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Abstract

We present a new version of the panel clustering method for a sparse rep-
resentation of boundary integral equations. Instead of applying the algorithm
separately for each matrix row (as in the classical version of the algorithm)
we employ more general block partitionings. Furthermore, a variable order of
approximation is used depending on the size of blocks.

We apply this algorithm to a second kind Fredholm integral equations and
show that the complexity of the method only depends linearly on the number,
say n, of unknowns. The complexity of the classical matrix oriented approach
is O (nQ) while, for the classical panel clustering algorithm, it is O (n log” n)

1 Introduction

Elliptic boundary value problems with constant coefficients can be transformed into
integral equations on the boundary of the domain via the method of integral equa-
tions. From the numerical point of view, this approach is interesting especially for
problems on unbounded domains where the direct discretization with finite element
or finite differences is not straightforward.

Boundary integral equations are discretised in many engineering applications via
the boundary element method by lifting conventional finite element spaces onto the
surface of the domain. Due to the non-localness of the integral operators the arising
system of equations is fully populated. Hence, the work for the classical matrix-
oriented approach grows quadratically in the number (n) of unknowns.

In [5], [6], and [10], the panel clustering algorithm was introduced for collocation
methods. By using polynomial approximations of the kernel function of the integral
operator it was possible to split the dependence of the integration variable from the
source points. The algorithm was applied for each matrix row separately. In [6],
it was shown that the complexity of the algorithm is proportionally to O (nlog" n)
with moderate x. In [15], [7], [12], [4], the panel clustering algorithm was introduced
for the Galerkin discretization of boundary integral equations. The key role plays a
symmetric factorization of the kernel function with respect to both variables. Again,
the algorithm is applied to each matrix row separately.



In [11], the fast multipole method was introduced for the efficient evaluation of
sums in multiple particle systems. Here, the algorithm was applied not pointwise
but appropriate block partitionings are employed. The complexity of the algorithm
is again proportionally to O (n log” n). In [9], a block version of the panel clustering
algorithm was introduced. The complexity is still O (nlog”®n) while the constants in
the complexity estimates are smaller as for the classical approach.

In our paper, we introduce a variable order approximation on the clusters resulting
in an algorithm with complexity O (n). As a model problem we consider a Galerkin
discretization of a second kind Fredholm integral equation. The fact that boundary
integral equations can be realized (with full stability and consistency) in O (n) oper-
ations whilst the classical matrix oriented approach has complexity O (n?) seems to
be of interest. Generalizations of our approach to more general integral equations are
the topic of future research.

Another way of a sparse approximation of boundary integral operators are wavelet
discretizations. In the past decade they were intensively developed for boundary
integral equations. There are versions for second kind integral equations by [18], [17]
(complexity O (nlog”™n)). The approach presented in [16] reduces the complexity to
O (n). However, the efficiency of wavelet methods depends on the number of (smooth)
charts being employed for the representation of the surface. If the surface is rough
and complicated the efficiency breaks down while the panel clustering method works
especially well for complicated surfaces.

An algebraic approach to the data-sparse realization of non-local operators are
H-matrices (see [2], [3]). Matrix blocks are approximated by low rank matrices. The
choice of the approximation system can be based on a singular value decomposition
and is suited to approximate inverses of sparse matrices efficiently.

2 Setting

Let I' C R? denote an orientable, sufficiently smooth manifold (' € C? is sufficient).
On T', we consider the integral equation with the classical double layer potential in
the weak form: For given g € L* (T'), find u € L*(T') so that

27 (v, U)o,r + (v, K'u)o’F = (v,g)ﬂ’F , Vo € L*(T) (1)
holds with

K] () = / k(. y)u (y) dT,,
0 1
on (y) ||z — y||

Here, L? (T') denotes the set of all measurable functions on I' which are square inte-
grable and (-, -), - denotes the L*-scalar product on T'. The vector field n (y) denotes
the oriented normal vector field at a surface point y € T'.

k(z,y)

(2)



The Galerkin discretization of (1) is given by replacing the infinite dimensional
space L?(T') by a finite dimensional subspace V. The Galerkin solution ug is the
solution of

2m (v, uG o + (v, Kug)or = (v, 9)or Yov e V. (3)

Our aim is to use finite element spaces lifted to the manifold I" as the subspace V.
Finite element spaces are defined on finite element grids. We introduce the two-
dimensional master triangle @ having the vertices (0,0)T, (1,0)T, (1,1)T.

Definition 1 A finite element grid of T is a set G = {1, To,...,Tn} consisting of
disjoint, open surface pieces T; C I' satisfying

[ ] f:w,

o for all T € G, there exists a Ck-diffeomorphism x, : Q — 7 (k sufficiently
large) which can be extended to a Ck—@ﬁeomorphism X5 QF — 1* for some
open neighbourhoods 7™ D T and Q* D Q.

Notation 2 The elements of a finite element grid are called “geometric finite el-
ements”. In the context of boundary element methods they are alternatively called
“panels”.

In this paper, we restrict to piecewise constant approximations on triangulations.
Definition 3 The space S~ is given by
S ={vel*T):Vr€gG:v|,=const}.
A local basis of S71 is formed by the characteristic functions on the triangles:
or + I'=>R

Vr e G: goT(x):{l TET,

0 otherwise.

By using the basis representation

uG (:E) = ZUG (7—) Pr (:E) ’ (4)

Teg
the Galerkin discretization can be transformed into a system of linear equations:
M+Kjug=g
where M, K € R9*Y and ug, g € RY are given, for all 7, € G, by
M,; =2rm (¢r, Spt)()’ra ue = (ue |T)7—€g7
Kri= (o, Ko)or, 8= ((soﬂg)o,r)

TEG ‘
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The matrix M is diagonal while K is a fully populated n x n-matrix. Hence, the
classical matrix oriented approach costs (at least) O (n?) operations.

The idea of the panel clustering method is to use an alternative representation of
the discrete integral operator which can be written in the form

K ~ N + B'FC, (5)

where the matrix N is sparse containing only O (n) non-zero entries. Furthermore,
B, C € C™*" with m < n and F € C™™. Note that, by using this representation,
the matrix elements of K are not known, i.e., direct solvers cannot be applied to this
system. However, for large n, iterative solvers are much more efficient than direct
solvers and should be used instead. For iterative solvers, the matrix elements of
K are not required. Matrix-vector multiplications appear as elementary operations
which can be performed efficiently by using the splitting (5). The rest of the paper is
concerned with the definition and analysation of an approximate factorization of the
integral operator in (3).
First, we have to introduce some geometric notations.

Definition 4 A cluster is the union of one or more panels.

The geometric size of a cluster can be described via the Cebysev radius of the
cluster.

Definition 5 For a subset w C R?, the Cebysev ball B, is the ball with minimal
rgdius containing w. The Cebysev centre M, it the midpoint of this ball and the
Cebysev radius p,, its radius.

Notation 6 For a cluster c, the Cebysev ball, Cebysev centre, and Cebysev radius
are alternatively denoted by cluster ball, cluster centre, and cluster radius.

For the efficiency of the algorithm, it is important to organize the clusters in a
hierarchical tree. In this light, a set (set of sons) has to be associated with each
cluster.

Definition 7 A set of sons o (c) associated with a cluster ¢

1. is either the empty set,

2. or is the union of one or more disjoint clusters satisfying

c=|Jo (o).

3. If o(c) =0 then c € G.



A cluster ¢ with o (¢) = () is called a leaf.

