
WAVE RELATIONS

ALBERTO S. CATTANEO AND PAVEL MNEV

Abstract. The wave equation (free boson) problem is studied from the view-

point of the relations on the symplectic manifolds associated to the boundary

induced by solutions. Unexpectedly there is still something to say on this sim-
ple, well-studied problem. In particular, boundaries which do not allow for a

meaningful Hamiltonian evolution are not problematic from the viewpoint of

relations. In the two-dimensional Minkowski case, these relations are shown
to be Lagrangian. This result is then extended to a wide class of metrics and

is conjectured to be true also in higher dimensions for nice enough metrics. A

counterexample where the relation is not Lagrangian is provided by the Misner
space.
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1. Introduction

In this note we study the wave equation from the point of view of evolution
relations (as defined in [3, 4]). In particular we show that they are well behaved also
in cases when the boundary does not allow for a meaningful Hamiltonian evolution.
This is a case study for a simple well-studied problem (on which unexpectedly
there was still something to say) supporting the relevance of the evolution relation
approach. This note is self-contained and the relevant concepts from [3, 4] are
introduced when needed.

Fix a dimension m and a signature. To an m-dimensional compact oriented
pseudo-Riemannian manifold (M, g), possibly with boundary, whose metric has
the given signature, we associate a space of fields1 FM := C∞(M) and an action
functional

(1) SM,g[φ] :=
1

2

∫
M

dφ ∧ ∗gdφ, φ ∈ FM ,

where ∗g denotes the Hodge-∗ operator induced by the metric g. More explicitly,
writing the integrand in a local chart,

SM,g[φ] =
1

2

∫
M

gµν ∂µφ∂νφ
√
g dmx.

where g = |det(gµν)|. According to the construction in [4], to an (m− 1)-manifold
Σ (with the extra structure of a function, a vector field and a volume form) we
can associate a space of boundary fields2 (or phase space) ΦΣ endowed with a
symplectic structure ωΣ = δαΣ, where αΣ is the 1-form on ΦΣ arising as the
boundary term of the variation of the action (1), such that for every M as above
we get an epimorphism (and hence a surjective submersion) πM : FM → Φ∂M ;
moreover, LM := πM (ELM ) is isotropic in (Φ∂M , ω∂M ), where ELM is the subset
of solutions to the Euler–Lagrange (EL) equation d∗gdφ = 0 or in local coordinates:

(2) ∂µ(
√
g gµν∂νφ) = 0.

Conjecture 1.1. For any compact oriented pseudo-Riemannian manifold (M, g)
with boundary, which can be isometrically embedded into some Euclidean space RN
equipped with constant metric, the subspace LM ⊂ Φ∂M is Lagrangian.

The Conjecture is easily proved in the case of Riemannian manifolds [3] from
existence and uniqueness of solutions to the Dirichlet boundary problem d∗dφ = 0,
φ|∂M = φ∂ where φ∂ ∈ C∞(∂M) is a boundary condition for φ.

The Conjecture is also true if M is a pseudo-Riemannian manifold of the form
Σ × I, where I = [t0, t1] is an interval, provided that the metric g pulls back to
a non-degenerate metric gt on Σ × {t} for any t ∈ I. This follows from existence
and uniqueness for the initial value problem for the EL equation, with Cauchy
data being a point of ΦΣ×{t0}, implying that LM is the graph of an isomorphism
ΦΣ×{t0} → ΦΣ×{t1}. On the other hand, LM is isotropic by a universal argument
of [3, 4], hence LM is Lagrangian.

If the boundary of M is split into “incoming” and “outgoing” parts ∂M =
(∂inM)op t ∂outM , then the subspace LM ⊂ Φ∂M = Φ̄∂inM × Φ∂outM can be in-
terpreted as a set-theoretic relation between Φ∂inM and Φ∂outM – the “evolution

1We mainly consider smooth functions in this note, which requires working in the setting of

Fréchet spaces. For less regularity, and the corresponding Banach setting, see subsubsection 5.5.1.
2Notice that FM and ΦΣ are Fréchet spaces and hence Fréchet manifolds.
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relation”; the property that LM is Lagrangian means that the evolution relation is
a canonical relation between symplectic spaces. Here “op” stands for reversing the
orientation and bar stands for changing the sign of the symplectic form. Gluing
of manifolds along common boundary corresponds in this setting to set-theoretical
composition of relations.

In this note, see Section 4, Theorem 4.2, we prove the following case of the
Conjecture.

Theorem. Let m = 2, M a compact domain with smooth boundary in the Minkowski
plane, such that there are only finitely many boundary points with light-like tangent
and such that the curvature of the boundary is nonzero at these points, and let g be
the Minkowski metric restricted to M . Then LM is Lagrangian.

Notice that ∂M generally has several space-like and several time-like pieces sep-
arated by light-like points. A consequence of the theorem is that we can study the
wave equation on compact domains: the appropriate boundary conditions consist
in the choice of an affine Lagrangian subspace L′ of Φ∂M that intersects LM in one
point and on which α∂M + δf vanishes for some local functional f on Φ∂M . This
also means that quantization on compact domains is possible, provided a suitable
polarization of Φ∂M can be found.

It is tempting to extend the conjecture also to more general pseudo-Riemannian
manifolds. This is expected to be the case for metrics that are nice enough, e.g.,
which do not differ much from the constant one (which is the case for small do-
mains). However, this is not true in general and in subsection 5.9 we show that the
Misner space [8] provides a counterexample. From a different perspective, we may
say that the condition that L is Lagrangian selects reasonable spacetimes.

If M is of the form Σ× [t0, t1], one can attempt to define the Hamiltonian evo-
lution in the “time” parameter t ∈ [t0, t1]. The Hamiltonian H can be constructed
in a standard way via the Legendre transform of the time-density of the action.
Generally, for M pseudo-Riemannian and with no non-degeneracy condition on the
metric pulled back to time-slices Σ × {t}, H will be singular and one can employ
the Gotay-Nester-Hinds algorithm [6] to construct a smaller phase space on which
H and the associated Hamiltonian vector field are well-defined. However, generally
the Hamiltonian vector field cannot be integrated to a finite-time Hamiltonian flow:
both existence and uniqueness of solutions of the Hamilton’s equations can fail. In
Section 5.5 we study in detail an example of this situation: the radial evolution
on an annulus on Minkowski plane. Despite the failure of the Hamiltonian picture
in such cases, the formalism of canonical relations works perfectly and provides a
more general framework for describing the evolution.

1.1. Plan of the paper.

• In Section 2 we review the construction of the boundary phase space for the
classical field theory defined by action (1) on a general pseudo-Riemannian
manifold with boundary.
• In Section 3 we specialize to the case of a domain M in the Minkowski

plane and study several simple examples explicitly. In particular, we show
that LM is Lagrangian if M is a strip.3 In the case when the boundary is
light-like, we observe however that no choice of boundary condition leads

3Since this is a noncompact manifold, appropriate restrictions on the behavior of fields at
infinity are to be imposed.
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to uniqueness of solutions. We also consider a diamond on the Minkowski
plane with edges aligned in light-like directions and show that LM for this
domain is Lagrangian.
• Section 4 is central to this paper. Here we specialize further to the case

of compact domains on the Minkowski plane bounded by a collection of
smooth curves with only finitely many light-like points (with the technical
requirement that the boundary should have non-zero curvature at the light-
like points). We prove that LM is Lagrangian for such domains (Theorem
4.2).
• In Section 5 we comment on several associated issues, in particular:

– Problems with Dirichlet boundary conditions (non-transversality of
the corresponding L′ and LM ).

– Constraint (Cauchy) subspaces of the phase space (constraints arising
from the requirement of extendability of boundary fields to a solution
of the wave equation in an open neighborhood of the boundary).

– Conformal invariance of the problem. In particular, the result of The-
orem 4.2 extends to domains with a non-flat Lorentzian metric confor-
mally equivalent to the flat one.

– The Hamiltonian formalism corresponding to radial evolution on the
plane and issues with integrating the corresponding Hamiltonian vec-
tor field into a flow (both in the Fréchet and in the Banach setting).

– The representation of the operad of little 2-disks by canonical relations
coming from evolution relations LM .

– Interpretation of the property of being Lagrangian for the evolution
relation for a general classical free field theory, possibly with gauge
symmetry, in terms of (generalized) Lefschetz duality, and the special-
ization to the theory defined by the action (1).

– Extension of the result of Theorem 4.2 to more general Lorentzian
surfaces, satisfying certain constraints on the metric.

– An example of a Lorentzian surface with a non-Lagrangian evolution
relation – the Misner metric on a cylinder.

1.2. Acknowledgements. We thank C. De Lellis, T. Kappeler, V. Schroeder and
A. Weinstein for useful discussions.

2. Classical massless free boson on a pseudo-Riemannian manifold:
boundary structures

The construction of [4] in case of the free massless boson, see action (1), on a
pseudo-Riemannian manifold associates to a closed oriented (m − 1)-manifold Σ
endowed with a triple of a function, a vector field and a volume form (Γ, u, µ) ∈
C∞(Σ)× X(Σ)× Ωm−1(Σ), a pre-phase space

(3) Φ̃Σ = C∞(Σ)× C∞(Σ)

with coordinates denoted by (φ, φn). The pre-phase space is endowed with the
1-form

(4) α̃Σ =

∫
Σ

µ (Γφn + u(φ)) δφ ∈ Ω1(Φ̃Σ)
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More concretely, for each (φ, φn) ∈ Φ̃Σ, α̃Σ(φ, φn) is the linear map Φ̃Σ → R,

(f, fn) 7→
∫

Σ

µ (Γφn + u(φ)) f

The presymplectic structure on the pre-phase space is defined as

(5) ω̃Σ = δα̃Σ =

∫
Σ

µ (Γ δφn + u(δφ)) δφ ∈ Ω2(Φ̃Σ)

where δ in δα̃Σ stands for de Rham differential on Φ̃Σ.4 More concretely, ω̃Σ is the
skew symmetric bilinear map Φ̃Σ × Φ̃Σ → R,

((f, fn), (g, gn)) 7→
∫

Σ

µ (Γ fn + u(f)) g −
∫

Σ

µ (Γ gn + u(g)) f

The phase space ΦΣ is defined as the reduction of the pre-phase space by the
kernel of the presymplectic form,

ΦΣ = Φ̃Σ/ ker(ω̃Σ)

The 2-form ω̃Σ descends to a symplectic structure on the phase space, ωΣ ∈ Ω2(ΦΣ).

