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Abstract. Using methods of formal geometry, the Poisson sigma
model on a closed surface is studied in perturbation theory. The ef-
fective action, as a function on vacua, is shown to have no quantum
corrections if the surface is a torus or if the Poisson structure is
regular and unimodular (e.g., symplectic). In the case of a Kähler
structure or of a trivial Poisson structure, the partition function on
the torus is shown to be the Euler characteristic of the target; some
evidence is given for this to happen more generally. The methods
of formal geometry introduced in this paper might be applicable
to other sigma models, at least of the AKSZ type.
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1. Introduction

In this note we study the Poisson sigma model [16, 19] with world-
sheet a connected, closed surface Σ. To do so we treat the Poisson struc-
ture on the target manifold M as a perturbation and expand around
the vacua (a.k.a. zero modes) of the unperturbed action.1 As a critical
point of the latter in particular contains a constant map, we have first
to localize around its image x ∈ M . To glue perturbations around
different points x, we use formal geometry [15]. Our first result is that
the perturbative effective action (as a function on the moduli space of
vacua for the unperturbed theory) has no quantum corrections if Σ is
the torus or if the Poisson structure is regular and unimodular (e.g.,
symplectic). In the former case, under the further assumption that the
Poisson structure is Kähler, we can also perform the integration over
vacua and show that the partition function is the Euler characteristic
of M . For a general Poisson structure we can use worldsheet super-
symmetry to regularize the effective action2 and study it like in [21];
this argument is however a bit formal unless some extra conditions on
the Poisson structure are assumed.

Notice that on the torus we need not assume unimodularity. For
other genera, the requirement of unimodularity was first remarked in
[6] where the leading term of the effective action on the sphere was also
computed.

The techniques presented in this note, in particular the way of using
formal geometry to get a global effective action, should be applicable to
other field theories, in particular of the AKSZ type [1]. The techniques
of subsection 4.3 and of subsections 5.2 and 5.3 should also extend to
higher dimensional AKSZ theories in which the source manifold is a
Cartesian product with a torus.

The torus case may also be understood as follows. Recall that the
BV (Batalin–Vilkovisky) action for the Poisson sigma model can be
given in terms of the AKSZ construction [10]. It is a function on the
infinite dimensional graded manifold Map(T [1]Σ, T ∗[1]M). On a cylin-
der Σ = S1 × I, the partition function should be interpreted as an
operator on the Hilbert space associated to the boundary S1. As the
theory is topological, this operator is the identity and the partition

1What we compute is then 〈e i
~Sπ 〉0 where Sπ is the interaction part depending

on the target Poisson structure π and 〈 〉0 denotes the expectation value for the
Poisson sigma model with zero Poisson structure.

2We prove that the regularized effective action does not depend on the regular-
ization as long as one is present. However, in principle this is not the same theory
as the non regularized one.
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function on the torus is just its supertrace. Now, in the case of triv-
ial Poisson structure, the BFV (Batalin–Fradkin–Vilkovisky) reduced
phase space associated to the boundary is the graded symplectic man-
ifold T ∗T ∗[1]M = T ∗T [−1]M . If we choose the vertical polarization
in the second presentation, the Hilbert space will be C∞(T [−1]M),
i.e., the de Rham complex with opposite grading. It is then to be ex-
pected that the partition function on the torus should be the Euler
characteristic of M . In the perturbative computation, however, the
final result is usually of the form 0 · ∞, but in the Kähler case we get
an unambiguous answer. We might then think of a Kähler structure
on M , if it exists, as a regularization of the Poisson sigma model with
trivial Poisson structure.3 Notice that, if such structures exist, they
are open dense in the space of all Poisson structures on M . Another
regularization, which produces the same result, consists in adding the
Hamiltonian functions of the supersymmetry generators for the effec-
tive action. Formally, this can even been done before integrating over
fluctuations around vacua.

Finally, notice that apart from the cases mentioned above we do ex-
pect the effective action to have quantum corrections. Moreover, the
naively computed effective action in formal coordinates might happen
not to be global. We show however that it is always possible to find a
quantum canonical transformation which makes it into the Taylor ex-
pansion of a global effective action. Its class modulo quantum canonical
transformations is then the well-defined object associated to the theory.

Section 2 is a crash course in formal geometry (essentially following
[11, §2]). In Section 3, we develop the construction of [11, §6] to define
the effective action in formal coordinates. Next using the results of
Section 4.3, we show that, in the two special cases mentioned above,
the effective action has no quantum correction and is the expression
in formal coordinates of a global effective action. In Section 5, we
study the effective action for the case of the torus and perform the
computation of the partition function. Finally, in Section 6 we study
the globalization of the effective action in general.

Acknowledgment. We thank G. Felder, T. Johnson-Freyd, T. Willwacher
and M. Zabzine for useful discussions. A.S.C. thanks the University of
Florence for hospitality.

3That is, we regularize STrC∞(T [−1]M) id = 〈1〉0 as

〈1〉0 := lim
ε→0
〈e iε

~ Sπ 〉0.

We then show that, in the Kähler case, 〈e iε
~ Sπ 〉0 is independent of ε and equal to

the Euler characteristic of M .
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2. Formal local coordinates

We shortly review the notion of formal local coordinates following
the simple introduction of [11, §2] (for more on formal geometry see
[2, 7, 15]).

A generalized exponential map for a manifold M is just a smooth
map φ : U → M , where U is some open neighborhood of the zero
section of M in TM , (x, y ∈ Ux) 7→ φx(y), satisfying φx(0) = x and
dyφx(0) = id ∀x ∈ M . As an example, one may take the exponential
map of a connection.

If f is a smooth function on M , then the function φ∗f ∈ C∞(U)
satisfies d(φ∗f) = df ◦ dφ. Denoting by dx (dy) the horizontal (ver-
tical) part of the differential, we then get dx(φ

∗f) = df ◦ dxφ and
dy(φ

∗f) = df ◦dyφ. Because of the assumptions on φ, there is an open
neighborhood U ′ ⊂ U of the zero section of M in TM on which dyφ is
invertible. As a consequence, on U ′ we have the formula

(2.1) dx(φ
∗f) = dy(φ

∗f) ◦ (dyφ)−1 ◦ dxφ.

Notice that, for each x, φ∗xf is a smooth function on Ux. By Tφ∗xf ∈
ŜT ∗xM we then denote its Taylor expansion in the y ∈ Ux-variables
around y = 0.4 In doing this, we associate to f ∈ C∞(M) a section

Tφ∗f of ŜT ∗M over M . We may now reinterpret (2.1) as a condition
on the section Tφ∗f simply taking Taylor expansions w.r.t. y on both
sides. Notice that in the definition of Tφ∗f and in the resulting con-
dition only the Taylor coefficients of φ appears. We are thus let to
considering two generalized exponential maps as equivalent if all their
partial derivatives in the vertical directions, for each point of the base
M , coincide at the zero section. We call formal exponential map an
equivalence class of generalized exponential maps.

If φ is a formal exponential map, then Tφ∗f ∈ Γ(ŜT ∗M) is con-
structed as above just by picking any generalized exponential map in
the given equivalence class. Choosing local coordinates {xi} on the
base and {yi} on the fiber, we have explicit expressions

(2.2) φix(y) = xi + yi +
1

2
φix,jky

jyk +
1

3!
φix,jkly

jykyl + · · · ,

and the class of φ is simply given by the collection of coefficients φx,•.
One can easily see that the coefficients φix,jk of the quadratic term
transform as the components of a connection. We will refer to this as

4Here Ŝ denotes the formal completion of the symmetric algebra.
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the connection in φ. Also explicitly we may compute

(2.3) Tφ∗xf = f(x) + yi∂if(x) +
1

2
yjyk(∂j∂kf(x) + φix,jk∂if(x)) + · · · .

Above we have proved that sections of ŜT ∗M of the form Tφ∗f
satisfy (the Taylor expansion of) equation (2.1). One can easily prove
that the converse is also true. In fact, one has even more. We may
think of the Taylor expansion of the r.h.s. as an operator acting on the

section Tφ∗f . Actually, for every section σ of ŜT ∗M one can define

a section R(σ) of T ∗M ⊗ ŜT ∗M by taking the Taylor expansion of
−dyσ◦(dyφ)−1◦dxφ. Notice that R is C∞(M)-linear. As a consequence
we have a connection5

(X, σ) ∈ Γ(TM)⊗ Γ(ŜT ∗M) 7→ iXR(σ) ∈ Γ(ŜT ∗M)

on ŜT ∗M . One can check that this connection is flat. We can also
regard R as a one-form on M taking values in the bundle End(ŜT ∗M).

