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Abstract

The present work is devoted to the a posteriori error estimation for the Pois-
son equation with mixed Dirichlet/Neumann boundary conditions. Using
the duality technique we derive a reliable and efficient a posteriori error es-
timator that measures the error in the energy norm. The estimator can be
used in assessing the error of any approximate solution which belongs to
the Sobolev space H1, independently of the discretization method chosen.
Only two global constants appear in the definition of the estimator; both
constants depend solely on the domain geometry, and the estimator is quite
non-sensitive to the error in the constants evaluation. It is also shown how
accurately the estimator captures the local error distribution, thus, creating
a base for a justified adaptivity of an approximation.
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1 Introduction

A posteriori error estimation is known to be essential for reliable scientific
computing, and many research efforts have been focused on this subject dur-
ing the last decade (see, e.g., the monographs [1], [3], [14] and also [4], [8]). It
is now well-understood that an adaptivity (e.g., an adaptive mesh refinement)
is, in general, required to calculate the approximate solution accurately and
efficiently. It is also clear that the discrete solution should be supplemented
by a reliable estimate of the corresponding discretisation error, in order to
provide the evidence that the problem has been solved with the prescribed
accuracy. Both tasks can be successfully accomplished with the use of an
a posteriori error estimator, if the latter correctly represents the local error
distribution and serves as a guaranteed upper bound for the exact error. In
this work, we derive an a posteriori error estimator possessing these proper-
ties and being, in addition, independent of any particular discretisation; it
can, thus, be used in combination with finite element or finite difference or
finite volume method, as well as for assessing the error in a post-processed
solution.

In its original form, the estimator (like most existing a posteriori error es-
timators) is derived under the assumption that the approximate solution sat-
isfies the Dirichlet boundary condition exactly. However, in many practically
interesting cases, the essential boundary condition can be satisfied merely ap-
proximately either owing to complicated, e.g., non-polynomial Dirichlet data
or because of accounting the boundary condition in a weak sense, like in
fictitious domain methods (see, e.g., [6]). Thus, the approximate solution
does not, in general, belong to the set of admissible functions of the original
problem, i.e. presents a non-conforming approximation to the exact solu-
tion (see [13]). It will be shown here how the estimator can be modified to
take into account the error in the approximation of the Dirichlet boundary
condition. This issue has been recently addressed in [12] for the case of the
Dirichlet boundary value problem; the present work can be considered as
an extension of the results of [12] to the case of mixed Dirichlet/Neumann
boundary conditions.
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2 Preliminaries

Let Ω be a bounded domain with Lipschitz continuous boundary Γ. Suppose
that Γ consists of two measurable parts ΓD and ΓN , and the area (the length
in 2D) of ΓD is non-zero. Consider the mixed boundary value problem: Find
a function u such that

−∆u = f in Ω , (2.1)

u = u0 on ΓD , (2.2)
∂u
∂n

= g on ΓN , (2.3)

where the trace of the given function u0 ∈ H1(Ω) defines the boundary
condition on ΓD and n is the outward normal to Γ. Throughout this paper,
we assume that f ∈ L2(Ω), g ∈ L2(ΓN).

In the sequel, we will use the notation | · | for the standard Euclidean
norm of a vector and ‖ · ‖ for the L2-norm on Ω.

Let V0 := {w ∈ H1(Ω) | w = 0 on ΓD} and V0 + u0 := {v ∈ H1(Ω) | v =
w + u0, w ∈ V0}. A weak formulation of the problem (2.1)–(2.3) is: Find
u ∈ V0 + u0, such that

∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx +

∫

ΓN

gw ds ∀w ∈ V0 . (2.4)

It is well known that the solution to this problem exists and is unique. This
solution can be characterised equivalently as the minimiser of the following
variational problem:

Problem P. Find u ∈ V0 + u0 such that J(u) = inf
v∈V0+u0

J(v) ,

where

J(v) =
1

2

∫

Ω

| ∇v |2 dx −

∫

Ω

fv dx −

∫

ΓN

gv ds .

