
CLASSICAL BV THEORIES ON MANIFOLDS WITH

BOUNDARY

ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

Abstract. In this paper we extend the classical BV framework to gauge the-

ories on spacetime manifolds with boundary. In particular, we connect the BV
construction in the bulk with the BFV construction on the boundary and we
develop its extension to strata of higher codimension in the case of manifolds

with corners. We present several examples including electrodynamics, Yang-
Mills theory and topological field theories coming from the AKSZ construction,
in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma
model. This paper is the first step towards developing the perturbative quan-

tization of such theories on manifolds with boundary in a way consistent with
gluing.
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1. Introduction

One of the key features in quantum field theory is locality. Physically, it is based
on the concept of an ideal point-like particle. Mathematically, it means that the
action in the corresponding classical field theory should be a local functional.

In quantum field theory locality is expected to correspond to the gluing property
of the partition function for manifolds with boundary. For a quantum field theory on
Minkowski cylinders this implies the usual composition law for evolution operators.
In topological and conformal field theories the locality as a gluing property of
partition functions was discussed in [4, 51, 56].

In this paper we formulate the classical Batalin-Vilkovisky (BV) framework for
theories on manifolds with boundary. This combines the properties of the stan-
dard BV [8] and the Batalin-Fradkin-Vilkovisky (BFV) [9] frameworks. Recall that
standard BV theories are odd symplectic extensions of classical gauge theories by
ghosts, anti-fields and antighosts. The gauge symmetry appears as a cohomological
Hamiltonian vector field whose Hamiltonian function is an extension of the classi-
cal action. The BFV theories give a similar cohomological description of the gauge
symmetries on the boundary. Another relation between BV and BFV theories is
described in [30].

This paper should be considered as a first step towards the perturbative quan-
tization of classical BV theories on manifolds with boundary, and possibly with
corners.
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In case of topological field theories the ultimate goal is to construct perturbative
topological invariants of manifolds with boundary which satisfy the cutting-gluing
principle. All known classical topological field theories are gauge theories. Exam-
ples are the BF theory, the Chern-Simons theory, and the Poisson sigma model
(see Sections 5 and 7 for definitions and details).

Recall some basic facts about BV theories. These are classical field theories with
Z-graded spaces of fields which appear naturally in quantization of gauge theories.
The BV construction is a generalization of the Faddeev-Popov [25] and BRST [10]
methods. The BV construction is particularly important in cases when the gauge
symmetry is given by a non-integrable distribution on the space of fields or when
the gauge symmetry is reducible with stabilizers of varying rank. Examples of such
theories include the Poisson sigma model and the non-abelian BF theory when the
dimension of spacetime is greater then 3. Examples of theories where the gauge
symmetry is an integrable distribution include Yang-Mills and Chern-Simons. Even
in cases when the distribution is integrable, BV formalism is useful because it is
compatible with Wilsonian renormalization of Feynman diagrams, see e.g. [23].

Topological field theories such as Chern-Simons, BF theories and the Poisson
sigma model are special for several reasons. First, in the perturbative quantization
of such theories Feynman diagrams have no ultraviolet divergencies. Another reason
is that the natural choice of gauge condition, the Lorenz gauge, is induced by a
choice of metric on the spacetime manifold. Thus the gauge independence of the
Feynman diagram expansion in such theories implies that the partition function is
metric independent and therefore is a topological invariant.

All these three examples, Chern-Simons, BF and the Poisson sigma model, fit
into the general AKSZ construction [1]. The AKSZ construction also gives other
examples of topological field theories such as the Rozansky-Witten model and others
[21].

There is a consensus that perturbative quantization of the classical Chern-Simons
theory gives the same asymptotical expansions as the combinatorial topological field
theory based on quantized universal enveloping algebras at roots of unity [45], or,
equivalently, on the modular category corresponding to the Wess-Zumino-Witten
conformal field theory [56, 42] with the first semiclassical computations involving
torsion made in [56]. However this conjecture is still open despite a number of
important results in this direction, see for example[47, 3].

One of the reasons why the conjecture is still open is that for manifolds with
boundary the perturbative quantization of Chern-Simons theory has not been de-
veloped yet. On the other hand, for closed manifolds the perturbation theory
involving Feynman diagrams was developed in [32, 27, 7] and in [5, 35, 13]. For
the latest development see [19]. Closing this gap and developing the perturbative
quantization of Chern-Simons theory for manifolds with boundary is one of the
main motivations for the project started in this paper.

