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Abstract. We show that the path construction integration of Lie algebroids by Lie
groupoids is an actual equivalence from the of integrable Lie algebroids and complete
Lie algebroid comorphisms to the of source 1-connected Lie groupoids and Lie groupoid
comorphisms. This allows us to construct an actual symplectization functor in Poisson
geometry. We include examples to show that the integrability of comorphisms and Poisson
maps may not hold in the absence of a completeness assumption.
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1. Introduction

A classical result in differential geometry is that any finite dimensional Lie algebra
G can be integrated by a 1-connected Lie group Σ(G) (conversely, any Lie group
endows its tangent space at the unit with the structure of a Lie algebra). This
bijective correspondence between finite dimensional Lie algebras and 1-connected
finite dimensional Lie groups is actually the object component of an integration
functor

Σ : LieAlg −→ LieGp,

which is an equivalence from the of finite dimensional Lie algebras to the of finite
dimensional 1-connected Lie groups.

There are several generalizations of finite dimensional Lie algebras: infinite-
dimensional (e.g Banach) Lie algebras, Lie algebroids, Poisson manifolds, and
L∞-algebras, for instance. In each case, it is natural to ask whether there is a
corresponding integration functor. For this, we need to find out the right notion
for the objects integrating these generalized Lie algebras as well as the right notion
of morphisms between them.

We will be concerned here with Lie algebroids and Poisson manifolds (see
[14] for a general reference), each of whose have natural integrating objects: Lie
groupoids for Lie algebroids and symplectic groupoids for Poisson manifolds.

However, unlike finite dimensional Lie algebras, not all Lie algebroids are in-
tegrable by Lie groupoids. In [7], Crainic and Fernandes worked out a criterion
to select those that are. In this paper, we will construct an integration functor
for the class of integrable Lie algebroids. To allow non-integrable Lie algebroids
to be in the domain of an integration functor, one must consider integration by
microgroupoids (i.e. germs of groupoids) in the spirit of [5] or by differentiable
stacks as in [18].

We will focus on an integration functor for Lie algebroids that translates into
an integration functor for Poisson manifolds (also called “symplectization functor”
by Fernandes [9]). For this, the main ingredient is to replace the usual notion of
morphisms between Lie groupoids (i.e. smooth functors between the underlying
groupoids, see [11, 14]) and their corresponding infinitesimal version for Lie alge-
broids by that of comorphisms. Lie algebroid and Lie groupoid comorphisms were
introduced by Higgins and Mackenzie in [12]. (This notion for Lie groupoids had
been studied earlier under a different name and with a different, but equivalent,
definition by Zakrzewski in [19] and Stachura in [17].) Already there, comorphisms
were seen as the “correct” notion of morphisms between Lie algebroids to be used
with applications to Poisson geometry in mind.
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From the perspective of Poisson geometry, Lie algebroid and Lie groupoid mor-
phisms are not very well-suited, since a Poisson map φ from X to Y induces a Lie
algebroid morphism from T ∗X to T ∗Y (that integrates to a symplectic groupoid
morphism) only when φ is a diffeomorphism. This prevents us from constructing
an integration functor whose domain would contain all Poisson maps. On the other
hand, the cotangent map T ∗φ to a Poisson map φ is always a comorphism from
T ∗X to T ∗Y .

There are also a number of facts independent of Poisson geometry that make
comorphisms the “correct” notion of morphisms between Lie groupoids. For in-
stance, a comorphism between Lie groupoids naturally induces a group morphism
between the corresponding groups of bisections as well as a C∗-algebra morphism
between the corresponding convolution C∗-algebras (see [17]). This gives functors
from the of Lie groupoids and comorphisms to the of groups and to the of C∗-
algebras (see [17]). Moreover, the graph of a Lie groupoid comorphism is a monoid
map in the “” of differentiable relations between the monoid objects associated to
the multiplication graph of the corresponding Lie groupoids (see [19]).

On the other hand, in contrast to Lie algebroid morphisms, Lie algebroid co-
morphisms do not always integrate to Lie groupoid comorphisms. The same holds
in Poisson geometry, where completeness of Poisson maps insures integrability in
terms of (symplectic) comorphisms. We will give an example of a non complete
Lie algebroid comorphism that is also non integrable, and whose dual is a non
complete and non integrable Poisson map.

Dazord in [10] already stated without proof that both complete Lie algebroid
comorphisms and Poisson maps always do integrate to comorphisms. In [19],
Zakrzewski proved that complete Poisson maps are integrable to what he called
“morphisms of regular D∗-algebras,” which turn out to be nothing but symplectic
comorphisms.

More recently, Caseiro and Fernandes in [1] proved that a complete Poisson
map φ from integrable Poisson manifolds X to Y always integrates to a natural
left action of the symplectic groupoid Σ(Y ) on X with moment map φ. This action
naturally induces an embedded lagrangian subgroupoid integrating the graph of
the Poisson map. Their proof, at contrast with the one of Zakrzewski which uses
the method of characteristics, is readily transposable to complete Lie algebroid
comorphisms. They use the existence of lifting properties by complete Poisson
maps for both admissible paths and their homotopies, which also holds for complete
Lie algebroid comorphisms and makes them resemble “Serre fibrations” in topology.

These lifting properties (Proposition 4.2 and 4.3) will also be central to our
main result (Theorem 5.1): namely, that the path construction of [4, 8, 7], which
associates a source 1-connected Lie groupoid Σ(A) to each integrable Lie algebroid
A, is an actual equivalence from the of integrable Lie algebroids and complete Lie
algebroid comorphisms to the of source 1-connected Lie groupoids and Lie groupoid
comorphisms.

As a corollary, we obtain that Lie algebroid comorphisms are integrable if and
only if they are complete, which strengthens Dazord’s statement. We show that
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this implies a corresponding theorem in Poisson geometry, where the path con-
struction implements an equivalence between the of integrable Poisson manifolds
and complete Poisson maps and the of source 1-connected symplectic groupoids
and symplectic comorphisms. From this, we may conclude that Poisson maps are
integrable if and only if they are complete, which was already shown by Zakrzewski
in the language of regular D∗-algebras.

Let us conclude this introduction by remarking that the composition of the
path construction with the functor constructed by Stachura in [17] yields a sort of
“prequantization” functor that takes an integrable Poisson manifold to the convo-
lution C∗-algebra of its integrating symplectic groupoid and a complete Poisson
map to a C∗-algebra morphism between these convolution C∗-algebras.

2. Morphisms and comorphisms

Much of what follows in this section may already be found in [2, 10, 11, 12]. We
work in the smooth . Let a : A → X and b : B → Y be submersions, which we
may think of as families of manifolds parametrized by X and Y .

A map φ from X to Y together with a map Φ to A from the pullback φ!B =
X ×Y B will be called a comorphism from a to b; φ will be called the core map
of the comorphism. When the families are vector bundles and Φ is linear on fibres,
we call (φ,Φ) a vector bundle comorphism. It induces a dual vector bundle map
Φ∗ from a∗ : A∗ → X to b∗ : B∗ → Y covering φ and a pullback map Φ† to the
space Γ(A) of sections of A from Γ(B).

On the other hand, a morphism from a to b is simply a map of fibrations,
which we also denote by (φ,Φ), where the core map φ is the base map of the bundle
map, and Φ is a collection of smooth maps Φx from the fibers Ax to Bφ(x). When
a and b are vector bundles and Φ is linear on fibers, a morphism (φ,Φ) is a vector
bundle map.

As observed in [12], the notions of morphisms and comorphisms for vector
bundles are dual to each other in the sense that (φ,Φ) is a comorphism from a to
b if and only if (φ,Φ∗) is a morphism from a∗ to b∗ (and conversely).

We now specialize the notion of morphisms and comorphisms to Lie algebroids
and Lie groupoids, and we introduce corresponding Lie functors (see also [11, 12]).

2.1. Lie algebroids. If A and B are Lie algebroids, a vector bundle comorphism
(φ,Φ) is called a Lie algebroid comorphism if Φ∗ is a Poisson map for the
natural Lie-Poisson structures on the dual Lie algebroids. Equivalently, Φ† is a
homomorphism of Lie algebras, and

φ∗ ◦ ρA ◦ Φ† = ρB , (1)

where ρA and ρB are the anchor maps of respectively A and B. In terms of
diagrams, we can represent a comorphism and relation (1) as follows:
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A �
Φ

B Γ(A) �
Φ†

Γ(B)

X
?

φ
- Y
?

vect(X)

ρA

?

φ∗
- vect(Y )

ρB

?

On the other hand, a vector bundle morphism (φ,Φ) is called a Lie algebroid
morphism if Φ∗ induces a chain map from the Lie algebroid complexe Γ(∧•B∗)
to Γ(∧•A∗) (see [11]).

We denote by Algd+ the category of Lie algebroids and Lie algebroid mor-
phisms and Algd− the of Lie algebroids and Lie algebroid comorphisms.

Observe that the graph of both a Lie algebroid morphism and a Lie algebroid
comorphism is a Lie subalgebroid of the Lie algebroid product A × B and that
morphisms and comorphisms coincide (up to the direction of arrows when the core
map is a diffeomorphism.