To derive the dual variational formulation we employ the relation

J(u) = inf
v∈V0+u0

sup
y∗∈L2(Ω,

�
n)







∫

Ω

(

∇v · y∗ −
1

2
| y∗ |2 −fv

)

dx −

∫

ΓN

gv ds







.

Then, using the representation v = w + u0 with w ∈ V0, we derive
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Problem P∗. Find p∗ ∈ Q∗
f,g such that I∗(p∗) = sup

q∗∈Q∗

f,g

I∗(q∗) ,

where

I∗(q∗) =

∫

Ω

(

∇u0 · q
∗ −

1

2
| q∗ |2 −fu0

)

dx −

∫

ΓN

gu0 ds

is the dual variational functional and

Q∗
f,g := {q∗ ∈ L2(Ω,

� n) | div q∗ = −f in Ω, q∗ · n = g on ΓN} . (2.5)

Both problems P and P∗ have unique solutions u and p∗, which satisfy the
duality relations (see, e.g., [7])

J(u) = I∗(p∗) , ∇u = p∗ . (2.6)

In view of (2.4), we have: J(v) − J(u) = 1
2

∫

Ω

| ∇(v − u) |2 dx for all

v ∈ V0 + u0 .
Using (2.6), one derives 1

2
‖∇(v − u)‖2 = inf

q∗∈Q∗

f,g

{J(v) − I∗(q∗)} , and, since

J(v) − I∗(q∗) = 1
2

∫

Ω

| ∇v − q∗ |2 dx for all v ∈ V0 + u0 and q∗ ∈ Q∗
f,g , we

obtain:
‖∇(v − u)‖2 = inf

q∗∈Q∗

f,g

‖∇v − q∗‖2 ∀v ∈ V0 + u0 . (2.7)

From (2.7) we immediately see that ∇(v − u) in the L2-norm (which may
be viewed as the approximation error) is majorised by the L2-norm of the
difference (∇v − q∗) with any q∗ ∈ Q∗

f,g. However, if q∗ does not belong to
Q∗

f,g, the L2-norm of the difference (∇v− q∗) does not, in general, provide an
upper bound for the error. This means that any numerical approximation of
q∗ should satisfy the constraint q∗ ∈ Q∗

f,g with very high accuracy in order to
guarantee a reliability of the error estimate; thus, the estimate (2.7) is not
very useful for practical application. Our further efforts will be focused on
finding a computable upper bound for the right-hand side in (2.7).

3 Error majorant for conforming approxima-

tions

Functional-type a posteriori error majorants for conforming approximations
have been derived by using general minimax theorems of convex analysis in
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[10], [11]. For linear elliptic problems under consideration we will present
in this section a much simplified way of deriving functional-type a posteri-
ori estimates using a variant of the Helmholtz decomposition for the space
L2(Ω,

� n).
Let y∗ be any function from the space H̃(Ω, div) := {y∗ ∈ L2(Ω,

� n) |
div y∗ ∈ L2(Ω) , y∗ · n ∈ L2(ΓN)}. Obviously, H̃(Ω, div) is a Banach space

with the norm ‖y∗‖H̃(Ω,div) =
(

‖y∗‖2 + ‖div y∗‖2 + ‖y∗ · n‖2
L2(ΓN )

)1/2

.

For y∗ ∈ H̃(Ω, div), define the auxiliary function w as the solution to the
problem:

∆w = div y∗ + f in Ω , (3.1)

w = 0 on ΓD , (3.2)

∂w

∂n
= y∗ · n − g on ΓN . (3.3)

It is evident that the problem (3.1)–(3.3) has a unique solution w ∈ V0.
Consider now the function q∗ := y∗ − ∇w. It is clear that q∗ ∈ L2(Ω,

� n);
moreover, div q∗ = div y∗ − ∆w = −f in Ω and q∗ · n = y∗ · n − ∂w

∂n
= g

on ΓN (see (3.1) and (3.3)). Thus, q∗ ∈ Q∗
f,g. It is worth noting that the

decomposition y∗ = q∗ + ∇w may be viewed as a non-orthogonal variant of
the Helmholtz decomposition (see [9]).