Also notice that ŜT ∗M is a bundle of algebras and that R acts as
a derivation; so we can regard R as a one-form on M taking values

in the bundle Der(ŜT ∗M), which is tantamount to saying the bundle

of formal vertical vector fields X̂(TM) := TM ⊗ ŜT ∗M . Notice that
the flatness of the connection may be expressed as the MC (Maurer–
Cartan) equation

(2.4) dxR +
1

2
[R,R] = 0,

where [ , ] is the Lie bracket of vector fields. Finally, equation (2.1)
may now be expressed by saying that dσ+R(σ) = 0 if σ is of the form
Tφ∗f for some f . Below we will see that also the converse is true.

We first extend this connection to a differential D on the complex

of ŜT ∗M -valued differential forms Γ(Λ•T ∗M ⊗ ŜT ∗M).6 The main
result is that the cohomology of D is concentrated in degree zero and
H0
D = Tφ∗C∞(M). This can be easily seen working in local coordinates

again:

R(σ)i =
∂σ

∂yk

((
∂φ

∂y

)−1
)k

j

∂φj

∂xi
.

5This is the Grothendieck connection in the presentation given by the choice of
the formal exponential map φ.

6Since Γ(Λ•T ∗M ⊗ ŜT ∗M) is the algebra of functions on the formal graded
manifold M := T [1]M ⊕ T [0]M , the differential D gives M the structure of a
differential graded manifold. In particular since D vanishes on the body, we may
linearize at each x ∈M and get an L∞-algebra structure on TxM [1]⊕TxM⊕TxM .
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Using (2.2) we get R = δ+R′ with δ = −dxi ∂
∂yi

and R′ a one-form on

the base taking value in the vector fields vanishing at y = 0. Hence we
have D = δ +D′ with

D′ = dxi
∂

∂xi
+R′.

Notice that δ is itself a differential and that it decreases the polynomial
degree in y, whereas the operator D′ does not decrease this degree. The
fundamental remark is that the cohomology of δ consists of zero forms
constant in y. This is easily shown by introducing δ∗ := yi ι ∂

∂xi
and

observing that (δδ∗+ δ∗δ)σ = kσ if σ is an r-form of degree s in y and
r + s = k. By cohomological perturbation theory the cohomology of
D is isomorphic to the cohomology of δ, which is what we wanted to
prove.

Finally, observe that, if σ is a D-closed section, we can immediately
recover the function f for which σ = Tφ∗f simply by setting y = 0,
f(x) = σx(0), as follows from (2.3).

We can now extend the whole story to other natural objects. Let
V(M) denote the multivector fields onM (i.e., sections of ΛTM), Ω(M)
the differential forms,Wj(M) := Γ(SjTM) and Oj(M) := Γ(SjT ∗M).

We use similar symbols for formal vertical vector fields V̂(TM) :=

Γ(ΛTM ⊗ ŜT ∗M) and formal vertical differential forms Ω̂(TM) :=

Γ(ΛT ∗M ⊗ ŜT ∗M). We have injective maps

Tφ∗ := T (φ∗)
−1 : V(M)→ V̂(TM), Tφ∗ : Ω(M)→ Ω̂(TM).

Similarly, we set Ŵj(TM) := Γ(SjTM ⊗ ŜT ∗M) and Ôj(TM) :=

Γ(SjT ∗M ⊗ ŜT ∗M) and get

Tφ∗ := T (φ∗)
−1 : Wj(M)→ Ŵ(TM), Tφ∗ : Oj(M)→ Ôj(TM).

We can now let R naturally act on V̂(TM), Ω̂(TM), Ŵj(TM) and

Ôj(TM) by Lie derivative and hence get a differential D on the cor-
responding complexes of differential forms. Notice that D respects
the Gerstenhaber algebra structure (by the vertical Schouten–Nijenhuis

bracket) of V̂(TM) and the differential complex structure (by the ver-

tical differential) of Ω̂(TM), so that these structures are induced in
cohomology. By the same argument as above, we get that all these

cohomologies are concentrated in degree zero with H0
D(V̂(TM)) =

Tφ∗V(M), H0
D(Ω̂(TM)) = Tφ∗Ω(M), H0

D(Ŵj(TM)) = Tφ∗Wj(M),

and H0
D(Ôj(TM) = Tφ∗Oj(M). Notice in particular that a section is
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in the image of Tφ∗ if and only if

dxσ + LRσ = 0.

In order to recover, in local coordinates, the global object correspond-
ing to a solution to the above equation, we should only observe that
by assumption dyφx(0) = id, so that it is enough to evaluate the com-
ponents of σ at y = 0 and to replace formally each dyi by dxi and each
∂
∂yi

by ∂
∂xi

. More explicitly, if σx(y) = σx;i1,...,in(y) dyi1 · · · dyin is equal

to Tφ∗ω, then
ω(x) = σx;i1,...,in(0) dxi1 · · · dxin .

If on the other hand, σx(y) = σi1,...,inx (y) ∂
∂yi1
· · · ∂

∂yin
is equal to Tφ∗(Y ),

then

Y (x) = σi1,...,inx (0)
∂

∂xi1
· · · ∂

∂xin
.

One can immediately extend these results to direct sums of the
vector bundles above. Notice that cohomology also commutes with

direct limits. This implies that the cohomology of
∏

j Ŵj(TM) is

also concentrated in degree zero and coincides with Tφ∗
∏

jWj(M).

Now we have that
∏

jWj(M) = Γ(ŜTM) whereas
∏

j Ŵj(TM) =

Γ(Ŝ(TM ⊗ T ∗M)). Similarly, we see that the cohomology with values

in Ŝ(T ∗M ⊗ T ∗M) is concentrated in degree zero and coincides with

Tφ∗Γ(ŜT ∗M). To summarize:

H•D(Γ(Ŝ(TM ⊗ T ∗M))) = H0
D(Γ(Ŝ(TM ⊗ T ∗M))) = Tφ∗Γ(ŜTM)

and

H•D(Γ(Ŝ(T ∗M ⊗ T ∗M))) = H0
D(Γ(Ŝ(T ∗M ⊗ T ∗M))) = Tφ∗Γ(ŜT ∗M).

2.1. Gauge transformations. We now wish to consider the effects of
changing the choice of formal exponential map. Namely, let φ be a fam-
ily of formal exponential maps depending on a parameter t belonging to
an open interval I. We may associate to this family a formal exponen-
tial map ψ for the manifold M × I by ψ(x, t, y, τ) := ((φ)x,t(y), t+ τ),
where τ denotes the tangent variable to t. We want to define the as-

sociated connection R̃: on a section σ̃ of ŜT ∗(M × I) we have, by
definition,

R̃(σ̃) = −(dyσ̃, dτ σ̃) ◦
(

(dyφ)−1 0
0 1

)
◦
(

dxφ φ̇
0 1

)
.

So we can write R̃ = R + C dt+ T with R defined as before (but now
t-dependent),

C(σ̃) = −dyσ̃ ◦ (dyφ)−1 ◦ φ̇
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and T = −dt ∂
∂τ

. We now spell out the MC equation for R̃ observing
that dxT = dtT = 0 and that T commutes with both R and C. The
(2, 0)-form component over M × I yields again the MC equation for R,
whereas the the (1, 1)-component reads

Ṙ = dxC + [R,C].

Hence, under a change of formal exponential map, R changes by a

gauge transformation with generator the section C of X̂(TM).
Finally, if σ is a section in the image of Tφ∗, then by a simple com-

putation one gets

σ̇ = −LCσ,
which can be interpreted as the associated gauge transformation for
sections.

3. PSM in formal coordinates

The Poisson sigma model (PSM) [16, 19] is a topological field theory
with source a two-manifold Σ and target a Poisson manifold M . Before
getting to the BV action for the PSM, we fix the notations and intro-
duce the AKSZ formalism [1] (for a gentle introduction to it, especially
suited to the PSM, see [10]). Let Map(T [1]Σ, T ∗[1]M) be the infinite
dimensional graded manifold of maps from T [1]Σ to T ∗[1]M . It fibers
over Map(T [1]Σ,M). We denote by X a “point” of Map(T [1]Σ,M) and
by η a “point” of the fiber. In local target coordinates, the super fields
X and η have simple expressions:

Xi = X i + ηi+ + βi+,

ηi = βi + ηi +X+
i ,

where we have ordered the terms in increasing order of form degree on
Σ. The ghost number is 0 for X and η, 1 for β, −1 for η+ and X+,
and −2 for β+. As unperturbed BV action one considers

S0 :=

∫
Σ

ηi dX
i.