Example 2.1. Let φ : X → Y be a smooth map. The tangent map Tφ is a Lie
algebroid morphism from TX to TY (seen as algebroids with identity as anchor
and the usual Lie bracket on vector fields), while the cotangent map T ∗φ is a
Lie algebroid comorphism from T ∗X to T ∗Y (seen as Lie algebroids with zero
anchor and zero bracket). Tφ and T ∗φ are both, at the same time, Lie algebroid
morphisms and comorphisms when φ is a diffeomorphism.

Example 2.2. If A = TX and B = TY carry the usual Lie algebroid structures
(as in the previous example), then (φ,Φ) is a comorphism from TX to TY when
φ is a submersion and Φ is the horizontal lift map of a flat Ehresmann connection
over the open submanifold φ(X) ⊆ Y .

Example 2.3. If A and B are Lie algebras, considered as Lie algebroids over a
point, then a Lie algebroid comorphism from A to B is a Lie algebra morphism from
B to A, while a Lie algebroid morphism from A to B is a Lie algebra morphism
from A to B.

As already noted by Higgins and Mackenzie in [12], Lie algebroid comorphisms
are tightly related with Lie algebroid actions. Without entering into much details
here, let us recall these relations briefly. First of all, a comorphism (φ,Φ) from
A to B induces an action of B on the map φ : X → Y , which endows the vector
bundle pullback φ!B with the structure of a Lie algebroid. This algebroid is called
the action Lie algebroid, and there is a Lie algebroid morphism from it to
A×B, whose image is the comorphism graph. This map establishes a Lie algebroid
isomorphism between the comorphism seen as an algebroid over the graph of φ and
the action algebroid.

In a reciprocal way, an action of a Lie algebroidB on a map φ : X → Y induces a
Lie algebroid comorphism from the tangent bundle TX to B. This remark together
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with the previous paragraph show that a comorphism (φ,Φ) from A to B always
induces another comorphism from TX to B; the original comorphism can then be
decomposed into this particular comorphism from TX and a based fixing one as
observed by Higgins and Mackenzie in [12].

Example 2.4. Infinitesimal action of a Lie algebra G on a manifold X (i.e. Lie
algebra morphism from G to the Lie algebra of vector fields on X) are in one-to-one
correspondence with comorphisms from TX to G.

2.2. Lie groupoids. Now let G⇒ X and H ⇒ Y be groupoids with target and
source maps lG, rG, lH and rH . A comorphism (φ,Φ) from rG to rH is called a
comorphism of groupoids if

(1) Φ takes unit elements to unit elements;

(2) it is compatible with the target maps in the sense that, for any (x, h) in the
pullback X ×Y H, (φ ◦ lG)(Φ(x, h)) = lH(h);

(3) it is multiplicative in the sense that Φ(y, h1)Φ(z, h2) = Φ(z, h1h2) whenever
the products are defined; i.e., when φ(y) = lH(h2).

A groupoid comorphism as above may be represented by its graph γ(φ,Φ), which
is the smooth closed subgroupoid of G × H ⇒ X × Y consisting of those pairs
(g, h) for which g = Φ(rG(g), h). The objects of γ(φ,Φ) are just the points of the
graph of φ, and the projection to H of the source fibre of γ(φ,Φ) over (x, φ(x)) is a
diffeomorphism onto the source fibre of H over φ(x). These properties characterize
those subgroupoids of G×H which are the graphs of comorphisms.

Remark 2.5. Zakrzewski in [19] introduced the notion of regular D∗-algebra and
showed that it coincides with that of Lie groupoid, observing though that their
natural morphisms do not correspond to Lie groupoid morphisms. D∗-algebra mor-
phisms were further studied by Stachura in [17], who called them simply “groupoid
morphisms.” From Lemma 4.1 in [19] and Proposition 2.6 in [17], one sees that
D∗-algebra morphisms are exactly the Lie groupoid comorphisms introduced later
on by Higgins and Mackenzie in [12]. However, neither Zakrzewski nor Stachura
discussed a corresponding notion for Lie algebroids.

As for Lie algebroid comorphisms, a Lie groupoid comorphism (φ,Φ) from G
to H induces a groupoid action of B on the map φ : X → Y , which turns the
pullback

φ!H = X φ ×rH H
into a smooth groupoid, the action groupoid (see [12]). There is also a groupoid
morphism from the action groupoid to G × H, whose image is precisely γ(φ,Φ),
implementing a groupoid isomorphism between γ(φ,Φ) seen as a groupoid over grφ
and the action groupoid. Conversely, a groupoid action of H on a map φ : X → Y
yields a comorphism from the fundamental groupoid π(X) (or the pair groupoid
X × X) to H. Based on that fact, there is a decomposition of Lie groupoid
comorphisms similar to the decomposition of Lie algebroid comorphisms described
above.
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Example 2.6. There is a one-to-one correspondence between actions of a Lie
group G on a manifold X and Lie groupoid comorphisms from the pair groupoid
X ×X (or the fundamental groupoid π(X)) to G seen as a groupoid over a point.

A morphism of Lie groupoids is a functor between the underlying groupoids,
whose object and morphism components are smooth.

We denote by Gpd+ the of Lie groupoids and Lie groupoid morphisms and
Gpd− the of Lie groupoids and Lie groupoid comorphisms.

Correspondingly, there are two Lie functors

Lie : Gpd± → Algd±,

as defined in [12, 14], which agree on objects (i.e. they both send a Lie groupoid
to its associated Lie algebroid) but one sends morphisms to morphisms while the
other sends comorphisms to comorphisms. Geometrically though, the morphism
component of both functors can be defined the “same way,” using the object com-
ponent. Namely, the underlying graph γ(φ,Φ) of a groupoid morphism or a groupoid
comorphism (which, in both cases, we denote by (φ,Φ)) from G to H is itself a
groupoid (actually, a subgroupoid of G ×H). Then Lie(γ(φ,Φ)) is a subalgebroid
of Lie(G)× Lie(H), which is the graph of a Lie algebroid morphism when (φ,Φ)
is a Lie groupoid morphism and the graph of a Lie algebroid comorphism when
(φ,Φ) is a Lie groupoid comorphism.

The two Lie functors are essentially the same on Lie algebras, since morphisms
and comorphisms are the same in this case except for arrow direction.

2.3. Integrability and completeness. We say that a Lie algebroid comorphism
between integrable Lie algebroids is integrable if it is in the image of the Lie
functor. This means that the (possibly only immersed) Lie subgroupoid integrating
the comorphism graph (which is a Lie subalgebroid) is, at the same time, a closed
embedded Lie subgroupoid and a comorphism (the latter implying the former).

If A and B are the Lie algebroids of groupoids G and H, then every Lie alge-
broid comorphism from A to B may be integrated locally to a groupoid comorphism
from G to H. In contrast with Lie algebroid morphisms, which are always inte-
grable to Lie groupoid morphisms under a simple connectivity assumption (see
[15, Appendix] for instance), the global situation for Lie algebroid comorphisms is
more complicated. The following example gives a Lie algebroid comorphism whose
graph integrates, as a Lie algebroid, to an embedded Lie subgroupoid that is not
the graph of a Lie groupoid comorphism.

Example 2.7. The inclusion i of an open subset X in a manifold Y yields the Lie
algebroid comorphism (i, id) from TX to TY with the natural Lie algebroid struc-
ture. The integration of the Lie subalgebroid γ(i,id) is the embedded subgroupoid{

(x, x, x, x) : x ∈ X
}
⇒ X × i(X)

of the groupoid product (X × X) × (Y × Y ) ⇒ X × Y . This is not the graph
of a comorphism, although there are partially defined maps (namely the identity
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restricted to X) from {x} × Y to {x} × X for each x ∈ X, the union of whose
graphs is the integrating subgroupoid.

Although “partially defined” Lie groupoid comorphisms as in the example
above still compose, and thus form a , even worse situations can arise. In gen-
eral, a Lie algebroid comorphism can be integrated only to what Dazord calls a
“relation,” and which we will call a hypercomorphism. A hypercomorphism
from G ⇒ X to H ⇒ Y consists of a map φ : X → Y and a groupoid R over the
graph of φ along with a homomorphism to G×H which is an immersion such that
the projection to H is étale between source fibres of R and H. It is a comorphism
just when these maps between source fibres are diffeomorphisms. The image of the
immersion R → G ×H is a subgroupoid which can sometimes be neither smooth
nor closed, as we will see in the next section.

As we will show in Theorem 5.1, global integrability in terms of Lie groupoid
comorphisms is guaranteed if the source fibres of H are 1-connected and the Lie
algebroid comorphism is complete. This means that the pullback map on sections
takes complete sections of B to complete sections of A, where a section of a Lie
algebroid is called complete if the anchor maps it to a complete vector field.1

This result on global integrability was first announced in [10] without proof.
To the best of our knowledge, such a proof has never appeared, although very close
results have been achieved in the context of Poisson geometry for complete Poisson
maps (which induce complete Lie algebroid comorphisms as we shall see in Section
6) by Caseiro and Fernandes in [1] and by Zakrzewski in [19]. We will give one in
Section 5.1 using the path integration techniques developed recently in [4, 7, 8].