Substituting q∗ = y∗ − ∇w into (2.7) and using Young’s inequality, we
obtain the estimate

‖∇(v − u)‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
) ‖∇w‖2 ∀β > 0 , ∀v ∈ V0 + u0 ,

(3.4)
which is valid for any y∗ ∈ H̃(Ω, div) and w defined by (3.1)–(3.3).

Since w ∈ V0 and ∆w ∈ L2(Ω), the second term on the right-hand side
of the last inequality can be estimated by

‖∇w‖2 =

∫

ΓN

∂w

∂n
w ds −

∫

Ω

(∆w)w dx ,

‖∇w‖2 ≤

∥

∥

∥

∥

∂w

∂n

∥

∥

∥

∥

L2(ΓN )

CΓN
(1 + C2

Ω)1/2‖∇w‖ + CΩ‖∆w‖ ‖∇w‖ ,

that is

‖∇w‖ ≤ CΓN
(1 + C2

Ω)1/2

∥

∥

∥

∥

∂w

∂n

∥

∥

∥

∥

L2(ΓN )

+ CΩ‖∆w‖ , (3.5)
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where CΩ is the constant in Friedrichs’ inequality

(

C2
Ω := sup

w∈V0\{0}

‖w‖2

‖∇w‖2

)

and CΓN
is the constant in the trace inequality

(

C2
ΓN

:= sup
w∈V0\{0}

‖w‖2
L2(ΓN )

‖w‖2
H1(Ω)

)

.

Using (3.5), (3.1), (3.3) and Young’s inequality we deduce from (3.4):

‖∇(v−u)‖2 ≤ (1+β)‖∇v−y∗‖2+(1+
1

β
)(1+

1

γ
) C2

ΓN
(1+C2

Ω)‖y∗·n−g‖2
L2(ΓN )

+ (1 +
1

β
)(1 + γ) C2

Ω‖div y∗ + f‖2 ∀v ∈ V0 + u0 , ∀y∗ ∈ H̃(Ω, div) . (3.6)

Here β and γ are arbitrary positive numbers stemming from Young’s in-
equality. Minimising the right-hand side of (3.6) with respect to the scalar
parameters β and γ, we obtain the a posteriori error estimate for any ap-
proximate solution v ∈ V0 + u0:

‖∇(v − u)‖ ≤ ‖∇v − y∗‖ + CΓN
(1 + C2

Ω)1/2‖y∗ · n − g‖L2(ΓN )

+ CΩ‖div y∗ + f‖ ∀y∗ ∈ H̃(Ω, div) . (3.7)

Remark 3.1 Denote the right-hand side of (3.7) by M(v; y∗). The error
majorant M(v; y∗) has the following properties:
1) M(v; y∗) is always reliable, i.e. provides an upper bound for the exact
error, as long as y∗ ∈ H̃(Ω, div).
2) M(v; y∗) is asymptotically exact in the sense that, if y∗ → p∗ = ∇u in
H̃(Ω, div), M(v; y∗) → ‖∇(v − u)‖.
3) Since M(v; y∗) ≤ ‖∇(v − u)‖ + ‖y∗ − p∗‖ + CΓN

(1 + C2
Ω)1/2‖(y∗ − p∗) ·

n‖L2(ΓN ) + CΩ‖div (y∗ − p∗)‖, M(v; y∗) is also efficient (i.e. provides a rea-

sonable lower bound for the exact error) if y∗ → p∗ in H̃(Ω, div).
4) Evidently, the majorant’s first term md(v; y∗) := ‖∇v − y∗‖ computed
over any subdomain ω ⊂ Ω is close to the exact error ‖∇(v − u)‖ on ω if y∗

is close to p∗ in L2(Ω,
� n).

The following Proposition shows how to find a suitable y∗ ∈ H̃(Ω, div)
(the proof is very similar to the one for the analogous Proposition in [12]).