Notice that it satisfies the classical master equation (CME) (S0, S0) = 0
if Σ has no boundary or if appropriate boundary conditions are taken
(which we assume throughout). Here ( , ) is the BV bracket corre-
sponding to the odd symplectic structure on the space of fields for
which the superfield η is the momentum conjugate to the superfield X.
Formally one may also assume ∆S0 = 0 where ∆ is the BV operator,
so S0 satisfies also the quantum master equation (QME).
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To perturb this action, we pick a multivector field Y on M . We may
regard it as a function on T ∗[1]M . We then define SY as the integral
over T [1]Σ of the pullback of Y by the evaluation map

ev : T [1]Σ×Map(T [1]Σ, T ∗[1]M)→ T ∗[1]M.

Explicitly, for a k-vector field Y , we have

SY =
1

k!

∫
Σ

Y i1,...,ik(X)ηi1 . . .ηik .

This construction has several interesting properties. First, (S0, SY ) = 0
(for ∂Σ = ∅ or with appropriate boundary conditions). Second, for any
two multivector fields Y and Y ′, we have (SY , SY ′) = S[Y,Y ′]. The BV
action for the PSM with target Poisson structure π is recovered as
S = S0 +Sπ. Notice that by the above mentioned properties it satisfies
the CME. As for the quantum master equation, we refer to [12], where
it is shown that one can assume ∆Sπ = 0 if the Euler characteristic of
Σ is zero or if π is unimodular. In the latter case, one picks a volume
form v on M such that divv π = 0 and defines ∆ according to it.

We consider Sπ as a perturbation, so we expand the functional inte-
gral around the critical points of S0. They consist of closed superfields.
In particular, the component X of X will be a constant map, say with
image x ∈M . Fluctuations will explore only a formal neighborhood of
x in M , so as in [11, §6], it makes sense to make the change of variables

X = φx(A), η = dφx(A)∗,−1B,

where φ is a formal exponential map and the new superfields (A,B) are
in Map(T [1]Σ, T ∗[1]TxM). Notice that this change of variables

φx : Map(T [1]Σ, T ∗[1]TxM)→ Map(T [1]Σ, T ∗[1]M)

is a local symplectomorphism and that

Tφ∗xS0 =

∫
Σ

Bi dA
i.

The moduli space of vacua (i.e., the space of critical points modulo
gauge transformations) is now Hx := H•(Σ)⊗TxM⊕H•(Σ)⊗T ∗xM [1].
(Here H•(Σ) is regarded as a graded vector space with its natural
grading.) We should regard H =

⋃
xHx as a vector bundle over M ,

but for the moment we concentrate on a single x. Later on we will also
consider the remaining integration over vacua and, in particular, over
M (which actually shows up as the space of constant maps Σ → M);
see Section 5.
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We may repeat the AKSZ construction on Map(T [1]Σ, T ∗[1]TxM).
In particular, if Y is a function of degree k on T ∗[1]TxM (i.e., a formal
vertical k-vector field), we may construct a functional

SY =
1

k!

∫
Σ

Y i1,...,ik(A)Bi1 . . .Bik .

In particular, we have
Tφ∗xSπ = STφ∗xπ.

As a result, we have a solution Sx := Tφ∗xS of the QME and may
compute its partition function Zx (as a function on Hx) upon inte-
grating over a Lagrangian submanifold L of a complement of Hx in
Map(T [1]Σ, T ∗[1]TxM):

Zx :=

∫
L

e
i
~Sx .

Notice [18, 12] that there is an induced BV operator ∆ on Hx and that
Zx satisfies ∆Zx = 0. Moreover, upon changing the gauge fixing L, Zx
changes by a ∆-exact term. We wish to compare the class of Zx with
the globally defined partition function morally obtained by integrating
in Map(T [1]Σ, T ∗[1]M). For this we have to understand the collection

{Zx}x∈M as a section Ẑ : x 7→ Zx of ŜH∗ (we hide the dependency on ~
here) and compute how it changes over M . Using all properties above

and setting Ŝ : x 7→ Sx, we get7

dxẐ =
i

~

∫
L

e
i
~ Ŝ SdxTφ∗π = − i

~

∫
L

e
i
~ Ŝ (SR, Ŝ).

Notice that this may also be rewritten as

dxẐ = −∆

∫
L

e
i
~ Ŝ SR

if we assume ∆SR = 0. This is correct if Σ has zero Euler characteristic
or if divTφ∗v R = 0. From the equation dxTφ

∗v + LRTφ
∗v = 0, we see

that the latter condition is satisfied if and only if dxTφ
∗v = 0. Given a

volume form v, it is always possible to find a formal exponential map φ
satisfying this condition; actually, one can even get Tφ∗xv = dy1 . . . dyd

∀x.
We can collect the above identities nicely if we define8

S̃ := Ŝ + SR.

7The choice of L might be different for different xs, but for simplicity we assume
it not to be the case.

8For π = 0, S̃ is also the BV action for the BF∞-theory [18] with target the L∞
algebra of footnote 6. See also [14].
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Notice that S̃ is of total degree zero (the term SR has ghost number
minus one but is a one-form on M) and satisfies the modified CME

dxS̃ +
1

2
(S̃, S̃) = 0

and by assumption also ∆S̃ = 0 (so it satisfies a modified QME as
well). We then define

(3.1) Z̃ :=

∫
L

e
i
~ S̃

as a nonhomogeneous differential form on M taking values in H. It
satisfies

dxZ̃ − i~∆Z̃ = 0.

Remark 3.1. We are now also in a position to understand the change

of Z̃ under a change of the formal exponential map. Using the results
of subsection 2.1, we immediately see that

˙̃
Z = (dx − i~∆)

∫
L

e
i
~ S̃

i

~
SC ,

assuming ∆SC = 0. The assumption is verified if Σ has zero Euler
characteristic or if we let φ vary only in the class of formal exponential
maps that make Tφ∗v constant. Notice that the space of such formal

exponential maps is connected. Therefore, the class of Z̃ under these
transformations is independent of all choices needed to compute it.

Finally, we consider the effective action S̃eff defined by the identity

Z̃ = e
i
~ S̃eff . It is a differential form taking values in ŜH∗[[~]] and satisfies

the modified QME

(3.2) dxS̃eff +
1

2
(S̃eff, S̃eff)− i~∆S̃eff = 0.

This equation formally follows from the properties of BV integrals.
In the case when Σ has no boundary, it may be proved directly by

considering the expansion of S̃eff in Feynman diagrams and applying the
usual Stokes theorem techniques on integrals over configuration spaces,
see [17, 13]. If Σ has a boundary, additional terms corresponding to
several points collapsing to the boundary together may appear and
spoil (3.2). From now on we therefore assume that Σ is closed.

Equation (3.2) contains both information on the QME satisfied by

the zero-form component S̃
(0)
eff and on its global properties. The equa-

tions are in general mixed: we do not simply get a flat connection with

respect to which S̃
(0)
eff is covariantly constant. However, it is possible to

find a modified quantum BV canonical transformation that produces
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a flat connection with respect to which the zero form part of the effec-
tive action is horizontal and hence global; we postpone this discussion
to Section 6. In the remaining of this Section, we concentrate on two
special cases where the general theory is not needed.

The first special case is when Σ is a torus. In Section 4.3, see
Lemma 4.4, we will show that, in an appropriate gauge, there are no
quantum corrections, so

S̃eff = S̃
(0)
eff + S̃

(1)
eff ,

where S̃
(0)
eff is the zero-form obtained by restricting STφ∗π to vacua and

S̃
(1)
eff is the one-form obtained by restricting SR to vacua. One can

explicitly check, see Section 5, that ∆S̃
(0)
eff = ∆S̃

(1)
eff = 0. Hence the

modified QME now simply yields the CME for S̃
(0)
eff ,

(S̃
(0)
eff , S̃

(0)
eff ) = 0,

the flatness condition for S̃
(1)
eff ,

dxS̃
(1)
eff +

1

2
(S̃

(1)
eff , S̃

(1)
eff ) = 0,

and the fact that S̃
(0)
eff is covariantly constant,

dxS̃
(0)
eff + (S̃

(1)
eff , S̃

(0)
eff ) = 0.