Remark 2.1. The geometric data (Γ, u, µ) on Σ can be considered modulo equiv-
alence (Γ, u, µ) ∼ (cΓ, cu, c−1µ) for any nonvanishing c ∈ C∞(Σ). Also, the data
(Γ, u, µ) up to this equivalence can be viewed as a section

(Γ + u)µ ∈ Γ(Σ, (R⊕ TΣ)⊗ ∧m−1T ∗Σ)

where R stands for the trivial real line bundle over Σ.

In case when Σ = ∂M is the boundary of an m-manifold M , the geometric data
(Γ, u, µ) are inferred from the metric g on M as follows:
(6)

Γ(x) = g−1(x)(n∗x, n
∗
x), u(x) = g−1(x)(n∗x, •)− Γ(x)nx ∈ Tx∂M, µ = ιnµg

Here we chose some vector field on the boundary5 n ∈ Γ(∂M, i∗TM) transversal to
the boundary everywhere (we denote i : ∂M ↪→M the embedding of the boundary);
n∗ ∈ Γ(∂M, i∗T ∗M) is the covector field on the boundary defined by 〈n∗x, nx〉 = 1,
〈n∗x, Tx∂M〉 = 0; µg =

√
g dmx is the metric volume element on M ; ι• stands for

contraction of a form with a vector field.
The projection π̃M : FM → Φ̃∂M sends φ ∈ C∞(M) to (φ|∂M , ∂nφ|∂M ) – values

of φ at the boundary and derivative along n at the boundary.

Remark 2.2. Choosing a different transversal vector field at the boundary, n′ =
an+w with nonvanishing a ∈ C∞(∂M) and with w ∈ X(∂M) a tangent vector field
on ∂M , results in different induced geometric data on the boundary:

(Γ′, u′, µ′) = (a−2Γ, a−1u− a−2w, aµ)

The new projection π̃′M : FM → Φ̃Σ, corresponding to n′, sends φ ∈ C∞(M) to

(φ|∂M , ∂n′φ|∂M ) ∈ Φ̃∂M and can be viewed as the old one, composed with a linear

isomorphism of the pre-phase space Φ̃∂M → Φ̃∂M sending (φ, φn) 7→ (φ, aφn+w(φ)).

4For more details on “local” differential forms on spaces of fields, see e.g. [5].
5We do not require any compatibility of n with the metric on M .
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The pull-back of the 1-form α̃∂M to the space of fields FM is

(7) π̃∗M α̃∂M =

∫
∂M

(∗gdφ · δφ)|∂M =

∫
∂M

(ιg−1(dφ)µg · δφ)|∂M

It arises as the boundary term of the variation of the action (1):

δS = (−1)m−1

∫
M

dδφ ∧ ∗gdφ = −
∫
M

(d ∗g dφ) · δφ+ π̃∗M α̃∂M

Remark 2.3. According to the construction of [3, 4], one associates to an (m−1)-
manifold Σ with a pseudo-Riemannian metric on a cylinder Mε = Σ × [0, ε] the

space Φ̃Σ of 1-jets6 of functions on Mε at Σ × {0}. The one-form α̃Σ ∈ Ω1(Φ̃Σ)
arises as the part of the boundary term of the variation of S on Mε corresponding to
the contribution of the boundary component Σ× {0}. The geometric data (Γ, u, µ)
introduced above constitute the part of the metric on Mε necessary to define the
1-form α̃Σ. The transversal vector field n arises from the 1-jet of the embedding of
the cylinder Mε ↪→M as a neighborhood of the boundary of M .

3. Two-dimensional Minkowski case

Consider the Minkowski plane R1,1 with coordinates (x, y) and metric g = dx2−
dy2. Let D be a domain7 of R1,1 with smooth boundary, with metric given by
restriction of the Minkowski metric on R1,1 to D. As above, FD = C∞(D) and the
action (1) is

SD,g[φ] =
1

2

∫
D

[(∂xφ)2 − (∂yφ)2] dx dy

Unless otherwise stated, in case of an unbounded domain D, we assume that
k-th derivatives of fields have asymptotics

(8) ∂kφ ∼ O((x2 + y2)−
η+k
2 )

at infinity, where k = 0, 1, 2, . . . and η > 0 is some constant.
The corresponding Euler-Lagrange equation is just the wave equation

∂2
xφ− ∂2

yφ = 0

3.1. Examples of boundary structures. In this section we consider D a half-
space in R1,1 with space-like, time-like or light-like boundary Σ = ∂D ' R.

Consider the case D = R × [y0,∞) with space-like boundary ∂D = R × {y0}.
Using the construction of Section 2, we choose the transversal vector field at the
boundary to be n = ∂y and obtain the geometric structure (6) on the boundary

(Γ, u, µ) = (−1, 0,−dx). The pre-phase space is Φ̃∂D = C∞(R) × C∞(R) 3 (φ, φn)

and the projection π̃D : FD → Φ̃∂D sends φ ∈ C∞(D) to (φ|y=y0 , ∂yφ|y=y0). The
1-form (4) on the pre-phase space is

(9) α̃ =

∫
R
dxφn δφ ∈ Ω1(Φ̃∂D)

and its differential

(10) ω̃ =

∫
R
dx δφn ∧ δφ ∈ Ω2(Φ̃∂D)

6Only 1-jets are required since the density of the action S is of second order in the field

derivatives.
7By domain here we mean the closure of an open subset.
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is weakly non-degenerate, i.e. ker ω̃ = 0. Thus, there is no symplectic reduction and
the phase space coincides with the pre-phase space, Φ∂D = Φ̃∂D, with symplectic
structure ω = ω̃.

Similarly, for D = [x0,∞) × R with time-like boundary ∂D = {x0} × R we
pick n = ∂x, which induces geometric data (Γ, u, µ) = (1, 0, dy) on the boundary.
The projection πD sends φ ∈ C∞(D) to (φ|x=x0 , ∂xφ|x=x0). The 1-form α̃ and its
differential ω̃ are again given by formulae (9, 10). Again, the non-degeneracy of ω̃

implies that Φ∂D = Φ̃∂D, ω = ω̃.
Next, consider a half-space on R1,1 with light-like boundary. Using coordinates

σ+ = y + x, σ− = y − x on R1,1, we set D = {(σ+, σ−) ∈ R1,1 |σ− ≥ σ0
−} for some

σ0
− ∈ R. Introducing coordinate vector fields ∂± = 1

2 (∂y±∂x), we set n = ∂−. This

choice yields the boundary geometric data8 (Γ, u, µ) = (0,−2∂+,− 1
2dσ+), therefore

α̃ =

∫
R
dσ+ ∂+φ δφ, ω̃ = δα̃ =

∫
R
dσ+ (∂+δφ) ∧ δφ

Using the linear structure on the pre-phase space, we can regard the presymplectic
structure ω̃ as an anti-symmetric bilinear form on Φ̃ given by

(11) ω̃((φ, φn), (ψ,ψn)) =

∫
R
dσ+ ((∂+φ) ψ − (∂+ψ) φ)

The kernel of ω̃ and hence the symplectic reduction depend on the allowed be-
havior of φ at σ+ →∞. For instance, we have the following.

(i) If we require limσ+→∞ φ(σ+) = 0 then the presymplectic form (11) becomes

(12) ω̃((φ, φn), (ψ,ψn)) = 2

∫
R
dσ+ (∂+φ) ψ

So, (φ, φn) ∈ ker ω̃ iff ∂+φ = 0, but by the vanishing requirement at σ+ →∞
this implies φ = 0. Hence, ker ω̃ = {0} × C∞(R) ⊂ Φ̃ and the phase space is

(13) Φ = Φ̃/ ker ω̃ = C∞(R) 3 φ

with (non-degenerate) symplectic structure given by r.h.s. of (11).
(ii) Requiring that φ has some (possibly, different) limits at σ+ → ±∞, we get a

boundary term, integrating by parts in (11): ω̃((φ, φn), (ψ,ψn)) = −|φψ|+∞−∞+
2
∫
R dσ+ (∂+φ)ψ. Thus (φ, φn) ∈ ker ω̃ iff ∂+φ = 0 and φ(±∞) = 0, which

again implies φ = 0. So, ker ω̃ is the same as in case of vanishing condition at
σ+ → ∞ and the phase space is again given by (13) (though now we impose
different asymptotical conditions on φ).

(iii) Imposing periodic asymptotics φ(+∞) = φ(−∞), we get back to (12) but now
the kernel becomes bigger:

ker ω̃ = {(φ = C, φn ∈ C∞(R)) | C ∈ R} ⊂ Φ̃

Thus the phase space is Φ = C∞(R)/R where we consider functions differing
by a constant shift as equivalent. We can choose the section of this quotient
e.g. by requiring φ(0) = 0. In this case the projection πD : FD → Φ maps
φ ∈ C∞(D) to ψ(σ+) = φ(σ+, σ

0
−)− φ(0, σ0

−).

8It is useful to note that in coordinates σ±, the metric, its inverse and the metric volume

element on D are, respectively, g = −dσ+ · dσ−, g−1 = −4 ∂+ · ∂−, µg = 1
2
dσ+ ∧ dσ−. Here ·

stands for the symmetrized tensor product.
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3.2. Canonical relations. Related to examples of the previous section, with D ⊂
R1,1 a half-space with boundary ∂D = Σ a line in R1,1, are cases when D ⊂ R1,1

is a strip with boundary Σ tΣop where op denotes the opposite orientation. In all
these cases LD is Lagrangian as we presently prove.

