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1 Introduction

The numerical computation of stationary waves in exteriour and scatter-
ing problems is based on indefinite variational forms connected with the
Helmholtz equation

Au+ ku=0

where k is a real parameter (scalar wavenumber). Unlike the case of linear
elasticity, stable dependence of both analytical (if existing) and numerical
solutions on the data is not straightforward. Stability estimates of the
form ||ul|; < Ci;||f]l; do hold for various norms ¢, j but the constants C;;
depend in general on the parameter k. Hence also the quality of the discrete
solution depends on k, as well as on the parameters of the numerical model
(stepwidth h, degree of approximation p). For practical application it is
essential to have reliable "rules of the thumb” for the choice of the numerical
parameters as a function of physical parameters. It is well known from
computations that, for the "classical” Galerkin FEM, the linear rule for
mesh-design kh = const. leads to reliable results only in the low frequency
range. This leads to two questions:

1. How do error estimators for the Galerkin FEM depend on k, A7

2. Can the classical Galerkin approach be improved towards a linear
rule?

These questions are addressed by analysis of one- and two-dimensional
Helmholtz problems. We give error estimates in integral norms for the
h-version of the Galerkin FEM with general degree of approximation (sec-
tion 2). Unlike previous estimates — cf. Bayliss et al. [4], Aziz et al [1],



~

i.e. constraining the magnitude of kh only. The results are discussed in the
context of engineering dispersion analysis (section 3). We then turn to the
investigation of generalized FEM for the Helmholtz equation. While it can
be shown that there is no method that can eliminate the entire phase error
in 2D, independently of the direction of the wave, one still can construct
a generalized method with minimal pollution (equivalently, minimal phase
error — section 4). Numerical examples of one- and two-dimensional com-
putations and a summary of the results conclude the paper.

2 Error estimates for the Galerkin FEM

For analytical purpose, we consider the one-dimensional model problem:

Let = (0,1) and

—u"(z) — K*u(z) = f(z) ,2 €0 (2.1)
u(0) = 0 (2.2)
u'(1) —tku(l) = 0. (2.3)

consisting of the ordinary Helmholtz equation with Dirichlet and (exactly
absorbing) Robin condition at the boundaries. We will use the notation
of Sobolev spaces H*(2) in the usual way, denoting by |[u|[s and |u|s the
norms and seminorms in these spaces, resp. If s < 0, the norm is computed
in the dual (to H~*) space. It is well known, see Douglas et al. [5], that for
fel* ()

Juls < Cok*H flo (2.4)
holds for s = 0,1,2 with (s independent of k. The inf-sup-condition for the
problem holds with a constant v = C'k™!, hence the dual estimate |u|; <
Ck|f|-1 applies [6]. Using a Greens function approach on uniform mesh,
the same stability conditions are shown for the discrete solution [6]. Using
these stability results, one can prove (for piecewise linear approximation in
the subspace S, C H') the error estimate

Theorem 1 Let u € H*(Q);uy, € Su(Q) be the exact and the finite element
solutions to the BVP (2.1-2.3), resp. Then for hk <1

lu —uply < (Crhk + Coh*E2)| f]] (2.5)
holds with constants Cy,Cy not depending on k., h.

It the exact solution has the form of a sinusiodal wave of wavelength &
(or, more generally, if u is such that |ul,/|ul, < CkE holds for some C
independent of k) one easily derives

B lu — up |y

< Cy(kh) + Cyk(kh)?. (2.6)



that generalizes the results of Bayliss [4], Douglas [5] and Aziz [1] who had
shown that é; < Ckh if k?h is small.

An analysis of the h-p-version [7] shows that this estimate carries over
to the case of piecewise polynomial approximation. On uniform h — p-mesh
with approximation space 57, the following theorem holds.

Theorem 2 Let u € HPTY(Q), up € S)(Q) be the exact and the h-p-FEM
solution to model problem (2.1-2.3). Assume that u is oscillating with fre-
quency k and a constraint hk < 7 is given for the stepwidth h. Then the
relative error in Hi-seminorm is bounded by

hEk\" R\

Here, the constants Cy and Cy grow moderately with p, see [7] for details.
Again, continuous and discrete stability statements are the principal pro-
vision for the proof of the h — p-estimates. Numerical computations show
that the estimates given in Theorems 1,2 are sharp.