Having laid the framework of classical BV-BFV theory, in a forthcoming work
we plan to discuss the formal perturbative quantization of BV theories on manifolds
with boundary. The main difference with respect to the formal perturbative quan-
tization for closed spacetime manifolds is that in addition to a choice of gauge fixing
in the bulk, one has to fix a polarization in the space of boundary fields. Given
such choices, the partition function is a function on the space of leaves of bound-
ary polarization. Its value on a leaf is the path integral (understood as a series of
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Feynman diagrams) over fluctuations lying in the gauge fixing submanifold with
boundary values being in a fixed leaf of this polarization. The resulting partition
function is a state in the space of boundary states determined by the polarization.
We expect that the equation (10) will be replaced by a deformed quantum master
equation for this state, as it happens in the example of 1d Chern-Simons theory [2].
Gluing along a boundary component will be simply given by pairing the partition
functions in the space of boundary states.

A classical BV-BFV theory is a functor from the spacetime category to the BFV
category. One should expect a similar description in the quantum case. Classically
it extends to higher categories, and we anticipate that quantum counterparts of
such extensions are higher category versions of topological quantum field theories.

In this paper spacetime manifolds are always compact oriented, possibly with
boundary and corners.

In this paper we will use freely the notion of a Z-graded manifold. See [11, 20],
and the Appendix B for details. To simplify the terminology we will call Z-graded
manifolds simply graded manifolds. By a point in a graded manifold we understand
the application of the functor of points.

This paper is organized in the following manner. In section 2 we recall the basic
structure of classical BV theory for closed spacetime manifolds.

Section 3 is the central part of the paper. Here we formulate the BV-BFV
framework for gauge theories. In this section we propose the analog of the Classical
Master Equation for spacetime manifolds with boundary. We define the relevant
moduli spaces and address the problem of composing them when we glue two space-
time manifolds together. We also show that first order BV theories naturally extend
to lower dimensional strata.

In section 4 we introduce the notion of BFV category. We also define the classical
BV theory as a functor from the spacetime category to the BFV category.

In section 5 we describe several examples of BV-BFV extensions of classical
gauge theories: electrodynamics, Yang-Mills theory, scalar field and the abelian BF
theory. The latter is in fact topological and is an example of the AKSZ construction.

The AKSZ construction which provides a class of examples of topological BV-
BFV theories is described in section 6. This construction is determined by the choice
of a target manifold, which should be a Hamiltonian differential graded manifold.
An AKSZ theory extends to strata of all codimensions.

Further examples of BV-BFV extensions of AKSZ theories are described in sec-
tion 7. We start with abelian and non-abelian Chern-Simons theories, then we
describe the non-abelian BF theory and the Poisson sigma model.

In Appendix A we review some useful facts about coisotropic submanifolds and
reduction. In Appendix B we recall some basic facts on graded manifolds. A
brief discussion of smooth points on moduli spaces associated to differential graded
manifolds is given in Appendix C. Elements of Cartan calculus for local forms and
functionals on mapping spaces are developed in Appendix D and applications to
AKSZ theories are presented.
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2. Classical BV theories for closed spacetimes

2.1. Non-reduced theory. When the spacetime manifold N is closed, the space
of fields FN in a BV theory is a graded manifold with a symplectic form ωN of
degree −1 and the action functional SN of degree zero. Usually fields are sections
of or connections on a fiber bundle on N . Some basic facts on graded manifolds
are summarized in Appendix B. The degree in the grading on the space of fields is
usually called the ghost number. Thus, gh(ωN ) = −1 and gh(SN ) = 0. The space
of fields is usually infinite dimensional. The BV data should satisfy the following
property: the Poisson bracket of the action functional with itself is zero [8, 9] (see
also [49, 52]). This property is known as the classical master equation (CME). The
action functional generates the Hamiltonian vector field QN of degree 1. The CME
implies that the Lie derivative of this vector field squares to zero.

Most interesting for applications both in physics and in geometry and topology
are local theories. The notion of locality is more transparent for theories on space-
time manifolds with boundary, see section 3. For closed manifolds locality implies
natural isomorphisms FN1⊔N2 ≃ FN1 × FN2 and the additivity of the symplectic
form and of the action: ωN1⊔N2 = ωN1 + ωN2 , SN1⊔N2 = SN1 + SN2 .

