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1 Introduction

The method of dimension reduction is a popular approach frequently used by engineers
for the approximate solution of the problems posed in thin domains. The term “thin”
means that the size of the original physical domain along one coordinate direction is
much smaller than along the others; this allows to make some simplifying assumptions
on the behaviour of the exact solution and to replace the original, for instance, three-
dimensional problem by a two-dimensional one. It is, however, clear that the solution
of the new, “reduced” problem will, in general, differ from the solution to the original
high-dimensional problem. Thus, the dimension reduction method unavoidably produces
the error that can be referred to as the dimension reduction or the modelling error. The
essential part of the model verification is, hence, a reliable a posteriori control of the
dimension reduction error.

Despite the practical importance of the topic, only a few a posteriori estimators for
the dimension reduction error have been introduced so far. In [10] and [2] (see also
[1]) residual-type estimators were proposed and proved reliable and efficient under the
assumptions that the right-hand side of the given equation is zero and the original domain
is a plate with plane parallel faces. In [3] and [8] implicit estimators based on the solution
of local Neumann problems were developed; the estimators were intended for hierarchical
modelling and involved the solution of local three-dimensional problems.

In this work we propose a reliable and efficient a posteriori estimator for the dimension
reduction error in the energy norm, having no specific assumptions on the right-hand side
of the given equation and considering a general geometry of the given domain. We show
that, for the zero-order dimension reduction method considered here, the estimator of
Babuška and Schwab (see [1], [2]) can be obtained as a particular case of our estimator
when the right-hand side of the equation is zero and the original domain is a plate with
plane parallel faces. We demonstrate the optimal convergence of the estimator as the
plate thickness tends to zero (although, it is worth noting that the proposed estimator
preserves its reliability for any positive thickness). Finally, we observe how accurately the
estimator indicates the local error distribution, thus, allowing for a local improvement of
the model.

2 Problem setting

We consider a three-dimensional Lipschitz domain

Ω := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , d	(x1, x2) < x3 < d⊕(x1, x2)} ,
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where Ω̂ ⊂ � 2 is its projection on the (x1, x2)-plane (Ω̂ has the Lipschitz boundary Γ̂ )

and d	 and d⊕ are Lipschitz continuous functions: Ω̂ → �
. The lower and upper faces

of Ω are denoted by

Γ	 := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , x3 = d	(x1, x2)}

and
Γ⊕ := {x ∈ � 3 | (x1, x2) ∈ Ω̂ , x3 = d⊕(x1, x2)} ,

the lateral boundary by

Γ0 := {x ∈ � 3 | (x1, x2) ∈ Γ̂ , d	(x1, x2) < x3 < d⊕(x1, x2)}

(see Figure 1).

Remark. We consider d	 and d⊕ as explicit functions of (x1, x2)-coordinates only for the
sake of simplicity. The generalization of the theory to the case of an arbitrary Lipschitzian
domain Ω presents no difficulty from the conceptional point of view.
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Fig. 1. Sketch of the domain geometry

The assumption that the given domain Ω is “thin” can now be written as

diam Ω̂ � max�

Ω

d (x1, x2) , (1)

where d = d⊕ − d	 is the domain thickness, d (x1, x2) ≥ d∗ > 0 ∀(x1, x2) ∈ Ω̂. Although
the assumption is of purely qualitative nature, it serves as a basis for the derivation of
the corresponding two-dimensional reduced model. We also have to notice that Figure 1
depicts a simplified case; in the geometrical definitions we do not assume the domain
thickness d (x1, x2) to be a constant.

In the domain Ω we consider a model elliptic problem
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−Div (A∇u) = f in Ω , (2)

u = 0 on Γ0 , (3)

A∇u · ν	 = F̂	 on Γ	 , (4)

A∇u · ν⊕ = F̂⊕ on Γ⊕ , (5)

where f ∈ L2(Ω), F̂	 , F̂⊕ ∈ L2(Ω̂), ν	 and ν⊕ are outward normal vectors at Γ	 and
Γ⊕ respectively. The matrix A = (aij(x))i,j=1,3 with the components from L∞(Ω) is
symmetric and uniformly positive definite, i.e. there exist constants 0 < c < C <∞ such
that

c|ξ|2 ≤ A(x)ξ · ξ ≤ C|ξ|2 ∀ξ ∈ � 3 , a. e. in Ω .