Now notice that (S̃
(1)
eff , ) is just the natural action of R on the sections

of H. Hence we can conclude that S̃
(0)
eff is just Tφ∗(S|vacua).

The second special case is when π is regular and unimodular (and
Σ is any two-manifold). Also in Section 4.3 we will show that, upon

choosing an appropriate formal exponential map, S
(0)
eff and S

(1)
eff have

no quantum corrections. Therefore, we may use the same reasoning as

above and conclude that S̃
(0)
eff is just Tφ∗(S|vacua).

A final important remark is that in the two cases above the effective
action depends polynomially on all vacua but, possibly, for those re-

lated to the X field; therefore, S
(0)
eff is a section of SH̃∗⊗ ŜT ∗M , where

H̃x = H>0(Σ)⊗ TxM ⊕H•(Σ)⊗ T ∗xM [1] is the moduli space of vacua
excluding those for X. The corresponding global effective action S|vacua

will then be a section of SH̃∗, i.e., a function on the vector bundle H̃
(polynomial in the fibers). Notice that this vector bundle is diffeomor-
phic, by choosing a connection (e.g., the one contained in the choice
of φ), to the natural global definition of the moduli space of vacua as
presented, e.g., in [5].
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4. Some computations of the effective action

In this Section we discuss the perturbative computation for the ef-
fective action and show that it has no quantum corrections in two
important cases.

4.1. Factorization of Feynman graphs. Consider the effective ac-

tion S̃eff defined in (3.1) by the identity Z̃ = e
i
~ S̃eff . Here the Lagrangian

subspace L in the complement of Hx inside the space of fields

(4.1) Fx = Map(T [1]Σ, T ∗[1]TxM) ∼= Ω•(Σ)⊗ (TxM ⊕ T ∗x [1]M)

accounts for the gauge fixing. Let L have the factorized form

(4.2) L = LK ⊗ (TxM ⊕ T ∗x [1]M)

where LK ⊂ Ω•(Σ) is defined as

LK = kerP ∩ kerK

with P the projector from differential forms on Σ to (the chosen rep-
resentatives of) de Rham cohomology of Σ and

K : Ω•(Σ)→ Ω•−1(Σ)

a linear operator satisfying
(4.3)

dK +Kd = id− P , PK = KP = 0, KT = K, K2 = 0

(i.e., K is the chain homotopy between identity and the projection to
cohomology, also known as a parametrix). The transpose is w.r.t. the
Poincaré pairing on forms

∫
Σ
• ∧ •. We assume the operator K (which

now determines the gauge fixing) to be an integral operator with a
distributional integral kernel ω ∈ Ω1(Σ × Σ) – the propagator. An
explicit construction may be done along the same lines as in [8, 9]. Let
us introduce a basis {χα} in the cohomology space H•(Σ); denote the
matrix of the Poincaré pairing by Παβ =

∫
Σ
χα ∧ χβ. In terms of ω,

properties (4.3) read:

(1) dω = δdiag−
∑

α,β(Π−1)αβχα⊗χβ, where δdiag is the delta-form
supported on the diagonal of Σ× Σ;

(2)
∫

Σ(1)
ω π∗1χα =

∫
Σ(2)

ω π∗2χα = 0, ∀α, where Σ(1) and Σ(2) denote

the two factors of Σ×Σ, and π1 and π2 are the two projections
from Σ× Σ to its factors;

(3) t∗ω = ω, where t : Σ×Σ→ Σ×Σ is the map swapping the two
copies of Σ;

(4)
∫

Σ(2)
π∗12ω π

∗
23ω = 0, where Σ(2) denotes the middle factor in

Σ×Σ×Σ, whereas π12 and π23 are the projections from Σ×Σ×Σ
to the first two and last two factors, respectively.
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Notice that the restriction of ω to the configuration space C0
2(Σ) :=

{(u, v) ∈ Σ : u 6= v} is smooth and it extends to the Fulton–MacPherson–
Axelrod–Singer compactification as a smooth form. In [13] it is shown
how to implement the property PK = KP = 0 on the propagator.
Once this is done, the propagator will also satisfy the property K2 = 0.
This is proved exactly as in [12, Lemma 10].

The perturbation expansion for the effective action (3.1) has the form

(4.4) Seff(Az.m.,Bz.m.; ~) =
∑

Γ

(i~)l(Γ)

|Aut(Γ)|
W target

Γ (Az.m.,Bz.m.) ·W source
Γ

where the sum is over connected oriented graphs Γ with leaves9 deco-
rated by basis cohomology classes {χα}; l(Γ) stands for the number of
loops, |Aut(Γ)| is the number of graph automorphisms; {Az.m.,Bz.m.} =
{Aαi,Bαi } are the coordinates on the moduli space of vacua Hx.

The “target part” W target
Γ of the contribution of a graph to S̃eff is a

homogeneous polynomial function on Hx of degree equal to the number
of leaves, computed using the following set of rules:

(1) to an incoming leaf of Γ decorated by χα one associates Aαi

(2) to an outgoing leaf decorated by χα one associates Bαi
(3) to a vertex with m inputs and n outputs one associates the

expression

∂i1 · · · ∂imY j1···jn

– the m-th derivative of n-vector10 contribution to the action
S.

(4) for every edge contract the dummy Latin indices for the two
constituent half-edges.

The result of contraction is a polynomial function on Hx.
The “source” (or “de Rham”) part W source

Γ is a number defined as
(4.5)

W source
Γ =

∫
Σ×V (Γ)

 ∏
edges (hin,hout)

π∗v(hin),v(hout)ω

 ·( ∏
leaves l

π∗v(l)χαl

)

9A leaf for us is a loose half-edge, i.e., one not connected to another half-edge to
form an edge.

10In the standard setup for the Poisson sigma model, only the perturbation by
Poisson bivector field Y = πij∂i ∧ ∂j is present in the action, hence all vertices
have to have exactly two outputs, otherwise the graph does not contribute. In the
present case, we also have the vector field R.
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where V (Γ) is the number of vertices, πv : Σ×V (Γ) → Σ is the projection
to v-th copy of Σ, πu,v : Σ×V (Γ) → Σ×Σ is the projection to u-th and v-
th copies of Σ; v(h) is the vertex incident to the half-edge h. Notice that
all these integrals converge. The usual way to show this is to observe
that the integrals are actually defined on configuration spaces (i.e., the
complements of all diagonals in the Cartesian products of copies of Σ)
and that the propagators ω extend to their compactifications.

Remark 4.1. The factorization into source- and target contributions for
Feynman diagrams in the expansion (4.4) is due to the factorization of
the space of fields (4.1) and to the fact that our ansatz for the gauge
fixing (4.2) is compatible with this factorization.

Remark 4.2. The orientation of Γ is irrelevant for the source parts
W source

Γ .

4.2. Regular Poisson structures. If π is nondegenerate, it is always
possible to find a formal exponential map φ such that Tφ∗π is constant
(in the y variables). One simply has to go to formal Darboux coordi-
nates. Notice, moreover, that divv π = 0 if for v one chooses v to be
the Liouville volume form ωk/k!, k = dimM/2. It then follows that
Tφ∗v is also constant and that divTφ∗v R = 0. A slight generalization
occurs when π is regular (i.e., its kernel has constant rank) and uni-
modular (notice that this is not guaranteed if π is degenerate [20]).
After choosing v such that divv π = 0, it is again possible to find a
formal exponential map φ such that Tφ∗π and Tφ∗v are both constant
and hence divTφ∗v R = 0.

In the perturbative expansion, we may thus assume that we have
a bivalent vertex, corresponding to Tφ∗π, with no incoming arrows.
If one of the outgoing arrows is replaced by a vacuum mode (i.e., a
cohomology class), the result is zero by the property PK = KP = 0,
otherwise it is zero by the property K2 = 0. As a result, every graph
containing a Tφ∗π-vertex will vanish, apart from the one with both

outgoing arrows evaluated on vacua. As a consequence S
(0)
eff and S

(1)
eff

have no quantum corrections.

4.3. Axial gauge on the torus Σ = T2 := S1 × S1. In the case of a
torus, differential forms have a bigrading with respect to the two circles.
One may choose the axial gauge by setting the superfields to vanish if
they have nonzero degree with respect to the first circle. Näıvely this
implies the propagator to be the product of a propagator for the de
Rham differential on the first circle and the identity operator on the
second circle (just plug in the gauge fixed fields into in the unperturbed
action to realize this). This argument however does not take vacua into
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account nor the fact that the axial gauge fixing does not fix all the gauge
freedom. In fact, one can prove that the propagator in the axial gauge
has one additional term, see (4.7) below.