Proposition 3.1 Let v ∈ V0 + u0 and β, γ be some positive numbers.
Let y∗

βγ ∈ H̃(Ω, div) be the minimiser of M 2(v; y∗, β, γ), where M 2(v; y∗, β, γ)
denotes the right-hand side of inequality (3.6).
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Then, for any γ > 0, y∗
βγ converges to p∗ = ∇u in H̃(Ω, div) as β → 0, and,

moreover,

‖y∗
βγ − p∗‖ ≤ Cβ1/2 ,

‖(y∗ − p∗) · n‖L2(ΓN ) ≤ Cβ
1

1 + γ

(

γ

min( 1
γ
C1, C2)

)1/2

,

‖div (y∗
β − p∗)‖ ≤ Cβ

1

1 + γ

(

1

min( 1
γ
C1, C2)

)1/2

,

where C1 = C2
ΓN

(1 + C2
Ω), C2 = C2

Ω and the constant C depends only on f ,
v, g, CΩ, CΓN

.

Remark 3.2
1) Obviously, if γ → 0:

‖(y∗ − p∗) · n‖L2(ΓN ) = O(βγ1/2) , ‖div (y∗
β − p∗)‖ = O(β) .

The Proposition also implies that ‖y∗
βγ − p∗‖H̃(Ω,div) = O(β1/2) when β → 0.

2) Proposition 3.1 suggests that, taking a small value β0 of the parameter β,
we can obtain a reasonably good y∗

β0γ to be used in the error majorant M .
It is important to note that, unlike in the penalty method for solving the
dual problem, we do not have to set β0 very small as it is not necessary to
strongly enforce the constraint div y∗ = −f in L2(Ω) for obtaining a good
estimator.
3) Taking a small γ we can make the term ‖y∗ · n − g‖L2(ΓN ) be of higher
order in the majorant as compared to other terms.
4) The constants CΩ and CΓN

appear in the majorant M(v; y∗) in front of
the terms which are of the order O(β) and O(βγ1/2) respectively (for small
β and γ). Thus, the majorant is generally not sensitive to possible errors in
the constants evaluation.

Remark 3.3
1) The Friedrichs constant CΩ can be easily estimated owing to the fact that
C−2

Ω is the smallest eigenvalue of the Laplace operator in Ω equipped with the
homogeneous mixed boundary conditions (the Dirichlet condition on ΓD and
the Neumann on ΓN). It is important that CΩ must be evaluated only once
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for each particular domain Ω as the constant depends only on the domain
geometry.
2) For polygonal domains in 2D, the trace constant CΓN

can be estimated as

follows. Suppose ΓN = ∪K
i=1Γ

(i)
N , where each Γ

(i)
N is a line segment. Then, for

each Γ
(i)
N there exists a parallelogram ωi ⊂ Ω having Γ

(i)
N as one of its sides. It

is proved in [5] that ‖w‖2

L2(Γ
(i)
N

)
≤ 2

(

|Γ
(i)
N

|

|ωi|
‖w‖2

L2(ωi)
+ |ωi|

|Γ
(i)
N

|
‖∇w‖2

L2(ωi)

)

for any

w ∈ H1(ωi). Thus, for all w ∈ H1(Ω), ‖w‖2
L2(ΓN ) ≤ 2 Cmax

K
∑

i=1

(‖w‖2
L2(ωi)

+

‖∇w‖2
L2(ωi)

), where Cmax := max
1≤i≤K

max

{

|Γ
(i)
N

|

|ωi|
, |ωi|

|Γ
(i)
N

|

}

. Denote Coverlap :=

max
x∈Ω

L(x), where L(x) is the number of parallelograms ωi containing the point

x. Then, ‖w‖2
L2(ΓN ) ≤ 2 CmaxCoverlap‖w‖2

H1(Ω), and we obtain the estimate

C2
ΓN

≤ 2 CmaxCoverlap which is easy to use. For the 3D case and a polyhedral
domain, CΓN

can be estimated analogously.