We can already see the following:

Proposition 2.8. Let G and H be Lie groupoids over X and Y respectively, and
let (φ,Φ) be a groupoid comorphism from G to H. Then (φ, TΦ) = Lie(φ,Φ) is a
complete comorphism from Lie(G) to Lie(H), where

(TΦ)(x, v) := D2Φ(x, φ(x))v,

and D2 denotes the derivative w.r.t. the second argument. In other words, inte-
grable Lie algebroid comorphisms are complete.

Proof. To simplify notation, set A = Lie(G) and B = Lie(H). Let s be a complete
section of B. It induces a complete right-invariant vector field ξsH on the integrating
groupoid H (see [13, Appendix]), whose corresponding left-invariant flow ΨH

t exists
thus for all t. Using (φ,Φ), we define a left-invariant flow on G, which also exists
for all times:

Ψ̄G
t (g) = Rg

(
Φ
(
rG(g),ΨH

t (φ(rG(g))
))
,

where Rg(g
′) = g′g is the right-translation in G (where it makes sense).

1If A is integrable to a Lie groupoid G, completeness of a section of A means that the section
is the initial derivative of a 1-parameter group of bisections of G.
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On the other hand, the section (TΦ)†s induces a right-invariant vector field

ξ
(TΦ)†s
G on G, whose flow ΨG

t projects on the flow ΨX
t on X of ρA(TΦ)†s, that is,

ΨX
t (lG(g)) = lG(ΨG

t (g)).

What remains to be proven is that ΨG
t coincides with Ψ̄G

t : Since the latter exists
for all t, this would imply that ΨX

t exists for all t and, thus, that the image (TΦ)†s
of a complete section s by (φ, TΦ) is complete. To see this, let us check that both
flows are flows of the same vector field. Namely, since Ψ̄G

t is left-invariant, we have
that

d

dt
∣∣t=0

Ψ̄G
t (g) = DRg(rG(g))D2Φ(rG(g), φ(rG(g)))

d

dt
∣∣t=0

ΨH
t (φ(rG(g))),

= DRg(rG(g))(TΦ)(rG(g), s(φ(rG(g))),

= DRg(rG(g))((Tφ)†s)(rG(g)),

which, by definition, coincides with d
dt
∣∣t=0

ΨG
t (g).

Example 2.9. Let (φ,Φ) be a comorphism between tangent bundle Lie algebroids
TX and TY . As noted above, this corresponds to a flat Ehresmann connection,
i.e. a “horizontal” foliation of X for which the projection of each leaf to Y is étale.
The comorphism is complete when the connection is complete in the sense that
these projections are all covering maps, i.e. when each path σ : [0, 1] → Y has a
horizontal lift starting at any point in φ−1(σ(0)).

To integrate this comorphism to a hypercomorphism between the fundamental
groupoids π(X) and π(Y ) integrating TX and TY respectively, we let R be the
leafwise fundamental groupoid of the foliation of X. This is a (1-connected, but
possibly non-Hausdorff) Lie groupoid over X and may hence be considered as a
groupoid over the graph of φ : X → Y . An element of R is a homotopy class of
paths with fixed endpoints and contained in a single leaf of the foliation. Let us call
these “foliated paths”. Mapping each such class of foliated paths to the homotopy
class of paths in X (without the “leafwise” restriction) in which it is contained,
and to the class of the image in Y , is a groupoid morphism from R to G × H.
Restricting this morphism to a source fibre of R and projecting to π(Y ) takes the
homotopy classes of foliated paths beginning at some x ∈ X to the homotopy
classes of paths in Y beginning at φ(x). A neighborhood, in a source fibre of R, of
the class of a foliated path σ may be identified with a neighborhood of σ(1) in its
leaf, and a neighborhood of the class of the projected path may be identified with
a neighborhood of φ(σ(1)) in Y . The projection from the first neighborhood to the
second is étale by the definition of a flat Ehresmann connection, so the requirements
for R to be a hypercomorphism are met. We may describe the relation R in rough
terms by saying that it takes a point x ∈ X and a path ρ in Y beginning at φ(x)
to its horizontal lift through x. But this horizontal lift may not exist if (φ,Φ) is
not complete, and it might not be unique since a homotopy of paths in Y may not
have a horizontal lift in the absence of completeness.
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3. An example

We give in this section an example of an Ehresmann connection, the graph of whose
integration is neither closed nor embedded.

Let Y be R2 with cartesian coordinates (x, y) and polar coordinates (r, θ). X
will be an open subset of R2×C×R with polar coordinates (r, θ) on the first factor,
a complex coordinate z = ReiΘ on the second, and real coordinate h on the third
one. As the notation suggests, φ will be the projection on the first factor. X and
Y will be 1-connected, so the source 1-connected groupoids integrating TX and
TY will be X ×X and Y × Y . Since Y is 1-connected, the leaves of any foliation
defined by a complete Ehresmann connection over Y are simply connected and
therefore have trivial holonomy.

We define X as R2 × C× R \ J , where J is the three-dimensional slab

{(r, θ,R,Θ, h)|r = 0, −1 ≤ h ≤ 1}.

Although J is of codimension 2, the restriction on h leaves X simply connected,
so that its fundamental groupoid is still X×X. Nevertheless, we can construct an
interesting Ehresmann connection for the submersion φ : X → Y . For −1 ≤ h ≤ 1,
the horizontal subspaces of the connection are spanned by the vector fields ∂/∂r
and ∂/∂θ+ν(h)∂/∂Θ, where ν is a smooth function, not identically zero, supported
in the interval − 1

2 ≤ h ≤
1
2 . This makes sense since r is not zero for these values of

h. Outside the support of ν, the vector fields ∂/∂r and ∂/∂θ may be replaced by
the cartesian coordinate vector fields ∂/∂x and ∂/∂y, which extend to the entire
(x, y) plane.

We will think of our Ehresmann connection as a family, parametrized by h, of
unitary connections on the trivial complex Lie bundle over Y with fibre coordinate
z. The connection form in this description is iν(h)dθ, and the holonomy around
a loop encircling the origin in the (x, y) plane is multiplication by e2πiν(h). In the
region where −1 ≤ h ≤ 1 (and so r is not zero), each leaf lies in a fixed level
of R and h and is a covering of the punctured (r, θ) plane. The covering is a
diffeomorphism if R = 0. For positive R, the covering has k sheets when ν(h) has
order k as an element of R/Z; this includes the possibilities k = 1 and k = ∞.
Over the region where −1 < h < 1, the leafwise fundamental groupoid may be
parametrized by

Γ = (R+ × S1)× (R+ × R)× C× (−1, 1).

The element
γ = (r, θ, r′, τ, z, h)

of Γ corresponds to the homotopy class of the horizontal path

t 7→ (r + (r′ − r)t, θ + τt, eiν(h)τtz, h), 0 ≤ t ≤ 1.

Thus, the source map is

(r, θ, r′, τ, z, h) 7→ (r, θ, z, h),
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and the target is
(r, θ, r′, τ, z, h) 7→ (r′, θ + τ, eiν(h)τz, h).

The unit elements of the groupoid are defined by the conditions r = r′ and τ = 0,
while the isotropy groups are defined by r = r′, τ ∈ 2πZ, and ν(h)τ ∈ 2πZ.

We now look at the leafwise fundamental groupoid as the integration of the
Lie algebroid comorphism given by the flat Ehresmann connection. The Lie alge-
broid sits inside TX × TY ; since X and Y are simply connected, the integrating
subgroupoid S should sit inside X × X × Y × Y ; it is the image of Γ under the
target-source map

(r, θ, r′, τ, z, h) 7→
(

(r, θ, z, h), (r′, θ + τ, eiν(h)τz, h), (r, θ), (r′, θ + τ)
)
.

To study the immersion of Γ into X × X × Y × Y , we can forget about the last
two factors, since they are redundant (namely, the image of Γ lies in the graph of
φ × φ, which can be identified with X × X). This image consists of all 8-tuples
(r, θ, z, h, r′, θ′, z′, h′) for which there exists τ such that θ′ = θ + τ , z′ = eiν(h)τz,
and h′ = h. The two conditions involving τ can be combined, with the elimination
of τ , to give z′ = eiν(h)(θ′−θ)z. Where z is nonzero, these define, for each h, a
hypersurface in the 4-torus with coordinates (θ, arg z, θ′, arg z′). The subgroupoid
S ⊂ X×X×Y ×Y sits as a family of these hypersurfaces inside the 8-dimensional
submanifold defined by |z′| = |z| and h′ = h, which is a bundle of these 4-tori over
the space parametrized by (r, z, h).

From this description, we see immediately that S is not closed. In fact, when
ν(h) is irrational, each of our hypersurfaces is dense but not closed in its 4-torus. To
see that S has nontrivial self-intersections, we must look at the section z = 0 of our
complex line bundle, since otherwise we are simply dealing with flat hypersurfaces
in tori. In fact, when z = 0, adding an integer multiple of 2π to τ does not
change the value of the target-source map, but it does change the image of the
derivative as long as ν(h) is not an integer. This results in the sought-for nontrivial
self-intersections.