For Σ space-like, consider D = R × [y0, y1]. Denote π := ∂yφ. Then the 1-form
on the phase space

Φ∂D = C∞(R)×4 3 (φ0, π0, φ1, π1)

is

α =

∫
R

(π1δφ1 − π0δφ0) dx

where subscript i corresponds to boundary components y = yi of the strip, i = 0, 1
(and we are still assuming asymptotics (8) for fields π, φ). The Euler-Lagrange
equation can be rewritten as a system

∂yπ = ∂2
xφ

∂yφ = π

The system is Hamiltonian with respect to the symplectic form
∫
R δπ ∧ δφ dx and

to the Hamiltonian function H = 1
2

∫
R(π2 + (∂xφ)2) dx. Since LD is the graph of

the corresponding Hamiltonian flow from time y0 to time y1, it is Lagrangian.
Similarly one proves that LD is Lagrangian for Σ time-like, for the strip D =

[x0, x1]× R.
Finally, consider the case when Σ is light-like. Passing to coordinates σ±, we

consider the strip D = {(σ+, σ−) ∈ R1,1 |σ0
− ≤ σ− ≤ σ1

−}. The Euler-Lagrange
equation becomes ∂+∂−φ = 0, which has general solution

(14) φ(σ+, σ−) = f(σ+) + g(σ−)

with f and g arbitrary functions. Therefore, for any σ0
− and σ1

−, LD is the diagonal

in Φ̄Σ × ΦΣ, where bar denotes opposite symplectic structure, so it is Lagrangian.
Observe however that g cannot be determined by boundary conditions. As a con-
sequence, on such strips we cannot have uniqueness of solutions.

3.3. Light-like diamond. Consider a diamond in Minkowski plane with piecewise
light-like boundary,9

D = {(σ+, σ−) ∈ R1,1 | σ0
+ ≤ σ+ ≤ σ1

+, σ
0
− ≤ σ− ≤ σ1

−}

We label the four vertices of the diamond as

a = (σ0
+, σ

0
−), b = (σ1

+, σ
0
−), c = (σ1

+, σ
1
−), d = (σ0

+, σ
1
−)

Proceeding as in Section 3.1, we obtain the pre-phase space10

Φ∂D = {φ ∈ C0(∂D) smooth on edges of ∂D}

We denote restrictions of φ to the four edges of the diamond by φab, φdc ∈ C∞[σ0
+, σ

1
+],

φad, φbc ∈ C∞[σ0
−, σ

1
−] respectively.

9The construction of Section 2 extends naturally to the case of manifolds with piecewise smooth
boundary. In this case, for the pre-phase space (3) one takes pairs of piecewise smooth continuous
functions (smooth where the boundary is smooth).

10We are not including the normal derivative φn in our description of Φ∂D, since it does not
appear in the 2-form (15) and would be eliminated by symplectic reduction anyway.
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The pre-symplectic 2-form induced on Φ∂D is

(15) ω =

∫
∂D

ε dδφ ∧ δφ

where ε = +1 on two edges parallel to ∂+ and ε = −1 on the other two. Viewed as
an anti-symmetric bilinear pairing Φ∂D ⊗ Φ∂D → R, the pre-symplectic structure
is

(16) ω(φ, ψ) = 2

∫
∂D

ε dφ · ψ + 2 (φaψa − φbψb + φcψc − φdψd)

where we used integration by parts to transfer derivatives from ψ to φ. Subscript
a, b, c, d stands here for evaluation of φ or ψ at the corresponding vertex of the
diamond.

It follows from (16) that φ ∈ kerω implies φ = C ∈ R – a constant on the whole
∂D. On the other hand ω(C,ψ) = 2C(ψa − ψb + ψc − ψd), hence kerω = 0. Thus
ω is actually non-degenerate and (Φ∂D, ω) is the symplectic phase space, with no
further symplectic reduction required.

3.3.1. Evolution relation. Using the general ansatz (14) for solutions of the wave
equation, the evolution relation L ⊂ Φ∂D can be described as

L = {φ(σ+, σ−︸ ︷︷ ︸
∈∂D

) = f(σ+) + g(σ−) | f ∈ C∞[σ0
+, σ

1
+], g ∈ C∞[σ0

−, σ
1
−]}

To show that L ⊂ Φ∂D is a Lagrangian subspace (and thus verify Conjecture
1.1 in this case), we check isotropicity and coisotropicity of L. For isotropicity, we
have

ω|L =

∫
[σ0

+,σ
1
+]

dδf ∧ (δg(σ0
−)− δg(σ1

−)) +

∫
[σ0
−,σ

1
−]

dδg ∧ (δf(σ0
+)− δf(σ1

+)) =

= (δf(σ1
+)−δf(σ0

+))∧(δg(σ0
−)−δf(σ1

−))+(δg(σ1
−)−δg(σ0

−))∧(δf(σ0
+)−δf(σ1

+)) = 0

Thus L is indeed isotropic. For coisotropicity, (16) implies that for φ ∈ L and ψ
arbitrary,

ω(φ, ψ) = 2

∫
[σ0

+,σ
1
+]

df (ψab−ψdc)+2

∫
[σ0
−,σ

1
−]

dg (ψad−ψbc)+contributions of corners

Thus ψ ∈ L⊥ implies (by setting f(σ0
+) = g(σ0

−) = 0 and taking df or dg to be the
difference of two bump 1-forms localized near two points, so that the total integral
vanishes) ψab − ψdc = C, ψad − ψbc = C ′ where C,C ′ ∈ R are two constants. This
implies in turn that ψ ∈ L, with corresponding fψ(σ+), gψ(σ−) given by

fψ(σ+) = ψab(σ+)− ψab(σ0
+), gψ(σ−) = ψad(σ−)

This proves coisotropicity of L and hence L is indeed Lagrangian.

3.3.2. Hamilton-Jacobi action. Restriction of the action (1) to solutions of Euler-
Lagrange equation is in general

S|EL =
1

2

∫
M

dφ ∧ ∗dφ = −1

2

∫
M

φ ∧ d ∗ dφ︸ ︷︷ ︸
0 on EL

+
1

2

∫
∂M

(φ ∧ ∗dφ)|∂M

Since this expression is given by a boundary term, it descends to a function on L
(at least as a subspace of the pre-phase space, in the general case).
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In case of the diamond we have

S|EL =
1

2

∫
∂D

ε φ dφ =
1

2
(−φ2

a + φ2
b − φ2

c + φ2
d) ∈ C∞(L)

Note that this Hamilton-Jacobi action depends only on the values of φ at the
vertices of the diamond.

4. Wave equation on compact domains in Minkowski plane

Let D ⊂ R1,1 be a connected compact domain in the Minkowski plane. We make
the following assumptions about its boundary γ = ∂D.

(A) Each connected component γk, 1 ≤ k ≤ N , of the boundary γ is a smooth
simple closed curve.

(B) There are finitely many points on γ with light-like tangent; we denote this set
of points I.

(C) The curvature of γ (as a multi-component plane curve) at points of I is non-
zero.

Assume that each curve γk is parameterized by t ∈ R/(Tk · Z), with Tk ∈ R the
period. We assume that the orientation of γk induced from the parametrization
agrees with the one induced from the orientation of D. Define θ : γk → R/(π · Z)

and v : γk → R>0 by θ(t) = arctan( ẏẋ ) + π
2 , v(t) = (ẋ2 + ẏ2)1/2.

4.1. Phase space, symplectic structure. The phase space11 (the space of bound-
ary fields) associated to γ is Φγ = {(φ, φn) ∈ C∞(γ) × C∞(γ)} The projection
π : FD → Φγ sends φ ∈ C∞(D) to its restriction to γ and the normal derivative
at a point on γ; “normal” means an outward pointing unit normal vector to the
boundary with respect to Euclidean metric on the plane.

The geometric data (6) on γ, associated to the choice of the Euclidean normal
vector field n = cos θ ∂x+sin θ ∂y, is: (Γ, u, µ) = (cos(2θ),− 1

v sin(2θ)∂t, v dt), which
yields the following boundary 1-form (4) on Φγ :

α =

∫
γ

dt (v cos(2θ)∂n − sin(2θ)∂t)φ δφ

where ∂nφ := φn is a notation. It generates a constant 2-form on Φγ

ω = δα =

∫
γ

dt (v cos(2θ)∂n − sin(2θ)∂t)δφ ∧ δφ

Using the linear structure on Φγ , we can view ω as an anti-symmetric pairing
Φγ ⊗ Φγ → R,

(17) ω((φ, φn), (ψ,ψn)) =

=

∫
γ

dt · (v cos(2θ)φn ψ − sin(2θ)∂tφ ψ − φ v cos(2θ)ψn + φ sin(2θ)∂tψ)

Proposition 4.1. Two-form ω is non-degenerate on Φγ .

11In the terminology of Section 2, we should be calling it the pre-phase space. Below (cf.

Proposition 4.1) we will show that the presymplectic form on Φγ is in fact symplectic, so that no

further symplectic reduction is needed. Thus the terminology is justified.
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Proof. Indeed, by (17), a pair (φ, φn) ∈ Φγ is in the kernel of ω if and only if{
−v cos(2θ)φ = 0
−∂t(sin(2θ)φ) + v cos(2θ)φn − sin(2θ)∂tφ = 0

⇔
{
φ = 0
φn = 0

where we use that, by assumption (B), cos(2θ) vanishes in isolated points. �

4.2. Evolution relation: main theorem. Set ELD = {φ ∈ C∞(D) | d ∗ dφ =
0} ⊂ FD – the space of solutions to the wave equation in D and also set

L = π(ELD) ⊂ Φγ

– the evolution relation.

Theorem 4.2. The evolution relation L is a Lagrangian subspace of Φγ .

4.2.1. Evolution relation in the simply connected case and involutions E± on the
boundary. In case when D is simply connected (N=1), the space of solutions of the
wave equation in the bulk ELD is given by

(18) ELD = {φ = F +G | F,G ∈ C∞(D), ∂−F = ∂+G = 0}
Note that globally ∂−F = 0 does not imply F = F (σ+), e.g. if D is not convex.

The two distributions ∂± on D induce two equivalence relations ε± on points of
D, where two points in D are considered equivalent if they can be connected by a
light-like segment with tangent ∂± lying inside D. In turn, ε± induce equivalence
relations E± on points of γ.

Denote I± = {p ∈ I | θ(p) = ∓π/4}, so that I = I+ t I−.
By assumptions (A,B), an equivalence class of E± of order 1 is necessarily a point

of I± and an equivalence class of order n ≥ 3 necessarily contains n − 2 points of
I±. Thus there is only a finite set of points I ′± ⊂ γ with equivalence class of E± of
order 6= 2.