We will use the following definition of classical BV theory for closed spacetime
manifolds.

Definition 2.1. For a closed spacetime N a BV theory [8] on the space of fields
FN is a triple (ωN , QN , SN ) where ωN is a symplectic form on FN with gh = −1,
QN is a vector field on FN with gh = 1, and SN is a function on FN with gh = 0,
subject to

ιQNωN = (−1)nδSN , L2
QN = 0

where LQ is the Lie derivative for the vector field Q.

These two equations imply the classical master equation

{SN , SN} = 0,

which can also be written as

LQNSN = 0

The first equation in the definition means that the vector field QN is Hamiltonian
and therefore it preserves the symplectic form:

LQNωN = 0,
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Critical points of the action functional SN are solutions to Euler-Lagrange (EL)
equations

(1) δSN = 0,

Because the space of fields is an odd-symplectic manifold, solutions to the EL
equations are also zeroes of the Hamiltonian vector field generated by SN , i.e. of
the cohomological vector field QN . Denote the space of solutions to Euler-Lagrange
equations (1) by ELN .

Because vector field QN is Hamiltonian, and Poisson brackets of local functionals
are defined, we can write LQNF = {SN , F} for the action of the vector field QN
on the functional F . Denote by VF the vector field generated by F , then LVFG =
{F,G}. It is clear that vector fields [QN , VF ] annihilate the functional SN :

L[QN ,VF ]SN = {{SN , F}, SN} = 0

This follows from CME and from the Jacobi identity. Thus, any such vector field
can be considered as a local (off-shell) gauge symmetry of SN .

From now on we will consider only first order BV theories. In such theories the
action functional is local and it is linear in derivatives of fields. It is well known that
any local theory can be reformulated as a first order theory by adding corresponding
“momenta” variables in fields.

2.2. Other degrees. So far we have assumed the symplectic form ωN to have
degree −1. But everything can be generalized to the case when the degree is some
integer k (we fix however the degree of the cohomological vector field QN to be 1).
In this setting the action SN will have degree k+1 [46]. Only a few remarks are in
order

(1) Unless k = 0, ωN is automatically exact (so for k = 0 we need this extra
assumption). In the following, we will be interested in specifying a primitive
1-form of the same degree k.

(2) Unless k = −1, the condition LQNω = 0 implies that QN is Hamiltonian
and that the Hamiltonian function SN is uniquely determined.

(3) Unless k = −2, the condition Q2
N = 0 implies {SN , SN} = 0.

We will mainly be interested in the cases k = −1 (BV manifolds) and k = 0 (BFV
manifolds). For extended BV theories, we will also be interested in k positive. We
are not aware of any application of the cases k < −1.

2.3. The Q-reduction. The vector field QN vanishes on the subspace ELN ⊂ FN .

It also defines the Lie subalgebra Ṽ ectQ of the Lie algebra of vector fields on FN
generated by vector fields which are Lie brackets with QN , i.e. by vector fields of
the form [V,QN ]. This Lie subalgebra in general does not determine a distribution

on FN . However, the restriction of Ṽ ectQ to ELN defines an integrable distribution
V ectQ.

Definition 2.2. The Q-reduction ELN/Q of ELN is the space of leaves of the
distribution V ectQ.

Assume that X is a zero of QN such that the leaf of V ectQ through X is a

smooth point in ELN/Q. Define the linear operator Q̂X : TXFN → TXFN as the
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linearization of QN atX. If we write QN in local coordinates as QN =
∑
a q

a(X)∂a,

the operator Q̂X acts on the basis ∂a in TXFN as

Q̂X∂a =
∑
b

∂aq
b(X)∂b

Because QN squares to zero we have Q̂2
X = 0. By definition TXELN = ker(Q̂X).

Also observe that V ectQ|X = Im(Q̂X) ⊂ TXELN . From now on for geometric
considerations we will focus only on smooth points as defined in the Appendix C.

Proposition 2.3. For a smooth point [X] ∈ ELN/Q, there is a natural linear
isomorphism

T[X]ELN/Q = ker(Q̂X)/Im(Q̂X)

2.4. The symplectic reduction. The following Proposition says that if the sub-
space ELN is a submanifold then it is a coisotropic submanifold.