From now on we will frequently use the notation x̂ = (x1, x2), x = (x̂, x3), and all
functions depending only on (x1, x2) will be marked by ̂ ; in addition, we will distinguish
between 3- and 2-dimensional divergence operator:

Div τ = τ 1,1 + τ 2,2 + τ 3,3 , div τ̂ = τ̂ 1,1 + τ̂ 2,2 .

The weak form of the problem (2)–(5) reads
Problem (P): Find u ∈ V0 := {v ∈ H1(Ω) | v = 0 on Γ0} such that

∫

Ω

A∇u · ∇w dx =

∫

Ω

f w dx+

∫

Γ	

F̂	 w ds+

∫

Γ⊕

F̂⊕ w ds ∀w ∈ V0 . (6)

3 The reduced problem

The assumption (1) allows one to suppose that

the exact solution u ≈ const in the x3-direction. (7)

This gives rise to the so-called zero-order reduced model for the original problem (6). The
model is very popular due to its simplicity and purely two-dimensional formulation. The
discussion on the hierarchy of the reduced models of different orders can be found in,
e.g., [9], [2].

Then, introducing the subspace

V̂0 := {v ∈ V0 | ∃ v̂ ∈ H1
0 (Ω̂) such that v(x) = v̂(x̂) for a.e. x = (x̂, x3) ∈ Ω}

and the operation (˜) of averaging in the x3-direction

∀g ∈ L1(Ω) : g̃(x̂) :=
1

d (x̂)

d⊕(
�

x)∫

d	(
�

x)

g(x̂, x3) dx3 for a.e. x̂ ∈ Ω̂ ,

we can deduce from (6) the reduced problem (see [7]) that reads

Problem (P̂ ): Find û ∈ V̂0 such that

∫
�

Ω

d (x̂)Ãp(x̂)∇û · ∇ŵ dx̂ =

∫
�

Ω

d (x̂)f̂(x̂)ŵ dx̂ ∀ŵ ∈ V̂0 , (8)
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where f̂ = f̃ +

�

F	

√
1+|∇d	|2+

�

F⊕

√
1+|∇d⊕|2

d and Ãp(x̂) = (ãij(x̂))i,j=1,2 is the averaged
“plane” part (Ap(x) = (aij(x))i,j=1,2) of the matrix A.

It is clear that problem (8) is a two-dimensional elliptic problem with the homogeneous
Dirichlet boundary condition:

−div (d(x̂) Ãp(x̂)∇û) = d(x̂) f̂(x̂) in Ω̂ (9)

û = 0 on Γ̂ . (10)

4 A posteriori estimation of the modelling error

In order to control the dimension reduction error e := u − û, we apply the functional-
type a posteriori error estimate derived in [6] (see also [4] and [5]) to the original three-
dimensional problem (6):
For all γ > 0, δ > 0 and y∗ ∈ H∗(Ω,Div) there holds

|||u− û|||2 ≤ (1 + γ)M2
1 +

(
1 +

1

γ

)
(1 + δ)C2

Ω M2
2 (11)

+

(
1 +

1

γ

) (
1 +

1

δ

)
C2

Γ (1 + C2
Ω)M2

3 ,

where ||| · ||| is the energy norm, |||v||| :=
(∫

Ω A(x)∇v · ∇v dx
)1/2 ∀v ∈ V0, CΩ is the

constant from Friedrichs’ inequality (C−2
Ω = inf

w∈V0\{0}

|||w|||2

‖w‖2
L2(Ω)

), CΓ is the constant from

the trace inequality (C2
Γ = sup

w∈V0\{0}

‖w‖2
L2(Γ⊕)+‖w‖2

L2(Γ	)

|||w|||2+‖w‖2
L2(Ω)

) and the functionals M2
1 , M2

2 ,

M2
3 are defined as follows:

M2
1 :=

∫

Ω

(∇û−A−1y∗) · (A∇û− y∗) dx ,

M2
2 := ‖Div y∗ + f‖2

L2(Ω) ,

M2
3 := ‖F̂	 − y∗ν	‖2

L2(Γ	) + ‖F̂⊕ − y∗ν⊕‖2
L2(Γ⊕) .

We emphasize that the estimate is valid for any positive numbers γ and δ and for any
vector-function y∗ from the space H∗(Ω,Div) defined as

H∗(Ω,Div) := {y∗ ∈ L2(Ω,
� 3 ) | Div y∗ ∈ L2(Ω) , y∗ · ν	 ∈ L2(Γ	) , y∗ · ν⊕ ∈ L2(Γ⊕)} .