Definition 8 A cluster tree T corresponding to a grid G consists of clusters with
associated sets of sons satisfying:

1. TeT,

2. Any c € T with associated set of sons o (c) satisfies either
(a) o (c) =0,
(b) e=Uo (o).

Remark 9 We do not require that fo (c) # 1. For the later constructions, it will be
convenient to allow fo (¢) =1 implying é = ¢ for é € o (c).

In the next step, we will associate to each cluster a level indicating the depth in
the cluster tree. Since the largest cluster, i.e., the surface I, is subdivided recursively
into smaller clusters, it is natural to use the depth of a cluster 7 as an indication of
the geometric size as well.

Definition 10 The function LEVEL: T" — Ny s the recursive function

LEVEL([') = 0,
LEVEL (¢) = LEVEL(c)+ 1, Véeo(c), Ve € T\G.

The depth of the cluster tree is
L =max{LEVEL (¢) : c € T}
while the minimal depth is given by
Luin := min {LEVEL (1) : 7 € G} . (6)
For 0 < ¢ < L, the tree level T (¢) contains all clusters ¢ € T with LEVEL(c) = .

The term (v, Ku),p in (3) contains an integral over I' x I':

(v, K“)o,r = /F ] v(z)u(y)k(z,y)dlydl,.

In the next step, the product I' x I' is partitioned into pairs of clusters defining a
block partitioning of T' x T'. A pair ¢ = (¢1,¢2) € T x T is called a block.

Definition 11 Let n € (0,1). A block c € T x T is n-admissible if

max {:0017 ch} <n dist (Cl7 62) (7)

holds with p.,, pe, as in Definition 5.



If there is no ambiguity we write “admissible” short for “n-admissible”.

Definition 12 Let ¢ = (¢1,¢3) € T X T. The set of sons of ¢ is given by

e o(c)=0(c1) X 0(cy) provided o (¢1) # 0 and o (¢5) # 0,
e 0(c)=0(c)) x {ca} provided o (¢;) # O and o (c3) =0,
e o(c)={c1} X 0(c2) provided o (¢;) =0 and o (¢3) # 0,
o o (c) =0 provided o (¢,) = 0 (¢3) = 0.

A block ¢ € T x T is called a leaf if o (¢) = (). The tree T induces a block cluster
tree T3 of I x I,

Construction 13 T® s a block cluster tree if
e (I,T) eT®),
o cvery c € T satisfies one of the alternatives:

— ¢ is a leaf,
—c=o(c).
Note that the block cluster tree T is fully determined by the cluster tree 7.

Definition 14 A subset P® c T® s a block partitioning of T x T if the elements
of P? are disjoint and

IxT=JP®.
It is an n-admissible block partitioning if every c € P?) satisfies one of the alternatives

e c is a leaf,

e c is n-admissible.

It is a minimal, n-admissible block partitioning if there is no n-admissible block
partitioning with less elements.

Algorithm 15 The minimal, n-admissible block partitioning of I' X I' is obtained as
the result of the procedure divide((I',T), () defined by (see [6])



procedure divide(c, P);
begin
if (c is a leaf) then P := P U {c}
else if (c is admissible) then P := P U {c}
else for all ¢ € o (c) do divide(c, P);
end;
The partitioning P,;, contains non-admissible leaves and admissible blocks. These
subsets are denoted by N (nearfield) and F' (farfield):

N : ={c € Py : ¢ is non-admissible} , (8)
F : = min\N-
On blocks ¢ € F, the kernel function will be replaced by an approximation of a
certain order. The idea is that, on blocks consisting of clusters of similar size, the

approximation order is the same and, in addition, the approximation order is smaller
on smaller blocks.

Definition 16 Let Ly, be as in (6). The order distribution function m : F — Ny
depends on two constants a,b € Ny and is given by
m(c) := a(Lmin — M), + (9)
with
M. = min {LEVEL (¢;) , LEVEL (¢3) }
and
(-)+ = max {0, - }.
The order distribution is extended to a function m: FUT — Ny by
m(c) =max{m(c):c€ FAce{c,c}}, ceT. (10)
Remark 17 One could generalise the function m by allowing a,b € R>y and defining
m(c) := (a (Lmin — Mc), + bw ,
where [x]| denotes the smallest integer larger than x.
Remark 18 Definition 16 implies that the approxzimation order on a block (¢q,¢5) is
determined by the “larger cluster” ¢ = argmin {LEVEL (¢;) , LEVEL (¢o)}. The approz-
imation order is high on large clusters, e.g., m (I',T') = aLmyin +b and small for small

clusters as, e.g.,
m(c1,co) =

for all ¢y, ¢y satisfying LEVEL(¢q) ,LEVEL(Cg) > Lin-
Remark 19 In Subsection 3.1, a construction for the sets T, P® is presented which

always guarantees that (cy,c;) € P implies that ¢, and cy belong to the same T ({)
for some L. In this case, the order distribution m only depends on the level {.



3 The variable order panel clustering algorithm

In this section, we will define the panel clustering algorithm. In the previous section,
we have defined a partitioning of I' X I' into a minimal, n-admissible block partitioning
Ppin = NUF. On the portion | JN C I' x T, the standard, matrix oriented approach
is used while, on | J F, the kernel function is approximated by suitable expansions.
Let the kernel function % be as in (2).

Assumption 20 There exist positive constants Cy, Cs, Cy, Cs, A, A1, Air < o0 and
C5,7 € (0,1) having the following properties. For all n € (0,7) and all n-admissible
block partitionings P® of T x T, for all ¢ € F, there is a family of approzimations
kﬁm), m € Ny, of the kernel function k satisfying

|k (z,y) — k) (2, y)| < G103 dist ! (c1, ¢0), V(z,y) € c. (11)

having the form
R (o) = Y wl) () @) () W (y). (12)
(V1) €Ly,

with index sets 1,,, m € Ny, satisfying

L, < Cy(m+1)™, (13)
g ={v | weN : (vp) €L}, (14)
dE = {p|weN  (vp) €L, (15)
5 < Cy(m+1),  se{l, I}, (16)
lv| < Cs(m+1), Vvwel, se{lIl}, (17)
Lo, e ey VO <m < M. (18)

The approximation of the kernel function is based on a modification of Taylor
expansions. In this light, we begin with analysing the (true) Taylor approximation
of the kernel function k™ and, then, explain the modification. We begin with intro-
ducing some notations.

For ¢ € F, the difference domain d (c) is given by

dic)=c1—e={zeR |I(z,y) €c:z=0—y}. (19)

Put 2. = M., — M,,. One easily checks that, since c is admissible, z. # 0. The kernel
function in relative coordinates defines the function k: ¢; x d(c) - R

k(y;2) = (n(y),2) ks (2)

with

k3 (z) := . (20)



Taylor expansion of k3 about z. yields (writing n short for n (y)):

B (y,2) = (n,2) %kg”) (2c). (21)

lv|<m

where we employed the usual multi-index notation for v € NJ. Re-substituting z =
x — y, factorizing (x —y — z.)” with respect to z and y, and rearranging the terms
results in!