4 A posteriori error estimate for functions

that do not exactly satisfy the Dirichlet

boundary condition

Consider the problem (2.1)–(2.3) and assume that v is any function from
H1(Ω) that satisfies the boundary condition (2.2) only approximately. Then,
our aim is to control this additional error by an a posteriori error estimate.

In view of Young’s inequality, we have

‖∇(v − u)‖2 ≤ (1 +
1

α1

)‖∇(v − ṽ)‖2 + (1 + α1)‖∇(ṽ − u)‖2 ,

where α1 is any positive number and ṽ ∈ V0 + u0. Applying the estimate
(3.6) to the second term on the right-hand side and using once again Young’s
inequality one can obtain (see also [12])

‖∇(v−u)‖ ≤ 2m0(v)+md(v, y∗)+CΓN
(1+C2

Ω)1/2mg(y
∗)+CΩmf (y

∗) , (4.1)

where y∗ is any function from H̃(Ω, div) and the following notation is used:

m0(v) := inf
ṽ∈V0+u0

‖∇(v − ṽ)‖ , md(v, y∗) := ‖∇v − y∗‖ ,

mg(y
∗) := ‖y∗ · n − g‖L2(ΓN ) , mf (y

∗) := ‖div y∗ + f‖ .
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The quantity m0(v) is non-negative and vanishes if and only if v exactly
satisfies boundary condition (2.2). Thus, it is a measure of the error in the
Dirichlet boundary condition. The quantity md(v, y∗) is a measure of the
error in the duality relation for the pair (v, y∗), mg(y

∗) is a measure of the
error in the normal component of the dual variable on the Neumann part of
the boundary, and, finally, mf (y

∗) measures the error in the equation for the
dual variable (“equilibrium equation”).

Remark 4.1 The quantity m2
0(v) cannot, in general, be computed directly,

but one can estimate it from above, for example, by choosing the function
ṽ ∈ V0 + u0 as ṽ(x) = Φ(x)

Φ0
v(x) + (1 − Φ(x)

Φ0
)u0(x) in the domain {x ∈ Ω |

Φ(x) ≤ Φ0} and ṽ ≡ v on the rest of Ω, where Φ(x) is the distance from x
to ΓD and Φ0 > 0 is some fixed number.

5 Numerical examples

5.1 The Dirichlet-Neumann singularity

Here we consider the problem (2.1)–(2.3) in the unit square Ω = (0, 1)×(0, 1)
with ΓN = {(x; y) ∈

� 2 | x ∈ (0, 0.5) , y = 1}, ΓD = ∂Ω \ ΓN . We set the
homogeneous boundary conditions and f ≡ 1 in Ω. This is the standard
model problem with the solution exhibiting a singularity at the point (0.5; 1)
of the change in the type of boundary conditions.

The exact solution behaves like r1/2 sin( θ
2
) (in polar coordinates (r, θ))

near the point (0.5; 1), hence we can expect the convergence rate O(h1/2) in
the energy norm if a uniform mesh refinement is used. This can really be
observed in Figure 1 (left), where both the exact energy error ‖∇e‖ := ‖∇(v−
u)‖ and the majorant M are plotted in logarithmic scale (the convergence
rate is shown in dependence on the total number of unknowns N , thus, the
slope should be 1/4). We computed with P1 finite elements for both the
primal v and the dual y∗ variables; as the exact solution the finite element
approximation on a very fine grid was taken. Figure 2 demonstrates the local
error distribution delivered by the elementwise values of the exact error and
the md-term of the majorant.

The adaptive mesh refinement based on the elementwise values of the
md-term drastically improves the convergence rate for both the exact error
and the majorant, as clearly seen in Figure 1 (right). The convergence rate is
recovered to optimal O(N 1/2); Figure 3 illustrates the process of the adaptive
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mesh refinement (we have used the Delaunay refinement algorithm based on
the addition of new nodes and the subsequent Delaunay triangulation of the
resulting point set).
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Figure 1: The convergence rates of the exact energy error (∗) and the majo-
rant (4): (left) uniform mesh refinement, (right) adaptive mesh refinement.
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Figure 2: The local error distribution: (left) exact energy error, (right) md-
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Figure 3: Adaptive mesh refinement based on the elementwise values of the
md-term of the majorant.