Proposition 2.4. If X ∈ ELN is a smooth point, then TXELN ⊂ TXFN is a
coisotropic subspace.

Proof. The invariance of ωN with respect to the vector fieldQN means that LQNωN =

0. If X is a zero of QN this implies ωN (Q̂Xξ, η) = ωN (ξ, Q̂Xη).

These properties of Q̂X imply ωN (Q̂Xξ, Q̂Xη) = ωN (ξ, Q̂2
Xη) = 0. Therefore

Im(Q̂X) is an isotropic subspace and therefore its symplectic orthogonal Im(Q̂X)⊥

is coisotropic.
On the other hand

(2) Im(Q̂X)⊥ = {ξ | ωN (ξ, Q̂Xη) = 0, for any η}

= {ξ | ωN (Q̂Xξ, η) = 0, for any η} = ker(Q̂X)

This proves that TXELN = ker(Q̂X) is a coisotropic subspace. Because we
used only nondegeneracy of the form ωN on TXF , the proof works both in finite-
dimensional and in the infinite-dimensional case.

�
Recall the definition of the symplectic reduction of a coisotropic submanifold of a

symplectic manifold. The symplectic reduction C of the coisotropic submanifold C
in the symplectic manifold S is the space of leaves of the characteristic foliation of C.
The characteristic foliation of C is spanned by Hamiltonian vector fields generated
by the vanishing ideal IC (the ideal in the commutative algebra of functions on
S generated by functions vanishing on C). When C is a smooth manifold, it is a
symplectic manifold. Otherwise only at smooth points the tangent space to C has
a natural symplectic form. If [X] is such a smooth point, the tangent space T[X]C

is naturally isomorphic to TXC/(TXC)
⊥.

Remark 2.5. An alternative proof of the Proposition 2.4 is algebraic. Observe that
the vanishing ideal for ELN is generated by functionals of the form {SN , T} where
{., .} is the Poisson bracket for the form ωN and T is a local functional. The simple
calculations shows that

{{S,U}, {S, T}} = {S, {U, {S, T}}}
The bracket {U, {S, T}} is a local functional if U and T are. Therefore the vanishing
ideal is a Poisson algebra and therefore ELN is coisotropic in the algebraic sense.
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In Proposition 2.4 we proved that Im(Q̂X)⊥ = ker(Q̂X). This implies Im(Q̂X) ⊂
ker(Q̂X)⊥, which means that the Q̂-distribution on ELN is contained in the char-
acteristic distribution. In the finite dimensional case the inclusion becomes an
equality.

Assumption 2.6. In classical field theory we set

(3) Im(Q̂X) = ker(Q̂X)⊥,

as an assumption.

This corresponds to certain ellipticity condition for QN . In all our examples this
condition follows from the usual Hodge-de Rham decomposition.

Remark 2.7. As a consequence of condition (3) the characteristic foliation of ELN
is the same as the foliation by V ectQ, and in particular, if [X] ∈ ELN is a smooth
point, then

(4) T[X]ELN = ker(Q̂X)/Im(Q̂X)

In other words, locally the symplectic reduction of ELN coincides with its Q-reduction:
ELN = ELN/Q.

We will call ELN = ELN/Q the EL-moduli space for N . If the cohomology

spaces of Q̂X are finite dimensional at a generic point X, the EL-moduli space is
finite dimensional, but possibly singular.

Remark 2.8. With the appropriate assumptions the ring of functions on the re-
duced space ELN/Q is isomorphic to the cohomology space of the ring of functions
on FN with the differential LQN (the Lie derivative with respect to QN ). To be
more specific, one should expect that the smooth locus of EL/Q is isomorphic to the
smooth locus of Spec(HQ(Fun(FN ))) with the appropriate definition of Spec and
of the ring of functionals Fun(FN ).

Because δSN = 0 on the subspace ELN ⊂ FN we have the following Proposition.

Proposition 2.9. The action is constant on connected components of ELN .

3. BV theories for spacetime manifolds with boundary

3.1. Non-reduced theory.

3.1.1. Non-reduced BV-BFV theory. In this section, unless otherwise specified, N is
an n-dimensional spacetime manifold, with ∂N being its n− 1 dimensional bound-
ary. The BV theory for spacetime manifolds with boundary consists of two parts.