4. Path construction

In this section, we start by briefly recalling the integration of Lie algebroids by Lie
groupoids in terms of quotients of certain admissible path sets by homotopies, as in
[4, 7]. We explain how this path construction allows us to integrate comorphisms
between Lie algebroids to comorphisms between Lie groupoids. Then we show
that a complete Lie algebroid comorphism from A to B allows us to lift admissible
paths and homotopies in B to A (Proposition 4.2 and 4.3). These lifting properties,
which make complete comorphisms resemble “Serre fibrations,” will be the main
ingredients in the proof of Theorem 5.1 in the next section.

Similar lifting properties in the context of Poisson map integration have already
been considered by Caseiro and Fernandes in [1].
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4.1. Lie algebroid integration. All the source 1-connected Lie groupoids in-
tegrating an integrable Lie algebroid A→ X are isomorphic to the following con-
struction in terms of homotopy classes of paths [4, 7]. Consider the space P(A)
of admissible paths; i.e., the set of paths g : [0, 1] → A, g(t) = (x(t), η(t)), where
x(t) ∈ X and η(t) lies in the fiber of A over x(t), such that

dx(t)

dt
= ρ(x(t))η(t),

where ρ is the anchor map of A. The source 1-connected Lie groupoid integrating
A can be realized as the quotient of P(A) by a homotopy relation ∼ that fixes the
endpoints of the base component of the admissible path (see [4, 7]). More precisely,
(x1(t), η1(t)) is homotopic to (x2(t), η2(t)) iff there is a family

(x1(t), η1(t))
s=0←− (x(t, s), η(t, s))

s=1−→ (x2(t), η2(t))

of admissible paths parametrized by s ∈ [0, 1] that satisfies the following condition:
There exists a section β of A defined along x(t, s) that vanishes for t = 0, 1, such
that, locally,

∂xi(t, s)

∂s
= ρia(x(t, s))βa(t, s), (2)

∂ηc(t, s)

∂s
=

∂βc(t, s)

∂t
+ f cab(x(t, s))ηa(t, s)βb(t, s), (3)

where ρia(x) : U → R and f cab(x) : U → R are the structure functions of respectively
the anchor map and the Lie bracket on the sections of A expressed in terms of
a system of trivializing sections ea : U → A|U (where a ranges from 1 to the
dimension of the fibers in A) over the local patch with coordinates xi.

We denote by Σ(A) the quotient of P(A) by this homotopy relation and by
[g] the homotopy class of g. Since A is assumed to be integrable, Σ(A) is a Lie
groupoid over X, whose source and target maps r, l : Σ(A)⇒ X are given by the
endpoints of the path projection on the base: r([g]) = x(0) and l([g]) = x(1). The
groupoid product is given by concatenation of paths [g][g′] = [gg′], where g ∈ [g]
and g′ ∈ [g′] are two representatives whose ends r([g]) = l([g′]) match smoothly,
and where

(gg′)(t) =

{
2g(2t), 0 ≤ t ≤ 1

2 ,
2g′(2t− 1), 1

2 < t ≤ 1.

From now on, we will reserve the notation Σ(A) ⇒ X for the source 1-connected
Lie groupoid integrating A coming from the construction above.

Note that Σ(A) exists as a groupoid but not as a manifold if A is not integrable:
for non-integrable Lie algebroids, Σ(A) can be realized as a smooth stack (see [18]).

4.2. Comorphism integration. Suppose that A′ → X ′ is a subalgebroid of
an integrable Lie algebroid A → X with integrating 1-connected Lie groupoid
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Σ(A) ⇒ X. Then A′ is automatically integrable as a Lie algebroid, and we can
take its integrating Lie groupoid to be the one obtained by the path construction;
namely, Σ(A′)⇒ X ′. An admissible path in A′ is by definition also an admissible
path in A. Moreover, if two admissible paths are homotopic in A′, they also are
homotopic in A. Therefore, we have a natural immersion

ι : Σ(A′)→ Σ(A),

which is a groupoid morphism. However, this map is, in general, not an embedding
nor is its image a closed submanifold. When the Lie subalgebroid A′ is over the
same base as A, then Moerdijk and Mrčun in [16] gave a necessary and sufficient
condition for ι to be a closed embedding.

The situation is similar for the integration of a comorphism (φ,Φ) from a Lie
algebroid A→ X to a Lie algebroid B → Y , since a comorphism graph γ(φ,Φ) is a
Lie subalgebroid (over the graph of φ) of the direct product of the Lie algebroids
A and B. If A and B are integrable, we can thus realize the hypercomorphism
between the Lie groupoids Σ(A) and Σ(B) in terms of the path construction as
the groupoid immersion

ι : Σ(γ(φ,Φ))→ Σ(A)× Σ(B).

Section 3 gave an explicit example of a comorphism for which ι is not an embedding
and its image is not a closed submanifold.

Let us now describe Σ(γ(φ,Φ)) in more explicit terms. It can be realized as the
set of homotopy classes [γ] of paths γ(t) = (g(t), h(t)), where g(t) is an admissible
path in the Lie algebroid A→ X and h(t) is an admissible path in the Lie algebroid
B → Y of the form

g(t) =
(
x(t),Φ

(
x(t), ξ(t)

))
, (4)

h(t) =
(
φ(x(t)), ξ(t)

)
. (5)

In other words, γ is an admissible path in the Lie algebroid γ(φ,Φ) → grφ which
satisfies the following equations

ẋ(t) = ρA(x(t))Φ
(
x(t), ξ(t)

)
,

φ∗(ẋ(t)) = ρB(φ(x(t)))ξ(t),

where ρA and ρB are, respectively, the anchor maps of A and B. The immersion
ι from Σ(γ(φ,Φ)) into Σ(A)× Σ(B) is the groupoid morphism given explicitly by

ι : [(g, h)]→ ([g], [h]), (6)

where [(g, h)] is the class of admissible paths up to homotopy in γ(φ,Φ), while
([g], [h]) is the corresponding pair of admissible paths up to homotopy in A and B,
respectively.
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4.3. Homotopy lifting property. In this section, we prove some lifting prop-
erties for admissible paths and homotopies via complete comorphisms. Let us
start by stating two simple facts concerning complete Lie algebroid sections and
comorphisms:

• Let sAt and sBt be (time-dependent) complete sections of Lie algebroids A→
X and B → Y , respectively. Then, s̃t = sAt × sBt is a complete section of the
Lie algebroid product A×B → X × Y .

• For i = 1, 2, let (φi,Φi) be complete comorphisms from Ai → Xi to Bi → Yi.
Then (φ1×φ2,Φ1×Φ2) is a complete comorphism from A1×A2 → X1×X2

to B1 ×B2 → Y1 × Y2.

Lemma 4.1. Let (φ,Φ) be a complete Lie algebroid comorphism from A→ X to
B → Y and let st : Y → B be a complete (time-dependent) section of B. Then

(Φ†st)(x) = Φ(x, st(φ(x)))

is a complete (time-dependent) section of A.

Proof. To remove the time-dependency, we can lift st to the Lie algebroidB×TR→
Y × R by considering the section

s̃(y, t) = st(y) + ∂t,

which remains complete but which is now time-independent. The product Φ̃ =
(φ× idR,Φ× idTR) is a complete comorphism from A× TR to B× TR, since both
factors are complete comorphisms. Thus, the lift

(Φ̃†s̃)(x, t) = (Φ†st)(x) + ∂t

is a complete section of A× TR, and the induced flow on X × R

Ψ̃t(x, t) = (Ψt(x), t)

exists for all x ∈ X and all times t ∈ R. Since Ψt is the flow generated by the
section Φ†st, this implies that Φ†st is complete.

Proposition 4.2. (Path lifting.) Let (φ,Φ) be a complete comorphism from the
Lie algebroid A→ X to the Lie algebroid B → Y , and let g(t) = (y(t), ξ(t)) be an
admissible path in P(B). Then, through any point x ∈ φ−1(y(0)), there exists a
smooth curve x(t) starting at x, which projects onto y(t) via φ, and such that

g̃(t) :=
(
x(t), Φ

(
x(t), ξ(t)

))
is an admissible path in P(A).
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Proof. It is enough to show that we can lift the admissible path g piecewise in
coordinate patches. In a local chart, we can regard the base component y(t) of a
admissible path g(t) = (y(t), ξ(t)) as being the integral curve of a time-dependent
vector field; namely,

Xt(y) = ρB(y)(χ(y)ξ̃(t)), (7)

where we consider st(y) := χ(y)ξ̃(t) to be a local (time-dependent) section of B.
In (7), χ is a cutoff function that vanishes outside a compact containing the image
of the curve y(t) and that is equal to 1 on a smaller compact containing it, and ξ̃
is a smooth extension of ξ to R that coincides with ξ on [0, 1].

The idea is to pullback (7) to a vector field on X and to obtain the lift of our
admissible path as an integral curve of this new vector field.

Because of the cutoff function, Xt is compactly supported and thus complete.
By Lemma 4.1, we obtain that Φ†st is complete. Thus the integral curve x(t) of
ρAΦ†st starting at the point

x(0) ∈ φ−1(y(0)),

exists for all t, and, in particular, for all t ∈ [0, 1]. On this interval, we have that

ẋ(t) = ρA(x(t))Φ
(
x(t), ξ(t)

)
,

which shows that (
x(t), Φ

(
x(t), ξ(t)

))
is an admissible path that lifts the one we started with.