3 Dispersion analysis and generalization of
the Galerkin FEM

The first term on the right hand side of the estimate (2.7) is the error of
approximation (interpolation error). This error is under control if a linear
rule hk = « is used for the choice of the meshsize. The second term can be
interpreted as numerical pollution caused by the indefiniteness of the vari-
ational form. Despite the constraint hk = «, the error may grow infinitely
with k. The error behaviour is different from the well known convergence
pattern of h-p-extensions in definite problems, e.g. in linear elasticity. We
show this exemplarily in Fig. 1 for p = 1. The relative errors of the Galerkin
FE-solutions are plotted both for low and high frequency. The errors of the
best approximation are displayed for comparison. Since the best approx-
imation is computed from a positive definite projection problem, its error
shows the expected pattern of convergence: the range of predicted asymp-
totic rate of convergence is preceded by a preasymptotic range (in the plot
visible for k = 100) where the rate is suboptimal. In the case considered
(p = 1), the relative projection error in the suboptimal range is 100% as
long as the stepsize of the linear elements exceeds the size of one half-wave.
The interpolation error is stable w.r. to k, the magnitude of the error de-
pends on hk only. The behaviour of the Galerkin FEM-error is different.
For both frequencies displayed, one observes an asymptotic range where
the FE-error converges with optimal rate of convergence. Taking out hk in
estimate (2.6) we see that quasioptimality is ensured, independently of k,



(figl h.ps) was not found

Figure 1: Errors of H'-projection versus error of finite element solution for
Dirichlet problem; error in H'-seminorm; wavenumbers k& = 10, k = 50 and

k= 100.

if hk? is constrained. In the preasymptotic range, the error first is above
100% before it begins to converge with superoptimal rate. The pollution
error dominates the error, and the range of dominance of pollution in the
convergence behaviour grows with &, as predicted by the estimates.

It is well known that discrete approximations of propagating solutions
to the Helmholtz equation display, in general, a phase lead to the exact
solution. On uniform mesh, one can assign a ”discrete” wavenumber £’ to
the Galerkin FE-solution by discrete Fourier analysis. For regular solutions
the pollution term is exactly of the order of the phase lag [7]:

Theorem 3 Consider approzimation of the ordinary Helmholtz equation by
a Galerkin FEM in the approximation space S;. Then, if hk <1,

K — k| < kC(p) (Z—k) B (3.1)

p

This theorem generalizes previous results of dispersion analysis for wave
computation using Galerkin FEM (see Thompson and Pinsky [10]). Modi-
fying the classical Galerkin approach one can reduce the phase error of the
FE solutions. For one-dimensional problems, the phase error can be entirely
eliminated by suitable generalization of the variational form (cf. Harari and
Hughes [9]; see also [3], Theorem 4). More generally, one can show [2] for
any generalized FEM (GFEM) whos discrete matrix has certain natural
properties that either & = k or

Crk(kh) < [k — K| < Cok(kh)*

for some even s, > 2. Finally, the following statement is shown in [2].



(GFEM) with non;anishmg phase difference k — k' 7!0. dAssume that kh
and k(kh)* are bounded. Then, for sufficiently large k,

Culk — K| < &, < Colk — K| + Cs(kh)?. (3.2)

Hence the pollution term of the error and the phase lead are equivalent
measures for the reliability of the discrete solution.

4 Error behaviour and quality improvement
in two-dimensional Helmholtz problems

So far, no error estimates are proven for higher-dimensional Helmholtz prob-
lems. Computational experiments show, however, that the numerical effects
predicted by one-dimensional analysis occur also in the 2D results. We con-
sider the homogeneous Helmholtz equation

Au(zy, z9) + ku(zr,22) =0 (4.1)

on the unit square = (0,1) x (0,1) with nonhomogeneous boundary con-
ditions

. du

tku4+ — =9, on I'y , s=1,2,3,4 (4.2)
On

where ¢ is chosen such that the exact solution is
u = exp(rkx)

with vector wavenumber k = (kq, k2) and |k| = k. Bilinear shape-functions
are used for approximation on uniform mesh [8, 2]. The error norms are com-
puted in H'- and L*norms and compared to the projection errors in these
norms. One observes the same pollution effects as in the one-dimensional
case [2, 8] - see the FEM-lines in Fig. 2.