To start with a rigorous construction of the propagator, observe that
differential forms on a circle admit the Hodge decomposition

Ω•(S1) = Ω•Harm(S1)︸ ︷︷ ︸
Span(1,dτ)

⊕ Ω̃0(S1)︸ ︷︷ ︸
{f(τ) |

∫
S1 f(τ)dτ=0}

⊕ Ω̃1(S1)︸ ︷︷ ︸
{g(τ)dτ |

∫
S1 g(τ)dτ=0}

(In our convention the coordinate τ on the circle runs from 0 to 1).
The associated chain homotopy operator is

KS1 : g(τ)dτ 7→
∫
S1

ωS1(τ, τ ′)g(τ ′)dτ ′

with the integral kernel

ωS1(τ, τ ′) = θ(τ − τ ′)− τ + τ ′ − 1

2

Projection to harmonic forms on the circle (representatives of cohomol-
ogy) is

PS1 : f(τ) + g(τ)dτ 7→
∫
S1

(dτ ′ − dτ) ∧ (f(τ ′) + g(τ ′)dτ ′)

For the torus we may decompose the de Rham complex in the fol-
lowing way:

(4.6) Ω•(S1 × S1) = Ω•(S1)⊗̂Ω•(S1) =

= Ω•Harm(S1)⊗ Ω•Harm(S1)︸ ︷︷ ︸
∼=H•(S1×S1)

⊕ Ω̃0(S1)⊗̂Ω• ⊕ Ω•Harm(S1)⊗ Ω̃0(S1)︸ ︷︷ ︸
LK

⊕

⊕ Ω̃1(S1)⊗̂Ω• ⊕ Ω•Harm(S1)⊗ Ω̃1(S1)

The associated chain homotopy operator is

(4.7) K = KS1 ⊗ idS1︸ ︷︷ ︸
KI

+PS1 ⊗KS1︸ ︷︷ ︸
KII

: Ω•(S1 × S1)→ Ω•−1(S1 × S1)

Its integral kernel (the propagator) is

(4.8) ω =

(
θ(σ − σ′)− σ + σ′ − 1

2

)
· δ(τ − τ ′) · (dτ ′ − dτ)︸ ︷︷ ︸

ωI

+

+ (dσ′ − dσ) ·
(
θ(τ − τ ′)− τ + τ ′ − 1

2

)
︸ ︷︷ ︸

ωII
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where we denote by σ, τ ∈ R/Z the coordinates on the first and the
second circles, respectively.

Remark 4.3. The chain homotopy (4.7) arises from the composition of
two quasi-isomorphisms:

Ω•(S1)⊗̂Ω•(S1) Ω•Harm(S1)⊗ Ω•(S1)⊕ Ω̃0(S1)⊗̂Ω•(S1)⊕ Ω̃1(S1)⊗̂Ω•(S1)y
Ω•Harm(S1)⊗ Ω•(S1) Ω•Harm ⊗ Ω•Harm ⊕ Ω•Harm(S1)⊗ Ω̃0(S1)⊕ Ω•Harm(S1)⊗ Ω̃1(S1)y

Ω•Harm(S1)⊗ Ω•Harm(S1)

i.e., we first contract the first circle to cohomology, then the second
one.

4.4. Vanishing of quantum corrections.

Lemma 4.4. For the Poisson sigma model in the axial gauge on torus,
the source parts W source

Γ vanish for all connected graphs Γ except for
trees with one vertex (“corollas”).

Proof. Let us introduce the basis in cohomology of the torus:

χ(0,0) = 1, χ1,0 = dσ, χ(0,1) = dτ, χ(1,1) = dσ ∧ dτ
Define a decoration c of Γ as an assignment of bidegree

c(h) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}
to each half-edge h of Γ (so that on leaves the bidegree coincides with
the prescribed leaf decoration α) together with an assignment of an
index c(e) ∈ {I, II} to each edge e. Define the source part for a
decorated graph Γ as
(4.9)

W source
Γ,c =

∫
Σ×V (Γ)

 ∏
edges e=(hin,hout)

π∗v(hin),v(hout)ωc(e)|c

·( ∏
leaves l

π∗v(l)χαl

)
where the ω|c symbol means the component of the propagator (as an el-
ement of Ω•(S1×S1)⊗̂Ω•(S1×S1)) of de Rham bidegrees c(hin), c(hout)
where hin, hout are the constituent half-edges of the edge; ωc(e) is one of
the two pieces of propagator, ωI or ωII , as defined in (4.8). Then we
have

W source
Γ =

∑
decorations c

W source
Γ,c

The source part W source
Γ,c vanishes automatically unless the following

conditions are satisfied simultaneously:
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(i) At every vertex there is exactly one incident half-edge decorated
by (1, •), all others are (0, •).

(ii) At every vertex there is exactly one incident half-edge decorated
by (•, 1), all others are (•, 0). (This half-edge may be the same
as in (i)).

(iii) Compatibility between edge decorations and half-edge decora-
tions: for any edge e = (h1, h2) we have

(c(e) = I) =⇒
[
c(h1) = (0, 0), c(h2) = (0, 1) or
c(h1) = (0, 1), c(h2) = (0, 0)

(c(e) = II) =⇒
[
c(h1) = (0, 0), c(h2) = (1, 0) or
c(h1) = (1, 0), c(h2) = (0, 0)

(iv) Number of edges decorated as I adjacent to any given vertex
should be different from one.

(v) If a vertex has no adjacent I-edges, then the number of adjacent
II-edges should be different from one.

Requirements (i,ii) follow directly from degree counting in (4.9); (iii)
follows from the formula for propagator (4.8); (iv,v) follow from the
property KS1PS1 = 0 and from the fact that harmonic forms on a
circle are closed under wedge multiplication.

Fix some decoration c of Γ satisfying (i–v). Consider the subgraph
ΓI of Γ obtained by deleting all II-edges in Γ; ΓI may be disconnected.
Let ΓI = taΓaI where ΓaI are the connected components of ΓI . Due to
(ii), the number of vertices V a

I of ΓaI is equal to the number of (0, 1)-half-
edges in ΓaI which is in turn greater or equal to the number of edges
Ea
I due to (iii). Hence the Euler characteristic of ΓaI non-negative:

V a
Γ − Ea

Γ ≥ 0. Therefore ΓaI is either a tree or a 1-loop graph. Next,
property (iv) shows that ΓaI has to be a wheel graph, with arbitrary
number of leaves attached at vertices, or a corolla. On the other hand,
if ΓI contains a wheel then the corresponding source part vanishes:

(4.10)

W source
Γ,c =

∫
(S1×S1)×V

(dτ1−dτ2)δ(τ2−τ1)∧· · ·∧(dτn−dτ1)δ(τ1−τn)∧F =∫
(S1×S1)×V

(dτ1 ∧ dτ2 ∧ · · · ∧ dτn + (−1)ndτ2 ∧ · · · dτn ∧ dτ1)︸ ︷︷ ︸
=0

∧

∧ δ(τ2 − τ1) · · · δ(τ1 − τn) ∧ F = 0

where n is the length of the wheel and F ∈ Ω•((S1 × S1)×V ) is some
differential form.
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Remark 4.5. Argument (4.10) has the fault that the integrand is singu-
lar and the result is 0 · δ(0). This can be remedied by regularizing the
propagator ω, e.g., by changing δ(τ − τ ′) in (4.8) to a smeared delta-
function. Notice that the source parts of all diagrams except corollas
still vanish exactly: in this vanishing argument the chain homotopy
equation is never used; we only use the de Rham bigrading properties,
PK = 0 and the fact that harmonic forms on a circle are closed under
multiplication.

Thus we have shown that W source
Γ,c vanishes unless ΓI is a collection

of corollas (i.e. there are no I-edges).
Now fix a decoration c satisfying (i–v) with c(e) = II for all edges.

Repeating the Euler characteristic argument as above (using properties
(i,iii)), we show that Γ has to be either a tree or a 1-loop graph and
using property (v) we show that it has to be either a wheel or a corolla.
If it is a wheel then

(4.11) W source
Γ,c =

∫
(S1×S1)×V

(dσ1 − dσ2) ∧ · · · ∧ (dσV − dσ1) ∧ F =

=

∫
(S1×S1)×V

(dσ1 ∧ · · · ∧ dσV + (−1)V dσ2 ∧ · · · ∧ dσV ∧ dσ1)︸ ︷︷ ︸
=0

∧F =

= 0

Therefore W source
Γ,c vanishes for any decoration c unless Γ is a corolla.