@) =B ) =3 Y - Mo e M) () @

i=1 \u|+m|5m

™ (o) = EV L 0t ) B () 4 (o) 6757 () ol L <,
o plv! (Vi + ) kglﬂru—ei) (2c) lv| + |u| =

Here, {ei}?zl denotes the set of canonical unit vectors in R?®. Introducing the seven-
dimensional index set:

L,={(v,p,i) € N x Ny x {1,2,3} : [v| + |u| < m}.

and the function system

V) (2) = (2 = My)", U (y) = (y — Me,)" mi (y) (23)

results in an expansion of the form (12). In order to reduce the number of indices

the three-dimensional coefficients and functions % and ¥, are introduced by

m m 3 = ¥ i 3
?l(l,u) (c) = {“z(fu)z (C)} . VAR {\I’(u’ ) (?J)}izl'

i=1
The expansion (22) can be rewritten as
k(" = ) WITWRM (c)
(V1) €L

with the six-dimensional index set

L,={(v,p) e Ny x N} : [v| + |u| < m}

v

LFor the wariable order panel clustering algorithm, the functions (- — M,)” will be replaced by

suitable approximations. This is the reason why we denote the function in (22) by k&m) instead of
k.



and the convention

T ) )

TR (€)= Ik ().

i=1
In [6, Appendix A], it was proved that there exists constants a, 6;, and 7y so that
- —~ [~ m—1
[k (2, 9) = K (@,9)] < Gy (Gat) ™ Ik ()] (24)

holds for all (z,y) € c satisfying ||z — y — zc|| < 77|z¢]| and all 77 € (0, 7).

Lemma 21 Let P denote an n-admissible block partitioning of T xT' with n € (0,7)
and 77 := min {1/4,n0}. Then, Assumption 20 is satisfied.

Proof. Since the block partitioning was assumed to be n-admissible we conclude:

(7 .
o =y = zell < lla = Moyl + 1y — Maall < pey + pes < 2mdist (cr. ).
The distance can be estimated by:
dist (Cla CQ) < ||MC1 - MC2|| Tt Pey + Pey < ||MCI o M02|| +2n dist (Cla 62) :

Using 1 < i we get
dist (Cl, Cz) S 2 ||Mc1 - MC2||

and, finally,
[ =y = zel| < 4nllzell -

By choosing 77 = 7o/4 in Assumption 20 with 7y as in (24) results in (4n) =: 77 € (0, 10)
in (24). Hence, (11) holds with Cy = 4Cy. Let Cr denote the smallest constant so
that, for all ¢ € P? and all (z,y) € c:

[(n(y),z — )| < Cr |z —y|>.
Then,

— 1
w < Op—— < Opdist ! (¢, ¢3), V(z,y) €c

|k (z,y)| =
|z = yI® [l =yl

and (11) holds with ¢} = C,Cr..

Some combinatorial manipulations yield

Cs = 3, A1 = 6.

Obviously:
o= {veN v <m} (25)
0l = {veN :|v|<m} x{1,2,3}. (26)

10



Again, some combinatorial manipulations lead to
Cy =3, M =N =3

Finally, C5 = 1 is trivial. m
In [15], [7], it was proved that all kernel functions corresponding to elliptic bound-
ary value problems admit an approximation satisfying Assumption 20.

Remark 22 For the variable order panel clustering algorithm, the Taylor-based ex-
pansion derived in the previous example will be modified by replacing the expansion
functions (23) by approzimations having more hierarchical structure with respect to
the order m.

Remark 23 The panel clustering method is by no means linked to Taylor based
expansions. Other erpansions as, e.g., expansions in spherical harmonics could be
preferable for special applications.

The panel clustering approximation of (v, Ku), » is given by

(v, Ku)yp ~ Z v(z)u(y)k(z,y) (27)

ceNvE€

fY Y R [ @ [ T umar,

ceF (VJL)eIm(c) e

The function m (c¢) determines the order of approximation on blocks ¢ € F'(¢). It
was defined in Definition 16 while the constants a,b € Ny will be fixed in Definition
54. Assumption 20 implies

L) € tm(e) X tmfc)-

Let ¢ = (¢1,¢2) € F. Then, m (¢;) > m (c) for i = 1,2 (cf. (10)), resulting in
Im(c) C Léz(q) X [,7[7.{(02). (28)

Property (28) will allow to decompose the computations related to the index set I,

into separate computations on the index sets L;(Cl), L{nI(Q).

For the evaluation of a matrix-vector multiplication, expression (27) has to be
evaluated for all basis functions v = b,, 7 € G.

The variable order panel clustering algorithm

The variable order panel clustering algorithm depends on various parameters:
e 1: The constant appearing in the definition of n-admissibility.

e The choice of the constants a,b in the definition of m = m(c) (as in (9)) in
(11). The precise choice of a and b is given in Definition 54.

11



Setup phase:

1. For a given mesh G, build up the cluster tree T and compute all cluster radii
and cluster centres.

2. Compute P, by using the procedure divide of Algorithm 15.

3. Forall c € F, (1, 1) € Lyy(e): compute the coefficients & 1 (c).

4. Compute the nearfield matriz entries:
N, = / k (x,y)dly,dl,, V(r,t) € N.
Xt
5. For all 7 € G: compute the basis farfield coefficients:
JTI’,, = /(D(T”) (x)dly, Vv € Lfnm,

T = / VW (@)dr,,  Wwedl,

Evaluation phase:
Let u€ S0 and u € RY so that u =) __,u(7) ¢, as in (4).
1. Compute the farfield coefficients: For all ¢ € T

" —> 11
?C,M / drma vlu’ € [’m(c)'
2. Forall c = (¢1,¢0) € pP®@ (0),ve Lfn(c) :
AP Ju] = R () T Tl
(V) €l (e)

3. Approximate a matrix vector multiplication by

ZNTtu —1—2 Z/ (x) by (z) dz, V1 eg. (29)

teg ceF veld

Remark 24 Let ¢ = (¢1,¢0) € F and m; = m(¢;), i = 1,2. For the realization of
the algorithm, it is essential that

II
I ()Cl,m X by

1

holds. This condition is guaranteed since, in view of (10), we have m; > m(c) and

Im(c) C Léz(c) X L ( ) C L X LII

mi1
In the sequel, we will comment on the realization of the single steps in the algo-
rithm which is essential for both, the practical implementation and the complexity
analysis. Some further approximations and relaxations will occur.
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3.1 Construction of the cluster tree

Let G denote the given mesh of I'. In a first step, one has to compute the centre and
radius (cf. Definition 5) of each panel 7 € G. The smallest radius defines the quantity

pi= ITnelél Pr (30)

while the “step size” h of G is given by

h = max diam 7 (31)
TEG
We give a construction based on an auxiliary uniform grid with a uniform par-
titioning. This grid is not needed in the true computations but inherits a simple
logical structure to the true grid G. Let () denote the smallest cube containing I’
with edges parallel to the coordinate axes. Without loss of generality we may assume
that @ = (0, 1)3. We introduce a sequence of physically and logically nested grids on
Q.
For ¢ € Ny, let hy = 27¢ and ny = 2°. The interval ;, is defined, for 1 < i < ny,
by w0 = ((i — 1) hy,ihg). For p € (Ngy,)?, a cell g, is given by

q#:e = ﬂ-ul’e X 71-/1/27( X 71—/1/37('

Lemma 25 For u € (NSW)?’ and ¢ € Ny, the centre and radius of g, are given by

h
put = pr = V3, (32)
My, © =M, =h(p—2"(1,1,1)7).
The reference grid Qy is defined by
Q= {que: p € New,)’} (33)

Obviously, each element ¢ € Q, has exactly eight sons in Qy,; satisfying

7=Jo .