Therefore, equivalence relations E± induce two orientation-reversing smooth in-
volutions E± : (γ − I ′±)→ (γ − I ′±), i.e. for a point p ∈ γ − I ′, E±(p) is the point

on γ where one of the two light-like lines in D starting at p hits γ second time.12

Denote
C∞(γ)E± = {f ∈ C∞(γ) | f ◦ E± = f on γ − I ′±}

To describe the evolution relation LD = π(ELD) ⊂ Φγ , we need the following
two decompositions for the unit (Euclidean) normal vector ∂n at a point on γ:

∂n = −1

v
cot(θ − π/4)∂t +

√
2

1

sin(θ − π/4)
∂−

∂n = −1

v
cot(θ + π/4)∂t +

√
2

1

sin(θ + π/4)
∂+

If we denote f = F |γ , g = G|γ ∈ C∞(γ), then ∂−F = ∂+G = 0 implies

∂nF = −1

v
cot(θ − π/4) ∂tf, ∂nG = −1

v
cot(θ + π/4) ∂tg

Thus, for D simply connected, we may describe L as

(19) L = {(φ, φn) =

(
f + g,−1

v
(cot(θ − π/4) ∂tf + cot(θ + π/4) ∂tg)

)
|

| f ∈ C∞(γ)E− , g ∈ C∞(γ)E+}

12The reader is referred to Section 5.2 for explicit formulae for E± in some examples.
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Note that for this description we implicitly use the property that the maps

{F ∈ C∞(D) | ∂±F = 0} π−→ C∞(γ)E±

are surjective, for which assumption (C) is essential. Note also that the expression
cot(θ − π

4 )∂tf + cot(θ + π
4 )∂tg in (19) is smooth on the whole γ.

4.2.2. Evolution relation in the non-simply connected case. In general, when D is
not necessarily simply connected, the r.h.s. of (18) is valid as a local description of
the space of solutions, but globally F,G may fail to exist as single valued functions
on D. One global description of ELD is as follows:
(20)
ELD = {φ ∈ C∞(D) | dφ = κ+ λ, where κ, λ ∈ Ω1

closed(D), ι∂−κ = ι∂+λ = 0}

where ι∂± is the contraction with the vector field ∂±.
For D non-simply connected (note that the involutions E± still make perfect

sense, though now they may relate pairs of points in different connected components
of γ), the r.h.s. of (19) defines a subspace Lglob ⊂ L corresponding to solutions

of the wave equation with single valued F,G: Lglob = π(ELglob
D ) where ELglob

D is
given by r.h.s. of (18).

Lemma 4.3.

(21) dim(L/Lglob) = N − 1

Proof. In D we have a short exact sequence

(22) ELglob
D ↪→ ELD � H1(D)

where H1(D) is the de Rham cohomology of D in degree 1; the second arrow sends
φ 7→ [κ] ∈ H1(D) where we use description (20). Surjectivity of the second map
follows from surjectivity of the map {κ ∈ Ω1

closed(D) | ι∂−κ = 0} → H1(D) sending
κ 7→ [κ]. To prove the latter, note that we can reorder boundary components so that
for any 1 ≤ i < N there exists an open subset Ui ⊂ γi − I ′ such that E−(Ui) ⊂ γj
for some j > i. For every i, take ψi ∈ Ω1(Ui) a bump 1-form supported on Ui,
and construct a closed ∂−-horizontal 1-form on D as κi = p∗−(ψi + E∗−ψi) where
p− : D → γ/E− is the projection to the boundary along ∂−. It easy to see, by

looking at periods along γi, that restrictions to the boundary {κi|γ}N−1
i=1 span the

kernel of H1(γ) → R (pairing with the fundamental class of γ). Therefore {κi}
span H1(D).

It follows from (22) that dim(ELD/EL
glob
D ) = N − 1 and since π : ELD → L is

an isomorphism13, we have dim(L/Lglob) = N − 1. �

4.3. Proof of Theorem 4.2.

Lemma 4.4. L ⊂ Φγ is isotropic.

13Surjectivity follows from the definition of L. Injectivity can be seen as follows: restrictions
to γ of the 1-forms κ, λ of (20) can be explicitly and uniquely recovered from (φ, φn) ∈ L by
formulae (24,25) below. Hence (φ, φn) = 0 implies κ|γ = λ|γ = 0, which in turn implies, by

∂∓-horizontality of κ, λ, that κ = λ = 0 in D. Hence, there can be no non-zero point of ELD
inducing zero on the boundary.
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Proof. Indeed, due to (7) and using Stokes’ theorem, for (φ, φn), (ψ,ψn) ∈ L we
have

ω((φ, φn), (ψ,ψn)) =

∫
γ

((∗dφ̃) ψ̃ − (∗dψ̃) φ̃)|γ =

=

∫
D

d((∗dφ̃) ψ̃ − (∗dψ̃) φ̃) =

∫
D

(d ∗ dφ̃) ψ̃ − (d ∗ dψ̃) φ̃ = 0

where φ̃, ψ̃ ∈ ELD are extensions of (φ, φn), (ψ,ψn) into the bulk D as solutions of
the wave equation. �

This proof is a specialization of a general argument, applicable to any classical
field theory, cf. [3].

Note that Lemma 4.4 implies that Lglob is isotropic in Φγ .

Lemma 4.5.

dim
(Lglob)⊥

Lglob
= 2 (N − 1)

Proof. Let us calculate the symplectic complement of Lglob in Φγ . For (ψ,ψn) ∈
Lglob, with f, g denoting the E∓-invariant parts as in (19), we have

(23)

ω((φ, φn), (ψ,ψn)) = −
∫
γ

dt (φ ∂t(f − g)− (f + g) (v cos(2θ)φn − sin(2θ)∂tφ))

= −
∫
γ

dt f (−(1−sin(2θ))∂tφ−v cos(2θ)φn)−
∫
γ

dt g ((1+sin(2θ))∂tφ−v cos(2θ)φn)

Therefore (Lglob)⊥ consists of pairs (φ, φn) ∈ Φγ for which the 1-forms

α = −1

2
dt (−(1− sin(2θ))∂tφ− v cos(2θ)φn) ∈ Ω1(γ),(24)

β =
1

2
dt ((1 + sin(2θ))∂tφ− v cos(2θ)φn) ∈ Ω1(γ)(25)

are E−- and E+-invariant, respectively.
The inverse of (24,25) is given by

dφ = α+ β, dt φn = −1

v
(cot(θ − π/4)α+ cot(θ + π/4)β)

The map ρ : Φγ → Ω1(γ)×Ω1(γ) sending (φ, φn) 7→ (α, β), as defined by (24,25),
has image
(26)
im(ρ) = {(α, β) ∈ Ω1(γ)×Ω1(γ) | α+β ∈ Ω1

exact(γ), α vanishes on I−, β vanishes on I+}
and kernel

(27) ker(ρ) = {(φ, φn) ∈ Ω0
closed(γ)× {0}}

On the other hand, the value of ρ on (φ, φn) ∈ Lglob is (α, β) = (df, dg), where
f, g are the E∓-invariant parts of φ as in r.h.s. of (19). Thus for the restriction of
ρ to Lglob we have

(28) im(ρ|Lglob) = Ω1
exact(γ)E− × Ω1

exact(γ)E+

and the kernel is

ker(ρ|Lglob) = ker(ρ) ∩ Lglob = {(φ, φn) = (C, 0) | C ∈ R}
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By (23),

(29) (Lglob)⊥ = ρ−1(Ω1(γ)E− × Ω1(γ)E+)

in particular, due to (26),

(30) im(ρ|(Lglob)⊥) = {(α, β) ∈ Ω1(γ)E− × Ω1(γ)E+ | α+ β ∈ Ω1
exact(γ)}

and ker(ρ|(Lglob)⊥) = ker(ρ), cf. (27). Therefore, the quotient (Lglob)⊥/Lglob fits
into the short exact sequence

(31) Ω0
closed(γ)/{constants} ↪→ (Lglob)⊥/Lglob

ρ
� ρ((Lglob)⊥)/ρ(Lglob)

The space on the left here is (N − 1)-dimensional. To find dim((Lglob)⊥/Lglob), we
need to find the dimension of the space on the right.

Define the map σ : Ω1(γ)×Ω1(γ)→ R2N sending two 1-forms on γ to the set of
their periods around the connected components of γ,

(α, β) 7→
(∮

γ1

α, · · · ,
∮
γN

α,

∮
γ1

β, · · · ,
∮
γN

β

)
The kernel of σ is ker(σ) = Ω1

exact(γ) × Ω1
exact(γ). Note that by (28,30), this

implies ker(σ) ∩ ρ((Lglob)⊥) = ρ(Lglob). Thus σ induces an injective map σ :
ρ((Lglob)⊥)/ρ(Lglob) ↪→ R2N . Its image is

(32) σ(ρ((Lglob)⊥)/ρ(Lglob)) =

= {(a1, . . . , aN , b1, . . . , bN ) |
N∑
i=1

ai =

N∑
i=1

bi = 0, a1 + b1 = 0, . . . , aN + bN = 0}

Here the relations
∑
i ai =

∑
i bi = 0 arise because

∫
γ
α = 0 for α ∈ Ω1(γ)E± ,

since the involutions E± are orientation-reversing. The relations ai + bi = 0 arise
because of the relation α + β ∈ Ω1

exact(γ) in (30). The dimension of the right
hand side of (32) is 2N − (N + 2) + 1 = N − 1 (since there are N + 2 relations
and one relation between relations, (

∑
i ai) + (

∑
i bi) −

∑
i(ai + bi)=0). Hence,

dim ρ((Lglob)⊥)/ρ(Lglob) = N − 1 and, by (31), dim((Lglob)⊥/Lglob) = 2 (N − 1).
�

Lemma 4.6. (i) The quotient (Lglob)⊥/Lglob inherits a non-degenerate symplec-
tic pairing from Φγ .

(ii) The symplectic double orthogonal to Lglob in Φγ is (Lglob)⊥⊥ = Lglob.