This concludes the proof of the Lemma. �
An immediate consequence of the Lemma is that the effective ac-

tion Seff
x is just the restriction of the action Sx to vacua: there are no

quantum corrections.

5. The partition function on the torus

Let Seff be the global effective action on the moduli space of vacua for
the torus T2. In Lemma 4.4, we have shown that it has no quantum cor-
rections. The moduli space of vacua can be viewed as Map(R2[1], T ∗[1]M)
and in [5] it has been remarked that the action restricted to vacua is
the AKSZ action for this mapping space. In local coordinates the su-
perfields are

(5.1) xµ = xµ + e1η+µ
1 + e2η+µ

2 − sb+µ , eν = bν + e1ην1 + e2ην2 + sx+
ν ,
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where s = e1e2 is the generator of H2
dR(T2) normalized to

∫
R2[1]

ds s = 1.

If π is the Poisson bivector field on M , then

(5.2) Seff =
1

2

∫
R2[1]

ds πµν(x)eµeν .

There exists a canonical Berezinian given by the coordinate volume
form

(5.3) ν = dx · · · dx+ · · · db · · · db+ · · · dηi · · · dη+
i · · · .

If we denote with ∆ the corresponding Laplacian, the AKSZ action
satisfies

∆e
i
~Seff = 0

and defines a class in ∆-cohomology.

5.1. Kähler gauge fixing and Euler class. Now let π be symplectic
such that π−1 is the Kähler form of the hermitian structure (J, g). In
the complex coordinates {xi} of M we have πi̄ = igi̄. Let us fix a
complex structure on T2 defined by z = θ1 + τθ2, for τ = τ1 + iτ2 and
τ2 > 0. Let

η+µ
z = (η+µ

2 − τ̄ η
+µ
1 )/2iτ2 , ηzµ = (η2µ − τ̄ η1µ)/2iτ2 .

Let Lε,τ be the following Lagrangian submanifold of Map(R2[1], T ∗[1]M):

(5.4) η+i
z = η+ı̄

z̄ = ηzi = ηz̄ı̄ = x+ = b+ = 0 .

Let us define

pk = ηz̄k + Γjkiη
+i
z̄ bj ,

where Γ are the Christoffel symbols of the Levi-Civita connection. All
fiber coordinates b, p, η+ transform tensorially with respect to a trans-
formation of coordinates on M so that Lε,τ = (T ∗[1]+T ∗M+T [−1])M .
After a straightforward computation we get

Seff = τ2

(
Rj

sl̄k
gsr̄η+k

z̄ η+l̄
z bjbr̄ + gij̄pipj̄

)
=

1

2
τ2

(
Rµλbµbλ + gµνpµpν

)
.

The induced Berezinian on Lε,τ reads

√
ν =

dxµ · · · dbµ · · · dpµ · · · dη+µ · · ·
(2π)m

,
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with m = dimM .11 If we perform the fiberwise integration with respect
to the fibration Lε,τ → T [−1]M , we get

1

(2π)m

∫
dpµ · · · dbµ · · · e

i
~Seff =

=
1

(2π)m
1

(i~)
m
2

∫
dbµ · · ·

1

det(τ2gµν)1/2
e

i
2~ τ2R

µνbµbν =

=
1

(2π)
m
2

∫
db′µ · · ·

1

det(gµν)1/2
e−

1
2
Rµνb′µb

′
ν =

=
1

(2π)
m
2

√
g Pf(R) ∈ C∞(T [−1]M) = ΩM,

which, by the Chern–Gauss-Bonnet theorem, is a representative of the
Euler class. Notice that ~ and τ2 disappear in the final formula. (The
main reason for this is that scaling the b and p variables by the same
factor preserves the Berezinian since the former are odd and the latter
are even variables.) Finally, we can integrate over M getting

Z = χ(M),

the Euler characteristic of M . (Actually, by the argument in the Intro-
duction that the partition function should be the Euler characteristic,
we might in reverse think of this result as one more physical proof of
the Chern–Gauss–Bonnet theorem, in the case of Kähler manifolds.)

Remark 5.1. In this Section we have assumed the existence of a Kähler
structure on M . We expect the above results to hold if we just use
an almost Kähler structure, but computations become much more in-
volved.

Remark 5.2. Another possible gauge fixing consists in setting all +
variables to zero. The effective action then reduces to πµν(x)ηµ1ην2 and
is independent of the b variables. If M is compact, the integrals over the
η and x variables is finite (and proportional to the symplectic volume of
M); because of the b-integration, the partition function then vanishes.
If M is not compact, the partition function is ambiguous and of the
form 0 · ∞. This gauge fixing is then in general not equivalent to the
Kähler one used above. From the considerations in the Introduction,

11We choose here the standard convention that the measure for a pair of even
conjugate coordinates p, q is dp dq/(2πi~), whereas the measure for a pair of odd
conjugate coordinates b, η+ is i~ db dη+. This is consistent with the standard nor-
malization ∫

e
i
~pq

dp dq

2πi~
=

∫
e

i
~ bη

+

i~ db dη+ = 1.
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the Kähler gauge fixing is the one compatible with the Hamiltonian
interpretation of the theory.

5.2. Regularized effective action. We now show that the symme-
tries of Seff induce a regularization which allows one to compute the
partition function for every Poisson structure and to show that, inde-
pendently of the Poisson structure, one gets the Euler characteristic of
the target.12

The main remark is that the effective action and the symplectic
form are invariant under the action of the Lie algebra of divergenceless
vector fields of R2[1] on the moduli space of vacua. This Lie algebra
is spanned by the vector fields ∂

∂e1
, ∂
∂e2

, e2 ∂
∂e1

, e1 ∂
∂e2

and e1 ∂
∂e1
− e2 ∂

∂e2
.

The fifth vector field is generated by the previous ones and we are not
going to need it in the following. We lift the first four vector fields
first to Map(R2[1],M) and next to its cotangent bundle shifted by
one. We will denote the resulting vector fields by δ1 , δ2, K1 and K2,
respectively. Since they have degree −1 or 0 and the symplectic form
has degree −1, they are also automatically Hamiltonian with uniquely
defined Hamiltonian functions τ1 and τ2 (of degree −2), and ρ1 and ρ2

(of degree −1). The Lie algebra relations translate into the Poisson
bracket relations

(5.5) (τ2, ρ1) = τ1, (τ1, ρ2) = τ2, (τ1, ρ1) = 0, (τ2, ρ2) = 0.

Also notice that we have

(5.6) K1 ◦ δ1 = K2 ◦ δ2 = 0,

which implies that ρi Poisson commutes with every δi-exact function.
Finally, since we started with divergenceless vector fields, we get

(5.7) ∆τ1 = ∆τ2 = ∆ρ1 = ∆ρ2 = 0.

Remark 5.3. Even though we do not need the explicit form of these
vector fields and their Hamiltonian functions, we give them for com-
pleteness of our presentation. From the defining formulae δix = ∂x

∂ei
,

δie = ∂e
∂ei

K1x = e2 ∂x
∂e1

, K1e = e2 ∂e
∂e1

, K2x = e1 ∂x
∂e2

and K2e = e1 ∂e
∂e2

, we

12We thank T. Johnson-Freyd for pointing out this approach.
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get

δ1 = η+µ
1

∂

∂xµ
+ b+µ ∂

∂η+µ
2

+ η1µ
∂

∂bµ
− x+

µ

∂

∂η2µ

,

δ2 = η+µ
2

∂

∂xµ
− b+µ ∂

∂η+µ
1

+ η2µ
∂

∂bµ
+ x+

µ

∂

∂η1µ

,

K1 = η1µ
∂

∂η2µ

+ η+µ
1

∂

∂η+µ
2

,

K2 = η2µ
∂

∂η1µ

+ η+µ
2

∂

∂η+µ
1

.

The corresponding Hamiltonian functions, with respect to the symplec-
tic structure

ω =

∫
de2de1 δxµδeµ = δxµδx+

µ + δη+µ
1 δη2µ − δη+µ

2 δη1µ − δb+µδbµ,

are given by

τ1 = x+
µ η

+µ
1 − η1µb

+µ,

τ2 = x+
µ η

+µ
2 − η2µb

+µ,

ρ1 = −η1µη
+µ
1 ,

ρ2 = η2µη
+µ
2 .