In other words, {Q/},.y, is an oct-tree. This tree will be associated to G. Let L
denote the smallest number so that

Vst <, (34)

holds with p as in (30). Hence, a cluster tree for the auxiliary grid Qp is given by
Q= {Ql}ogegL-

13



Any element 7 € G is associated to that element ¢ € Qp containing the centre of
7. (If there are multiple possibilities, choose one of them). This defines a mapping
REF: § — Q. Define INVREF: Q7 — G U {(}} via

[ 7 ifg=REF(7)
INVREF (¢) = { 0 otherwise.

The following procedure builds up the cluster tree along with the tree levels. Before
we present the formal description of the algorithm we explain the underlying ideas.
Our aim is to generate a balanced tree with the additional properties that

1. the number of sons of any cluster is different from one,

2. the geometric size of a cluster on level T (£) is of order 27¢, i.e., there exists
C? > 1 so that, for all ¢ € T (¢):

Col270 < p, < 27" (35)

The cluster ball, centre, and radius are approximated as follows. A bozx is a
rectangular parallelepiped with axes parallel to the coordinate system. For a cluster,
it is quite simple to determine the minimal box b (¢) containing ¢. The approximate
cluster ball, centre, and radius are defined as the Cebysev ball, centre, and radius of
b (c) and are denoted by B (c), M,, and j,. By this construction it is guaranteed that

cCB(c), < pe< pe

where s. denotes the maximal side length of b (¢).

The clusters (corresponding to a reference cube ¢ € Q) are built recursively by
collecting the clusters (J;c,(,) {INVREF (¢)}. However, if a cluster contains only one
son or the maximal side length s. is so small that (35) is violated, this cluster is
absorbed in the neighbouring cluster. The choice of the neighbouring cluster involves
the definition of layers about a set w.

Definition 26 Let Q, be as in (33). For w € R®, the layers L} about w are given by
LY (w) :=w and, for 0 < k < L, i € Ny, by the recursion:

Liw) : =Jfeelanw#0},
Lt (w) @ =L (L] (w))-

If a cluster ¢ € T (¢) has only one son or is too small it will be “absorbed” in a
“neighbouring” cluster ¢ € T (¢) (with reference cluster ¢ :=REF(¢)) satisfying

1. ¢ C Lp, (), e, éis “close” to ¢

14



2. 5; > cmin2 7Y, e, ¢ is “sufficiently big”.

The algorithm depends on the parameter ¢y, < 1 controlling the relative small-
ness of a cluster. The precise choice of ¢y, (Assumption 50) is a result of the conver-
gence analysis while we expect that, in practical applications, a larger value of ¢y,
might be preferable. Numerical experiments in this direction will be presented in a
forthcoming paper.

The recursion starts on the panel level and we put 7 (L) =G and T (L — 1) = ().
On the panel level, we assume that the cluster centres, balls, and radii are computed
exactly. Then, the procedure build_cluster_tree generates a coarser level from the
finer level recursively and is called by

(:=L—-1;
while T;,; # () do begin

build _cluster _tree(T;, 1,7y, ¢);¢:=( —1;
end;

while the procedure build_cluster_tree is defined by

procedure build_cluster_tree(7;.1,7},{);
begin
for all ¢ € Q,; do begin ¢ := ;0 (¢) := 0;INVREF(q) := {);
Comment: The sons of the reference cluster ¢ will be collected;
for all ¢ € 0 (q) do begin
¢ :=INVREF(q) ; c:=cUg
if ¢ # () then o (¢) := o (¢) U {¢};
end;
if ¢ # () then begin
T, :=T,U{c}; REF(c)=g¢q; INVREF(q):=¢; LEVEL(c)=1/
end;
end;
Comment: Clusters having only one son or too small radius are absorbed in a
neighbouring cluster;
for all c € T; do begin
compute b (c) as the minimal box containing (J;c,(, b (¢),

the approximate cluster centre M,;

the approximate cluster radius p;

and the minimal side length s. of b (c);

if 40 (c) = 1 or s, < cmin2~¢ then begin?

N()={¢ceTy|cCLy(q)}; (36)

2We employ the notation, that, for a cluster ¢, the reference cube is denoted by g, :=REF(c) and,
for a cube ¢ € Qy, the pullback by ¢, :=INVREF(c).

15



if M (c) # 0 then determine ¢ € N (c) so that
S5 > Se, vV e N(e);

Ty =T\ {c}; c:=cUc  o(¢):=0(c)Uo(c);
INVREF~!q. = (); update b (¢), M (¢), pe, and sg;
end;end;end;end;

The approximations of the cluster radii and cluster centres will be employed to
check whether a pair of clusters is n-admissible. A sufficient condition is given in the
next lemma.

Lemma 27 Let the approzimate cluster centre, radius and ball be as in the procedure
build_cluster_tree. Let cy,co € T and put, fori = 1,2, p; = p., and B; :== B (¢;).
Then, the condition

max {ﬁl, ﬁg} S ’I’]dlSt (Bl, BQ) s (37)
implies that the block (c1,¢3) is n-admissible.

Proof. Let ¢ € {1,2}. Our construction directly implies that the minimal ball B;
containing ¢; is contained in B;. Hence, the true cluster radii p1, p» can be estimated
by

max {:017 p2} < max {ﬁla ﬁQ} :

Since ¢; is contained in Ei evidently
dist <Bl, Bg) S dist (Cl, CQ) .
We have proved that condition (37) implies
max {p1, po} < max {1, p2} < ndist (Bl,B2> < ndist (¢q, o)
and (cy, ¢o) is n-admissible. m
The lemma above motivates the definition of strong n-admissibility. We employ
the same notation as in that lemma.
Definition 28 A block ¢ = (c1,cy) € T is strongly n-admissible iff

max {ﬁl:ﬁ?} S 7’]dlSt <Bl,B2) .

In order to check the strong n-admissibility the approximate centre and radius of
the clusters have to be stored. The computation of an n-admissible, block partitioning
P® of T' x T is performed by using Algorithm 15, where the check of n-admissibility
is replaced by checking the strong n-admissibility.

16



Remark 29 If the clusters along with the associated set of sons are constructed by
the algorithm build_cluster_tree, then, T is a cluster tree.

Remark 30 For 0 </ < L, the construction of the cluster tree implies that the tree
levels
T () ={ceT|LEVEL(c) = (}. (38)

satisfy

r=\rw, w<i<tL
G = T(L).

The block-cluster tree T®) is determined from 7 via Construction 13.
Remark 31 All blocks (c1,c;) € T consists of clusters of the same level:

LEVEL (¢1) = LEVEL (¢3) .

3.2 Computation of the expansion coefficients, nearfield ma-
trix and basis farfield coefficients

The coefficients ?,(f?) (c) in (12) have to be computed. We will not use the ezpan-
sion system (23) but approximations to it. Nevertheless, the ezpansion coefficients
7™ (c) of (22) are used. Efficient algorithms for computing 7 o7 (c) are developed,
for collocation discretizations, in [6] and [14] and, for Galerkin discretizations, in [7],
[15], [8]. We do not recall here the details of the algorithms.

It will turn out from the error analysis that the nearfield matrix N can be replaced
by the zero-matrix. No work at all is needed for this step.

It remains to compute the basis farfield coefficients. We consider here only the
more involved case I1:

_>
?g:/w@@mu, Ve, Vreg.

It will turn out that on the panel level, we restrict to polynomial expansions, i.e.,

O (2) = (x— M), T =(y— M) n(y).