Proof. It follows from the proof of Lemma 4.5 that (Lglob)⊥/Lglob fits into the
following exact sequence:

(33) R→ H0(γ)→ (Lglob)⊥/Lglob → H1(γ)→ R

Here the maps, going from left to right, are:

• realization of constants as constant functions on γ,
• realization of locally constant functions on γ as elements of (Lglob)⊥ (with

vanishing φn),
• map σ ◦ ρ : (Lglob)⊥/Lglob → H1(γ)×H1(γ) composed with projection to

the first factor,
• pairing with fundamental class of γ.
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The symplectic structure ω on Φγ induces a well defined pairing ω on (Lglob)⊥/Lglob.
Using the truncation of sequence (33)

(34) H0(γ)/R→ (Lglob)⊥/Lglob → H1(γ)|∫
γ

=0

and the fact that symplectic structure (17) can be written as

ω((φ, φn), (ψ,ψn)) =

∫
γ

φ(−αψ + βψ)− ψ(−αφ + βφ)

we see that, choosing some splitting of (34) from the right, we can write the block
matrix of ω as

(35)

(
0 −2〈, 〉
2〈, 〉 ∗

)
where the first and second row/column correspond to the left and right terms
of (34) respectively; 〈, 〉 is the non-degenerate pairing between the left and right
terms of (34) induced from Poincaré duality H0(γ) ⊗H1(γ) → R; the lower right
block is dependent on the choice of splitting of (34). Ansatz (35) implies that the
anti-symmetric pairing ω on L⊥/L is non-degenerate. Thus (Lglob)⊥/Lglob is the
symplectic reduction of L⊥ and ω is the induced symplectic structure on reduction.
Non-degeneracy of ω also immediately implies that (Lglob)⊥⊥ = Lglob.

�

Proof of theorem 4.2. The map ρ : Fγ → Ω1(γ) × Ω1(γ) defined in the proof
of Lemma 4.5 sends (φ, φn) ∈ L to (κ|γ , λ|γ), where κ, λ are closed ∂∓-horizontal
1-forms corresponding to (φ, φn) by (20). Thus the image of ρ on L is

(36) ρ(L) = {(α, β) ∈ Ω1(γ)E− × Ω1(γ)E+ | α+ β ∈ Ω1
exact(γ)}

Hence, by (29), L ⊂ (Lglob)⊥. Taking into account isotropicity of L, we have a
sequence of inclusions

Lglob ⊂ L ⊂ L⊥ ⊂ (Lglob)⊥

Passing to the symplectic reduction (quotient by Lglob) we get

L/Lglob ⊂ L⊥/Lglob ⊂ (Lglob)⊥/Lglob

By (21) and Lemma 4.5, L/Lglob is an (N − 1)-dimensional isotropic subspace in
a 2 (N − 1)-dimensional symplectic space, hence L/Lglob is Lagrangian. Hence,
L/Lglob = L⊥/Lglob and therefore L = L⊥. This finishes the proof that L is
Lagrangian. �

5. Remarks.

Unless stated otherwise, in this Section we are assuming the setup of Section 4.

5.1. Dirichlet polarization. It is interesting that dim((Lglob)⊥/Lglob) depends
only on the topology of the domain D, at least as long as the mild assumptions A,
B, C hold. On the other hand, L itself is sensitive to the geometry of the boundary
γ, in particular to dynamics on points of γ defined by joint action of involutions
E+, E−. In particular, for the map D : L → C∞(γ), sending (φ, φn) 7→ φ, we have
the following (we assume for simplicity that D is simply connected).
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• If there is a point on the boundary p ∈ γ and a number n ≥ 1 such that

(37) (E+E−)np = p

then by (19) on L we have
∑n−1
i=0 φ((E+E−)ip) − φ(E−(E+E−)ip) = 0,

hence D is not surjective (equivalently, in general there is no existence for
Dirichlet boundary problem for the wave equation on D).
• If there is an open subset of the boundary U ⊂ γ − I such that (37) holds

for every p ∈ U for some fixed n ≥ 1, then D is not injective (no uniqueness
for Dirichlet problem): for ψU a bump function supported on U , we define

f =

n−1∑
i=0

(
(E∗+E

∗
−)iψU + E∗−(E∗+E

∗
−)iψU

)
=

n−1∑
i=0

(
(E∗−E

∗
+)iψU + E∗+(E∗−E

∗
+)iψU

)
Then f is simultaneously E+- and E−-invariant, hence by (19),

(0,−1

v
(cot(θ − π/4)− cot(θ + π/4)) ∂tf) ∈ L

is a non-zero vector in L lying in kernel of D.
• If there is a point p ∈ γ, such that its orbit under the joint action of E+

and E− is dense in γ, then D is injective (there is uniqueness for Dirichlet
problem): by (19), to have a vector in L lying in kernel of D, we need a
function f ∈ C∞(γ) which is both E+- and E−-invariant. But f has to be
constant on the dense E±-orbit in γ, thus f is a constant and gives zero
vector in L.

5.2. Explicit examples of involutions E±: disk and annulus. First consider
a unit disk on R1,1, defined in polar coordinates x = r cos θ, y = r sin θ by r ≤ 1
with the boundary unit circle parameterized by the angular coordinate t = θ ∈
R/(2πZ).14 The four light-like points on the boundary are:

I = {π/4,−3π/4︸ ︷︷ ︸
I−

,−π/4, 3π/4︸ ︷︷ ︸
I+

}

and the involutions E± on the boundary circle are:

E− : θ ↔ π/2− θ, E+ : θ ↔ −π/2− θ
Next, consider the annulus defined by r1 ≤ r ≤ r2. We consider both inner and

outer circle parameterized by the angular coordinate θ. We will put superscripts
“in”, “out” to indicate to which boundary component a point belongs. The eight
light-like boundary points are:

I = {(π/4)in, (−3π/4)in, (π/4)out, (−3π/4)out︸ ︷︷ ︸
I−

, (−π/4)in, (3π/4)in, (−π/4)out, (3π/4)out︸ ︷︷ ︸
I+

}

The involutions are:

(38) E± : θin ↔
(
∓π

4
+ arccos

(
r1

r2
cos(θ ± π

4
)

))out

(39)

E± : θout ↔
(
∓π

2
− θ
)out

for θout ∈
(
∓π

4
− θ0,∓

π

4
+ θ0

)out

∪
(
±3π

4
− θ0,±

3π

4
+ θ0

)out

14Note that this convention agrees with conventions introduced in the beginning of Section 4,

but now θ is to be considered modulo 2π, not modulo π.
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where θ0 = arccos r1r2 and the sign of arccos in (38) is chosen in such a way that

in the limit r1 → r2 we get the involution θin ↔ θout. For each choice of the sign
±, the equivalence relation E± has two equivalence classes of order 1: {(∓π/4)out},
{(±3π/4)out} and two equivalence classes of order 3:

{
(
∓π

4

)in

,
(
∓π

4
− θ0

)out

,
(
∓π

4
+ θ0

)out

}, {
(
±3π

4

)in

,

(
±3π

4
− θ0

)out

,

(
±3π

4
+ θ0

)out

}

Elements of the latter classes correspond to points of the boundary where involution
E± is discontinuous. All the other equivalence classes are of order 2.

5.3. Constraint (Cauchy) subspace of the phase space. Fix a closed curve
γ ⊂ R1,1 subject to assumptions A, B, C of Section 4. Denote Din the compact
domain of R1,1 bounded by γ and denote Dout the complement of Din in R1,1.

By specializing a general construction of [4], one can associate to γ two subspaces
of the phase space Cin, Cout ⊂ Φγ consisting of pairs (φ, φn) ∈ C∞(γ)×2 extendable
as solutions of the wave equation into some open neighborhood of γ in Din or
Dout respectively. Note that one can view Cin, Cout as being associated to the two
orientations of γ: Cin = C(γ) ⊂ (Φγ , ωγ), Cout = C(γop) ⊂ (Φγop = Φγ , ωγop =
−ωγ), where γ is understood as coming with counterclockwise orientation by default
and “op” denotes orientation reversal.

Remark 5.1. A related concept to the Cauchy subspaces Cin, Cout introduced above
is the subspace C of Φγ consisting of pairs (φ, φn) extendable as solutions of the
wave equation into a tubular neighborhood of γ in R1,1 (as opposed to an open
neighborhood in the relative topology of Din or Dout). Obviously, C = Cin ∩ Cout.

We split light-like points of γ into those where Din is convex and those where
Dout is convex: I = I int Iout. We also introduce involutions Ein

± , Eout
± on points of

γ, induced by following light-like lines in Din or Dout respectively. Note that since
Dout is non-compact, a light-like line starting at a point on γ may run to infinity,
thus involutions Eout

± are only defined on some subsets of γ. In particular, Eout
± is

defined in an open neighborhood of points of Iout
± (with the same ±).

Proposition 5.2. (1) The subspace Cin ⊂ Φγ consists of pairs (φ, φn) ∈ C∞(γ)×2

such that:
(a) For every point z ∈ I in

± there is an Ein
± -invariant open neighborhood

z ∈ Uz ⊂ γ such that the restriction of the 1-form ρ± ∈ Ω1(γ) to Uz
is Ein

± -invariant. Here ρ+ := β, ρ− := α are the two 1-forms on γ
defined by (24,25).

(b) For every point z ∈ Iout
± the ∞-jet of the 1-form ρ± ∈ Ω1(γ) at z is

Eout
± -invariant.

The second subspace Cout ⊂ Φγ is described similarly where we should inter-
change superscripts “in” and “out” in the description of constraints (1a,1b)
above.

(2) Subspaces Cin, Cout ⊂ Φγ are symplectic w.r.t. symplectic form ω on Φγ .
Symplectic orthogonals to Cin, Cout in Φγ are zero.

Proof. To prove necessity of constraints (1a,1b), assume that a pair (φ, φn) ∈ Φγ
comes from a solution φ̃ of the wave equation on an open neighborhood V of γ
in Din. We can fit into V a topological annulus D ⊂ V with boundary ∂D =
γ′ t γ. The associated involutions E±(D) on ∂D coincide with Ein

± (γ) on some
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neighborhoods of points z ∈ I in
± (γ), which implies constraint (1a) by (36). To see

(1b), fix a sign ± and fix a point z ∈ Iout
± (γ). We can choose the annulus D in such

a way that the equivalence class of z under equivalence relation E±(D) is {x, z, y}
with x, y ∈ γ′. Denote U ′ ⊂ γ′ an open interval on γ′ bounded by points x, y
(among the two possible intervals we choose the E±(D)-invariant one). Also fix a
neighborhood U of z in γ; point z splits U into two intervals, U1 and U2. Condition
(1b) on the jet of ρ± at z arises from necessity to smoothly sew an E±-invariant
1-form ρ± on U ′ with E∗±(ρ±|U1

) at point x and with E∗±(ρ±|U2
) at point y.