While the best possible option would be to take as y∗ the exact flux A∇u (then M2 and
M3 would vanish and M1 would give us the energy norm of the exact error e), we have to
restrict ourselves to choosing some computable quantity, i.e. not containing the unknown
exact solution u. We approximate the flux by

y∗ = Ãp∇û+ τ
∗ , (12)

where τ
∗ = {0 , 0 , ψ(x)}T , ψ is the auxiliary function from L2(Ω) such that ψ,3 ∈

L2(Ω) , ψ ∈ L2(Γ	) and ψ ∈ L2(Γ⊕). Using (9), it is easy to verify that y∗ from (12)
belongs to H∗(Ω,Div). A discussion about other choices of y∗ can be found in [7].
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Substituting (12) into the functionals M 2
1 , M2

2 , M2
3 , we obtain (see the details in [7])

M2
1 =

∫

Ω

(b33ψ
2 + 2(b3 · Ãp∇û)ψ) dx +

∫
�

Ω

d(x̂) (B̃pÃp − I)∇û · Ãp∇û dx̂ , (13)

M2
2 = ‖f − f̃ − F̂	

√
1 + |∇d	|2 + F̂⊕

√
1 + |∇d⊕|2

d
+ ψ,3 −

∇d
d

· Ãp∇û‖2
L2(Ω) ,(14)

M2
3 = ‖F̂	 − Ãp∇û · ν	 − ψν	3‖2

L2(Γ	) + ‖F̂⊕ − Ãp∇û · ν⊕ − ψν⊕3‖2
L2(Γ⊕) , (15)

where B̃p is the averaged “plane” part of the matrix B := A−1 (i.e., if B(x) =
(bij(x))i,j=1,3 , then Bp(x) = (bij(x))i,j=1,2), the vector b3 := {b31 , b32}T and I is
the 2 × 2 identity-matrix.

Now we still have the freedom of choosing the auxiliary function ψ that in the case
of the Poisson equation should, obviously, approximate the derivative u,3 of the exact
solution in the x3-direction. The simplest choice is to take such a ψ that the term M3 (i.e.
the residual on the Neumann boundary condition) would be identically zero. This can

be immediately achieved by letting ψ(x) = α̂(x̂)x3 + β̂(x̂) with the coefficient functions

α̂ , β̂ ∈ L2(Ω̂) uniquely determined by the requirement M3 = 0. Other options for the
function ψ are considered in [7]. Then, minimizing the right-hand side of (11) with respect
to the scalar parameters γ > 0 and δ > 0, we arrive at the estimate

|||u− û||| ≤M := M1 + CΩ M2 , (16)

where M1 and M2 are defined by (13) and (14). The error majorant M has been derived
for quite general geometry of Ω and coefficient matrix A(x). However, to make the
estimate more transparent, we consider two particular cases.

4.1 Plate of constant thickness

We assume that
d⊕ = d	 + d0 (d0 = const > 0) (17)

and, in addition, that

A = A(x̂) (this immediately implies B = B(x̂)) , (18)

a31 = a32 = 0 (this yields Bp = A−1
p , b33 = a−1

33 , b31 = b32 = 0) . (19)

With these assumptions the terms M1 and M2 in estimate (16) become simpler:

M1 =

(∫

Ω

a−1
33 ψ

2 dx

)1/2

, M2 = ‖f − f̃‖L2(Ω) . (20)

One may notice that the integral in the first term M1 of the error majorant M can be
rewritten as

∫

Ω

a−1
33 ψ

2 dx = d0 ·
∫

�

Ω

a−1
33 (α̂2 d

2
⊕ + d⊕d	 + d2

	

3
+ α̂β̂(d⊕ + d	) + β̂2) dx̂ ,

which means that the term M1 is of order O(d
1/2
0 ) when the plate thickness d0 tends

to zero. If f ∈ L∞(Ω), the second term M2 is obviously of the same order O(d
1/2
0 ), i.e.
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the whole estimator M converges to zero with the rate O(d
1/2
0 ) as d0 → 0. This is the

optimal convergence rate for the modelling error e in the energy norm, as was shown in
[9] for the simpler case of a plate with plane parallel faces and f = 0. It is worth noting

that, if f ∈ C1(Ω), the second term in M is of higher order O(d
3/2
0 ) as compared to the

first term.