T

In the case of flat panels, the normal vector n is constant on 7 and the integration can
be performed analytically (cf. [14]). For more general parametrisations, the integrals
have to be evaluated numerically. Transforming 7 onto the master element @ (cf.
Definition 1) yields:

1 &1
L A APACE CEpTr
1

7



where ¢, denotes the surface element. Since x, and n are smooth the integrand is
smooth as well. Due to (17) we know

W] < Cs(m(L)+1) L s +1).

Hence, standard quadrature formulae as, e.g., conical Gauf§ rules, could be applied.
For given a, the number of quadrature points for conical Gaufl rules approximating
JI1, with an accuracy of O (diam® 1) is independent of diam 7.

3.3 Computation of the farfield coefficients

In this subsection, we will define precisely the kind of approximation we will use for
the variable order panel clustering method. Before we present the formal algorithm,
we start with some motivations. For the efficiency of the algorithm, it is essential
that the e_Pan51on system is organized hierarchically. The idea is to compose the

functions ¥, ®{") as linear combinations of the functions \I'( 2 q)( *) where ¢ € o (c).

(v)

We consider first the functions ®.’and make the ansatz:

) o= 3wt (2)

;GLT‘;L

where (7 is short for Lfn(&) and ., abbreviates l, . Since <I>( ¥) should approximate

the functions
W () := (x — M,)"

O (2) [e= Y sl (). (39)

This leads to

This motivates the definition

Vv = { ((];) e Mo e (40)

otherwise
forall v € 1, and v € 15.

Definition 32 The index sets i1, !, 1,, are given by

m’ m7
bn 0 = =0l ={veN | |v| <m},
c ={(v,p) eENy XN, : [y + |u| <m}

v Fw

and the expansion functions ®¢ 7, by the recursion:

18



e for the panels T € G :
O (2) = (& = M) YV € ey,

— (v v (41)
\I]S_) - (y — MT) n(y) Vv € lm(1);
e for the clusters c € T\G:
&) = . Woe® VY € tmie) VEE 0 (0), o
T = >, Wiz U Y0 € i) V€0 (0). =

For the computation of the farfield coefficients, the hierarchical definition of the
expansion functions is used. The initial step is performed on the panel level G.
Compute and store, for all 7 € G:

Tl = (r) T

T,V

Vv € bm(7)-

Assume inductively that all coefficients ?1 ¢ ] are computed for all¢ € o (¢) and
c € T\G. For simplicity, we write ¢, short for Lm(c) and t short for v,,z. Then

?ﬁ,}u [u] = /E@/) (y)u(y)dl' = Z /—> y) dl, YV € iy,
¢ ceo(c
By using (42) we obtain

7£IV Z Z %,,c ], YU € L. (43)

CEo(c) VELy,

3.4 Evaluation of a matrix vector multiplication

The computation of the quantities A., [u] is straightforward. It will turn out that it
is preferable to compute and store directly the quantities®:

BY[w:= > APV, Ve eT, Wwei,,, (44)
ca:(c1,c2)EF
with

Ty Ag’)u, ifvedd .
A(C)[u]::{o g ifl/GL}nEC))\Ll() Ve = (¢1,¢9) € F.

We turn to the evaluation of the sum in (29). Since we replaced the nearfield matrix
N by the zero, the sum in (29) consists only of the farfield evaluation:

3Recall that, for ¢ = (c¢1,¢a) € F, we have m (c1) > m (c) (cf. (34), (18)) implying Lil(c) C L{n(cl))
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In view of (44), it is advantageous to rewrite this formula as

B=Y Y [ BOWe @)k )i (15)

c1€T ye, ! m(ey)

In the next step, we will derive a hierarchical representation of this formula. The
summation over ¢; € T\G in (45) can be split into a sum over the sons o (¢;). Hence,
setting 1, = Lfn(q), we obtain

Y[ e @i wa= ¥ 3 [ B 6 @ 0

VELM C1€0’ Cl VeLm

On the other hand, the summation in (45) contains a partial sum over o (¢1) of the

form:
Z 3 / (2) by (2) da (47)

c1 Ea cl VELm

with 15 = 1/ In the next step, the right-hand side in (46) will be added to (47).

m(éi)

Plugging in (42) into (46) and re-organizing the terms shows that the sum in (46)

equals
Z Z/ D 1) 8 ()b, (x) da

c1 E(T cl VELy,

D) = Ypa BY [u].

VELm

Hence, (46) and (47) can be added resulting in

Z Z/ O [ul + BY [u ]) o) (2) b, (x) da.

c1 Ga cl V€L~

with

Iterating this algorithms over the hierarchical structure of T' leads to Algorlthm
33 for the evaluation of B,. The tree levels T (¢) are as in Definition 10 and B [u]
be as in (44).

Algorithm 33 procedure evaluate_sum;begin
for all v € 1,1y do R [u] = BY) [u);
for all!=0to L—1 do
for allceT () do
for all c € 0 (c) do begin for all ¥ € i,
R [u] = B[] + Xy, YR ]
end;
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for all T € G do
B,= 3 RO [u]JL,;

V€L (r)

end;

4 Error analysis

4.1 Abstract error estimates

We have presented a variable order panel clustering algorithm based on block parti-
tionings of ' x T for the discretization of the second kind integral equation in (1).
The discretization is based on piecewise constant finite element spaces. It is well
known in the theory of boundary elements that the Galerkin solution to this problem
converges as

o~ o < Chllgllyr (48)

provided g € H' (T') where [-||, . denotes the H'-norm. Let ug € S~ denotes the
solution if the integral operator in (3) is replaced by the panel clustering approxi-
mation. In this section, we will prove that, under the abstract Assumption 20, the
solution ug exists and satisfies the error estimate (48), too, with a possibly larger
constant C'. In this section, the error estimates will be derived from abstract assump-
tions while, in Section 4.2 and [13], it is shown that this assumptions are satisfied for
shape regular, quasi-uniform meshes.

Definition 34 The uniformity of a mesh G is characterized by the smallest constant
C., satisfying
h < Cyh,, Vreg

where h is as in (31) and
h, = diamT.

Definition 35 The quality of panels is characterized by the smallest constant C,
satisfying
h2 < Cyl7l, V1 eqg.

Remark 36 Since G only contains finitely many panels, the constants C,,C, are
always bounded. However, it will turn out that the constants in the estimates below
behaves critically with increasing values of C,, C, and we assume here that C, and
C. are of moderate size.

Assumption 37 The tree T is balanced in the sense that all panels T € G have the
same depth in the tree:
LEVEL (1) = L, Vredgd.
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Remark 38 By using the construction of Subsection 3.1, Assumption 37 is always
guaranteed.

Remark 39 Construction 13 and Definition 14 implies that all blocks ¢ = (¢1,¢3) €
P@) consist of clusters of the same level:

LEVEL (¢1) = LEVEL (¢3) .
For 0 < ¢ < L, we introduce the farfield levels F (£) by
F (¢) ={(c1,¢2) € F : LEVEL(¢;) = LEVEL (¢g) = (} .

Then, the function m : FF — Ny as in Definition 16 only depends on the level . For
c € F(0), we have
m(c)=a(L —0)+b. (49)

The right-hand side in (49) defines a function m : Ny — Ny. If there is no ambiguity
we write again m instead of m.

Assumption 40 There exist constants Cg < 0o and 1 < C7; < oo so that, for all
0<?¢<LandanyceT(l):

07—12—E

diam ¢

Pe S 072—5’

<
< Cgh2t .