Conversely, to check sufficiency of (1a,1b), fix (φ, φn) ∈ C∞(γ)×2 satisfying
(1a,1b) and fix an annulus D ⊂ Din with boundary ∂D = γ t γ′, thin enough,
so that for every z ∈ I in

± (γ), the neighborhood Uz where we have Ein
± -invariance of

ρ± contains the maximal E±(D)-invariant neighborhood of z. Then (1a) ensures
that 1-form E∗±(ρ±|γ) is smooth on the image of γ in γ′ under E± and (1b) ensures
that it can be extended to a smooth Eout

± (γ′)-invariant 1-form on γ′. Thus we ob-

tain a pair (α, β) ∈ Ω1(∂D)E− ×Ω1(∂D)E+ which restricts to (ρ−, ρ+) on γ. Then

we construct the solution φ̃ of wave equation in D as

(40) φ̃(ζ) = φ(ζ0) +

∫ ζ

ζ0

(p∗−α+ p∗+β), ζ ∈ D

where ζ0 is some arbitrary chosen point on γ, p± : D → ∂D/E± are projections
from D to the boundary along light-like lines. Integration path from ζ0 to ζ in D is
chosen arbitrarily (the integrand is exact since it is closed and restricts to an exact

1-form on one of the two boundary components). By construction, φ̃ induces back
(φ, φn) on γ.

The case of Cout is treated similarly.
The calculation of the symplectic orthogonal to Cin (case of Cout is analogous) in

Φγ follows the proof of Proposition 4.1. We can choose in (17) (ψ,ψn) ∈ Cin with
ψn a bump function in neighborhood of any point z ∈ γ − I and vanishing in some
open neighborhood of every point of I and ψ = 0. This proves that (φ, φn) ∈ C⊥in
has φ(z) = 0. Next, choosing ψ a bump function as above and ψn = 0 we prove
that φn(z) = 0. Thus C⊥in = 0. This also implies that Cin is symplectic. �

Remark 5.3. Note that Cin, Cout cannot be described in intrinsic terms of γ, using
only the geometric data (Γ, u, µ) as introduced in Section 2: we need more detailed
information on the behavior of the metric near γ (since we need to know the invo-

lutions Ein,out
± near light-like points of γ).

Remark 5.4. Let D ⊂ R1,1 be a (topological) annulus bounded by ∂D = γ =
γ1tγ2 subject to conditions of Section 4. We assume that γ1 is the inner boundary
component and γ2 the outer one. Then by Theorem 4.2, the corresponding L is a
canonical relation L ⊂ Cout(γ1)×Cin(γ2). Denoting p1,2 the projections to the first
and second factors in Cout(γ1) × Cin(γ2), p1 is never injective15 on L and p2 is
never surjective16. Moreover, p1 is surjective and p2 is injective if and only if the

15Indeed, we can take an open subset U ⊂ γ2 such that E+(U) ⊂ γ2, and a bump function
ψU on U . Then we construct a nonzero element ψU + E∗+ψU ∈ L ∩ ker p1.

16The reason is that p2(L) is given by E±-invariance constraint for 1-forms ρ±|γ2 on certain
finite open subsets U± of γ2, whereas Cin(γ2) is given by the constraint (1a) of Proposition 5.2
on arbitrarily small neighborhoods of light-like points of γ2.
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following condition holds:
Iout(γ1) = ∅

Note that L cannot be a graph of a map Cout(γ1) → Cin(γ2) (nor in the opposite
direction).

5.4. Conformal invariance. In case dimM = 2, the action (1) is invariant under
Weyl transformations – local rescaling of metric gµν(x) → Ω(x) · gµν(x) with Ω ∈
C∞(M), Ω > 0 . Hence for F : (M, g)→ (M ′, g′) a conformal diffeomorphism (i.e.
F ∗g′ = Ω · g with Ω > 0) of 2-dimensional pseudo-Riemannian manifolds, we have
SM ′,g′(φ

′) = SM,g(F
∗φ′). Thus F induces a symplectomorphism of phase spaces

F ∗ : Φ∂M ′ → Φ∂M which takes LM ′ to LM .
In particular, in case of domains D in R1,1, pairs of a symplectic manifold and

an Lagrangian submanifold (Φ∂D, LD) are canonically isomorphic for domains D
related by a conformal transformation of R1,1, e.g. a translation, a Lorentz boost
or a rescaling.

Also, Theorem 4.2 implies that for D ⊂ R2 a compact domain on the plane
endowed with some Lorentzian metric gD, conformally equivalent to a domain D′ ⊂
R1,1 with Minkowski metric, LD ⊂ Φ∂D is Lagrangian.

5.5. Hamiltonian for a circle. Consider polar coordinates17 (ξ, θ) ∈ R×R/(2πZ)
on R1,1, x = eξ cos θ, y = eξ sin θ. Phase spaces ΦS1

ξ0
for circles given by ξ = ξ0 are

canonically symplectomorphic for different values of ξ0 by conformal invariance.
For a circle centered at the origin, define a function on the phase space

(41) H =
1

2

∮
S1

dθ cos(2θ) ((φn)2 + (∂θφ)2) ∈ C∞(ΦS1)

where18 φn = ∂ξφ|S1 . It generates a Hamiltonian vector field Ȟ defined by ιȞω =
−δH. Explicitly:

(42) Ȟ =

∮
S1

φn
δ

δφ
+

1

cos(2θ)
(sin(2θ)∂θφn + ∂θ(sin(2θ)φn + cos(2θ)∂θφ))

δ

δφn

Then the infinitesimal evolution in ξ is given by the flow equation for Ȟ:

∂ξφ = Ȟ ◦ φ, ∂ξφn = Ȟ ◦ φn
– this is just an equivalent restatement of the wave equation (2) in coordinates
(ξ, θ).

One way to get the function (41) is to consider the radial density L ∈ C∞(ΦS1)

of action (1) in an annulus Annξ1ξ0 defined by ξ0 ≤ ξ ≤ ξ1,

S =

∫ ξ1

ξ0

dξ L(φ|S1
ξ
, ∂ξφ|S1

ξ
), L =

∮
S1

dθ
1

2

(
cos(2θ) (φ2

n − (∂θφ)2)− sin(2θ) φn ∂θφ
)

Then one defines

(43) H =

∮
S1

dθ φn
δL
δφn
− L

17We are using an unconventional radial coordinate, since this choice makes rescaling a trans-

lation in ξ. In this Section we will sometimes refer to ξ as the “time”, as the parameter of
Hamiltonian dynamics.

18This is a different normalization of the transversal vector field than in Section 4. The reason
for this choice is that the isomorphism ΦS1

ξ0

' ΦS1
ξ1

coming from conformal invariance in these

coordinates is just (φ, φn) 7→ (φ, φn).
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which yields (41). Note that (43) is indeed the formula for Legendre transform, but
we do not switch to canonical momenta p = δL

δφn
= cos(2θ)φn − sin(2θ)∂θφ.

The Hamiltonian vector field Ȟ (42) is only well-defined on a subspace

C0 = {(φ, φn) ∈ C∞(S1)×2 | (∂θφn − ∂θφ)|θ∈{±π4 ,± 3π
4 }

= 0} ⊂ ΦS1

due to δH not being in the image of the map of vector bundles ω# : TΦS1 → T ∗ΦS1

(which is injective by weak non-degeneracy of ω, but not an isomorphism) unless
one restricts the base to C0 ⊂ ΦS1 . More precisely, Ȟ is defined as a section of
the pullback of the tangent bundle TΦS1 to C0, but it is not generally tangent to
C0. However, one may further restrict Ȟ to a smaller subspace C1 ⊂ C0 where it
is tangent to C0; subspace C1 is given by certain restrictions on 3-jets of (φ, φn) at
light-like points on S1. To find the maximal subspace of ΦS1 on which Ȟ is defined
as a tangent vector field, one can iterate this process: cf. the Gotay–Nester–Hinds
(GNH) geometric constraint algorithm [6], [1]. This way one finds a sequence of
subspaces ΦS1 ⊃ C0 ⊃ C1 ⊃ C2 ⊃ · · · where Ȟ on Ck+1 is tangent to Ck, with Ck
given by constraints on (2k + 1)-jets of boundary fields at light-like points of S1.
The process does not stabilize at a finite step, and the maximal subspace where Ȟ
is defined as a tangent vector field is C∞ = ∩kCk which coincides with Cout(S

1)
given by constraint (1b) of Proposition 5.2.

Integrating the vector field Ȟ to a flow on Cout(S
1) is equivalent to writing the

evolution relation L ⊂ Φ̄S1×ΦS1 for the geometric annulus Annξ0 (we are assuming
ξ > 0) as the graph of a map Fξ : Cout(S

1)→ Cout(S
1). This is impossible due to

issues with existence/uniqueness for the initial value problem for the wave equation
on the annulus (cf. Remark 5.4). Specifically, projections p1,2 : ΦS1 × ΦS1 → ΦS1

restricted to L yield a diagram

(44) Cout(S
1)

p1
� L

p2
↪→ Cin(S1)︸ ︷︷ ︸
⊂Cout(S1)

where neither map is an isomorphism.
However, the flow of Ȟ in negative time −ξ < 0 exists as a map

F−ξ = p1(p−1
2 (•) ∩ L) : C(−ξ)→ Cout(S

1)

where C(−ξ) is the subspace of Cout(S
1) defined as

C(−ξ) = p2(L) = {(φ, φn) ∈ C∞(S1)×2 |

α(φ, φn) is E−-invariant on
(π

4
− θ0,

π

4
+ θ0

)
∪
(
−3π

4
− θ0,−

3π

4
+ θ0

)
︸ ︷︷ ︸

U−(ξ)⊂S1

,

β(φ, φn) is E+-invariant on
(
−π

4
− θ0,−

π

4
+ θ0

)
∪
(

3π

4
− θ0,

3π

4
+ θ0

)
︸ ︷︷ ︸

U+(ξ)⊂S1

}

where p2 and L are as in the diagram (44), θ0 = arccos(e−ξ) and involutions on
S1 are E− : θ ↔ π/2 − θ, E+ : θ ↔ −π/2 − θ; α and β are the 1-forms defined
by (24,25). Note that C(−ξ) ⊂ ΦS1 is not a symplectic subspace; also F−ξ is not
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injective. What happens instead is that C(−ξ) ⊂ ΦS1 is coisotropic, with