4.2 Plate with plane parallel faces

If, in addition to (18), (19), we strengthen the assumption (17) replacing it by

d⊕ =
d0

2
, d	 = −d0

2
(d0 = const > 0) , (21)

the auxiliary function ψ will take the simple form ψ =

�

F⊕+

�

F	

d0
x3 +

�

F⊕−

�

F	

2 and the error
estimate (16) will read

|||u− û||| ≤
√
d0

3

(∫
�

Ω

a−1
33 (F̂ 2

⊕ + F̂ 2
	 − F̂⊕F̂	) dx̂

)1/2

+ CΩ ‖f − f̃‖L2(Ω) . (22)

If we set here f = 0, a33 = 1 and F̂⊕ = F̂	 = F̂ , we obtain

|||u− û||| ≤
√
d0

3
‖F̂‖L2(

�

Ω) , (23)

which is exactly the estimator of Babuška and Schwab (see [1]) for the zero-order re-
duced model. Thus, the latter estimator can be obtained as a particular case of the error
majorant (16) if one makes the assumptions (18), (19), (21) and sets f = 0. This is a par-
ticularly interesting fact, since we advocate the estimation approach that is completely
different from the one utilized in [1] (see the details in [7] and [6]).

5 Numerical example

In order to analyse the performance of the proposed error estimator, we consider a simple
two-dimensional test problem in the “sine-shape” domain (see Figure 2 (left)) whose
upper and lower faces are given by

d⊕,	(x) = sin(kπx) ± d0

2
, k = 1, 2, . . . ,

where d0 > 0 is the domain thickness. In this example, Ω̂ = (0, 1) and Ω = {(x, y) ∈
� 2 | x ∈ Ω̂ , d	(x) < y < d⊕(x)}. The considered problem is

−∆u = f in Ω ,

u = 0 at x = 0 and x = 1 ,

∇u · ν⊕,	 = F̂⊕,	 at y = d⊕,	 ,

and the right-hand sides of the equation and of the boundary condition are computed
using the exact solution
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u(x, y) = sin(πx) · ym (m = 1, 2, . . .) .

The reduced problem (8) is, in this case, a one-dimensional Dirichlet problem that, of
course, can be solved very accurately (in the present work, we address the estimation
of the modelling error only, assuming that the discretization error stemming from the
solution of the reduced problem is negligible).
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Figure 2 (right) shows the convergence rates of the exact modelling-error in the energy
norm (|||e|||) and of the error majorant M as the domain thickness d0 tends to zero. It is
clear that both the exact error and the majorant converge to zero with the theoretically

predicted, optimal rate O(d
1/2
0 ), and, moreover, the effectivity index M

|||e||| demonstrates

the asymptotics M
|||e||| = 1 + O(d0). It is also important to note that the presented error
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estimator provides a reliable upper bound for the exact error at any positive values of
the domain thickness d0, i.e. also in the cases when the domain is not “thin” at all.

Finally, the local error distribution provided by the exact error and by the first,
M1-term of the majorant are depicted in Figure 3. The figure shows that already for
rather large value of the domain thickness d0 = 0.1 the majorant delivers a sufficiently
accurate information on the location of the regions of the biggest modelling error, while
for d0 = 0.05 the exact and the estimated error distributions are practically coincident.
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2. Babuška, I., Schwab, C. (1996): A posteriori error estimation for hierarchic models of elliptic
boundary value problems on thin domains. SIAM J. Numer. Anal., 33, 221–246

3. Oden, J.T., Cho, J.R. (1996): Adaptive hpq-finite element methods of hierarchical models
for plate- and shell-like structures. Comput. Meth. Appl. Mech. Engrg., 136, 317–345

4. Repin, S.I. (2000): A posteriori error estimation for variational problems with uniformly
convex functionals. Math. Comp., 69, 481–600

5. Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori error estimation for the
Dirichlet problem with account of the error in the approximation of boundary conditions.
Computing, 70, 205–233

6. Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori error estimation for the
Poisson equation with mixed Dirichlet/Neumann boundary conditions. Preprint 02–2003,
Institut of Mathematics, Zurich University, http://www.math.unizh.ch/index.php?preprint

7. Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori estimation of dimension
reduction errors for elliptic problems on thin domains. Preprint 18–2003, Institut of Math-
ematics, Zurich University, http://www.math.unizh.ch/index.php?preprint

8. Stein, E., Ohnimus, S. (1997): Coupled model- and solution-adaptivity in the finite-element
method. Comput. Meth. Appl. Mech. Engrg., 150, 327–350
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