5.2 Error estimation for non-conforming approximate

solution

Consider the problem

−∆u = f in Ω , (5.1)

u = u0 on Γ1
D , (5.2)

u = 0 on Γ2
D , (5.3)

∂u
∂n

= g on ΓN , (5.4)
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where Ω = (0, 1) × (0, 1) \ ω̄, ω = {(x; y) ∈
� 2 | (x−0.5)2

(0.2)2
+ (y−0.5)2

(0.1)2
< 1},

Γ2
D = ∂ω, ΓN = {(x; y) ∈

� 2 | x = 1 , y ∈ (0.25, 0.75)}, Γ1
D is the rest of

the boundary of the square (0, 1) × (0, 1) (see Figure 4), having the exact
solution

uexact(x, y) = x

(

1 − e
−0.5

�
1−

(x−0.5)2

(0.2)2
−

(y−0.5)2

(0.1)2 � 2)

.

The solution is shown in Figure 4, its trace on the boundary piece Γ1
D and its

normal derivative on ΓN define the remaining part of the boundary conditions
on ∂Ω.

To approximate the problem (5.1)–(5.4) we make use of the so-called
penalty/fictitious-domain method which is rather popular in the computa-
tional fluid dynamics community (see, e.g. [2] and the references therein).
The penalised problem reads as follows:

−∆uε + 1
ε
χω uε = f̃ in (0, 1) × (0, 1) , (5.5)

uε = u0 on Γ1
D , (5.6)

∂uε

∂n
= g on ΓN , (5.7)

where χω is the characteristic function of the domain ω, and f̃ is the original
right-hand side f extended into ω (for example, by some constant value;
we set f̃ = 30.0 in ω). The main peculiarity of the method is that the
mesh does not have to be adjusted to the curvilinear parts of the domain
boundary. However, this convenience is paid off by the unavoidable error
in the approximation of the Dirichlet boundary condition on the curvilinear
parts, where the condition is satisfied in a weak sense only. It is also worth
noting that the finite element solution of the penalised problem does not, in
general, possesses the Galerkin orthogonality property with respect to the
original problem (which is a requirement of most existing error estimators).

We start with ε = 10−7, which is small enough to make the “boundary
error” (m0) almost negligible as compared to the “domain error” (md +
CΩmf), and observe the convergence rate of our majorant with respect to
the mesh width in Figure 5. Obviously, the majorant decreases with optimal
rate for both P1 and P2 finite elements (we used the same approximation for
the primal and dual variables and a uniform mesh refinement).

Next, we investigate the influence of the boundary error by taking suffi-
ciently rough penalty parameter, namely ε = 10−1. We can obtain detailed
information on the local distribution of the error near the boundary Γ2

D by
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computing the term m0 elementwise in the narrow band around Γ2
D (see Re-

mark 4.1). The evaluated local distribution of the boundary error is depicted
in Figure 6 together with the exact error distribution obtained via the H1/2-
norm of the approximate solution on Γ2

D (the exact solution is zero on Γ2
D).

It is clearly seen that the qualitative behaviour of the elementwise error along
the boundary Γ2

D is captured well.
The detailed information delivered by the term m0 can be used to adap-

tively improve the approximation near Γ2
D until the boundary error will be-

come smaller than the error in the domain.
In Figure 7 we demonstrate the convergence of the majorant with respect

to the penalty parameter ε, when the mesh width is sufficiently small (h =
1/240). The convergence rate is slightly better than theoretically predicted
O(ε1/4) (see [2]). The most important fact is that the majorant obviously
provides a reliable upper bound for the exact error even when the error in
the approximation of boundary conditions is very large.
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Figure 4: The domain geometry (left); the exact solution (right).
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