Now we can apply Proposition 4.2 to homotopies

g(t, s) = (y(t, s), ξ(t, s))

between admissible paths in P(B). By definition of homotopy, the path gs : t 7→
g(t, s) is an admissible path in P(B) for each fixed value s ∈ [0, 1] of the homotopy
parameter. Then, given a complete comorphism (φ,Φ) from A to B and a starting
point x ∈ φ−1(y(0, 0)), Proposition 4.2 gives us a family of admissible paths,

g̃s(t) =
(
x(t, s), Φ

(
x(t, s), ξ(t, s)

))
, (8)

in P(A) indexed by s ∈ [0, 1], and such that φ(x(t, s)) = y(t, s) for all t and s.

Proposition 4.3. (Homotopy lifting.) The family g̃(t, s) := g̃s(t) as above is a
homotopy between admissible paths in P(A).

Proof. Consider the Lie algebroid product Ã := A×TI×TJ (resp. B̃ := B×TI×
TJ). We denote by t the variable in I = [0, 1] and by s the variable in J = [0, 1].
We introduce the following local sections of B̃:

sξ(y, t, s) = ξ(t, s) + ∂t,

sβ(y, t, s) = β(t, s) + ∂s,
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where ξ(t, s) is the fiber component of the homotopy g(t, s) and where β(t, s) is
the local expression of the associated section βt, restricted to y(t, s). Now the Lie
algebroid bracket between these sections is

[sξ, sβ ]B̃ = [ξ(s, t), β(s, t)] + [ξ(s, t), ∂s] + [∂t, β(s, t)],

which in components yields

[sξ, sβ ]c
B̃

= f cabξ
aβb − ∂sξ(s, t)c + ∂tβ(s, t)c,

and thus vanishes, since g is a homotopy. Moreover, for each fixed s the curve
t 7→ (y(t, s), t, s) is an integral curve of ρ̃Bsξ, while, for each fixed t, the map
s 7→ (y(t, s), t, s) is an integral curve of ρ̃Bsβ , where y(t, s) is the base component
of the homotopy g(t, s).

We can now lift the local sections sξ and sβ of B̃ to local sections Φ̃†sξ and

Φ̃†sβ of Ã via the comorphism (φ̃, Φ̃) from Ã to B̃ defined by

φ̃ = φ× idI × idJ , Φ̃ = Φ× idTI × idTJ .

Because [sξ, sβ ]B̃ = 0 and because Φ̃† and ρ̃A are Lie morphisms, we obtain that

[Φ̃†sξ, Φ̃
†sβ ] = 0 and [ρ̃AΦ̃†sξ, ρ̃AΦ̃†sβ ] = 0. (9)

Now consider the family of curves

γ(t, s) :=
(
x(t, s), t, s

)
,

where x(t, s) is the base component of the lift g̃(t, s) in (8). A straightforward
computation shows that the curve γ(·, s) : t 7→ γ(t, s) is an integral curve of ρ̃AΦ̃†sξ
for each s ∈ [0, 1] (namely, we obtained these curves as lifts of admissible paths in
B for each s, and thus they are admissible paths in A for each s). Similarly, a direct
computation gives that the curve γ(0, ·) : s 7→ γ(0, s) is an integral curve of ρ̃AΦ̃†sβ
(this relies mostly on the fact that β0 = 0 and that x(0, s) = x is constant). Since
the vector fields ρ̃AΦ̃†sξ and ρ̃AΦ̃†sβ commute, the family of integral curves of

ρ̃AΦ̃†sβ starting at γ(t, 0) for t ∈ [0, 1] coincide with the family γ(t, ·) : s 7→ γ(t, s),
which implies, in particular, that x(t, s) satisfies equation (2). Now the vanishing
in (9) implies the second homotopy equation (3) by direct computation.

Corollary 4.4. Let A → X and B → Y be two integrable Lie algebroids, and let
(φ,Φ) be a complete comorphism from A to B. For all g ∈ P(B) with source rB(g)
in the image of φ, we have that (g̃, g) ∈ P(γ(φ,Φ)), where g̃ is a lift of g through

x ∈ φ−1(rB(g)). Moreover, if h ∼ g, then (h̃, h) ∼ (g̃, g).
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4.4. Analogy with Serre fibrations. There is a certain similarity between
complete comorphisms and “Serre fibrations” in topology. Namely, a Serre fibra-
tion is a continuous map φ : X → Y between topological spaces (more precisely
CW-complexes) such that for all n ≥ 0, f : In → X and g : In × I → Y satisfying
φ ◦ f = g ◦ in, where in : In → In × I is the inclusion given by in(~t) = (~t, 0), there
exists g̃ that makes the following diagram commute:

In
f - X

In × I

in

?

g
-

g̃

-

Y

φ

?

When n = 0, I0 = {?}, and we obtain the path lifting property for φ; when n = 1,
we obtain the homotopy lifting property for homotopies between paths in Y .

The analogy comes from the following facts:

• An admissible path in the algebroid A → X is the same thing as a Lie
algebroid morphism from TI to A;

• A homotopy between admissible paths is a Lie algebroid morphism from
TI × TI to A;

• The tangent map to the inclusion in is a Lie algebroid morphism from TIn

to TIn × TI.

With this in mind, Propositions 4.2 and 4.3 can be summarized diagrammati-
cally (for n = 0, 1) as follows:

TIn
f - A

TIn × TI

T in

?

g
-

g̃

-

B

Φ

?

where Φ is a complete algebroid comorphism from Lie algebroids A→ X to B → Y .
For n = 0, g is an admissible path, and, for n = 1, g is a homotopy between
admissible paths.

The problem with the diagram above is that its arrows do not belong to the
same , since it involves morphisms and comorphisms of Lie algebroids. Going
beyond a mere analogy would require a whose objects are the Lie algebroids and
whose morphisms comprise both morphisms and comorphisms of Lie algebroids.
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5. The integration functor

In [10], Dazord announced, without proof ([10, Thm. 4.1]), that a complete comor-
phism between integrable Lie algebroids always integrates to a unique comorphism
between the integrating Lie groupoids. We will prove this result here using the
path construction, which, together with Proposition 2.8, yields an improvement of
Dazord’s Theorem: namely, that a Lie algebroid comorphism is integrable if and
only if it is complete.

Actually, we will show that the classical integration functor for Lie algebras
generalizes to integrable Lie algebroids and complete comorphisms:

Theorem 5.1. The path construction Σ is a functor from the of integrable Lie
algebroids and complete comorphisms to the of source 1-connected Lie groupoids
and comorphisms. It is an inverse to the Lie functor Lie, and, thus, implements
an equivalence between these two categories.

As corollary of Theorem 5.1, Proposition 2.8, and Corollary 5.11 (for the
uniqueness part), we obtain Dazord’s statement:

Corollary 5.2. (Dazord [10]). Let A → X and B → Y be two integrable Lie
algebroids with source 1-connected integrating Lie groupoids G and H. Then a Lie
algebroid comorphism from A to B integrates to a (unique) Lie groupoid comor-
phism from G to H if and only if it is complete.

The rest of this section is devoted to the proof of Theorem 5.1. In Paragraph
5.1, we show that Σ takes a complete Lie algebroid comorphism to a Lie groupoid
comorphism. In Paragraph 5.2, we show that Σ is functorial, and in Paragraph 5.3
we show that it is a homotopy inverse to the Lie functor.

Remark 5.3. that a complete Lie algebroid comorphism integrates to a Lie
groupoid comorphism would be to adapt the corresponding proof for complete
Poisson maps of Caseiro and Fernandes (Prop. 4.8 an Prop. 4.9 in [1]) to comor-
phisms and to show that the resulting embedded subgroupoid is the graph of a Lie
groupoid comorphism. One could also use Corollary 7 in [8], where it is stated that
any complete action of a Lie algebroid Σ(A) on µ : S → M determines an action
of the groupoid Σ(A) on S and µ∗(Σ(A)) ' Σ(µ∗A) as groupoids. Since, given a
comorphism (φ,Φ) from A→ X to B → Y induces an action of B on φ, one could
then follow the lines of [1]. We thank an anonymous referee for this remark. We
give in Paragraph 5.1 a different proof , which, however, relies also on the same
kind of lifting properties as in [1] and [8].

5.1. Embeddability. Recall that any source 1-connected Lie groupoid integrat-
ing a Lie algebroid A → X is isomorphic to the Lie groupoid Σ(A) obtained by
the path construction. Therefore, in order to prove the first part of the theorem,
it is enough to show that the immersion

ι : Σ(γ(φ,Φ)) −→ Σ(A)× Σ(B),

[(g, h)] 7→ ([g], [h]),
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defined in (6) (i.e., the hypercomorphism integrating the comorphism (φ,Φ) from
A to B) is a closed embedding whose image is the graph of a comorphism (φ,Ψ)
from Σ(A) to Σ(B), when (φ,Φ) is complete.

For that consider the following diagram:

Σ(γ(φ,Φ))
ι- Σ(A)× Σ(B)

φ!Σ(B)

rA × idΣ(B)

?