Assumption 41 The constants a in (9) is chosen so that a > 1 and 2C§ =: Cy < 1
holds with Cy as in Assumption 20.

We need an assumption estimating, for ¢; € T (¢), the number of clusters c,
forming a block (c¢q,¢) in F (£).

Assumption 42 There exist positive constants Cf, CH < oo so that, for all 0 <
(< LandalceT({):

t{ce F(l):c;=c}
t{ce F(l):ca=1c}

1
Cy,

<
< gl

The nearfield matrix is replaced by zero. In order to estimate the arising error we
need an assumption concerning the number of nearfield matrix entries.

Assumption 43 There exist a positive constants Cly, C1l < oc so that, for all 0 <
¢ <L andallT€ G:

t{te G:(r,t) e N}
t{teG:(t,7) € N}

S Cll(]:
< O
with N as in (8).
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The error estimate of the Galerkin discretization including panel clustering is
based on the second Strang lemma [1]. For u,v € S0, let

b

E= ‘(U,K[u]—f([u])

where K denotes the panel clustering approximation to K. In order to estimate F,
we need an auxiliary result.

Lemma 44 Let Assumption 20, 37, and 40 be satisfied. There exist a constant Ci1 <
oo so that, for all 0 < ¢ < L and every c € F ({)

\V |C1| |CQ C dlSt Cl, C2) < Cnhcggie. (50)

Proof. Recall that 0 < Cy < 1. Let ¢ € F (¢). Without loss of generality we
assume that

Per = max{pe,, Pe, } -

Viellea] < CpZ,

where C' depends only on (the curvature of) the surface I'. Using (7), Assumption 40
and 37 we obtain

\/mc Ndist™! (c1,¢2) < Cn(pey) C;n(e) < CCﬁhQL_EC;n(E)

Hence,

and, taking into account (58)
Viewl e G5O dist™" (eq, ¢z) < CCh (202)"~" = CCehCE,
n

Lemma 45 Let Assumptions 20, 37, 40, 42, and 43 be satisfied. There exists a
constant C so that, for all u,v € S~ 19 :

E<Ch ||U||0,F [v]lgr

Proof. We employ the splitting £ = E; + E5 with

b o= Z > / (z,y) = k'O (2,y)) dLdT,

=0 ceF(¢

E, = Z /t><7- u(z)v(y)k(z,y)dl,dl,

(t,T)EN
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and estimate Ey, F5y separately.

1<ZZ/|u ) o @) |k (z,y) — — km® (z,y)| dlydl,,

=0 ceF(¢
(11)
S Z Z Viellea[er 59 dist™ (er, e2) [[ul, |10
=0 ceF(¢
< Cllclhch ! Z [ullg e, 1V]lo,c,
ceF(¢)
. 1/2 1/2
< CuGihy Gi™ Zl
=0 CEF(L ceF (L
. 1/2 1/2
_ 2 2
< OuChyY_CEL ST ulp, Y1 >l Y1
=0 c1€T(X) ca:ceF(0) €T (L) ci:ceF(0)
L
_ CC\/Cicl!
< CuCyJCICH R fullp ollor 3 G < bl ol

For the estimate of Ey we begin with considering a single pair of panels (¢,7) € N:

xey u(y)k(az,w\ < ¢ [lo@lds [ u@) o -yl drar,

< Crloll, e, / o — gl dydl,.  (51)
txXT

Since u is constant on £ and v on T, we get

oo,t o0, T |t| |7_|

We turn to the integral in (51). We distinguish two cases:
(a) dist (7,t) > 0. The shape regularity and the quasi-uniformity of the meshes
imply:
dist (7,t) > Ch.

Hence,

o]

oo [Nyl s < €T ol
tXT

(b) dist (7,) = 0. There exists a mapping x : R? — R*® which is sufficiently
smooth, independent of i along with a subset & C R? with x (i) = tUr. Furthermore,

PN C™'h ||v||0,t ||U||0,7 :

24



me may assume that there exists a constant C' independent of h so that U is contained
in a ball B about the origin with radius C'h. Then,

[ e—irtangr < e [ @ - @] avae
txT BxB
We introduce polar coordinates about &:

0=¢+1Y ()

with ¢ (a)) = (cos i, sina)T. Hence,

Ch 2
/t o — y| "t dr,dr, < C / / / FIX(©) = x (€ + r)| " dadrde.

The quotient
r

Ix (&) — x (£ + )]

stays bounded as r — 0 as a consequence of the regularity of I". Thus,

Ch 2w
/ |z —y|| " dl,dl, < 0/ / / ldadrdé < Ch?,
txT B JO 0

-1
lollues o, / & — gl dTydT < Ch o]y, llullo, -
XT

Summing all nearfield entries yields:

1/2 1/2
By < Ch Y Wl llully, <Ch{ S ol Sl
(t,T1)EN (t,T)EN (t,T)EN
1/2 1/2
2 2
< Ch Y lllly, Y 1 Slully, > 1y <OoChOER vllor lully -
teg 7:(t, 7)EN TEG t:(t,T)EN
||

Theorem 46 Let the assumptions of Lemma 45 be satisfied. Then, the solution ug
to (8) with K replaced by the panel clustering approzimation ezists for any g € L* (T).
If g € H' (T) the error estimate

|u—ucllor < Chllgll,r
holds.

Proof. In view of Lemma 45 the result follows from [1, Lemma 4.1.1]. m

In the remaining part of this paper, we will show that the hierarchical approxi-
mation system ") and U (cf. Definition 32) satisfy the approximation property
and that the panel clustering algorithm has linear complexity. We do not work out
here the proof that Assumptions 37, 40, 42, and 43 hold for quasi-uniform meshes
provided the cluster tree is assembled according to procedure build_cluster_tree
and the block partitioning according to procedure divide but refer to [13].
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4.2 Verifying the approximation property of the expansion
system

In this subsection, we will prove that the expansion system defined in Definition 32
satisfies Assumption 20 with m (¢) as in (54). In order to reduce the technicalities
in the proofs below we impose a weak assumption (Assumption 52) on the sizes of
the sons of a cluster and two further assumptions on the geometry of the surface I':
The first one is satisfied for all reasonable surfaces and the second one is imposed to
reduce technicalities.

Notation 47 The three dimensional ball (with respect to the mazimum norm) about
x € R® with radius r is denoted by B (x). For r > 0, the r-neighbourhood of T is

U T)={zeR |Fyel:|z—y|<r}.

Assumption 48 There exist positive constants cr, Cr so that, for all x € T' and all
0<r<diamT

| B (2) N T
U (D))

CFT‘Q,

>
S CI'T.

For all subsets v C I', the diameter diam~y can be estimated by
diam~y > er \/m ;

where |7y| denotes the two-dimensional surface measure of 7.

Assumption 49 T is a closed, simple connected surface.

By using these assumptions the precise condition on the parameter c,;, controlling
the procedure build_cluster_tree can be formulated. However, for practical prob-
lems, we expect that the optimal value of ¢p,;, is larger and should be determined by
numerical experiments. This will be the topic of a forthcoming paper.