It is possible to reduce this effect, and thus to raise reliability of the
FEM on moderately refined mesh, by appropriate modification of the dis-
crete model. However, unlike in the 1D-case it is not possible to eliminate
pollution entirely. This is shown comparing the Fourier symbols of the dif-
ferential operator and the difference operator resulting from any GFEM
on square mesh. Denoting by deream(k, h) the distance (for some general-
ized FE-model) between the symbols in the Fourier image and by || - ||- a
weighted L*-norm, we have [3]

Theorem 5 Let u and uy. be the exact and GFEM solution, resp., lo a
well defined Helmholtz problem on a square domain Q = (=L, L) x (=L, L).

a) For any GFEM, there exists a domain measure L and a data set such

that
d
= gl > 3



Fig. 6.2. from bips

Figure 2: Relative errors for 2D Helmholtz problem: finite element solution
vs. best approximation for £ = 30 and £ = 100

b) The distance d can be expanded as
d = ry, (kh)¥ ! + O(kh)Ho*

with ri, #0; 1 <1, < oo.
¢) There exists a function uqp in the finite element subspace satisfying

= topall— < Calkh)

One can show that for the standard Galerkin FEM [, = 1; r; = 1/24. On
the other hand, in [2] we construct a modified FEM with I, = 3; rs &~ 107°.
In Fig. 2 we show the error of this modified method and the error of the
Galerkin method. For comparison, we also show the error of the Galerkin
Least Squares Method proposed by Thompson and Pinsky [10].

The dependence of the errors of the direction theta is shown in Fig. 3.

5 Summary of conclusions

1. New error estimates are presented for wave computations using the
Galerkin FEM. The estimates show that on normalized mesh with
kh < «, the energy norm of the error contains a pollution term of
order k(kh)?, where p is the order of approximation. For reliability
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Figure 3: Dependency of the H'-error on the angle  for kh = 1.5 and
k=30, 100.

of the FEM results, it is hence necessary and sufficient to constrain
this term when choosing the meshwidth A for given wavenumber k.

2. Taking into account the pollution term it is shown that dispersion
analysis of the phase lag of numerical solutions is equivalent to nu-
merical analysis of the error in integral (H'- or L?-) norm. Hence
modified FE methods proposed for phase error reduction equivalently
lead to error reduction in integral norm.

3. Galerkin FE solutions to two-dimensional Helmholtz problems show
the same error behaviour as one-dimensional solutions. However, un-
like the 1D-case, it is not possible to eliminate the phase error by any
generalized FEM in 2D. Still significant error reduction is possible by
suitable modification of the classical approach. For any method, how-
ever, there exists a dispersive lower bound for the numerical error in
integral norm.

References

[1] A.K. Aziz, R.B. Kellogg and A.B. Stephens, A two point boundary value
problem with a rapidly oscillating solution, Numer. Math. 53, 107-121 (1988)



[10]

method for solving the Helmholtz equation in two dimensions with minimal
pollution; Technical Note BN-1179 (1994), Institute for Physical Science and
Technology, University of Maryland at College Park

Babuska, I.; Sauter, S.: Is the pollution effect of the FEM avoidable for the
Helmholtz equation considering high wave numbers, Technical Note BN-1172
(1994), IPST, UMDCP

Bayliss, A.; Goldstein, C.I.; Turkel, E.: On accuracy conditions for the
numerical computation of waves, J. Comp. Phys. 59 (1985), 396-404

Douglas Jr., J.; Santos, J.E.; Sheen, D.; Schreiyer, L.: Frequency domain
treatment of one-dimensional scalar waves, Mathematical Models and Meth-
ods in Applied Sciences, Vol. 3, No. 2 (1993) 171-194

Thlenburg F.; Babuska, [.: Finite element solution to the Helmholtz equation
with high wavenumber - part I: The h-version of the FEM, Technical Note
BN-1159 (1993), IPST, UMDCP

Thlenburg F.; Babuska, [.: Finite element solution to the Helmholtz equation
with high wavenumber - part II: The h-p-version of the FEM, Technical Note
BN-1173 (1994), IPST, UMDCP

Ihlenburg F.; Babuska, I.: Dispersion analysis and error estimation of

Galerkin finite element methods for the numerical computation of waves,
Technical Note BN-1174 (1994), IPST, UMDCP

Harari, I. ; Hughes, T.J.R.: Finite element method for the Helmholtz equa-
tion in an exterior domain: model problems, Comp. Meth. Appl. Mech. Eng.
87 (1991), 59-96

Thompson L.L.; Pinsky, P.M.: A Galerkin Least Squares Finite Element
Method for the Two-Dimensional Helmholtz Equation, Int. J. Num. Meth.
Engng. (to appear)