K

-

where φ!Σ(B) is the pullback X φ ×rB Σ(B) in the category of smooth manifolds;
since rA is a submersion, this pullback is a closed submanifold ofX×Σ(B). Observe
that the composition (rA × idΣ(B)) ◦ ι has its image in this pullback; namely,

(rA × idΣ(B)) ◦ ι : [(x(t),Φ(x(t), ξ(t))), (φ(x(t)), ξ(t))] 7→ [(x(0), (φ(x(t)), ξ(t))],

defining thus the smooth map K. Now the homotopy lifting properties for complete
comporphisms in the form of Corollary 4.4 imply that K is invertible. In turn,
this means that rA × idΣ(B) is a diffeomorphism from the image of ι to the closed

submanifold φ!Σ(B). Therefore, the image of ι is also a closed submanifold of
the product Σ(A) × Σ(B), and ι itself is an embedding. This yields that the
hypercomorphism ι integrating the Lie algebroid comorphism (φ,Φ) is actually a
Lie groupoid comorphism, when the Lie algebroid comorphism is complete.

Observe that we also obtain a very explicit description of the integrating co-
morphism (φ,Ψ) from Σ(A) to Σ(B); namely, the fiber maps are given by

Ψx([γ]) = [γ̃],

where [γ̃] is the (unique) homotopy class of the lift of γ by the complete Lie
algebroid comorphism through the point x ∈ X.

5.2. Functoriality. As we explained in Section 4.2, the path construction Σ as-
sociates a source 1-connected Lie groupoid Σ(A) with an integrable Lie algebroid A.
In the previous paragraph, we showed that Σ associates the comorphism Σ(γ(φ,Φ))
from Σ(A) to Σ(B) with a complete comorphism from A to B.

We want to show that Σ is a functor from the of integrable Lie algebroids
and complete comorphisms to the of source 1-connected Lie groupoids and comor-
phisms. For this, we need to show that

Σ(R2) ◦ Σ(R1) = Σ(R3),

where R1 is the graph of a comorphism (φ1,Φ1) from A to B, R2 is the graph of
a comorphism (φ2,Φ2) from B to C, and R3 is the graph of the composition of
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(φ1,Φ1) with (φ2,Φ2). The bases of the integrable Lie algebroids A, B, and C are,
respectively, X, Y , and Z.

Recall that the composition of comorphisms between Lie algebroids, Lie groupoids,
or, more generally, between fibrations rA : A → X, rB : B → Y and rC : C → Z
is given by

(φ2,Ψ2) ◦ (φ1,Ψ1) = (φ2 ◦ φ1,Ψ1 ?Ψ2),

(Ψ1 ?Ψ2)(x, c) = Ψ1(x,Ψ2(φ1(x), c)),

for x ∈ X and c ∈ r−1
C (φ2 ◦ φ1(x)). This composition translates in terms of

the comorphism graphs R1 and R2 into the composition of the underlying binary
relations: i.e., the graph of the comorphism composition is the relation R2 ◦R1 in
A× C obtained by projecting the image of

(R1 ×R2) ∩ (A×∆B × C),

where ∆B is the diagonal in B ×B, to A×C. The fact that these relations come
from comorphism graphs guarantees that the result of the composition is a closed
submanifold of A× C.

Remark 5.4. There are three ways of looking at a Lie algebroid comorphism from
A to B : (1) as the pair (φ,Φ); (2) as the underlying relation γ(φ,ψ) ⊂ A×B; (3)
as the corresponding Lie algebroid γ(φ,Φ) → grφ. Similarly, there are three ways
of looking at a Lie groupoid comorphism from G to H: (1) as the pair (φ,Φ); (2)
as the underlying relation R(φ,Φ) ⊂ G×H; (3) as the Lie groupoid R(φ,Φ) ⇒ grφ.

Lemma 5.5. Σ(R2) ◦ Σ(R1) contains Σ(R2 ◦R1).

Proof. Given [γ] ∈ Σ(R2 ◦ R1), we will exhibit an element [γ1] × [γ2] ∈ Σ(R1) ×
Σ(R2), whose image by the projection

Σ(A)×∆Σ(B) × Σ(C)→ Σ(A)× Σ(C) (10)

is precisely [γ]. Namely, a representative of [γ] ∈ Σ(R2 ◦R1) is of the form

γ : t 7→
(
x(t), (Φ1 ? Φ2)(x(t), ξ(t)), (φ2 ◦ φ1)(x(t)), ξ(t)

)
for some path t 7→ (x(t), ξ(t)). We set

y(t) := φ1(x(t)),

η(t) := Φ2(y(t), ξ(t)).

This gives us two representatives of paths,

γ1 = (g1, h1) in Σ(R1),

γ2 = (g2, h2) in Σ(R2),
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respectively given by

γ1 : t 7→
(
x(t),Φ1(x(t), η(t)), φ1(x(t)), η(t)

)
,

γ2 : t 7→
(
y(t),Φ2(y(t), ξ(t)), φ2(y(t)), ξ(t)

)
.

Since h1 = g2 by definition, we obtain that

[γ1]× [γ2] ∈ Σ(A)×∆Σ(B) × Σ(C),

and thus [γ1]× [γ2] projects via (10) on the equivalence class of the path

t 7→
(
x(t), Φ1(x(t), η(t)), φ2(y(t)), ξ(t)

)
,

which we recognize to be precisely γ since

(Φ1 ? Φ2)(x(t), ξ(t)) = Φ1(x(t),Φ2(φ1(x(t)), ξ(t))).

Lemma 5.6. Σ(R2 ◦R1) contains Σ(R2) ◦ Σ(R1).

Proof. For this, consider

[γ] = [(γA, γB)] ∈ Σ(R1),

[δ] = [(δB , δC)] ∈ Σ(R2),

such that
([γ], [δ]) ∈ Σ(A)×∆Σ(B) × Σ(C).

This means that [γB ] and [δB ] define the same‘ homotopy class of paths in P(B).
Thus, there is a homotopy

γB
νB δB , νB(t, s) :=

(
y(t, s), η(t, s)

)
,

from γB to δB . The homotopy lifting property (Proposition 4.3) tells us that we
can lift νB to a homotopy µA (among the admissible paths in P(A)) of the form

γA
µA
 δA, µA(t, s) :=

(
x(t, s), Φ1(x(t, s), η(t, s))

)
,

such that

µA(t, 0) = γA(t),

φ1(x(t, s)) = y(t, s),

and where we have set δA := µA(t, 1). Now putting νB and µA together, we obtain
with Corollary 4.4 the homotopy

(γA, γB)
θ
 (δA, δB), θ := (µA, νB),
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among the paths in P(R1). Thus, we can take (δA, δB) as a representative of
[γ] ∈ Σ(R1). Finally, we see that the representative

([γ], [δ]) :=
(

[(δA, δB)], [(δB , δC)]
)

projects, after reduction, to [(δA, δC)], which belongs to Σ(R2 ◦R1).

5.3. Equivalence. We now prove that the functor Σ is a homotopy inverse to
the Lie functor Lie.

Since, by construction, LieΣ(A) = A for any integrable Lie algebroid A, we
have that Lie ◦ Σ is the identity functor. We need to show that Σ ◦ Lie is also
homotopic to the identity functor.

Given a source 1-connected Lie groupoid G, it is well-known that Σ(Lie(G))
is isomorphic, as groupoid, to G (see [7] for instance). Moreover for each such
G, there is a canonical groupoid isomorphism αG : Σ(Lie(G)) → G, which is
constructed as follows:

To begin with, consider the monodromy groupoid Ĝ of G, whose elements are
end-point-fixing homotopy classes [γ] of G-paths, that is, paths γ : [0, 1] → G
such that γ(0) is a groupoid unit x and γ(t) stays in the source-fiber of x (i.e.
rG(γ(t)) = x). When G is source 1-connected, the map

ev : Ĝ→ G : [γ] 7→ γ(1)

is a groupoid isomorphism. There is also a groupoid isomorphism D from the
monodromy groupoid Ĝ to Σ(Lie(G)). Namely, given a G-path γ,

D(γ)(t) = TlG(γ(t))Lγ(t)−1 γ̇(t),

where Lg(h) = gh is the groupoid left-translation, is an admissible path in Lie(G).
It turns out that D preserves the homotopy classes of G-paths and A-paths and
defines a groupoid isomorphism with inverse D−1 : Σ(Lie(G))→ Ĝ. We refer the
reader to [7] for details and proofs.

For each source 1-connected groupoid, we can now define the groupoid isomor-
phism

αG := ev ◦D−1 : Σ(Lie(G))→ G.

Since isomorphisms in Gpd+ and Gpd− coincide, αG is also a comorphism.

Let us show now that the αG’s are the components of a natural isomorphism
between the identity functor and Σ◦Lie; in other words, that, for any Lie groupoid
comorphism (φ,Φ) from G to H, the following diagram commutes:
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Σ ◦ Lie(G)
αG - G

Σ ◦ Lie(H)

Σ ◦ Lie(φ,Φ)

?

αH
- H

(φ,Φ)

?

This follows from the following lemmas.

