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Summary� The method of integral equations is an elegant tool where boundary
value problems on a domain � are transformed into integral equations de�ned on
the surface of �	 The discretization via the boundary element method 
BEM� has
several advantages compared to FE�discretizations of PDEs on the whole domain
�	 On the other hand� the most signi�cant drawback of the BEM is that the
system matrix is full and� in addition� the computation of the elements requires
the evaluation of complicated surface integrals	 In this paper we show how to avoid
the generation of the whole system matrix by means of the panel clustering method
which represents the discrete operator in an alternative form	 Only matrix elements
close to the diagonal have to be computed	 Furthermore� we will present new semi�
analytic techniques for computing those near�eld matrix entries e�ciently	

From the view point of software design aspects the e�cient realization of bound�
ary elements� especially the panel clustering algorithm� is a non�trivial task	 We will
explain how the complexity of implementing the multifarious BEM can be managed
by object�oriented design methods	

�� Introduction

The boundary element method �BEM� is an elegant tool for solving elliptic
boundary value problems numerically� First� the method of integral equations
is applied transforming the PDE on a domain � into an integral equation
de�ned on the boundary of �� This integral equation can be discretized by
Petrov�Galerkin methods de�ned on the surface of �� Instead of the dis�
cretization of the whole domain� only the lower dimensional boundary of �
has to be partitioned into a FE�grid� This is one of the major advantages of
the BEM� Especially for ��d problems� grid generation of the whole domain
� in many cases is still an extremely time consuming step� As a consequence�
the dimension of the sti�ness matrix is much smaller as for the correspond�
ing FE�discretization� Furthermore� the matrix condition number is smaller
compared to the FEM�system governing the convergence speed of iterative
solvers applied to the linear system� On the other hand� the major drawback
of the BEM is that the arising system matrix is full and� in addition� the com�
putation of the matrix entries requires the evaluation of complicated surface
integrals� Recently� many attempts have been made to overcome these two
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di�culties� The full matrix can avoided by representing the integral operator
on the discrete level in an alternative form� which is based on the approxi�
mation of the kernel function of the integral operator� The panel clustering�
originally developed by Hackbusch and Nowak �see 	
�� for the collocation
discretization of the Laplace equation� turned out to be also applicable to
any Petrov�Galerkin method� where we emphasize the important case of the
Galerkin method where test and trial space coincide� A related method is
the multipole expansion of Rokhlin �see 	�
�� which� however� can be applied
only to Nystr�om discretizations and not� e�g�� to the important case of the
hypersingular formulation of integral equations� A further approach in this
direction was presented by Brandt and Lubrecht in 	
�� 	�� where multi�grid
techniques together with high order inter�grid interpolation is used to con�
densate the system matrix�

Another method to condensate the system matrix is the application of
wavelets to boundary integral equations� It turns out that� by using a suitable
wavelet basis� the o��diagonal entries of the system matrix have a strongly
decreasing behaviour with increasing distance from the diagonal �see 	��� 	�����

All condensation strategies have in common that the near�eld matrix en�
tries� i�e�� those elements lying close to the diagonal have to be computed in
the standard matrix�oriented way� As mentioned above� this is a non�trivial
and time�consuming task in BEM computations� The product of two basis
functions with a possibly very complicated kernel function having a singular
or nearly singular behaviour has to be integrated over surface pieces� Due to
the singular behaviour of the kernel function� standard cubature techniques
lose their accuracy� We will show that� for kernel functions arising by dis�
cretizing boundary value problems via the BEM� the application of suitable
coordinate transforms enables us to integrate the variable containing the sin�
gularity analytically resulting in an integrand which has no or signi�cantly
reduced singular behaviour� For hypersingular integrals� we write the arising
regularization in a form which can be evaluated in many cases analytically
resulting in surprisingly easy formulae�

In this paper� we discuss thoroughly the software design aspects which
came up by realization of the developed numerical algorithms in a computer
code� New data structures have to be developed such that� e�g�� the panel clus�
tering technique �where non�standard quantities as the far�eld coe�cients�
the expansion coe�cients� and the clusters have to be organized e�ciently�
performs optimally� Also emphasize is taken on parallelization strategies�

The paper is organized as follows� In the next chapter� we go brie�y
through the setting of Petrov�Galerkin discretization of boundary integral
equations and introduce the notations necessary for the sequel� Then� in
Chapter ��� we investigate the computation of the surface integrals arising
when computing the matrix entries of the linear system� First� we have to
provide some analytical properties of the arising kernel functions which then
will be used in the design of e�cient cubature strategies� �Note that in more
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than one dimension the terminus quadrature is replaced by cubature�� In
Chapter 
�� we explain the panel clustering algorithm� After having devel�
oped the basic principle� the algorithm is formulated and an error analysis is
presented� Estimates of the asymptotic complexity of the algorithm follows
and remarks on their relevance for practical problem sizes are given� Chap�
ter �� is devoted to the design of modern BEM software in C��� It will be
explained which data structures are well suited in order to make the di�er�
ent algorithms e�cient and �exible with respect to di�erent kinds of integral
equations� discretization schemes as� e�g�� collocation or Galerkin BEM� ge�
ometries and cubature techniques� In the last chapter numerical experiments
are reported which show the performance of the panel clustering algorithm
for di�erent discretizations and formulations of integral equations�

�� Setting and Preliminaries

Let us consider an elliptic boundary value problem on a domain � � IRd of
order �m of the form

Du � �� in � �����

Bu � r� on � �� ��

with a system of m boundary di�erential operators Bj having mutually dif�
ferent order� If � is unbounded� suitable radiation conditions have to be
imposed� We assume that the operator D has constant coe�cients and the
fundamental solution de�ned by