First, in the bulk we have the same data as for BV theory, that is: the space of
fields FN which is a graded (the degree is called ghost number) symplectic manifold
with the symplectic form ωN with gh = −1, the cohomological vector field QN with
gh = 1 and the action functional SN of ghost number zero.

Second, on the boundary we have the BFV data [9] which consist of: the space
of boundary fields F∂N which is a graded (usually infinite dimensional) symplectic
manifold with the symplectic form ω∂N which is exact ω∂N = (−1)n−1δα∂N with
gh = 0, and a vector field Q∂N with gh = 1. The sign in (−1)n−1 is here because it
appears naturally in AKSZ examples of topological gauge theories. The BFV data
satisfy the following conditions:
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(5) Q2
∂N = 0, LQ∂Nω∂N = 0

These conditions imply that Q∂N is Hamiltonian vector field [46] with ghost
number 1, with the Hamiltonian S∂N , which is by definition the BFV action. In
Appendix B we recall this construction.

A BV theory on a spacetime with boundary can be regarded as a pairing of the
BV data with the BFV data through the natural mapping π : FN → F∂N which is
the restriction of fields to the boundary.

We will say that BV theory in the bulk and BFV theory on the boundary agree
and form the BV-BFV theory on the manifold with boundary if the restriction
mapping is a surjective submersion and if the BV data in the bulk and BFV data
on the boundary satisfy the following conditions

(6) Q2
N = 0, δπ(QN ) = Q∂N , LQ∂Nω∂N = 0

(7) ιQNωN = (−1)nδSN + π∗(α∂N ),

The sign is purely conventional, but it fits well with the natural definition of BV
data for AKSZ theories.

Note that first two equations imply that

(8) Q2
∂N = 0

which means BFV axioms are satisfied. The equation (7) implies

(9) LQNωN = (−1)nπ∗(ω∂N )

which means, in particular, that in BV-BFV theory the symplectic form is no longer
Q-invariant.

The bulk action satisfies an important identity which describes how the action
changes with respect to gauge transformations.

Proposition 3.1. The following identity holds in any BV-BFV theory

(10) LQNSN = (−1)dim(N)π∗(2S∂N − ιQ∂Nα∂N )

Remark 3.2. We can remove the signs (−1)n by redefining vector fields QN , Q∂N
and the 1-form α∂N . Set Q = (−1)nQN , Q∂ = (−1)nQ∂N and α∂ = (−1)n−1α∂N .
Then δπ(Q) = Q∂ , ιQωN = SN − π∗(α∂) and LQωN = π∗(ω∂N ).

Proof. By definition of the Lie derivative

LQN = ιQN δ − διQN
and the same formula for the Lie derivative holds for Q∂N . The sign is minus in
this formula because ιQ is an even operation. We will prove the Proposition by
applying LQN to the equation:

ιQNωN = (−1)nδSN + π∗(α∂N )

By definition of LQN and because of Q2
N = 0 we have [LQN , ιQN ] = LQN ιQN −

ιQNLQN = 0 and we already know that

LQNωN = −π∗δα∂N = (−1)n+1π∗ω∂N ,

Therefore we have identities:

(11) LQN ιQNωN = ιQNLQNωN = −π∗ιQ∂N δα∂N ,
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Now we can apply the Lie derivative of QN to the classical master equation:

(12)

LQN ιQNωN = (−1)nLQN δSN+LQNπ
∗α∂N = −(−1)nδιQN δSN+π∗(LQ∂NαpaN ) =

− (−1)nδLQNS + π∗(ιQ∂N δα∂N − διQ∂Nα∂N )

Here, in the last line, we used the formula for the Lie derivative LQ∂N . Using (11)
and the identity δS∂N = ιQ∂Nω∂N we arrive at:

−π∗(δS∂N ) = −(−1)nδLQNSN + π∗(δS∂N )− π∗(διQ∂Nα∂N )

This is equivalent to

δ((−1)nLQNSN − π∗(2S∂N − ιQ∂Nα∂N )) = 0

We have δ( function of degree 1) = 0, which means the function must vanish. This
proves the Proposition.