(45) C(−ξ)⊥ = kerF−ξ = p2(ker p1 ∩ L) =

= {(φ, φn) ∈ C∞(S1)×2 such that α|S1−U−(ξ) = 0, β|S1−U+(ξ) = 0,

α|U−(ξ) is E−-invariant, β|U−(ξ) is E+-invariant, φ(π/4) +

∫ π/4+θ0

π/4

α = 0}

Formula (45) for kerF−ξ follows from restricting the solution (40) to the inner
boundary circle. Coincidence of the kernel of F−ξ with the symplectic orthogonal
to C(−ξ) follows from Theorem 4.2:

C(−ξ)⊥ = {u = (φ, φn) ⊂ ΦS1 | ∀s ∈ L, 〈 (0, u)︸ ︷︷ ︸
∈Φ̄S1×ΦS1

, s〉Φ̄S1×ΦS1
} =

= p2(L⊥ ∩ 0× ΦS1) = p2(L ∩ 0× ΦS1) = kerF−ξ

Thus F−ξ descends to the symplectic reduction C(−ξ) = C(−ξ)/C(−ξ)⊥ and yields
an isomorphism of symplectic spaces

F−ξ : C(−ξ) ∼→ Cout(S
1)

which is a symplectomorphism, since before reduction F−ξ pulls back the symplectic
structure on Cout(S

1) to the presymplectic structure on C(−ξ), as follows from
isotropicity of L, the graph of F−ξ: for any pair of elements u, v ∈ C(−ξ) we have

〈F−ξ(u), F−ξ(v)〉ΦS1 − 〈u, v〉ΦS1 = −〈(F−ξ(u), u)︸ ︷︷ ︸
∈L

, (F−ξ(v), v)︸ ︷︷ ︸
∈L

〉Φ̄S1×ΦS1
= 0

With some abuse of terminology, one may call F−ξ the “reduced flow” of the

Hamiltonian vector field Ȟ in negative time −ξ < 0. Then it is reasonable to define
the reduced flow in positive time ξ > 0 to be the inverse map:

F+ξ = (F−ξ)
−1 : Cout(S

1)
∼→ C(−ξ)

Note that the reduced Hamiltonian flow does not satisfy the usual semigroup law
F ξ+ξ′ = F ξ′◦F ξ, since the range of F ξ and the domain of F ξ′ do not match. Instead
we have the following composition law. First consider flows in negative time. The
map F−ξ : C(−ξ)/C(−ξ)⊥ → Cout(S

1) can be restricted to a subspace C(−ξ −
ξ′)/C(−ξ)⊥; this restriction is an isomorphism C(−ξ−ξ′)/C(−ξ)⊥ ∼→ C(−ξ′). The

latter induces an isomorphism of quotients F−ξ,−ξ′ : C(−ξ − ξ′) ∼→ C(−ξ′). Then
the composition law is:

(46) F−ξ−ξ′ = F−ξ′ ◦ F−ξ,−ξ′

In other words, we take the symplectic reduction of the 3 spaces in the upper row
of the diagram

(47)

C(−ξ − ξ′)
F−ξ|C(−ξ−ξ′)−−−−−−−−−→ C(−ξ′)

F−ξ′−−−−→ Cout(S
1)y y

C(−ξ) F−ξ−−−−→ Cout(S
1)
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by C(−ξ − ξ′)⊥ (done in two steps: reduction by C(−ξ)⊥ and then by C(−ξ −
ξ′)⊥/C(−ξ)⊥), C(−ξ′)⊥ and {0}, respectively. Vertical arrows in (47) are inclu-
sions of subspaces of ΦS1 ; composition of the two arrows in the upper row is F−ξ−ξ′ .

For the composition of reduced flows in positive time, we take the inverse of (46)
and interchange ξ ↔ ξ′, obtaining

(48) F ξ+ξ′ = F ξ′,ξ ◦ F ξ

where F ξ′,ξ = F−1
−ξ′,−ξ : C(−ξ) ∼→ C(−ξ − ξ′) is the reduction of the restriction

F ξ′ |C(−ξ) : C(−ξ) ∼→ C(−ξ − ξ′)/C(−ξ′)⊥ by C(−ξ)⊥.

Remark 5.5. The Hamiltonian (41) descends to the symplectic reduction C(−ξ).
To see this, note that one can rewrite (41) in terms of 1-forms (24,25) as

H =

∮
S1

− cot
(
θ − π

4

)
ι∂θα · α+ cot

(
θ +

π

4

)
ι∂θβ · β

Applying this to a point u+ v ∈ ΦS1 with u ∈ C(−ξ) and v ∈ C(−ξ)⊥ we obtain

H(u+ v)−H(u) =

=

∮
S1

− cot
(
θ − π

4

)
ι∂θ (2αu + αv) · αv + cot

(
θ +

π

4

)
ι∂θ (2βu + βv) · βv

=

∫
U−(ξ)

− cot
(
θ − π

4

)
ι∂θ (2αu + αv) · αv︸ ︷︷ ︸

E−−invariant

+

∫
U+(ξ)

cot
(
θ +

π

4

)
ι∂θ (2βu + βv) · βv︸ ︷︷ ︸

E+−invariant

= 0

Thus H does indeed descend to C(−ξ). Moreover, the Hamiltonian vector field Ȟ
descends to the reduction too. This follows from the explicit formulae for the action
of Ȟ on the 1-forms α, β:

Ȟα = −∂θ
(

cot
(
θ − π

4

)
· α
)
, Ȟβ = −∂θ

(
cot
(
θ +

π

4

)
· β
)

which imply that for Ȟ viewed as a linear map Cout → Cout, both subspaces C(−ξ)
and C(−ξ)⊥ are invariant.

5.5.1. Banach vs. Fréchet. The impossibility to integrate the vector field Ȟ into a
flow on Cout(S

1) comes from the fact that since we required from the start that fields
are smooth, ΦS1 = C∞(S1)×2 is naturally equipped with Fréchet (but not Banach)
topology and hence the Picard–Lindelöf theorem for existence and uniqueness of
integral trajectories for Ȟ does not apply. We could have chosen a different model
for the space of fields from the start, e.g., setting the space of fields to be FD =
C2(D) and requiring only C2-differentiability for the boundary ∂D in case of a
general domain. The phase space then is Φ∂D = C2(∂D) × C1(∂D) 3 (φ, φn),
equipped with standard Banach topology. The proof of Theorem 4.2 goes through in
this setting without any change and, being Lagrangian, LD ⊂ Φ∂D is automatically
closed, and hence a Banach (complete) subspace. In this setting we can try to pass
to the Hamiltonian formalism on annuli, with H and Ȟ still given by (41,42).
Then proceeding with the GNH construction as above, we construct a sequence of
subspaces ΦS1 ⊃ C0 ⊃ C1 ⊃ · · · where Ck becomes a subset of Ck+3(S1)×Ck+2(S1)
(since an application of Ȟ, viewed as a linear map Ck → Ck−1, decreases the
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regularity by 1 due to the derivatives appearing in (42)), with constraints on (2k+1)-
jets at light-like points of S1, as before. In the end, the maximal subspace C∞
of ΦS1 , where Ȟ is defined and to which it is tangent, is C∞ = ∩kCk. Note
that C∞ ⊂ ΦS1 is not a complete subspace (already C0 is not), hence again the
Picard-Lindelöf theorem does not apply. Note also that in the Banach setting
C∞ 6= Cout(S

1) since the r.h.s., defined as in Section 5.3, has only C2×C1 regularity
(with constraints on the 1-jets of the 1-forms α, β at light-like points, as opposed
to ∞-jets arising in the Fréchet setting, cf. Proposition 5.2, (1b)).

5.6. Relational representation of the little 2-disks operad. Let E2 be the
operad of little 2-disks [7], with E2(n) the configuration space of n numbered disjoint
(geometric) disks inside a disk of radius 1 centered at the origin in Euclidean R2;
these configurations can be viewed as domains D ⊂ R2 obtained by cutting n small
disks out of a unit disk. Composition ◦i : E2(m) × E2(n) → E2(m + n − 1) for
1 ≤ i ≤ m consists in shrinking an element of E2(n) and gluing it into an element
of E2(m) instead of the i-th disk of the latter.

Part of the data of classical field theory defined by action (1) on Minkowski plane
is the morphism of operads

(49) Z : E2 → IsoRel(Φ)

where Φ = ΦS1 is the phase space for the unit circle in R1,1 (radius and origin are
in fact irrelevant due to conformal invariance). For a symplectic space V we denote
IsoRel(V ) the operad of isotropic relations,

IsoRel(n) = {V × · · · × V︸ ︷︷ ︸
n

6→ V } =

= {L ⊂ V̄ × · · · V̄︸ ︷︷ ︸
n

×V | L an isotropic subspace}

where 6→ is the symbol for an isotropic relation, bar stands for changing the sign
of symplectic form. Composition in IsoRel is the set theoretic composition of re-
lations. Morphism Z sends an element of E2(n), viewed as a compact domain
D ⊂ R1,1 with n “incoming” boundary circles and one “outgoing” boundary circle,
to the corresponding evolution relation LD ⊂ Φ∂D ' Φ̄×n × Φ, which is canonical
(Lagrangian) by Theorem 4.2. The fact that Z is indeed a morphism of operads,
i.e. is consistent w.r.t. the operadic composition, is an expression of the general
gluing property of classical field theory (here it simply amounts to the fact that a
function φ on a glued domain D1 ∪D2 solves the wave equation iff its restrictions
to D1,2 solve the wave equation).