DS � ��� in IR�� �����

S satis�es the radiation conditions�

is known explicitly� Here and in the following� �x denote the Dirac�functional
located at the point x� In order to exhibit the principal ideas� it is su�cient
to make the following assumptions� while we state that all presented methods
can be applied to the general situation without any signi�cant modi�cation�

� the space dimension d equals ��
� the order �m of the operator is ��
� B � ����n�j with j is either � or �� whereas ���n denotes the normal
derivative�

� the surface � is Lipschitz continuous�

Using the �direct� method of integral equations� problem ����� is trans�
formed into an integral equation which� in the variational formulation� is
given by seeking u � X such that

h�u� vi� hK�u� vi � hK�r� vi � �v � Y �����



� W	 Hackbusch� C	 Lage� and S	A	 Sauter

is satis�ed� Here� X�Y are suitable function spaces and h�� �i is a dual pairing�
The operators K� and K� denote integral operators which will be speci�ed
later� The function � is piecewise constant on � � The reason for presenting the
formulation in this abstract setting is that most of the theory and algorithms
discussed in the sequel can be presented in a more compact form as if dis�
cussed for each choice of the spaces and pairing above separately� The Petrov�
Galerkin method is characterized by de�ning �nite dimensional subspaces Xn

and Yn of X and Y � i�e� �nding un � Xn such that ����� is satis�ed for all
vn � Yn� The de�nition of the discrete spaces is typically based on a geomet�
rical partitioning of the surface � � For this� let TN �� f�j � � � j � Ng be a
partitioning of � into small surface pieces� Here� we assume that TN is a trian�
gulation in the sense that there exists a family of di�eomorphisms f�ig��i�N
mapping the master element� i�e�� the triangle with vertices ��� ��T � ��� ��T �

and ��� ��T � onto the elements f�ig��i�N � We assume that TN satis�es the
following conditions�

�� � �
S
��TN

��
�� �i ��j is either empty� a vertex� a �curved� edge or a �curved� triangle�
�� h �� max

��TN
diam��� � C diam���� �� � TN �


� max
B is a ball contained in �

diam�B� � Ch� �� � TN �

The �nite element space Xn is given by lifting polynomials of degree p
de�ned on the master element onto the surface� i�e��

Xn ��
�
u �Ck �� � � u � �i j �� is a polynomial of degree p for all �� i�N

�
	

Let 
n � fxi � � � i � ng � � denote the set of uni�solvent nodal points
having the property that the interpolation problem of �nding u � Xn such
that u �xi� � fi for all � � i � n has a unique solution for any given vector
f � Cn� The example below illustrates typical choices of discrete spaces
Xn� Yn and dual pairings�

Example ���� �� The Collocation Method is characterized by the following
choices� Xn is de�ned as explained above and Yn �� span f�x � x � 
ng�
The dual pairing is given by hw� �xi � w �x�� Explicitly� ����� takes the
form� �nd u � Xn such that

� �x�u �x� �K� 	u� �x� � K� 	r� �x� � �x � 
n	 ���
�

�� The Galerkin Method is characterized by choosingXn as above� Yn � Xn

and hw� ui � �w� u��� where ��� ��� denote the L��scalar product on the
surface � � This results in seeking u � Xn such that

��u� v�� � �K�u� v�� � �K�r� v�� � �v � Xn	 �����
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In the following we collect some properties of the integral operators K���

which will be used in the next chapters� All integral operators appearing in
the context of solving elliptic boundary value problem via the method of
integral equations can be written in the form

K 	u� �x� � p	f	

Z
�

k �x� y� y � x�u �y� dy	 �����

Some explanations are necessary� The kernel function k �x� y� y � x� is a suit�
able G�ateau derivative �of order less or equal than �m� of the fundamental
solution de�ned by ������ The fundamental solution behaves singularly only
for x � � and is smooth elsewhere� In the three�dimensional case� we know
�cf� 	���� that it can be estimated as

jS �x� y�j � C kx� yk�m�� � �x� y � � with x 	� y	

Hence� it is natural to assume that

jk �x� y� y � x�j � C kx� yk�s � �x� y � � with x 	� y� �����

where the order of the singularity s is an integer smaller or equal than ��
With respect to the �rst both variables� k is smooth in smooth parts of the
surface � and may jump across edges and corners� An important case is the
case of �at patches of the surface� In such regions� it is natural to assume
that k is constant in the �rst two variables� i�e��

k �x� y� y � x� � k �x� y� � ���
�

For s � �� � the kernel function is not Lebesgue�integrable� We have to apply
the concept of regularized integrals in the sense of Hadamard� Let B� �x�
denote a ball with radius � about x and � be a surface piece of � � Then� the
functional J is well�de�ned by

J� 	u� ��� x� ��

Z
�nB��x�

k �x� y� y � x�u �y� dy	

It was shown in 	��� that� for all kernels which arise by transforming elliptic
boundary value problems into integral equations� the function J admits an
expansion w�r�t � of the form

J� 	u� ��� x� � A�� �x� �
�� �Alog �x� log ��A� �x� � o ��� 	

The �nite part of such an expansion is given by

p	f	
�
J� 	u� ��� x� �� A� �x� 	

In order to exhibit the dependency of A� on � and u we alternatively write
A� 	u�� We de�ne the regularized integral ����� by
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p	f	

Z
�

k �x� y� y � x�u �y� dy �� p	f	
�
J� 	u� ��� x� � A� �x� 	 �����

Now� all general assumptions are collected which will be needed for dis�
cussing cubature methods for the arising integrals and approximation of the
kernel functions by means of the panel clustering method�

�� Cubature Techniques for the Approximation of
Singular and Nearly Singular Surface Integrals Arising
in BEM

