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Abstract

In this paper, we will consider the problem whether the extension
of functions in Sobolev spaces onto larger domains depend on small
geometric details of the domain.

We will use generalizations of the Whitney extension and prove
that the norm of these operators essentially depends only on the global
Lipschitz constant of the domain and not on the size of the micro
structures.

1 The Whitney Extension

In the following we recapitulate the main properties of the Whitney extension
(cf. [5]). Here and in the following, 2 will always denote an open subset of
RY. In order to introduce the notation of minimally smooth boundaries as
described in the book of Stein [4], we first have to define special Lipschitz
domains as follows.

Definition 1 Let ¢ : R — R! be a function which satisfies the Lipschitz
condition:

lp(@)—p@)| < Mlz—y|, VoyeR". (1)

The smallest constant M for which (1) is true is denoted by C,,. In terms of
this function we can define the special Lipschitz domain. It determines to be
the set of points lying above the hypersurface y = ¢ (z) in R?, i.e.,

Q= {a:ERd:a:d ><,0(a:1,a:2,...,a:d,1)}.

The Lipschilz constant of ) is defined by Cq := Cl,.
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The definition of a domain with a minimally smooth boundary is given
below.

Definition 2 The boundary 9Q of Q is said to be minimally smooth, if there

exist an € > 0, an integer N, an M > 0, and a sequence {U;}, . of open sets
s0 that:

1. If x € 09, then B, (¢) C U;, for suitable i, where B, (¢) denote the ball
with radius € centred at x.

2. No point v € R? is contained in more than N of the U;’s.

3. For each i there exists a spectal Lipschitz domain Q, with Co, < M
such that

U;nQ=U;na (%)

with a suitable rotation ®.

We want to investigate extension theorems for Sobolev spaces. We recall
the basic definitions and some notations. Let s € Ny and 2 be a minimally
smooth domain. Let S be the space of all infinitely differentiable functions
with compact support. Consider f € L},.(Q). Let o € N§ and

loc
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The ath (weak) derivative of f exists if there is g, € L},. () such that

loc
/ fD%vdx = (—1) / govdx, Yo e S.
Q Q

The ath derivative of f is then denoted by D®f := g,. The space H" (Q2) is
defined by

HE(Q) = {f € I2(Q) | |D*fll 20y <00, V]a| <k}.
These spaces are Hilbert spaces equipped with the scalar product

(u,v), == > | D*uD%vdz.

loe| <k 7%



The norm is given by |lu||, := 1/(u,u),. We will also need the corresponding
expressions which only contain the highest derivatives. We define

(u,v) _p = > / D%uD%vdzx
Q

laf=k

and |ul, := {/(u,u)_,. The space H" (Q) is given by

H* (Q):={f € H*(Q) | D*f = 0 in a neighborhood of 9Q, for all |a| <k —1}.

We are now able to formulate the theorem concerning the Whitney extension
of functions in Sobolev spaces on minimally smooth domains €.

Theorem 3 Let Q be a domain with minimally smooth boundary. Then,
there exists a linear extension operator € mapping functions on Q) to functions
on R? with the properties

1. €(f) o= f.
2. € maps H" (Q) continuously into H* (Rd> for all k € Ny:
||Qzu||k7Rd S Ce:ct ||u||k,Q 5 Vu & Hk (Q) ,

with a constant depending only on k and €2, i.e., the constants ¢, N, M
defined in Definition (2).

Proof. This theorem is stated and proved in [4, Theorem 5, pp. 181]. &

Remark 1 Generalizations to the case of W"P—spaces and the case of frac-
tional derivatives are possible but not of main interest of this investigation.

The assumptions of Theorem 3 cannot be weakened in general (cf. [4,
p.189]). However, we will impose the additional assumption that domain Q
is simply connected and derive the result under weaker assumptions.

We are interested in the case that a domain is of proper shape but might
contain micro-scales. As an example consider the annular region:

Q= {z e R |6 < 2| < 1}.

For 6 small, the first condition of the definition of minimally smooth domains
causes problem because the radius ¢ of the balls B, (¢) has to be chosen
smaller with decreasing 6. Hence, the bound of the (Whitney) extension
operator given above will depend on 6. In the next chapter we will define an
extension operator where the norm is independent of the (small) size of the
micro-structures.



2 Extension Operators for Domains Contain-
ing Small Geometric Details

Let w, ) be open bounded subsets of R? with minimally smooth boundary
and w® := Q\w. The domain w has to be simply connected. Furthermore,
we assume that w* is simply connected, too, otherwise one has to apply the
construction below to each simply connected subdomain. Let k& € Ny and
u € H* (w). Then u can be extended by the extension operator € of Theorem
3 to a function on R?%. The restriction to the domain Q defines u* :

ut € H(Q)
o =€ (u) g .

From the extension theorem above, we know that
||u*||k,§2 < ||u*||k,Rd < Cy ||u||k,w (2)

In the following we will define an extension of u which satisfies (2) with the
norm on the right hand side above replaced by the corresponding semi norm.