More generally, one can introduce a colored operad Ẽ2, with colors being closed
curves on R1,1 modulo conformal transformations and elements of Ẽ2(n) being gen-
eral compact domains with n+ 1 boundary components, with composition defined
(when the colors match) by conformal transformation of one domain and gluing in

the hole in another domain. Then we have a morphism of colored operads from Ẽ2

to the colored operad of isotropic relations Φγ1 × · · · ×Φγn 6→ Φγn+1
with the same

set of colors: conformal classes of curves γ1, . . . , γn+1.
Note that this discussion is very general: we only used the general gluing property

of field theory, conformal invariance (which is specific for dimension m = 2 in case
of action (1)) and the fact that evolution relations are Lagrangian (and in particular
isotropic).
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5.7. Free field theories and Lefschetz duality. An abstract way to view a
free classical field theory, natural from the standpoint of the Batalin–Vilkovisky
formalism on manifolds with boundary [3], is as follows. One associates to an
m-manifold M (possibly endowed with some geometric data, depending on the
field theory model in question) a complex of vector spaces F •M with differential

QM equipped with a degree −1 non-degenerate pairing ω
(k)
M : F kM ⊗ F

1−k
M → R,

satisfying ω
(k)
M (X,Y ) = ω

(1−k)
M (Y,X) for X,Y ∈ FM , and to a closed (m − 1)-

manifold Σ a cochain complex Φ•Σ with differential Q∂Σ, equipped with degree 0

symplectic structure – a non-degenerate pairing ω
(k)
Σ : ΦkΣ ⊗ Φ−kΣ → R satisfying

ω
(k)
Σ (x, y) = −(−1)kω

(k)
Σ (y, x) for x, y ∈ ΦΣ. To the inclusion of the boundary

Σ = ∂M ↪→ M the field theory associates a chain projection πM : F •M → Φ•∂M
intertwining the differentials QM and Q∂M . The differential QM , the projection πM
and the pairings ωM , ω∂M are required to satisfy the following coherence condition:

(50) ωM (QMX,Y )− (−1)degXωM (X,QMY ) = ω∂M (πM (X), πM (Y ))

for X,Y ∈ FM .
The short exact sequence

kerπM ↪→ F •M
πM
� Φ•∂M

induces a long exact sequence in Q-cohomology:

(51) · · · → Hk
QM (kerπM )→ Hk

QM

π∗→ Hk
Q∂M

β→ Hk+1
QM

(kerπM )→ · · ·

The pairings ωM , ω∂M induce well-defined pairings on cohomology

()M : Hk
QM ⊗H

1−k
QM

(kerπ)→ R,(52)

(, )∂M : Hk
Q∂M

⊗H−kQ∂M → R(53)

In many cases [3] these pairings can be proven to be non-degenerate. In particular,
for abelian Chern-Simons theory, (, )M is the Lefschetz duality between de Rham
cohomology of a 3-manifold and cohomology relative to the boundary, whereas
(, )∂M is the Poincaré duality for de Rham cohomology of the boundary 2-manifold.

The non-degeneracy of the pairing (52) in the second argument can be shown19

to be equivalent to the property of being Lagrangian for im(π∗) ⊂ H•Q∂M .

In the case of the theory defined by the action (1), the space of fields FM is a two-
term complex (owing to the absence of gauge symmetry) with F 0

M = C∞(M) 3 φ,
F 1
M = Ωm(M) 3 φ+, differential QM : φ 7→ d ∗ dφ and pairing ωM (φ, φ+) =∫
M
φ ∧ φ+. The boundary phase space is a one-term complex Φ0

∂M = Φ∂M with
zero differential and symplectic structure ω∂M described in Section 2. The exact
sequence (51) becomes in this case
(54)

0→ {φ
∣∣∣∣ d ∗ dφ = 0,
πM (φ) = 0

} → ELM
π∗=πM−→ Φ∂M

β−→ Ωm(M)

{d ∗ dφ | πM (φ) = 0}
→ Ωm(M)

{d ∗ dφ}
→ 0

19Indeed, one has im(π∗)⊥ = {[x] ∈ H•Q∂M | (π∗[Y ], [x])∂M = 0 ∀ [Y ] ∈ H•QM }. Using the

property (π∗[Y ], [x])∂M = (−1)deg[Y ]+1([Y ], β[x])M following from (50), we see that im(π∗)⊥ =

β−1 ker2(, )M , where we denoted ker2(, )M the kernel of the map H•QM (kerπ)→ (H1−•
QM

)∗ induced

by the pairing (52). Thus im(π∗)⊥ = kerβ = im(π∗) if and only if ker2(, )M vanishes.
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and im(π∗) = LM ⊂ Φ∂M . Thus, whenever Conjecture 1.1 holds for M , the
“Lefschetz duality” (52)

ELM ⊗
Ωn(M)

{d ∗ dφ | πM (φ) = 0}
→ R

is non-degenerate (non-degeneracy in the first term is trivial, whereas for the second
term one really needs that LM is Lagrangian). The pairing between the rightmost
and the leftmost terms of (54),

(55)
Ωm(M)

{d ∗ dφ}
⊗ {φ | d ∗ dφ = 0, πM (φ) = 0} → R

is trivially non-degenerate in the second factor, whereas non-degeneracy in the first
factor is non-obvious and constitutes a natural extension of Conjecture 1.1. In the
case of Riemannian signature, (55) becomes, by the Hodge–Morrey decomposition
theorem [2], the pairing

Hm(M)⊗H0(M,∂M)→ R

which is a special case of the standard Lefschetz duality and is indeed non-degenerate.
On the other hand, for M a compact domain in the Minkowski plane as in Theorem
4.2, one can easily show that both outmost terms of (54) vanish.

5.8. More general Lorentzian surfaces. By inspection of its proof, Theorem
4.2 generalizes straightforwardly to the case of a compact surface M with smooth
boundary endowed with a Lorentzian metric g smooth up to the boundary, if the
following conditions hold:

(a) The two null-distributions ∂+ ⊂ TM , ∂− ⊂ TM of the metric g induce, as in
Section 4.2.1, two piecewise smooth involutions E± on the boundary ∂M with
finitely many points removed.

(b) For each choice of the sign ±, the restriction map C∞(M)∂± → C∞(∂M)E±

is surjective. Here C∞(M)∂± stands for the space of smooth functions on M ,
constant along the distribution ∂+ or ∂−, respectively.

(c) The first Betti number of the cohomology of M relative to the boundary van-
ishes, dimH1(M,∂M) = 0.

Remark 5.6. i. Obviously, conditions (a, b, c) hold if (M, g) is conformally
equivalent to a domain D ⊂ R1,1 in the Minkowski plane satisfying conditions
(A, B, C) of Section 4.

ii. For M a domain D ⊂ R1,1 in the Minkowski plane, condition (b) is equivalent
to assumption (C) of Section 4, i.e. the assumption that lightlike points of the
boundary are neither inflection, nor undulation points.

iii. The presence of a family of null-curves originating at ∂M and asymptotically
approaching a limiting closed null-curve in M spoils both conditions (a) and
(b), see the example in Section 5.9.

iv. For (M, g) a general Lorentzian surface, if M ′ ⊂M is a sufficiently small disk
cut out of M , conditions (a,b,c) hold for (M ′, g|M ′) and thus the corresponding
evolution relation LM ′ ⊂ Φ∂M ′ is Lagrangian.
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5.9. An example where L is not Lagrangian: the Misner space. Consider
the following Lorentzian manifold (the Misner space [8]): M = S1 × [−1, 1] — a
cylinder with coordinates x ∈ R/2πZ, y ∈ [−1, 1] — endowed with the Lorentzian
metric

g = dx dy − y dx2

The corresponding null-distributions on M are:

∂+ = ∂y, ∂− = −∂x − y ∂y
In particular, the “in-boundary” S1 × {−1} is spacelike and the “out-boundary”
S1 × {1} is timelike. Moreover, the circle S1 × {0} is a leaf of the distribution ∂−,
i.e. a closed null-curve.

The equations for the integral curves of distributions ∂± (the null-curves) are

dx

dy
=

1

y
,

dx

dy
= 0

for the ∂−- and ∂+-curves, respectively. In particular, all ∂−-curves originating
at either boundary circle asymptotically approach the null-cycle S1 × {0}. On
the other hand, the ∂+-curves are simply the vertical lines {x} × [−1, 1], for any
{x} ∈ S1.

The phase space associated to the boundary of M by the construction of Section
2 is

Φ∂M = C∞(S1)× C∞(S1)︸ ︷︷ ︸
Φ∂inM

×C∞(S1)× C∞(S1)︸ ︷︷ ︸
Φ∂outM

3 (φin, φin
n , φ

out, φout
n )

where we have chosen the transversal vector field to be n = 2∂y − ∂x at the in-
boundary and n = 2∂y + ∂x at the out-boundary. The symplectic form (5) on the
phase space is

ω =

∮
S1

dx (δφin ∧ δφin
n + δφout ∧ δφout

n )

For the evolution relation, consider first the “global” Euler-Lagrange space (in
the sense of Section 4.2.2):

ELglob = {φ = F +G ∈ C∞(M) | F,G ∈ C∞(M), ∂−F = ∂+G = 0}
Since all ∂−-curves asymptotically approach the single closed null-curve S1 × {0},
the function F is forced by continuity to be constant (which can be absorbed into
G). Thus the restriction to the “global part” of the evolution relation is

Lglob = π(ELglob) =

= {(φin = g(x), φin
n = −∂xg(x), φout = g(x), φout

n = ∂xg(x)) ∈ Φ∂M | g ∈ C∞(S1)}

The symplectic orthogonal to Lglob is readily calculated to be

(Lglob)⊥ = {(φin, φin
n , φ

out, φout
n ) ∈ Φ∂M |

| ∂xφin(x)− φin
n (x)− ∂xφout(x)− φout

n (x) = 0 ∀x ∈ R/2πZ}

which implies that Lglob is isotropic and

dim (Lglob)⊥/Lglob =∞
(since in (Lglob)⊥ one can choose φin, φin

n , φ
out as independent functions, whereas

in Lglob they are all expressed in terms of a single function g).
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The true Euler–Lagrange space, where the possible multivaluedness of F,G is
taken into account, is given by (20). In the case of the Misner geometry, ι∂−κ = 0
implies that

∫
S1×{0} κ = 0, hence κ defines zero cohomology class in H1(M) and

therefore κ (and hence λ too) is exact. This implies that there is no distinction
between EL and ELglob in the case at hand. Thus L = Lglob and, by the discussion
above, the evolution relation L is isotropic, but not Lagrangian.

It is easy to check that also the two halves of the Misner cylinder considered
above, M1 = S1 × [−1, 0] and M2 = S1 × [0, 1], produce non-Lagrangian evolution
relations.
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