In this chapter� we present cubature techniques for collocation and Galerkin
discretizations of boundary integral equations� We start with the abstract
Petrov�Galerkin formulation� Let f
ig��i�n and f�ig��i�n denote a basis
of Xn and Yn respectively� Any function u � Xn is uniquely linked to a
coe�cient vector u � Cn by the basis representation

u �x� �
nX
i��

ui
i �x� 	 �����

The Petrov�Galerkin discretization is then equivalent to solving the linear
system�

�M �K�u � f

with n
 n matricesM and K and the n�vector f de�ned by

M i�j �� h�
j � �ii �
Ki�j �� hK�
j� �ii �
f i �� hK�r� �ii 	

The computation of the mass matrixM is trivial� since no integral operator
is involved andM usually is sparse� The computation of f is similar as the
computation of K� thus� we restrict our attention on the approximation of
the entries of K� In the following we write K instead of K�� In the rest of
this paper we assume that

�� the integral operator K arises by transforming an elliptic boundary value
problem into an integral equation�

�� the trial space Xn is a subspace of the �continuous� function space X�
�� Xn � C��� �� � for hypersingular equations� i�e�� s � �	

An important property of the application of K to basis functions 
i � Xn

is stated in the following
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Theorem ���� Let � be a simple connected surface piece which consists of
some triangles of TN � Recall the de�nition of the part��ni integral �see ������
and the order s of the singularity of the kernel function �see ���	��� Let

A� 	
i� �x� �� p	f	

Z
�

k �x� y� y � x�u �y� dy	

Then


jA� 	
i� �x�j �
��
�

C if s � ��
C log dist �x� ��� if s � ��

Cdist�� �x� ��� if s � ��
�����

with C independent of x�
For � � � and any s � ��

jA� 	
i� �x�j � C� �x � �

is satis�ed�

Proof� The proof of this theorem can be found in 	���� 	���� or 	����

In the following subsection� we consider cubature techniques for the col�
location method�

��� Cubature Techniques for the Collocation Method

From Theorem ���� it follows that it is problematic to use the collocation
methods for strongly singular integral equations� i�e�� s � �� since� typically�
one would have to evaluate A� 	
i� at corner and edge points� However� esti�
mate ����� does not necessarily imply that� for x � ��� the function A� 	u� �x�
is in�nite� Typically for Cauchy�singular integral equations� i�e�� s � �� the
function A� 	u� �x� tends to in�nity as x approaches �� but remains �nite at
points x � �� This behaviour is thoroughly analyzed and correction function�
als can be computed �see 	��� and 	����� In the cited papers� it was shown
that it is always possible to split the integral into some point functionals and
an integral having a weakly singular integrand� Then� either Du�y�s triangle
coordinates or polar coordinates smoothes the integrand such that it can be
treated e�ciently with properly scaled Gau��Legendre formulae� Here� we
do not go into the details but proceed with considering the nearly singular
situation� The arising problem is to compute

I� �xi� ��

Z
�

k �xi� y� y � xi�
i �x�dx� �����

where xi denote a collocation point having a positive distance from the surface
panel ��

dist �xi��� � � � �	
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In this case� the part��ni integral reduces to the Rieman integral� since the
integrand is regular� On the other hand� the nth derivative of the integrand
behaves like O �n�h�n� resulting in a very poor convergence speed of Gau��
Legendre formulae�Di�erent attempts have been made to overcome this prob�
lem� Subdividing the triangle in the direction of the singularity was presented
in 	�� and 	��� This method was generalized by introducing variable cubature
order in Schwab	���� We present here a semi�analytical technique which was
worked out in detail in 	���� It was shown that the integral ����� can be
computed to any desired accuracy by computing integrals of the typeZ

�

�u� � ���
�� u��� ����q

�u� � ���
� � u�� � ���

s�td�u

where �� denote the horizontal distance of xi from � and �� the vertical
distance� By introducing shifted polar coordinates of the form

u � �r � �� cos��

�
cos�
sin�

�
the integral can be written as

����

�������X
i��

Z �max

�min

���������i
� c������i �sin�� cos��

Z R������ cos�

�� cos�

riq
r� � ��� sin��� ���

s�t drd��

where c������i ��� �� are polynomials� R ��� is a smooth function and �min�
�max � 	��� �	� The inner integration can be performed analytically by usingZ b

a

rnp
r� � ���

sdr �
�

�n�s

p ���� r�p
r� � ���

s�� � �n�s log
�
�r �

p
r� � ���

�			b
a

where p is a polynomial of degree less or equal than s�n��
� and �n�s� �n�s

are some coe�cients� It can be shown that the integrand of the outer inte�
gration has a reduced singular behaviour and can be computed by properly
scaled one�dimensional Gau��Legendre quadrature� A careful error analysis
�see 	���� shows that the order of the angular integration has to be increased
logarithmically with decreasing distance � and triangle size diam��

��� Cubature Techniques for the Galerkin Method

For the Galerkin discretization of BIE� the elements of the sti�ness matrix
are given by
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Ki�j ��

Z
supp�i


i �x� p	f	

Z
supp�j

k �x� y� y � x�
j �y� dydx	

The support of the basis functions 
i consists of a few triangles� It would be
desirable to split the computation of Ki�j into a sum of integrals over pairs
of panels �x 
 �y� This is not trivial in view of the regularization process
involved with the part �ni integral� From Theorem ���� we know that