Consider the problem of finding z € H* (w®) such that

(z,w)_, = — (v, w)_,, Vw €H* (wf). (3)
Putting w = 2, we obtain
|2lp = = (u, 2) 5 < 'l |21,

Using the Poincaré-Friedrichs inequality (cf. [1, Theorem 1.7], we obtain that

||,U||k,u)C S v ’U’k,wc ’ Vv EHk <w0>
with v depending only on k and diam (w°):
v = (1 + diam (w.))".

Using the Lax-Milgram Lemma we get that (3) has a unique solution which
satisfies

||Z||k,u)C S v ’u*’k,wc :
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For u € H* (), we define the extension operator P by

Pu:{u in w, (4)

u* + 2z in w® with z denoting the solution of (3).

Combining the previous estimates, we obtain

1Pullyq < [Pully, + 1Pl pe = llelle, + 1w+ 2] (5)
< ully e + Tl we + 120 e
< el + @) el e < Nllly e + 0 +2) [0l g
<l + Co (T4 7)

(14 Co (L+7) llull, -

In the following, we will show that the estimate above also holds if the norms
are replaced by the semi-norms.

Lemma 4 Let p be a polynomial of degree k — 1, i.e., p € Pj,_4.
Then Pp = p.

Proof. Equation (3) can be rewritten as

(Pp,w)_, =0, Vw €HY (w°).

Since Pp = p satisfies the equation above, we only have to show that z =
p—u* €H* (w®). We know that p —u* €H* () and p — u* = 0 in w. This

implies that p — u* € H" (w°).

|

Let now w € H" (w) be given and choose a polynomial of degree k — 1,
i.e., p € P4 such that

/wDO‘(u—p)da::0 Vie| <k—-1
Using [2, Theorem 1.5], we obtain that
lu = plly,., < Culu—ply, = Co lul,, -
Replacing u by v — p in (5) we obtain
[Pulyo=Pu—plig < 1P (u=p)llo < 0+ Co(t+9)Clul,, (6)
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We are now ready to define the extension operator for domains containing
micro-structures. We use the same technique as introduced in [3, pp. 42| for
the extension of H!-functions. Let w be a domain which contains small holes,
ie.,

w=w"\ -01 wj, (7)

where the domains w; and w” are null-homotopic and diamw; =: €;. Further
assumptions will be imposed in the sequel. The extension of u € H" (w)
onto u € H" (w*) is done locally in the following way. We define domains wy
having the property that

wi Cw; Cw” (8)
wiNw; =0 fori#j

e K\ SC i ot
wj = w; \wj is simply connected
q
* . *
wg = w*\ |J
Jj=1

We further have to assume that the holes are properly separated from each
other such that
Crey < dist (A, 0w5) < Cae; 9)

is true for 1 < j < ¢. We state that these assumptions can be weakened but
then the extension operators have to be modified according to the situation
under consideration. Here, we focus our interest to the question what hap-
pens if the size of the hole goes to zero. Let u € H* (w). This implies that
Uj 1= U |y, € H* (w;). In the following we will extend u; to a function on W}
and estimate the norm u} by the norm of u;. The global extension then is

defined by

u;

u*@;):{u(x), rew,

“(z) reuws
We need the following assumption on the subdomains wj.
Assumption 5 There exist domains w; satisfying (8) and local coordinate

systems such that the mapping (in local coordinates) x (x) := 2 has the prop-
erty that the image w; := x (w;) has a minimally smooth boundary.



The extension now goes as follows. Let w := x (w}‘) and wj := x (w;’)
Let v € H* (w). Hence, 4, := u; 0 x ' € H* (&;). Let 4} := Py with P
defined in (4). The pull back

J

ufox(z) re€wj
u(x) T Ew,

u* (2) 1= Bu = {

defines the extension of u onto w*. In the following we will estimate the norm
of u*. The semi norms of u} can be expressed in terms of the semi norm of
@}. We first consider the semi-norm of order k. We obtain

W= Y [ D) dr = S [ (D de = e jif
w

o=k 7“5 loo|=k 7“5
Using (6) for the domains w; C Wy, we obtain

w12
’u*’k,@

with a constant C dependent only on k and w;. Transforming the semi norm
on w; back onto w; we obtain

IU*li,w;, < e !ﬂ*li,@; < Cet 2 WZ% < C ’uyi,wj .
Next, we investigate the L?-norm.

]u*]am = (u*)2 dr = ¢ i (ﬂ*)2 di = € ’ﬁ*’g,&)* .
g * *
u)j w 7

F]

Using |0*|2 . < ||a*|7 .. and (5), we get
g I
2 N d (2 A1 112
[ g, < Ol g, < Cllull,, -

An interpolation argument yields the same results for all intermediate semi-
norms.

Summarizing the above considerations we have proven the following the-
orem.

Theorem 6 Let w a domain with holes satisfying conditions (7, 9) and As-
sumption 5. Let w* be the extended domain defined by (7). Then, there exists
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an extension operator E which maps the space H" (w) onto the space H* (w*)
for all k € Ny:

1Bl < Cllully,, — Vue H* (W)

where C depends only on k,diam (w*) and the constant in the estimate (6)
applied to the normalized domains w; defined above. This means, the constant
C is independent of the diameter of the holes.
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