Assumption 50 The constant cpin in the procedure build_cluster_tree is chosen
so that

Cmin < Min {4, c%/2} /32
holds with cr as in Assumption 48.
Definition 51 Let ¢ € T (i) and ¢ € T (j) with j > i and ¢ C c. The chain
Kee = (¢j,¢j-1,Cj—2, ..., ¢)
18 given by the recursion.:
c; = ¢

ce—1 o (ck_1) D e, k=g,7—1,...,1+1.
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Assumption 52 There exist positive constants c19,p < 1 so that, for all clusters
c €T and all sons ¢ € o (c), either ¢ = c or the ratio of the cluster radii satisfies:

c12 < pe/pe < p

For all clusters ¢ € T and all panels ¢ € G with ¢ C ¢, the number of repeated clusters
in the chain Kz, is bounded by :

supsupng. <7 (52)
ceT ¢eg
cCce
with
Nee = 1{¢ € Kz | 0 (¢) = 1}. (53)
Definition 53 Let w € R? with centre M,. The Taylor operator T s given for-
mally by
TS [f1(2) = Y w198 (2)
v|<m
with
L)
o lf] = S (ML)
and

¢ (1) = (v — M) (54)

-
The auxiliary functions ¥ are defined by

—

U ) =2 () ().

14 % 14 o,
The expansion functions ®¢) and ¥ (cf. Definition 32) can be regarded as

. -
approximations to the functions @) and W . The precision is concerned in Lemma

55. The normal derivatives of the Taylor polynomials are denoted by
3
NE =37 ns (y) B (y) = (n,y = M) B (55)
i=1
while an analogous quantity for the true expansion system is defined by
3
N = i (y) 9 (y). (56)
i=1

It remains to define the function m (¢) = a (L —¥¢) + b determining the degree of
approximation on a block.
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Definition 54 Let Assumption 20 be satisfied. For 0 < ¢ < L, the function m ({)
determining the variable order of approximation is given by

m(l) =a(L—10)+0b, (57)
with a,b € Ny chosen so that
a>1 and 2C5 =:Cg<1 (58)
(cf. Remark 59) and
- Jog 24+Cr—1
b > max |1(|)]%)g2ﬁﬁ\ |,1 + |1‘:);°§§| .2 (a% — 1) , I}gifﬂ’ 21(01;;4 ) (59)

with Ay > 8.

Note that the conditions on a and b stem from the proof of the approximation
property which we expect are by far too restrictive. In a forthcoming paper, the
results of numerical experiments will be presented dealing with the optimal choice of
a, b, n for practical problems.

Lemma 55 Let Assumptions 20, 40, 52, 48, 49, and 50 be satisfied. For all Ay > ¢y,

w > max { (a3’ 2 e)\4} ; wy > C7 (14 w) max{ 20 (a5 6)\4} (60)

2(a—1)! 2 1—p° al"

and, for all 0 < ¢ < L and all ¢ € T (¢), the estimates

‘ o) — o) “ < NI (o)) Vv : vl <m(f),
L*(c
. CrAa™ y (61)
‘ N® — N®) < I (w279 v <m0 — 1
Lo(e) — 1—X\"

hold with 7 as in (52).

Since the proof of this Lemma is rather technical we refer to the extended version
of this paper (cf. [13]) for the detailed proof. The approximation of the kernel
function on a block ¢ = (¢, co) € P® ({) is given by

k(2,y) ~ k" = 3 R ()W) (z) T (y) (62)

(v,p) €Ly,

v) . "
with m = m (¢) and ?(JZ) as in (22) and ) WY as in Definition 32. The error
analysis consists of a consistency and stability part.
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For the error analysis, it is preferably to write the Taylor approximation according
to (22) in a different form (with n = n (y))*

ey = 3 (Zn@fﬁ*“’ <x>) A (6

Vl+ul<m—1 \i=1

3
LY (z i) <y>) (@
=1

W]+ |p[<m—1

+noze) >, W (y) Y (z) K7 (c)

W]+ |p[<m—1

= Y R (ay) (64)

se{I,ITIIT}

with .
Ki (€)= S (CD MR (z0) (65)
and @, ¥ as in Definition 53.

Proposition 56 The approximation kﬁm) can be written in the form (63) by replacing

the Taylor polynomials ) by the hierarchical approximations o).

Proof. By definition, k™ has the representation

3 vl
m v (_1) vtu—e;
D @y) =30 >0 O W) O @) man— kT (o)

i=1 |v|+u|<m

3 v
v (_1) vtp—e;
+ E E (I)E;l;) (y) (I)Ezl) (z) g ] ké i )(Zc)

i=L v +ul<m

fmz Y W () e @) C g (o)

v+ <m

= Y kM (). (66)

se{I,I1IIT}

Performing the same index manipulations as for the derivation of (22) yields the
assertion. m
For the estimate of the approximation error, we employ the splitting:

(.

€c (LE,y) =k (Iay) - k((:m) (Iay) =k (Iay) - l;:

-~ -~

=:eg(z,y) =:ed! (z.y)

(67)

4This expansion is derived by re-substituting z — 2z = z — M., — (y — M,,) in (21), writing
(n,z) ={n,x — Ms,) — (n,y — M.,) + {n, z), and re-organizing the sums and products
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The estimate of el (z,y) directly follows from Lemma 21 and we proceed with con-
sidering e!’ (z,y). By employing (63), (64), and (66) the difference B g™ can
be split into three parts:

=Em kW= N R g = 3 el (68)
se{III,IV,V} se{II1,IV,V}

We work out the details only for the case e/ while the estimate of the errors el"?V

is just a repetition of the arguments:

IH(I y) = Z ((i)gl;) (z) — (an(bﬂ'i'ez ) 1(/771) (c)

w[+|pul<m
+ Z <I>§ <Z n; @’”’el @’”“)) HI(ZZ) (c)
[v|+[pl<m
= te (my)tel! (z,y). (69)
In order to estimate €)'/, ¥’ we need an auxiliary result estimating the size of £{™.

Lemma 57 Let ¢ = (¢, ¢9) be n-admissible. Then,

! 4 |v+p[+3
5 (¢) = o7 (L .
2 dist (¢, ¢9)

Proof. We start with estimating the derivatives of the function k3 : d. — R
as in (20). Note that all z € d, satisfy ||z|| > dist (¢1,c3). For any w € C* with

lw|l o < 2|l / (2\/5), we have
2e + vl > [lzell = llwl] > llzell = VB lwllog > ||zell /2 > L dist (e, c2) -

Hence, the function
g5 (w) = [|ze + ]~

is holomorphic with respect to each component in B,, (0), i.e., in the ball in complex
plane about the origin with radius r; := ||zc||/ (2v/3). Applying Cauchy’s integral
formula in each component results in

—g —————dv
/,L‘ 3 271'2 ‘1)1‘_1' |'U2|_T‘ ‘1)3‘—7‘ N+1

with 1 =(1,1,1)" and r = 3||2.|| /4. The function g3 (v) can be estimated by

ool < ()
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The denominator satisfies

3

=1 i=1

w

and the length of a single integral path 27r = 37 ||z.|| /2. Hence,

|| +3
S (@) < g Or el /2 () =7 ()

Z (L flzell) " Izl

The connection between g; and ks is given by k% (z.) = ¢{*’ (0) and, hence,

4 | +3
= ot o] <2 ()

In view of (65), we obtain the assertion:

|54 ()] = oy 1) <| 4 >”+u+3‘

K (z0)

v,
|

Theorem 58 Let 1,,, i, and the expansion systems (ng), \Ilgy) be chosen as in Def-
wition 32 and the distribution of the expansion order as in Definition 54. Let the
Assumptions of Lemma 55 be satisfied. Then, there exists 1 depending only on Cg,
C7, A3, a, b, c19, p so that the expansion (62) satisfies Assumption 20.