A� 	
j � �x� �� p	f	

Z
�

k �x� y� y � x�
j �y� dydx

is bounded and hence�Z
�


i �x�A� 	
j � �x� dx �

Z
�


i �x�
X

�y�supp�j

A�y
	
j� �x�dx	

Unfortunately� A�y
	
j� may contain strong singularities at corners and edges

of� such that the summay not be interchanged with the outer integration in
general� The following concept of introducing an outer regularization process
was developed in 	���� For this� let the ��strip �� be de�ned by

�� �� fx � �x j dist �x� ��� � �g 	
Then� it was shown in the cited paper thatZ

�


i �x�A� 	
j� �x� dx

�
X

�y�supp�j

p	f	
�

Z
�

Z
�ynB��x�


i �x� k �x� y� y � x�
j �y� dydx
 �z �
�	K���y ���

���
�

�p	f	
�

p	f	
�

Z
��

Z
�ynB��x�


i �x� k �x� y� y � x�
j �y� dydx
 �z �
�	K���y �����

	

First� we consider the approximation of the term p	f	
�

p	f	
�
K���y

��� ��� In

	���� it was shown that this term vanishes for Cauchy�singular and weakly
singular integrands and in any case if ��� ��y is either empty or a vertex� thus�
we may restrict to the case s � � and �� � ��y is either an edge or a panel�
Since �� � 
� we may introduce several simpli�cation of the integrand and
integration domainwhich leaves the limit unchanged� It can be shown that��

maybe decomposed into a sum containing integrals over rectangles em
��� ���
where em denotes an edge of�� The triangle�y may be replaced by a suitable
square Qm� Furthermore the basis functions may be replaced by constant
continuation of the traces 
i jem vertical to em and the kernel function by
its principal part� Finally� the �curved� triangles may be replaced by suitable
�at triangles� Thus� it is su�cient to develop techniques to compute
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Ii�jm �� p	f	
�

p	f	
�

Z
em������

Z
Qm

�
i�m �x� kprincipal �y � x� �
j�m �y� dydx	

We introduce relative coordinates by z � y � x and de�ne the polynomial
bi�j �x� z� �� �
i�m �x� �
j�m �z � x�� yielding

Ii�jm �

Z
D�����

bi�j �x� z� kprincipal �z� dzdx

with a suitable four�dimensional domain D ��� ��� It turns out that one in�
tegration can be carried out analytically due to the polynomial character of
bi�j� In many cases the remaining integrand can be computed analytically�
too� This has be worked out in detail in 	��� for the case that the principal
part of the kernel function is given by

��

�ny�nx

C

kx� yk �

i�e�� the underlying di�erential equation is the Laplace or the Helmholtz equa�
tion� The result is that for linear elements and triangles���y with a common
edge

Ii�jm �� ci�j jemj �
�

�
�

tan�
�




�
�

�

�
log

jemj
�

�
�

where � denote the �smaller� angle between the planes through � and �y�
The coe�cient ci�j is either �� �� or � dependent on the indices i� j� This for�
mulae can further be simpli�ed if the case � � �y is taken into consideration�
Here� we skip the details�

Now� we investigate the approximation of the quantity K���y
���� Since

this integral is regular� we may use the usual rule of transformation of vari�
ables� In 	��� it was shown how K���y

��� can be approximated by a sum
of integrals of the same form over �at triangles� Hence� we restrict to this
situation and in view of ���
�� we assume that k �x� y� y � x� is constant in
the �rst both variables on the integration domain D �� �
�y� This means

that �k �z� �� k �x� y� z�� where we skip the tilde in the sequel� We have to
distinguish the following situation�

�� The singular case� �� � ��y 	� 
	
�� The nearly singular case� dist ����y� � � � � but �small �
�� The regular case� dist ����y� � C � � with C � O ����

These cases will be considered in the following subsections�
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����� The Singular Case� �� � ��y �� �� Due to the space limitations of
this paper� we consider here only the case of � � �y� where the general
situation is considered in 	�
�� 	�� and 	���� The restriction to the case that
� lies in the ������plane is not essential but will simplify the notations� We
consider the integral

Q ��

Z
���

ky�xk��


i �x�k �x� y� 
j �y� dydx	

The key point of the transformation procedure is the use of relative coordi�
nates�

y � z � x	

Let the polynomial b be de�ned by bi�j �x� z� �� 
i �x�
j �z � x�� The integral
above then can be written in the formZ


D
kzk��

bi�j �x� z� k �z� dzdx

where the domain of integration is a four�dimensional polyhedron given by

�D ��
�
�x� z� � IR��� j � �x� y� � �
� � z � y � x

�
	

This polyhedron can be parametrized also in the opposite way such that
x depends on z� This means that the integration with respect to z can be
interchanged with the x�integration� We obtain

Q ��

Z

D

kzk��

k �z� bi�j �x� z� dxdz	

Since b is a polynomial and �D is a polyhedron� the x�integration can be
carried out analytically yielding a piecewise polynomial function Bi�j �z� ��R
bi�j �x� z� dx� Splitting the remaining integration domain into subdomains

where Bi�j �z� is a polynomial and further a�ne transformations results in

Q �
�X

m��

p	f	

Z
�

hkz�Amk��

k �Am � z�Hi�j
m �z� dz�

where the functions Hi�j
m are polynomials in z� The remaining integral can be

computed using polar coordinates about Am �

Q �
�X

m��

p	f	

Z �max�m

�min�m

Z R���

�	h

k

�
r cos�

r sin�

�
Hi�j
m

�
Am �

�
r cos�

r sin�

��
rdrd�	

It turns out that the r�integration can be valuated analytically very easily and
the limit process� too� The integrand of the remaining angular integration is
smooth and can be approximated e�ciently using properly scaled Gaussian
quadrature rules�
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����� The Nearly Singular Case� In the case that dist ����y� �� � � �
is small the convergence of standard cubature formulae becomes very poor�
To overcome this problem� it is possible to write the integral over �
�y as a
sum over domains containing the singularity and proceeding as explained for
the singular case �see 	�
��� Here� we will explain brie�y a further alternative
which is very similar as described above for the collocation method �see 	�����
Again the starting point is the introduce relative coordinates y � x � z and
shifted polar coordinates� The r�integration can be done explicitly resulting
in simple formulae for the primitive integrals having a reduced singular be�
haviour� The remaining three�dimensional integral can be approximated by
properly scaled Gau��Legendre cubature� i�e�� the order of integration again
has to be increased logarithmically with respect to the diameter of the trian�
gles and the distance ��

����� The Regular Case� In this case the kernel function has no singular
behaviour� Standard cubature techniques as tensor Gau� rules may be ap�
plied having the well known fast convergence properties� However� the ques�
tion arises how accurate the integrals have to be computed such that the
overall asymptotic discretization error is not reduced� In 	��� it was shown
what degree of exactness the inner integration and the outer integration must
have� dependent on the order of the integral operator� on the order of approx�
imation� on distance from the singularity� and the norm in which the error
is measured� such that the asymptotic convergence order of the overall dis�
cretization is not in�uenced� In order to illustrate the results� let us assume
that linear �nite elements are employed� the distance � from the singularity
is O ��� and the integral operator K maps the Sobolev space Hs onto H�s�
The error is measured in the H
�norm� The following table shows pairs of
numbers� where the �rst one denotes the degree of exactness of the outer
integration and the second one for the inner integration�

s � � � �

�
� � � � � � �

�
� � �� � � � �

�
� � �� � � � �

�
� � �


� �

�

�� �� 
�� �� 
�� �� 
�� �� � � � �

� � 
�� �� 

� �� 
�� �� 

� 
� 
�� 
� � �

� �

�
� � 
�� �� 

� �� 
�� 
� 

� 
� 

� �� 
�� ��

Table ���� Required degree of exactness 
�x� �y� in order to get an optimal dis�
cretization order with piecewise linear functions in the H��norm	

�� The Panel Clustering Method

The boundary element method leads to a system of linear equation which con�
tains a full coe�cient matrix of dimension n� The reason lies in the fact that
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the kernel function k �x� y� x� y� contains a term of the form kx� yk linking
every point x � � with a point y � � � The panel clustering method was de�
veloped by Hackbusch and Nowak in 	
�� 	�� for collocation discretizations and
generalized to the Galerkin BEM in 	�
�� 	��� The idea of the method is the ap�
proximation of k by a series of the form k �x� y� y � x� �P

������ �x��� �y�
with a suitable function system f��g� Hence� the x�integration is separated
form the y�integration reducing the amount of work substantially� The e��
ciency of the method depends on how fast the kernel function can be approx�
imated by the function system f��g� i�e�� the number of term in the series
and on the question how e�ciently the arising quantities can be computed
and organized� This will be discussed in the following� We recall here the set�
ting of Petrov�Galerkin methods for boundary integral equations as de�ned
in Chapter �� and the notation of the trial space by Xn � span f
ig��i�n
and test space Yn � span f�ig��i�n�

��� Kernel Expansions

The kernel functions appearing in the de�nition of integral equations are
related to the singularity function s � IR� � IR of the underlying boundary
value problem� This function can be written in the form

s �y � x� �
X
j�j�t

c�
�y � x��

ky � xks�t

where � � IN�
� denote multi�indices and j�j �� �� � ��� ��� Let z� �� y� � x�

be �large � Consequently� s �z� � s �y � x� is smooth in a neighborhood z �
U �z��� We expand s as a series of order m about z��

s �z� �
m��X
j�j��

�X
���

������ �z���� �x��� �y� � Rm �z�� z� �
���

with some coe�cients �� The kernel function is a suitable G�ateau derivative
of s� where we restrict here to normal derivatives� Hence� we can use the
expansion

k �x� y� y � x� �
m��X
j�j��

�X
���

������ �z��

�
�

�nx

���
�� �x�

�
�

�ny

���
�� �y� �

�
������

�n��x �n��y
Rm �z�� y � x� 	

Example ���� Let s �z� � kzk�� which is �up to a constant factor� the
singularity function of the ��d Laplace operator� Taylor expansion about
z� � y� � x� results in
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s �z� �
m��X
j�j��

�

��

�j�j

�z�
s �z�

				
z�z�
 �z �

�	 �� �z��

�z � z��
� � Rm �z�� z� 	

Putting z � y � x� expanding �y � x� z��
� and reordering the terms results

in
m��X
j�j��

�X
���

������ �z�� y
�x���

which is of the form �
����

Remark ���� For highly oscillatory kernel as� e�g�� for the Helmholtz prob�
lem where s �z� � eikkzk� kzk� Taylor expansion is converging slowly� The
situation can be improved by �rst performing a ��d expansion in the radial
direction� i�e��

eikr

r
� �

r

m��X
l��

�ik�l

l�
eikr� �r � r��

l

and then applying standard Taylor expansion to the right hand side above�

The error term behaves like ��r�r��k�
m

m�
and hence� a minimal requirement is

that the order of the expansion has to satisfy

m � k �r � r�� 	 �
���

On the other hand the function system consists still of polynomials and the
algorithmic apparatus developed for the Laplace operator can be used� An
alternative to this expansion is the use of spherical Hankel functions� i�e��
writing

eikr

r
�

m��X
l��

�lhl �k �r � r���

which has a better convergence behaviour� However� �
��� is the minimal
requirement for convergence� too� For details see 	���� The use of this function
system for Petrov�Galerkin discretizations makes the development of new
algorithms necessary in order to compute the required quantities e�cient�

In order to de�ne the panel clustering algorithm� we have to de�ne ap�
propriate regions on the surface � where the expansion above gives good
approximation�

De	nition ���� Let TN denote the panelization of the � as
 e�g�
 the tri�
angulations explained in the previous chapters� A �cluster
 is the union of
one or more panels� � �

Sq
j���ij � The size of a cluster is given by the

�cluster radius
 � �� � which is de�ned by the radius of the minimal ball con�
taining � � The centre z
 of this balls is called �cluster center
 �
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De	nition ���� The relative distance of a cluster from the support of a basis
function of the test space �i � Yn is given by

d ��i� � � ��
� �� �

dist �supp�i� z
 �
�

where for the Dirac functional �x
 i�e�
 the collocation method
 supp�x � x�

Our aim is to determine the size of clusters such that the replacement of
the kernel function by the expansion on those clusters has an accuracy of a
given value � � �� In this light� for � � � and arbitrary expansion order m� a
cluster is said to be �admissible with respect to a basis function �i � Yn� if

jk �x� y� y � x�� km �x� y�j � �
�

kx� yk � �y � �� x � supp�i	 �
���

The size of the clusters has to be linked to the approximation property of the
kernel expansion in the following way�

Assumption ���� For given � and expansion order m
 there exists � � � � �
such that
 for all � � i � N 
 the condition

d ��i� � � � � � �

implies that � is admissible with respect to �i�

De	nition ���� Let � and an expansion order m � IN be given
 Let the
relative size � of admissible clusters be determined as explained above� A
set of clusters f�ig��i�k with disjoint interiors is called a covering of � 
 ifSk
i�� �i � � �
A covering is called admissible with respect to a basis function �i � Yn
 if

either
d ��i� � � � � �admissible cluster�

or
� is a panel�

The admissible covering which contains a minimal number of clusters is called
minimal admissible covering Ci� The near�eld Cneari and the far�eld Cfari are
de�ned by

Cneari �� f� � Ci j � is non�admissible with respect to �ig �
Cfari �� f� � Ci j � �� Cneari g 	
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��� The Algorithm

Let K denote the matrix corresponding to Petrov�Galerkin discretization of
the integral operator� Then� a matrix vector multiplication can be written in
the form

nX
j��

Ki�juj � h�i�K 	u�i �


�i� p	f	

Z
�

k �x� y� y � x�u �y� dy

�
�
�
�

with the dual pairing h�� �i of ����� and the correspondence ����� of a vector u
and a FE�function u� Splitting the surface into the near�eld and the far�eld
part and using �
��� shows that �
�
� equals

nX
j��

uj

�
�i� p	f	

Z
Cnear
i

k �x� y� y � x�
j �y� dy

�

 �z �

�	Knear

i�j

�

�
X


�Cfar
i



�i�

Z



k �x� y� y � x�u �y� dy

�

�
nX
j��

Knear

i�j uj �
X


�Cfar
i

m��X
j�j��

�X
���

������ �zi�
 �



�i�

�
�

�nx

���
�� �x�

�

 �z �

�	 ��������i�
�Z



�
�

�ny

���
�� �y� u �y� dy
 �z �

J�� �u�

�
nX
j��

K
near

i�j uj �
X


�Cfar
i

m��X
j�j��

�X
���

������ ��i� � �J
�

 �u� 	 �
���

This is the panel clustering representation of a matrix vector multiplication�
The coe�cient � are called the expansion coe�cient and J�
 �u� the far�eld
coe�cient�

The de�nition of the so�called near�eld matrix Knear

i�j looks identical as
the original matrix K � However� since the integral over Cneari vanishes if
supp
j � Cneari � 
� the matrix Knear

i�j is sparse dependent on the size of
Cneari �

The panel clustering can be structured in the following way�

Phase I�

� Choose the accuracy � for the kernel approximation�
� Choose the expansion order m and relative size of the admissible clusters
� � � ���m� such that the storage!computational consumptions �which are
known a priori� are minimal�
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� Organize the cluster in a binary tree�
� For each basis function �i of Yn� compute the near� and far�eld of the
minimal covering�

Phase II�

� Compute and store the near�eld matrixKnear

i�j � the expansion coe�cients
������ ��i� � �� and the basis near�eld coe�cients J�� �
i� 	

Phase III�

� Compute the far�eld coe�cients J�
 �u� from the coe�cients J�� �
i� by
using the tree structure of the clusters�

� Approximate a matrix vector multiplication by �
����

�� Error Analysis of the Panel Clustering Method

The panel clustering method introduces a further error in the discretization
process which can be treated similarly as� e�g�� errors due to numerical cu�
bature� In the present situation local analysis has to be done to determine
the dependency of the accuracy of the kernel expansion on the size of the
clusters and the order of the expansion� As a typical example� we consider
Taylor approximation of the singularity function of the Laplace operator in
��d� For given � � � and expansion order m� the bound for the relative size
of admissible cluster � has to be chosen as � � m

p
� in order to obtain				 �

kzk � Tm �z��

				 � �

kzk � �z � kz � z�k
kzk � �

where Tm denotes the Taylor expansion of order m of kzk��� This estimate
and also error estimates of Taylor�based expansions of general kernel func�
tions are worked out in 	���� 	�
�� 	
� and 	����

In the second step� the in�uence of these local errors �valid on the admis�
sible clusters� to the consistency error� namely a matrix vector multiplication
with and without panel clustering� has to be investigated� In 	
�� 	�
� and 	��
it is shown that� under moderate assumption on the surface and the triangu�
lation� the estimate

jh�i� �K �KPC�uij � C��h h�i� �i kuk� � �u � Xn�

is satis�ed with �h equals � for weakly singular kernels� is O �logh� for
Cauchy�singular and h�� for hypersingular kernels� KPC denote the panel
clustering operator where the kernel is replaced by expansions satisfying As�
sumption 
�� and �
����
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�� Complexity of the Panel Clustering Algorithm