Lemma 5.7. The diagram above commutes if and only if

(αG × αH)(γΣ◦Lie(φ,Φ)) = γ(φ,Φ), (11)

where γΣ◦Lie(φ,Φ) and γ(φ,Φ) are the graphs of the corresponding comorphisms.

Proof. This comes from the fact that composition of comorphisms is the same
as the composition of their underlying graphs as binary relations (i.e. γ(φ1,Φ1) ◦
γ(φ2,Φ2) = γ(φ1,Φ1)◦(φ2,Φ2)). Namely, one checks that for sets G,H,G′, H ′ , bijec-
tions αG : G′ → G and αH : H ′ → H , and binary relations R ⊂ G × H and
R′ ⊂ G′ × H ′ , we have R ◦ grαG = grαH ◦ R′ (where the composition is the
composition of binary relations) if and only if (αG × αH)(R′) = R.

Lemma 5.8. Let G⇒ X and H ⇒ Y be Lie groupoids, with H source 1-connected.
Then the graph γ(φ,Φ) of a comorphism (φ,Φ) from G to H (seen as a subgroupoid
of G×H) is source 1-connected.

Proof. We need to show that the source fiber s−1(x, φ(x)) in γ(φ,Φ) is 1-connected
for all x ∈ X. Since γ(φ,Φ) is a subgroupoid of G×H, we have that

s−1(x, φ(x)) = (sG × sH)−1(x, φ(x)) ∩ γ(φ,Φ) = gr Φx.

Because the domain s−1
H (Φ(x)) of Φx is 1-connected by assumption, so is its graph.

Lemma 5.9. We have that αG×H = αG×αH , for G and H source 1-connected Lie
groupoids. Moreover, the restriction of αG to a source 1-connected Lie subgroupoid
H coincides with αH ; in other words, the following diagram commutes:

Σ ◦ Lie(H)
k- Σ ◦ Lie(G)

H

αH

?

i
- G

αG

?
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where k sends a homotopy class [γ]H of admissible paths in Lie(H) to the homotopy
class of path [γ]G in Lie(G), and i is the inclusion of G in H.

Proof. The first statement follows from the facts that

Σ ◦ Lie(G×H) = Σ ◦ Lie(G)× Σ ◦ Lie(H),

Ĝ×H = Ĝ× Ĥ,
evG×H = evG × evH ,

DG×H = DG ×DH .

As for the second statement, observe first that k is well-defined, since an admissible
path in Lie(H) is also an admissible path in Lie(G), and homotopic Lie(H)-paths
are also homotopic as Lie(G)-paths (since Lie(H)-homotopies are also Lie(G)-
homotopies). Moreover, an admissible Lie(H)-path γ integrates to a H-path,
which, considered as a G-path, is the same as the one γ integrates to when con-
sidered as a Lie(G)-path. We can then conclude by chasing in the diagram above,
starting with the representative γ.

Lemma 5.10. The α’s defined above are the components of a natural transforma-
tion.

Proof. By Lemma 5.7, we only need to show that the Lie groupoid comorphisms
(αG × αH)(γΣ◦Lie(φ,Φ)) and γ(φ,Φ) coincide. Since γ(φ,Φ) is a source 1-connected
groupoid by Lemma 5.8, we have that αγ(φ,Φ)

is an isomorphism from γΣ◦Lie(φ,Φ)

to γ(φ,Φ). From Lemma 5.9, we can conclude that the restriction of αG × αH =
αG×H to the subgroupoid γΣ◦Lie(φ,Φ) coincides with αγ(φ,Φ)

, whose image is exactly
γ(φ,Φ).

Consequently, Σ is a homotopy inverse to the Lie functor, implementing thus
an equivalence of categories. As corollary, we have that

Corollary 5.11. The Lie functor is faithful. In other words, the Lie groupoid
comorphism integrating a complete Lie algebroid comorphism is unique.

6. The symplectization functor

There is an immediate application of Theorem 5.1 in Poisson geometry. Namely,
this theorem implies, as we will see below, that the integration of Poisson manifolds
by symplectic groupoids using the path construction is an actual functor from the
of integrable Poisson manifolds and complete Poisson maps to the SGpd of source
1-connected symplectic groupoids and symplectic comorphisms.

A symplectic comorphism from symplectic groupoids G ⇒ X to H ⇒ Y
is a comorphism (φ,Φ) whose underlying graph γ(φ,Φ) is a canonical relation from
G to H. In contrast with general canonical relations, symplectic comorphisms
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always compose well (because they are comorphisms in the first place), and thus
form a . Observe that the graph γ(φ,Φ) of a symplectic comorphism is a lagrangian

subgroupoid of G×H
A complete Poisson map φ from X to Y is a Poisson map with the property

that the hamiltonian vector field ξφ∗f on X with hamiltonian φ∗f is complete if
the hamiltonian vector field ξf on Y with hamiltonian f ∈ C∞(Y ) is complete.

Fernandes in [9] studied constructions in Poisson geometry involving the inte-
gration of Poisson manifolds seen as a functor, which he called the “symplectization
functor.” However, in [9] the domain of this functor comprises all Poisson maps
and its range has for morphisms from G to H all the lagrangian subgroupoids of
G × H, instead of only those that are graphs of symplectic comorphisms. This
choice has as a consequence that the range is not an honest (the compositions are
not always well-defined). Moreover, if we drop the completeness condition, there
are Poisson maps that do not integrate to symplectic comorphisms as illustrated
in the example below. Hence, the symplectization functor is not a true functor
with this choice of domain and range.

Example 6.1. Consider the non-complete and non-integrable Lie algebroid co-
morphism (φ,Φ) from TX to TY of Section 3. Its dual Φ∗ is a non-complete
Poisson map from cotangent bundles T ∗X to T ∗Y endowed with their canonical
Poisson structure. Let us see that Φ∗ is also non-integrable. Since the graph
grφ∗ is a coisotropic submanifold of the symplectic manifold T ∗X × T ∗Y (with
symplectic form Ω = −ω+ω), the (immersed) lagrangian subgroupoid integrating
Φ∗ can be identified with the leafwise fundamental groupoid of the characteristic
foliation F̃ of grφ∗ (whose associated distribution we denote by ∆̃). For two vec-
tors in the tangent space to grφ∗ (which we identify with vectors v = v ⊕ θv in
TT ∗X ' TX ⊕ T ∗X), we have that

Ω(v, w) = −〈(id−Φ ◦ Tφ)v, θw〉+ 〈(id−Φ ◦ Tφ)w, θv〉.

From this last equation, we see that Ω(v, w) = 0 for all vectors v tangent to grφ∗ iff
w ∈ Im Φ⊕ (KerTφ)0, where Im Φ is the distribution of the foliation given by the
flat Ehresmann connection associated with (φ,Φ) and (KerTφ)0 is the annihilator
of vertical distribution associated with the submersion φ. Hence,

∆̃ = Im Φ⊕ (KerTφ)0,

and the leafwise fundamental groupoid of F̃ may be parametrized by Γ̃ = T ∗Γ,
where

Γ = (R+ × S1)× (R+ × R)× C× (−1, 1)

parametrizes the leafwise fundamental groupoid of the Ehresmann connection on
X as described in Section 3. The element

γ̃ = (r, θ, r′, τ, z, h, ξr, ξθ, ξ
′
r, ξτ , ξz, ξh)
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of Γ̃ corresponds to the homotopy class of the leafwise path

t 7→
(
r + (r′ − r)t, θ + τt, eiν(h)τtz, h, ξr + (ξ′r − ξr)t, ξθ + ξτ t, ξz, ξh

)
,

with 0 ≤ t ≤ 1. We see that we obtain the same non-trivial self-intersections for
the immersion

Γ̃→ T ∗X × T ∗X × T ∗Y × T ∗Y

at z = 0 for the exact same reasons as in Section 3.

As with Lie algebroids, there is a Lie functor Lie from SGpd to the of Poisson
manifolds and Poisson maps. It takes a symplectic groupoid G⇒ X to the Poisson
manifold (X,ΠX), where ΠX is the unique Poisson structure turning rG into a
Poisson map (and lG into an anti-Poisson map). Since the graph of a symplectic
comorphism (φ,Φ) from G⇒ X to H ⇒ Y is a lagrangian subgroupoid γ(φ,Φ) ⇒
grφ, this implies that the graph of φ is a coisotropic submanifold (see [3]), and,
hence, that φ is a Poisson map. The Lie functor on morphisms is thus defined as
Lie(φ,Φ) = φ.

The path construction can also be extended in a functorial way to the Poisson
realm. Namely, integrating a Poisson manifold X is equivalent to integrating
its associated Lie algebroid T ∗X → X, whose bracket on sections is the Koszul
bracket and whose anchor map is the map Π] : T ∗X → TX associated with the
Poisson bivector field Π ∈ Γ(∧2TX). The path construction applied to this Lie
algebroid yields a symplectic groupoid Σ(T ∗X)⇒ X (when the Poisson manifold
is integrable as seen in [4]), that is, a groupoid whose total space is symplectic and
whose multiplication graph is a lagrangian subgroupoid of Σ(T ∗X) × Σ(T ∗X) ×
Σ(T ∗X). (The bar on a Poisson manifold denotes the same Poisson manifold but
with opposite Poisson structure.)