Proof. In view of (67) along with Lemma 21 we may restrict to the estimate of
. As before, we work out the proof only for the partial error el/f in (68) while
the estimate of elV:V 1s just a repetition of the arguments. Hence, it is sufficient to
estimate the errors e}’ and e}’ (see (69)). Using Lemma 55 and 57 along with

E nzq)wrel

we obtain (putting m = m (¢)):

e (@) < 21 Y AT (wpy)” '(c pmm) (V+u)!< 4 )>|V+ﬂl+3

vip! dist (¢4, ¢

II

)| = n ),y — M) (y — M)"| < Crpf'™?, Wz eceT(l),

|+ ul<m,

~ “m v+ 4w ek
< Cdist™ (e1, ) A\,™ Z ( V”) (Wﬁ@)

]+ ul<m,
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with C' = 4 x 27Cr A", By using py/ dist (¢1, ¢;) < 1 and choosing 7 < (4w)” " we get

[v+p|+2
v+ p dwpy v+ p 3
= < < 2 my — 8ml‘
Z ( v ) (dist (01,02)> - Z ( v ) -

|V|+|M|<m[ ‘V‘+|N‘<mg

Thus, .
led” (z,y)| < Cdist™ (c1, ) Ay ™8™, (70)

By choosing Ay > 8, we have proven an estimate of the form (11).

VII
c

)

It remains to estimate e.''. The norm of the expansion functions ®.,’ can be

estimated by

18] ey = N ey + (194 = 8| o)

VAN

P+ AT (wp) < P (1 4+ AW
< p A+ AW = (@p0)” (71)

with suitable @. Hence, by using (69) in combination with (71), (61), Lemma 57, and
Assumption 40 we get

CrA{" ~ B B (v + p)! 4 |v+p|+3
VII '\ v \—m o |42 M

x Imi
=N [v|+|ul<m o o
_ |y p]+2
o + ) AM27
< O™ dist! (1/
< i ist” "~ (c1, ca) Z vip! dist (c1, ¢2)

v+ <m

where M, = max {C7@,w,}. Assumption 40 implies 27¢ < Cyp, and, hence, the
rest of the estimate is just a repetition of the arguments used for proving (70): For
sufficiently small 77, an estimate of the form

‘ein (x,y)‘ < C’Cgffn dist™! (¢1,¢9)

holds with Cy r;r < 1. Similarly, the error contributions e!" and e! (cf. (68)) can be
estimated. m

Remark 59 For the approzimation k{™ (z,y) as in (62), the constant Cy in As-
sumption 20 is independent of a in (49) (cf. (70)). Hence, a could be chosen so
that

M C§ =: Cg < 1.
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5 Complexity analysis

In this section, we will prove that, for quasi-uniform and shape regulars meshes, the
storage amount and complexity of the variable order panel clustering method depend
only linearly on the number of unknowns without any logarithmic terms. The key
role in these proofs is played by sharp estimates on the number of blocks contained
in the farfield levels F' (¢) and in the nearfield N. Let n denote the number of panels,
i.e., n=14G = dim S0,

Lemma 60 Let Assumption 48 be satisfied. There exist positive constants Cyz, Ciy4
so that, for all 0 < ¢ < L, the number of nearfield and farfield blocks is bounded by

1F (1) < C34°, (72)

Proof. First, we prove (72). By construction (cf. procedure build_cluster_tree)
the cluster tree T is balanced implying F' (¢) C T (¢)xT (¢). In view of [13, Lemma 53,
54], it is sufficient to proof that there exists a constant Cy5 so that, for all 0 < ¢ < L,

4T (0) < Cy54°.

All cluster centres M, of panels 7 € G are contained in an h-neighbourhood Uy, (T")
of I which was already introduced in Notation 47. The number of clusters contained
in T (¢) is bounded from above by the number of cubes ¢ € Q, satisfying

U, (T)Ng #0. (74)

All cubes with this property are contained in Uyq (T') with d = v/3 x 27¢. Due to the
quasi-uniformity of the grid, there exists C' < oo so that h +d < C27¢. Hence, all
cubes with property (74) are contained in Ugy—¢ (I'). Due to Assumption 48 we have

Ugot| < CrC275,

The volume of ¢ is 273 and, hence, the number of such cubes are bounded from above
by
|U ca2-t |
9-3¢t

< Ccrc4t.

It remains to prove (73). The estimate follows directly from G = n and Lemma
7. m

The depth of the cluster tree is concerned in the next lemma.

Lemma 61 Let Assumption 48, 49, and 50 be satisfied and the cluster tree con-
structed by the procedure butld_cluster_tree. Then,

12C%
gl < 2wy
="
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Proof. Condition (34) implies v/3h;, > p. Taking into account Definition 34 and

35 along with
Ul= |7l < nh?
TEG

we obtain

I o, 12C% 1207
4" <3p7° < 3 < |F|n
|
The following lemma estimates the amount of work per tree and farfield level. It
has auxiliary character and will be used in the complexity estimates below.

Lemma 62 Let a,b,s > 0. Then,
L K]
b
Y (a(L— ) +b)" 4 <2 slat®y g
P In2

Proof. Simple analysis yields:

L L L
d (a(L—-0+b)"4" < (a+b)"Y (L—L+1) 4" =(a+b) 4" (L+1)°
=0 =0

N < (a+0)*4 ( )i 4f:2<%> na

]

In the sequel, we will estimate the number of operations in the single steps of the
variable order panel clustering algorithm.

(a) Procedure build_cluster_tree.

Clearly, the complexity of the procedure is proportional to the number of elements

in the cluster tree:
ZL: 40 1602
=3t s "

(b) Computation of the expansion coefficients.
In [7], [15], [8], algorithms are presented where the computation of

?T’M (c), Vo, p €1,

can be performed in O (m") operation. Hence, the computation for all coefficients
and all farfield blocks costs (cf. (72) and Lemma 62)

XL: T(0) x tF (¢ XL: (L—0)+b)"4" <Cn (75)
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where C' only depends on a, b, Cy3, Cy, and |T|.

(c) Computation of the farfield coefficients.

The computation of all farfield coefficients J!, and J!I,
Ve Lfn(L), RS LZ(L) is proportionally to n due m (L) = b.

The procedure build_cluster_tree implies that the number of sons of a cluster
is bounded from above by 64. Thus, the evaluation of the recursion (43) costs O (1)
operation per farfield coefficients. Similar computations as in (75) yields that the
number of operations is proportional to n.

(d) Computation of the recursion coefficients v,z in (42). From (40), it follows
directly, that the amount of computational work per coefficients is O (1) while the
total number of coefficients is bounded by O (n).

(e) Evaluation of a matrix vector multiplication.

By similar considerations, one obtains that the evaluation of a matrix vector
multiplication, i.e., Algorithm 33, costs O (n) operations.

(f) Storage amount.

By using the same technique as for the computational complexity one can prove
that the amount of memory for storing the quantities G, T, F, ], (c), J/,, J!!,, and
Yv5.c (as in (40)) is proportionally to n.

for the panels T € G and

Theorem 63 Let Assumption 48, 49, and 50 be satisfied and the cluster tree con-
structed by the procedure build_cluster_tree. The variable order panel clustering
algorithm has linear complexity with respect to the computing time and the memory
consumption.
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