisachildof Ko K Cc K

and, vice versa, each element of 7,1 has a uniquely determined parent in
7¢. Note that the definition of 7, does not include any adjustment process
of the grids to the physical domain. However, in practical computations,
one would generate grids 7, which contain small elements in or near parts
of Q where a higher resolution is required. This can be done, e.g., by using
error estimators or an a priori known grading function which controls the
refinement strategy. We assume that 7, is fine enough such that nodal
points lying close to the boundary of ) can be moved onto the boundary
without distorting the elements too much. Furthermore, we assume that
there exists a subset of elements of the resulting grid which is a proper FE
grid of the domain €. This mesh is denoted by 7;_. . Note that the movement
of grid points of 7, . also is changing the shape of the elements on coarser
levels. These distorted coarser grids are further reduced by cancelling all
elements having zero cut with 2. The resulting meshes are denoted by 7.

The construction above implies that the elements are no longer physically



© @ £

2

Figure 4: Auxiliary grids {7}, .5 Which arise by refining a coarse grid with
an appropriate refinement strategy. Note that no adjustment of the grid to
the boundary of the domain takes place.



Figure 5: Fine grid 7, with . = 3. All triangles which lie outside of the
domain are ejected. Note that in this example no movement of grid points
was necessary.

Figure 6: Triangle K of 7, and logical children {K;},.,.; of the finer level
(41 -

nested. The situation, depicted in Figure 6, typically arise near the boundary
where fine grid points have been moved.

Definition 1 An element K € 1 is said to be regular if the union of the
(iterated) sons of K on the finest level is K.

Since 7, 1s a proper FE grid of ), the system matrix L,_,_ on this level
is generated in the standard way. The coarser systems are defined recursively
via the Galerkin product

Lev=ri1ceLepecie. (4)

Since the restriction is again defined as the adjoint of p, , 1 we have to
specify only an appropriate choice of the inter-grid prolongation py. , 1. This
is done by using the interpretation (3) of a nodal vector as a grid function.



A nodal vector u,e R™ on level # defines a continuous function u, by using

the grid 7; and corresponding standard FE basis functions {@f}1<.<N (see
A ASEAY

(2)). The evaluation of w, at the nodal points of the finer grid associates
to any u; € RM a nodal vector uyy;; € RM+1. This defines the mapping
Digiere : RNg N RNngl‘

This prolongation can be interpreted as a convex interpolation in the
following way. Let z be a nodal point of the grid 7,,; which lies in a coarser
element K € 7,. Then, the prolonged nodal value at z is given by standard
FE interpolation on K using the coarse-grid nodal values on K

e (z) = Y oy (z)ue(y)
yeEO,NK
where «, (z) are the coefficients of the FE interpolation.

In the case of homogeneous Dirichlet boundary conditions, we have to
modify ps. o 1 such that x € 9Q implies that u, 4 (z) = 0.

The FE system matrices were generated recursively by using (4). Alterna-
tively, it is possible to define a finite element space along with an appropriate
basis such that the corresponding stiffness matrix equals L. For this, let us
consider the grid 7, and let z; denote a nodal point of 7,. Define the unit
nodal vector corresponding to this point by

o 1 1=,
1 0 otherwise.
Using the prolongation operators iteratively we can associate a fine grid nodal
vector e; with e; by

€; = péma)ﬂ*émax*1p€max*1<*émax*2 e p@+1<—@el

The finite element interpolation of the fine grid vector €; links any e; with a
continuous function on 2 by

Nemax

e; (z) := ; &;dime (z). (5)

Note that e; is a polynomial on each fine-grid element (provided Pimex are
piecewise polynomials) while this is not true in general for the coarse grid
elements. The Composite Finite Element Space is defined by

Vi, =span{e; (z) : 1 <i < Ny}

Remark 1 From the definition it follows that the Composite Finite Element
Spaces are nested: Vy C V.
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3.2 Approximation Property of V,

In many cases, the error analysis of Galerkin discretizations of PDEs leads
to an estimate of the form

C .
o=l < (142 ais 170
where 1, denotes the solution of the Galerkin discretization and
dist (u, V) := Jut, [0 = we| g1y -

The stability constant v and continuity constant C's mainly depend on the
PDE on the continuous level. Obviously, the approximation property of the
FE space, which is employed for the Galerkin discretization, plays a key
role in the error estimate. In the following, we state that under relatively
weak assumptions the asymptotic approximation property of finite elements
carries over to composite finite element spaces independent of the (low) di-
mension of V;. The proof of the theorem was worked out in detail in [7] while
more general situations as, e.g., the 3-d case and more general elements are
expected to be treatable in the same way.