To extend the path construction to Poisson maps, we need the following propo-
sition, which can already be (partly) found in [2] and in [12]:

Proposition 6.2. Let (X,ΠX) and (Y,ΠY ) be two Poisson manifolds. A smooth
map φ : X → Y is a Poisson map if and only if its cotangent map T ∗φ is a Lie
algebroid comorphism from T ∗X to T ∗Y (with the Lie algebroid structure described
above). Moreover, φ is complete if and only if T ∗φ is.

Proof. T ∗φ is a comorphism if and only if its dual, the tangent map Tφ from TX
to TY , is a Poisson map with respect to the Poisson structure on TX and TY
inherited from being duals of Lie algebroids. Thus we only need to show that φ is
Poisson if and only if Tφ is. Now a smooth map between two Poisson manifolds is
Poisson if and only if its graph is a coisotropic submanifold of the product of the
two Poisson manifolds. Hence, the problem reduces to showing that a submanifold
C of a Poisson manifold X is coisotropic if and only if TC is coisotropic in TX.

Recall that the Poisson structure on TX can be described locally in terms of
the matrix

Π̃X(x, v) =

(
0 ΠX(x)

−ΠX(x) ∂kΠX(x)vk

)
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and that we can identify a vector in T(x,v)TC with δx⊕δv ∈ TxC⊕TxC. This fur-
ther gives the identification of N∗(x,v)TC with N∗xC⊕N∗xC. Now TC is coisotropic
iff for all θ ⊕ ν ∈ N∗(x,v)TC, we have that

Π̃]
X(x, v)(θ ⊕ ν) = Π]

X(x)ν ⊕ (−Π]
X(x)θ + ∂kΠ]

X(x)vkν) ∈ TxC ⊕ TxC,

which is equivalent to C being coisotropic, since ∂kΠ]
X(x)vkν is always in TxC

provided that C is coisotropic (to see this, consider the derivative at 0 of the curve
(x(t),ΠX(x(t))ν) in TC such that x(0) = x, ẋ(0) = v, and ν is a section of N∗C).

This shows that φ is Poisson if and only if T ∗φ is a Lie algebroid comorphism.
Let us check now that φ is complete whenever T ∗φ is.

First of all, a direct computation shows that the hamiltonian vector field ξφ∗f
where f ∈ C∞(Y ) coincides with Π]

X(T ∗φ)†df . Moreover, by definition, ξf is
complete if and only if the section df is complete.

Suppose now that the comorphism (φ, T ∗φ) is complete. Take a complete
hamiltonian vector field ξf . Then (T ∗φ)†df is complete (since df is complete)
which implies thus that ξφ∗f is also complete. Therefore, the Poisson map φ is
complete.

We prove the converse by contradiction. Suppose that φ is complete and that
s ∈ Γ(B) is a complete section with (T ∗φ)†s non-complete. This means that there

is an integral curve x(t) of Π]
X(T ∗φ)†s starting at x(0) = x that does not exist

beyond a certain time t̃. Consider the integral curve y(t) of Π]
Y s that starts at

y = φ(x). As long as x(t) exists, we have that φ(x(t)) = y(t). Now, since s
is complete, the integral curve y(t) exists for all times, including (and beyond)
t̃. Since y(t) is contained in a symplectic leaf of X, there is a sufficiently small
ε > 0 and an open set U in Y containing y([t̃− ε, t̃+ ε]) together with a function
f : M → R with compact support contained in U , whose hamiltonian vector field
ξf coincides with Π]

Y s on the curve y(t) (but not necessarily on the whole U).
(One can see this by taking local Darboux coordinates turning y(t) into a straight
line and considering a linear hamiltonian.) The Poisson map φ being complete, the
integral curve x̄(t) of ξφ∗f starting at x̄(t̃− ε) = x(t̃− ε) exists for all t (including

and beyon t̃). Since ξf and Π]
Xs coincide on y(t) (for all t ∈ R), their lifts ξφ∗f

and (T ∗φ)†s coincide on x(t) for t ∈ [t̃ − ε, t̃); therefore the integral curves x(t)
and x̄(t) coincide on [t̃ − ε, t̃). But now, for t ∈ [t̃, t̃ + ε), we have that ξφ∗f (x̄(t))

coincides with Π]
X(T ∗φ)†s(x̄(t)) because ξf and Π]

Y s coincide on y(t); thus, the

integral curve x̄(t) is also an integral curve of Π]
X(T ∗φ)†s that extends x(t) beyond

t̃. This contradicts our assumption that x(t) can not be extended beyond t̃.

The graph of a Poisson map φ from X to Y is a coisotropic submanifold of the
Poisson manifold product X×Y . Thus, the conormal bundle N∗ grφ to this graph
is a subalgebroid of the algebroid product T ∗X × T ∗Y . Proposition 6.2 tells us
that this conormal bundle is actually the graph of the Lie algebroid comorphism
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(φ, T ∗φ) from T ∗X to T ∗Y . Applying the the path construction to this comorphism
yields a hypercomorphism

ι : Σ(N∗ grφ)→ Σ(T ∗X)× Σ(T ∗Y )

between the integrating symplectic groupoids, which happens to be in general only
a lagrangian immersion (see [3] for instance).

Using Theorem 5.1 and Proposition 6.2, we obtain that, for a complete Poisson
map, the lagrangian immersion ι is a closed lagrangian embedding, and its image,
which we denote by Σ(φ), is a closed lagrangian submanifold of Σ(T ∗X)×Σ(T ∗Y ).
In other words, for complete Poisson maps, Σ(φ) is, at the same time, a canonical
relation from Σ(T ∗X) to Σ(T ∗Y ), a lagrangian subgroupoid over the graph of φ,
and a comorphism from Σ(T ∗X) to Σ(T ∗Y ).

In complete analogy with the Lie algebroid case, we can summarize the dis-
cussion above by the following statements, some of which can already be found in
[1, 10, 19]:

Proposition 6.3. (Zakrzewski [19]) Let G and H be symplectic groupoids over X
and Y respectively, and let (φ,Φ) be a symplectic comorphism from G to H. Then
φ = Lie(φ,Φ) is a complete Poisson map from X to Y .

Proof. The lagrangian subgroupoid γ(φ,Φ) ⇒ grφ integrates the coisotropic sub-
manifold grφ, and, thus, integrates the corresponding Lie subalgebroid N∗ grφ
(see [3] for instance), which is nothing but the graph of the comorphism T ∗φ from
T ∗X to T ∗Y . By Proposition 2.8, we have then that T ∗φ is complete because
integrable, and, hence, that φ is complete by Proposition 6.2

Theorem 6.4. The path construction Σ is a functor from the of integrable Pois-
son manifolds and complete Poisson maps to the of source 1-connected symplectic
groupoids and symplectic comorphisms. It is an inverse to the Lie functor Lie,
and, thus, implements an equivalence between these two categories.

Corollary 6.5. (Caseiro-Fernandes [1], Dazord [10], Zakrzewski [19]) Let X and
Y be two integrable Poisson manifolds with source 1-connected integrating sym-
plectic groupoids G and H. Then a Poisson map φ from X to Y integrates to a
(unique) symplectic comorphism (φ,Φ) from G to H if and only if it is complete.

Theorem 6.4 provides a rigorous foundation for constructions in Poisson ge-
ometry involving Σ in the spirit of Fernandes in [9] where Σ (which is called the
“symplectization functor”) is only considered heuristically.

Remark 6.6. A weaker version of Corollary 6.5 was already stated without proof
by Dazord in [10], where only the implication from complete to integrable was con-
sidered. Recently, Caseiro and Fernandes in [1] proved that the object integrating
a complete Poisson map from integrable Poisson manifolds X to Y is an embedded
lagrangian subgroupoid of the symplectic groupoid product Σ(X)×Σ(Y ), using the
path construction and similar lifting properties as described in Section 4.3. How-
ever, one can find versions and proofs of both this Corollary and Proposition 6.3 in



Integration of Lie algebroid comorphisms 29

Zakrzewski’s paper [19], which was written even before the notion of comorphisms
was formally introduced by Higgins and Mackenzie in [12]. In [19], Zakrzewski
integrates complete Poisson maps not to symplectic comorphisms but to what he
called “morphisms of S∗-algebras,” which are defined as special canonical relations
satisfying certain algebraic relations. One can shows that that Zakrzewski’s mor-
phisms of S∗-algebras are nothing but symplectic comorphisms. His proof relies
mostly on the method of characteristics for coisotropic submanifolds.
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I Math. 324 (1997), 77–80.

[11] P. J. Higgins and K. Mackenzie, Algebraic constructions in the of Lie algebroids, J.
Algebra 129 (1990), 194–230.

[12] P. J. Higgins and K. Mackenzie, Duality for base-changing morphisms of vector
bundles, modules, Lie algebroids and Poisson structures, Math. Proc. Camb. Phil.
Soc. 114 (1993), 471–488.

[13] A. Kumpera and D. Spencer, Lie Equations, vol. 1, Princeton Univ. Press., (1972).

[14] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London
Mathematical Society Lecture Note Series 124, Cambridge University Press (1987).

[15] K. Mackenzie, P. Xu, Integration of Lie bialgebroids, Topology 39 (2000), 445–467.
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