We now turn back to the effective action. It turns out that it is not
only δ1- and δ2-closed, but actually exact:

Seff = δ2δ1σ, σ :=
1

2
πµν(x)bµbν .

From all the above it follows that Seff Poisson commutes not only with
τ1 and τ2, but also with ρ1 and ρ2. Notice that the Jacobi identity for
π implies (Seff , σ) = 0.

Now consider the regularized effective action

Sε,t1,t2eff := εSeff − i~(t1τ1 + t2τ2),

which satisfies the QME for all ε, t1, t2. By all the above it follows that

∂

∂t1
e

i
~S

ε,t1,t2
eff = ∆

(
1

t2
e

i
~S

ε,t1,t2
eff ρ1

)
,

∂

∂t2
e

i
~S

ε,t1,t2
eff = ∆

(
1

t1
e

i
~S

ε,t1,t2
eff ρ2

)
,

which means that, as long as the parameters t1 and t2 are different
from zero, the regularized effective action is independent of them up to
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quantum canonical transformations. We also have

∂

∂ε
e

i
~S

ε,t1,t2
eff = ∆

(
i

~t2
e

i
~S

ε,t1,t2
eff δ1σ

)
= −∆

(
i

~t1
e

i
~S

ε,t1,t2
eff δ2σ

)
,

which implies that, as long as one of the parameters t1 and t2 is different
from zero, the regularized effective action is independent of ε up to
quantum canonical transformations. This in particular means that the
partition function is independent of ε and that, in order to compute it,
we may simply set ε to zero.

To perform the final computation we further deform the regularized
effective action by adding one more irrelevant term. Namely, let G be
a function on Map(R2[1],M). Then

S0,t1,t2,G
eff := −i~(t1τ1 + t2τ2 + δ2δ1G)

satisfies the QME for all t1, t2, G. Moreover, if we take a path G(t) of
such functions, we get

∂

∂t
e

i
~S

0,t1,t2,G(t)
eff = ∆

(
e

i
~S

0,t1,t2,G(t)
eff δ1Ġ(t)

t2

)
= −∆

(
e

i
~S

0,t1,t2,G(t)
eff δ2Ġ(t)

t1

)
,

which means that, as long as one of the two parameters t1 and t2
is different from zero, adding the new term is irrelevant up to quan-
tum canonical transformations. We are now ready to compute the
partition function. Namely, we choose L := Map(R2[1],M) as the La-
grangian submanifold of Map(R2[1], T ∗[1]M) over which we integrate.
Since τ1|L = τ2|L = 0, we get

Z =

∫
L

e
i
~S

0,t1,t2,G
eff =

∫
Map(R2[1],M)

eδ2δ1G

and we already know that the last integral is independent of G. We
only have to make sure that G is chosen is such a way that the integral
is well defined (choosing G = 0, e.g., would lead to∞·0). A good choice
is G := gµν(x)η+µ

1 η+ν
2 where gµν is a Riemannian metric on target. An

explicit computation [3, 4] then shows that Z = χ(M).

Remark 5.4. Switching ε to zero first and then turning on the regular-
izing term in G is a bit formal since we pass through the solution to
the QME where both terms are absent. This solution has a singular
integral (of the type 0 · ∞) on L. In order to find a non formal reg-
ularization it is necessary to have additional structure on the Poisson
manifold. For instance let us look for G such that Sε,t1,t2,Geff satisfies the
QME for any ε, preserving the property that the variation of G pro-
duces a quantum canonical transformation. Indeed, let us assume G as
above but let g be possibly degenerate. If (Seff , G) = 0 then Sε,t1,t2,Geff
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satisfies the QME and the change of G is a quantum canonical trans-
formation. This property is equivalent to require that π ◦ g = 0 and
LV g = 0 for every vector field V tangent to the symplectic leaves. In
special cases we may find such a g and in addition a Kähler structure
on the leaves, compatible with the symplectic structure, such that a
gauge fixing given by a mixture of what we discussed in this subsection
and the Kähler one is available. We plan to investigate the geometrical
conditions needed for this gauge fixing in the future.

5.3. Regularization on the space of fields. The argument of the
previous subsection may formally be lifted to the space of fields to show
that the regularized action is actually independent, up to quantum
canonical transformations, of the Poisson structure. Let s1 and s2

denote the coordinates on the two S1 factors of the torus T2, and let
e1 and e2 denote the corresponding fiber coordinates on T [1]T2. We
now denote by δ1, δ2, K1 and K2 the lifts of the vector fields ∂

∂e1
, ∂
∂e2

,

e2 ∂
∂e1

and e1 ∂
∂e2

to the space of fields F = Map(T [1]T2, T ∗[1]M). We
denote by τ1, τ2, ρ1 and ρ2 their Hamiltonian functions. They satisfy
(5.5) and (5.6), and formally also (5.7).

Remark 5.5. For completeness, we give explicit expressions also in this
case, even if we are not going to need them. If we write

X = X + η+
1 e

1 + η+
2 e

2 + β+e1e2,

η = β + η1e
1 + η2e

2 +X+e1e2,

we then have

δ1X = −η+
1 , δ1η

+
2 = β+, δ1β = η1, δ1η2 = −X+,

δ2X = −η+
2 , δ2η

+
1 = −β+, δ2β = η2, δ2η1 = X+,

and

K1η
+
2 = η+

1 , K2η
+
1 = η+

2 ,

K1η2 = η1, K2η1 = η2.

With respect to the symplectic form

Ω =

∫
F
δXδη =

∫
T2

(δXµδX+
µ −δη

+µ
1 δη2µ+δη+µ

2 δη1µ+δβ+µδβµ) ds1ds2,
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the corresponding Hamiltonian functions are

τ1 =

∫
T2

(−η+µ
1 X+

µ + β+µη1µ) ds1ds2,

τ2 =

∫
T2

(−η+µ
2 X+

µ + β+µη2µ) ds1ds2,

ρ1 =

∫
T2

η+µ
1 η1µ ds1ds2,

ρ2 = −
∫
T2

η+µ
2 η2µ ds1ds2.

Notice that despite their non covariant look the above formulae are
actually globally well defined.

The action S = S0 + Sπ is δ1- and δ2-closed; it turns out that the
interaction part Sπ is actually exact:

Sπ = δ2δ1σπ, σπ :=

∫
T2

1

2
πµν(X)βµβν ds1ds2.

From all the above it follows that S Poisson commutes not only with
τ1 and τ2, but also with ρ1 and ρ2. Notice that the Jacobi identity for
π implies (S, σπ) = 0.

Now consider the regularized action

Sε,t1,t2 := S0 + εSπ − i~(t1τ1 + t2τ2),

which satisfies the CME and formally also the QME for all ε, t1, t2. By
all the above it follows that, formally,

∂

∂t1
e

i
~S

ε,t1,t2 = ∆

(
1

t2
e

i
~S

ε,t1,t2ρ1

)
,

∂

∂t2
e

i
~S

ε,t1,t2 = ∆

(
1

t1
e

i
~S

ε,t1,t2ρ2

)
,

which means that, as long as the parameters t1 and t2 are different
from zero, the regularized action is independent of them up to quantum
canonical transformations. We also have, again formally,

∂

∂ε
e

i
~S

ε,t1,t2 = ∆

(
i

~t2
e

i
~S

ε,t1,t2δ1σ

)
= −∆

(
i

~t1
e

i
~S

ε,t1,t2δ2σ

)
,

which implies that, as long as one of the parameters t1 and t2 is different
from zero, the regularized action is independent of ε up to quantum
canonical transformations. This in particular means that the partition
function is independent of ε and that, in order to compute it, we may
simply set ε to zero. It is now easy to see that, for a reasonable choice
of propagators, the effective action for S0,t1,t2 is simply the restriction
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to vacua, that is the the regularized effective action S0,t1,t2
eff considered

in the previous subsection.

6. Globalization of the effective action

We now go back to the problem of globalizing S̃
(0)
eff in the general case.