Let N denote the number of panels of the panelization TN � An asymptotic
complexity analysis of the panel clustering method �cf� 	
�� shows that the
choice of m �

�
�
� logN

�
and � � const implies that� again under moderate

assumption on the surface and triangulation� the number of near�eld panels
is bounded independent of N � while the number of far�eld clusters grows like
O �logN �� Furthermore� the asymptotic amount of work for the initialization
Phase II of the panel clustering algorithms is proportional to O �N logr N �
with r � � for the collocation and 
 for the Galerkin method� The evaluation
Phase III requires O

�
N logtN

�
with t � 
 for the collocation and t � � for

the Galerkin method� The storage consumption for the collocation method
are of order O

�
N log�N

�
and for the Galerkin BEM of order O

�
N log�N

�
�

The powers of the logarithmic terms are not ultimative� The algorithm can
be structured such that Phase II becomes cheap and the storage consump�
tions are low �relatively few quantities are computed� but Phase III becomes
expansive since more preparation steps have to be performed and vice versa�

The asymptotic gain of the panel clustering method is obvious compared
to the standard matrix techniques where both the CPU�time and the storage
consumption behaves like O

�
N�
�
� Nevertheless it is important to consider

the constants of the O��� estimates in detail to study the amount of work used
by the panel clustering algorithm for �small problem sizes� As a test problem
we examined the Galerkin discretization of the double�layer potential for the
Laplace equation on the surface of the unit cube scaled by �� � � � �	���
For the panel clustering and the conventional matrix oriented version the
amount of time and space required to assemble the corresponding discrete
operator �K satisfying a given relative error �� i�e�� kKu � �Kuk� � �kKuk�
with K the exact matrix� was measured� The accuracy of �K � �Kpc of the
panel clustering was controlled by the parameter � whereas m was �xed� In
order to adjust the accuracy of �K � �Km of the matrix oriented version the
size of the near�eld� where high order cubature formulae are used� and the
far�eld� where only one�point formulae are applied� was changed� The results
for a problem size of N � ���
 vertices ����
 panels� are shown in Figure
��� illustrating the amount of time needed to assemble the operators and in
Figure ��� depicting the number of entries to represent these operators� The
calculations were carried out on a SUN SPARC���!
�� It turns out that even
for small problem sizes the panel clustering method could reduce the CPU�
time and storage consumptions considerably� Further results are reported in
	�
� and 	����

�� Software Design Aspects

Regarding the software activities for �nite element methods �FEM� there
are already complex and powerful packages to solve various problems� It
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would be quite convenient to reuse this software or at least the design aspects
for the boundary element method as well� Though even the conception of
FEM and BEM are nearly the same� the aspects concerning design decisions
di�er considerably� The system matrices of the FEM� for instance� are sparse�
Adequate data structures for this type of matrices are lists or other containers
taking the local character into consideration� However� the BEM leads to full
matrices making it quite plain to use arrays� There are a lot of other examples
like this one showing that it is unavoidable to develop BEM software from
the beginning�

The di�culty one has to encounter is the great variety of tasks� There
are among others di�erent discretization schemes like collocation or Galerkin
methods� di�erent kinds of operators �single layer� double layer� hypersingu�
lar� and quite a lot of cubature techniques to consider� A design strategy
which isolates the common parts and "focus upon the essential characteris�
tics� 	�� to build the basic abstract data types would be very useful� These
properties are given by object�oriented methods known to be a suitable tool�
to manage complex systems� In the following we specify an object�oriented
approach to BEM which has been elaborated as a class library implemented
in C���

In our situation the object�oriented decomposition could be extracted
from the formulation of Petrov�Galerkin schemes introduced in Chapter ���
The foundation of this scheme are the subspaces Xn and Yn de�ning the test
and trial functions� A basic information necessary to construct these spaces
is a description of the geometry� i�e� the surfaces� For this purpose it is ad�
vantageous to have a �continuous� description which o�ers the possibility to
resolve the geometry with any necessary accuracy # an important fact� espe�
cially in the case of multilevel methods where hierarchies of spaces must be
generated� So we can state a �rst class of the library called Surface repre�
senting a formal description of the surface�

class Surface f
���

public�
Surface�char� fname��
���

g�

class SurfaceApx f
���

public�
SurfaceApx�const Surface� sf� int level��
���

g�

In the next step� we require an approximation of the surface� i�e� a set of
panels �triangulation� that meets several conditions listed in Chapter ��� To
maintain this set� a second class� called SurfaceApx� has to be introduced
into the context of geometry abstraction� In the class de�nition above the
parameter level is used to distinguish between particular levels of approxi�
mation� Instances of the class SurfaceApx for di�erent levels form a hierarchy
of panels�
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To classify a basis of the subspaces two well known alternatives are avail�
able� The �rst one� the node�oriented version� characterizes a single basis
function by its support in conjunction with a related node� The basis is de�
scribed by the set of all basis functions� This de�nition is obvious and close to
the discrete mathematical formulation of the Petrov�Galerkin scheme� Nev�
ertheless the second� panel�oriented alternative is more e�cient in respect of
the time�consuming integrations� It uses the corresponding shape function for
each panel� i�e�� the set of all non�vanishing basis functions restricted to the
panel� The abstraction of the entire basis is formed by the recombination of
all shape functions� An entity� representing a single basis function� no longer
exists�

The properties of common shape functions are re�ected in the de�nition
of an abstract base class�

class ShapeFunction f
���

public�
virtual const Panel� support�� const � 	�
virtual int dimension�� const � 	�
virtual const int� index�� const � 	�
���

g�

It gives information about the related panel� the number of restricted basis
functions and their associated indices� By the mechanism of inheritance we
can generate subclasses of ShapeFunction to module di�erent basis functions�
as constant� linear or dirac functions� on di�erent types of panels �Figure �����

LinTri3DConstQuad3D DiracVtx3D

ShapeFunction

i

i
k

j

i

Fig	 �	�	 Specializations of ShapeFunction	
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For the instantiation and maintenance of shape functions a further class�
Space� is established� This provider is responsible for the correct combination
of shape functions to form a basis and thus the desired subspace of the Petrov�
Galerkin method$ especially it has to support the management of conforming
indices� To realize various subspaces� several specializations of the base class
Space are used� Analogous to the subclasses of Shapefunction we could
de�ne ConstSpace� LinSpace or DiracSpace�

The next class in our library addresses the dual forms of ������ Corre�
sponding to the construction of spaces the abstraction of a dual form is a
function that assigns to each pair of shape functions ��� � � an element ma�
trix of the form

�m��� �� hK�� 
i � 
 � �� � � �	

Embeded in a class de�nition we get

class DualForm f
public�
virtual const real� operator���const ShapeFunction� trialfnc�

const ShapeFunction� testfnc� const�
g�

Before the assignment can be executed an appropriate integration or cubature
rule dependent on the particular type of shape functions has to be chosen�
e�g�� to distinguish between collocation and Galerkin schemes� For this pur�
pose run�time type information �RTTI� is an essential tool and used in our
implementation to solve this kind of multi�method problem �see 	����� The
class DualForm acts as an interface class which "adjusts the appearance� 	���
for further class de�nitions derived from it� With these subclasses a variety of
integral operators and associated integrations strategies could be arranged�

To assemble local element matrices in a global one the class MatrixOp is
introduced into the design� It is a specialization of the base class Operator
�Figure ���� which �rst of all is responsible for the abstraction of integral
operators� This is done by de�ning a virtual member function of the class
Operator common to all subclasses which declares the mapping of the con�
sidered operator�

virtual void operator���const Function� trialfnc� const Function� testfnc��

For the class MatrixOp for instance this function is to be overloaded by
a simple matrix�vector product� The class Function in the de�nition above
just represents a valuation of the related basis� It can be implemented by a
vector of �oats or doubles�

The subclass MatrixOp is used to specify the integral operator on the
discrete level by a full coe�cient matrix� Another alternative o�ers the panel
clustering method described in Chapter 
�� Its complex algorithmic issues can
be totaly hidden in the implementation of an additional subclass of Operator
denoted by PnlClstOp� The external behaviour or usage resp� of PnlClstOp
is nearly the same as for the simple MatrixOp� Only the information needed
during the instantiation process must be extended� a specialized version of
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MatrixOp PnlClstOp

SparseMatrixOp CGOp

GMResOp

Operator

Fig	 �	�	 Specializations of Operator	

the class DualForm to describe the far �eld dual forms h�����nxw��x�� �ii
and h
i� �����ny w��y�i as well as an instruction to calculate the expansion
coe�cients ���z��

Even the solver of the linear system interpreted as inverse operator meets
this context� For example overloading the operator�� by the gmres algorithm
leads to the class GMResOp� An instance of GMResOp is initialized with the
operator that should be inverted�

To summarize the rough introduction of our class library we present a
short application�

int main�� f



 initialize the geometry given in �le �cube


Surface sf��cube���
SurfaceApx sfapx�sf� ���



 construct test and trial spaces for collocation

DiracSpace test�sfapx��
LinSpace trial�sfapx��



 get the necessary informations about dual forms and


 expansion coe�cients

DlpDF df����
FarFieldDF ftstdf����
FarFieldDrvdDF ftrldf����
LaplaceExp exp����



 assemble the sti�ness matrix and the panel clustering operator

MatrixOp op�trial� test� df��
PnlClstOp pcop�trial� test� df� ftrldf� ftstdf� exp� ��e���



 initialize two functions� one matching the trial space�


 another the test space

Function f�trial�� f � �sin�x�y�
�
Function g�test��



 calculate 
hKf� �ii�j with both operators
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op�f� g��
pcop�f� g��



 solve using the panel cluster operator

GMResOp solve�pcop� �e��� �		��
solve�g� f��

g

Finally the approach to involve parallel architectures� in particular SPMD
schemes �same programmultiple data�� should be mentioned� The most time�
consuming task of the BEM is to assemble the matrices� A distribution of this
task among several processors can be achieved by decomposing the subspaces
Xn and Yn leading to a two dimensional torus as proper topology of processors
�Figure ����� To be independent of the given physical architecture an interface
class ProcessNode is created which establishs basic operations in the terms
of the underlying torus �e�g� to broadcast along rows or columns� the upper�
lower� left or right neighbour��

class ProcessNode f
���

public�
virtual int broadcast�� � � � � 	�
virtual int reduce�� � � � � 	�
virtual int shift�� � � � � 	�
���

g�

Specialisations of this interface class realize the connection between the phys�
ical layer �hypercube� workstation cluster� etc�� and the application layer ��d
torus��

To make the information and operations of ProcessNode available to the
concerned classes of the library a reference to an instance of ProcessNode
could be used� The virtual function call ensures the expected behaviour�
Parameterized classes �templates� o�er another� more e�cient way of em�
bedding the derived classes of ProcessNode in the library� In this alternative
the member functions broadcast��� reduce��� etc� are bounded statically
resulting in an e�cient function call�
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