Theorem 2 Let Q) be a 2-d domain with Lipschitz boundary, 1, denote a

triangulation, and h, := max diam A the step size of 7,. We assume that P,
€Ty

of (2) are the piecewise linear “hat”-functions and
(a) T is quasi-uniform, i.e., hy < C'diam A, for all A € 1,

(b) 1¢ is shape-regular, i.e., sup{diam S : S is a ball contained in A} >
Chy for all A € 14,

(¢c) heyr < %he

(d) the prolongation process is local, i.e., diam (supp ¢;) < Chy with e; given
by (5),

with constants independent of £ and lray.
Then, for alluw € H?(Q) there exists uy € V, such that

I = tell iy < ChE ™ [l gy, m € {0,1}. (6)
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Proof. The proof is essentially given in [7]. The only thing to check is
that Assumption (d) above implies Assumption 2 in [7]. Since this is purely
technical but straightforward we skip this detail here. B

Hence, we have shown that V; has the asymptotic approximation property
starting with extremely few degrees of freedom. In view of Figure 4(a), this
means that the Galerkin discretization with composite finite elements on the
grid 7o for the Poisson problem on Q (cf. fig. 3) with Neumann boundary
conditions satisfies

1w — wolly < Cho |l

with hg = diam ). The function ug is a function which lives only on the
physical domain €, while the four degrees of freedom associated with ug are
located at the corners of the square formed by the two coarse-grid triangles.
Estimate (6) means that one is already in the asymptotic range, i.e., the
error on the grid 7, is expected to be only half of the error of ug.

Since the spaces V; are nested they are also well-suited to be used for
defining coarse-grid approximations for multi-grid methods. The approxi-
mation property for multi-grid methods (cf. [4, Chapter 6]) directly follows
from this fact.

3.3 Complexity of Composite Finite Elements

In this subsection we will investigate the complexity of generating the system
matrix corresponding to the space V,. We recall that we assumed that the
step sizes of the sequence of grids 7, satisfy
: ho ho

O(dlamQ):h0>h1:? >h2:z >>hg:H> >hgmax =: h.
We assumed here for simplicity that the step size is reduced by a factor
2 in each step, while other contraction rates can be treated in the same
way. If one is interested in the generation of the whole sequence of system
matrices {Lg}oS <ty one could use the Galerkin products. The complexity

of generating the system matrix on the finest level is O (h;rfax> whered = 2,3
denotes the space dimension. Since the prolongation and restriction operators
are local in the sense that the evaluation per nodal point requires O (1)
operations, we obtain that the generation of L, | from L; needs O (hzd>
operations. Together one obtains that the complexity of generating all system
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matrices is given by

émax

Z(:) h,t=0 (h;jax) ,

i.e., does not increase the asymptotic complexity.

In some situations, however, one is interested only in the generation of a
coarse-grid matrix L, corresponding to a step size H = h, but would like to
resolve the geometric details with a smaller step size h = hy_, . The following
observation plays the key role. In the regular situation, where no grid points
have been moved in the adjustment of the auxiliary fine grid 7, . to the
domain, the matrix L, defined by the Galerkin product coincides with the
matrix assembled directly on the grid 7, using the standard “coarse” finite
element basis functions ®¢. Hence, the complexity of generating L, is of
order . This means that for elements K € 7,, which are not distorted
during the refinement process, i.e., are regular in the sense of Definition 1,
the corresponding portions of L;, can be generated directly by using the
standard FE basis function ® on K. Since the adjustment of elements to
the boundary only takes place near the boundary nearly all elements are not
distorted during the refinement process and there, the system matrix can be
generated without prolonging up to the finest level /...

In typical situation, only O hin*d> elements of 7,,, intersects the boundary
of Q and have to be refinement further. The computation of the so-called el-
ement matrix on an element K € 7, requires O (1) operations. Symbolically,
the algorithm reads as follows.

1.Onm:0 (h;d> elements are regular, i.e., not distorted on finer levels
and the computation of the corresponding portions (element matrices)

of L requires O (hzd> operations. O (hfd> elements have to be refined
further.

2. 0nmyy: O (hfd> elements are involved. The computation of O (hfd>

corresponding portions of L, 1 needs O (hfd> operations, while O (hﬁf)
elements have to be refinement further.

3.0n 1, @ O (hé;iﬂ) elements are involved. The computation of

O (hfd> remaining element matrices needs O (hé*d 71> operations.
max max

13



@ (b)

(©)

Figure 7: Picture (a) shows the domain Q together with the fine triangulation
Tomax- 10 (D), the coarse triangulation 7y is depicted. Figure (c) shows the
triangles corresponding to different grids which have to be generated in order
to compute the entries of Ly. Note that on any of the depicted triangles in
(c) the usual FE basis functions are employed.

The total operation count for generating L, sums up to O (H 7d> +

O (h1*d>. A typical mesh which arise by this procedure is depicted in Figure
7.
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