Recall that S̃eff ∈ Γ(ΛT ∗M ⊗ ŜH∗[[~]]) satisfies the modified QME

(3.2). We write S̃eff =
∑m

i=0 S̃
(i)
eff , where S̃

(i)
eff is the i-form component

and m = dimM . In form degree zero, we have

1

2
(S̃

(0)
eff , S̃

(0)
eff )− i~∆S̃

(0)
eff = 0,

which is the usual QME.
The modified QME is preserved under modified quantum canonical

transformations. Namely, T ∈ Γ(ΛT ∗M ⊗ ŜH∗[[~]]) of total degree −1
generates the infinitesimal transformation

δS̃eff = dxT + (S̃eff , T )− i~∆T

which preserves the modified QME at the infinitesimal level. Notice
that, setting T =

∑m
i=0 T

(i), we get in form degree zero

δS̃
(0)
eff = (S̃

(0)
eff , T

(0))− i~∆T (0),

which is a usual infinitesimal quantum canonical transformation. The
goal of this Section is to prove the following

Theorem 6.1. There is a quantum canonical transformation starting

at order 1 in ~ that makes the form degree zero part S̃
(0)
eff of the effective

action closed with respect to the induced Grothendieck differential D =

dx + (SR|vacua, ) on Γ(ΛT ∗M ⊗ ŜH∗[[~]]), where SR|vacua denotes the
evaluation of SR on vacua.

This will ensure that the so obtained effective action, call it Š
(0)
eff ,

is the image under Tφ∗ of a global effective action Seff . Since Š
(0)
eff ∈

Γ(ŜH∗[[~]]), it follows from the discussion just before subsection 2.1

that Seff is a section of ŜH̃∗[[~]],13 i.e., a formal power series in ~
of functions on H̃ (formal in the fiber coordinates). Again, we may

identify H̃ with the canonical global moduli space of vacua by using a
connection (e.g., the one in φ). By Remark 3.1, we conclude that the
class of Seff under quantum canonical transformations is a well-defined
object independent of all choices.

13Recall that H̃x = H>0(Σ)⊗ TxM ⊕H•(Σ)⊗ T ∗xM [1].
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6.1. Proof of Theorem 6.1. We start with a simple observation:

Lemma 6.2. Write S̃
(i)
eff =

∑∞
k=0 ~kS

(i)
k . If the propagator satisfies the

properties in (4.3), then S
(i)
0 = 0 ∀i > 1, whereas S

(0)
0 and S

(1)
0 are

obtained by the evaluation on vacua of Ŝ and SR, respectively.

Proof. The terms for k = 0 correspond to trees in the expansion in
Feynman diagrams; so, using the notations of Section 4.3, what we
have to prove is that the source part W source

Γ vanishes for any tree Γ
containing more than one vertex.

This is checked by the following degree counting argument. Consider
a tree Γ containing more than one vertex. Let Vk be the number of
vertices in Γ of internal valence (i.e., not counting the leaves) equal to
k ≥ 1. Then the total number of vertices is

V =
∑
k≥1

Vk,

the number of internal edges is

(6.1) E =
1

2

∑
k≥1

kVk,

and the Euler characteristic of Γ is

(6.2) 1 = V − E =
∑
k≥1

2− k
2

Vk.

Next, the source part W source
Γ vanishes automatically due to KP =

PK = 0 and K2 = 0, unless the following two properties hold for the
decoration of leaves by cohomology classes χα ∈ H•(Σ):

(i) At every vertex of internal valence 1 there are at least two inci-
dent leaves decorated by cohomology classes of non-zero degree.
(Otherwise W source

Γ vanishes due to KP = 0.)
(ii) At every vertex of internal valence 2 there is at least one incident

leaf decorated by a cohomology class of non-zero degree. (Other-
wise W source

Γ vanishes due to K2 = 0.)

This gives a lower bound E + 2V1 + V2 for the form degree of the
integrand in (4.5); since it should coincide with the dimension of the
space Σ×V it is integrated against, we have the inequality

(6.3) E + 2V1 + V2 ≤ 2V.

By (6.1) this is equivalent to

1

2
V1 +

∑
k≥3

k − 4

2
Vk ≤ 0.
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Subtracting (6.2) from this inequality, we get∑
k≥3

(k − 3)Vk ≤ −1

which is a contradiction. Thus it is impossible to find a decoration of
leaves of Γ satisfying properties (i) and (ii) simultaneously. Therefore,
W source

Γ vanishes for any decoration. �

We now set S(1)′ = S̃
(1)
eff − S

(1)
0 and S(i)′ = S̃

(i)
eff for i > 1.

Lemma 6.3. There is a modified quantum canonical transformation
starting at order 1 in ~ after which all S(i)′ for i ≥ 1 vanish.

Proof. We work by induction on the order of ~. At order zero the

statement holds by Lemma 6.2. Assume that S
(i)′
r = 0 ∀i ≥ 1 and ∀r <

k. Then the modified quantum master equation yields the identities

DS
(i)′

k + ΩS
(i+1)′

k = 0, ∀i ≥ 1,

with D := dx + (S
(1)
0 , ) and Ω := (S

(0)
0 , ). We already know that

D2 = Ω2 = 0 and that D and Ω commute. If T =
∑∞

r=k ~rTr is
a generator starting at the order k, we then have the infinitesimal
transformations

δS
(i)′

k = DT
(i−1)
k + ΩT

(i)
k , ∀i ≥ 1.

By dimensional reasons DS(m)′ = 0, with m = dimM , and since
the D-cohomology is concentrated in degree zero, we can find a τ ∈
Γ(ΛT ∗M ⊗ ŜH∗) such that S(m)′ = Dτ . We now consider the trans-

formation with generator T = −~kτ . Hence we get δS
(m)′

k = −Dτ ,

δS
(m−1)′

k = −Ωτ and δS
(i)′

k = 0 for i < m−1. Integrating this transfor-

mation up to time 1, we make S
(m)′

k vanish; as a result the new S
(m−1)′

k

will be D-closed. We may then proceed like this until we make all the
S(i)′ vanish. This proves our claim.

Notice that these transformations may change the S
(i)′
r for r > k.

Moreover, the generator used to kill S
(1)′

k will act on S
(0)
r for r ≥ k by

a quantum canonical transformation. �

This completes the proof of Theorem 6.1.
As a final remark, observe that in the case when π is regular and uni-

modular we start with S(1)′ = 0, so we have two different but equivalent
ways of getting the global action. One consists in taking the original

S̃
(0)
eff , the other in applying the method described in this Section since

nothing guarantees that the remaining S(i)′ vanish at the start. After

applying the method we get another effective action Š
(0)
eff that simply
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differs from S̃
(0)
eff by a quantum canonical transformation and is also

the image of Tφ∗ of a global action which we denote by Š. Eventually,
the two global effective actions S and Š simply differ by a quantum
canonical transformation starting at order ~.

7. Conclusions and perspectives

In this paper we have computed the effective action of the Poisson
sigma model on a closed surface Σ, where the Poisson structure π on
the target M is treated perturbatively and, for consistency, has to be
assumed to be unimodular unless Σ is a torus. We have shown how
to obtain a global effective action Seff as an ~-dependent function on
the moduli space of vacua of the theory with zero Poisson structure,
around which we are perturbing. Because of the freedom in the choice
of gauge fixing and the details of globalization, Seff is, as usual, only
well-defined up to quantum canonical transformations. By a reasonable
choice of the class of allowed gauge fixings—namely, those for which
the propagator enjoys properties (4.3)—we make sure that the order
zero Seff,0 of the effective action is fixed and equal to the evaluation on
vacua of the Poisson-dependent part Sπ of the action; moreover, the
remaining quantum canonical transformations will start at order 1.

In the cases when Σ is a torus or π is regular and unimodular, we
have shown that Seff has (a representative with) no quantum correc-
tions. In the particular case when Σ is a torus, π is nondegenerate
and there is a compatible complex structure, we can use the latter to
gauge-fix the remaining integration over vacua: the final result is that,
as expected from the Hamiltonian formulation and from comparison
with with the A-model, the partition function is the Euler characteris-
tic of the target. An alternative approach that produces the same result
consists in regularizing the effective action by adding the Hamiltonian
functions of supersymmetry generators. In general, the effective ac-
tion modulo quantum canonical transformations is an invariant of the
Poisson structure.

Recall that each order in ~ of Seff is actually a section of a vector

bundle Zg := ŜH̃∗ over the target M whose structure is fixed by the
genus g of the source Σ. These sections are just tensors of a particular
sort. The lowest order in the quantum master equation for Seff implies
that Seff,0 solves the classical master equation, i.e., that it defines a
differential on Γ(Zg), which we call the genus g Poisson complex. Since
Seff,0 is also ∆-closed, the lowest nonvanishing quantum contribution
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to Seff is a cocycle in the genus g Poisson complex14 and defines an
invariant of the Poisson structure, which might be possible to compute
in concrete examples.
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