�
Remark 3.3. In the definition of BV-BFV theory we made an assumption that ω∂
is exact. This assumption can be removed. Two examples, a charged particle in an
electro-magnetic field, and the WZW model suggest that a more natural condition
is to require that there is a line bundle L∂ over F∂N . The symplectic form is
ω∂N = (−1)n−1δα∂N where α∂N is a connection on L∂ . The condition

LQNωN = (−1)nπ∗ω∂N

implies that the connection (−1)n i~ (−ιQNωN + π∗α∂N ) on the line bundle π∗(L∂)
over FN is flat. In this case the action functional SN should be regarded as a
horizontal section sN = exp( iSN~ ) of π∗(L∂) and the equation (7) becomes

(δ + (−1)n i
~
(−ιQNωN + π∗α∂N ))sN = 0

3.1.2. Digression: gauge invariance. Now let us discuss the gauge invariance of BV-
BFV theory. When ∂N ̸= ∅, Poisson bracket of local functionals is not defined. In
this case we will call the vector field V Hamiltonian if there exists a local functional
F such that

ιV ωN = δF

Recall that a vector field V is called projectable if for all X ∈ FN
δπX(VX) = vπ(X)

for some vector field v on F∂N . The gauge invariance of the BV-BFV action can
be formulated as the following statement:

Proposition 3.4. If V is a projectable Hamiltonian vector field, then the vector
field [QN , V ] preserves SN up to a pullback from the boundary:

L[QN ,V ]SN = (−1)dimNπ∗(ιvLQ∂Nα∂N + ιQ∂NLvα∂N )

Indeed, we have:

(13) L[QN ,V ]SN = LQNLV S + LV LQNSN =

ιQN διV δSN + (−1)dimNLV π
∗(2S∂N − ιQ∂Nα∂N ) =

= (−1)dimN (ιQ∂N διQN ιV ωN + π∗(−ιQ∂N διvα∂N+

2ιvδS∂N − ιvδιQ∂Nα∂N )) = (−1)dimNπ∗(ιvLQ∂Nα∂N + ιQ∂NLvα∂N )
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Here we used identities δSN = (−1)dimN (ιQNωN−π∗α∂N ), ιV ωN = δF , LQNLQNF =
1
2L[QN ,QN ]F = 0, δS∂N = (−1)dimN−1ιQ∂Nω∂N = ιQ∂Nω∂N = ιQ∂N δα∂N , and F is
the generating function for V and v is the projection of V to the boundary.

As a corollary we also have the formula

δL[QN ,V ]S = −(−1)dimNπ∗(L[Q∂N ,v]α∂N )

3.1.3. The boundary structure from the bulk. Let us show that a first order BV
theory of spacetime manifolds (on the bulk) induces BFV theory on the boundary.
Denote the pullback of fields to the boundary by FN |∂N (we say pullback because
fields are usually either sections of a fiber bundle, or connections). The differential
of the action can be written as the bulk part plus the boundary contribution from
the use of Stokes theorem:

δSN [X] =

∫
N

A ∧ δX − (−1)nπ∗α̃∂N [X]

where α̃∂N is a one-form on the space FN |∂N and A defines the Euler-Lagrange
equation. The kernel of δα̃∂N forms a distribution on the space FN |∂N . Denote
by F∂N the space of leaves of this distribution. We have a natural projection
π : FN → F∂N .

Denote by α∂N the form on F∂N corresponding to the form α̃∂N on FN |∂N 1 .
Taking into account that for closed manifolds the vector field QN is Hamiltonian,

generated by the classical action functional, we conclude that the bulk term in the
differential of the action functional is (−1)nιQNωN . Thus, we have equation (7).

Observe that QN is projectable to F∂N denote its projection by Q∂N = δπ(QN ).
For any form θ on boundary fields we will have LQNπ

∗(θ) = π∗(LQ∂N θ). Equations
Q2
N = 0 and (9) imply that L2

QN
ωN = π∗(LQ∂Nω∂N ) = 0. Therefore LQ∂Nω∂N = 0.

It is clear that the BFV action induced by a first order BV theory is also of first
order.

3.1.4. Some properties of non-reduced BV-BFV theories. Associated with BV and
BFV data we have the following important subspaces in the space of bulk fields
and in the spaces of boundary fields:

• The space ELN ⊂ FN of zeroes of the vector field QN .
• The space EL∂N ⊂ F∂N of zeroes of the vector field Q∂N .
• The space LN = π(ELN ) ⊂ F∂N of boundary values of solutions of Euler-
Lagrange equations. It is clear that LN ⊂ EL∂N ⊂ ELN .

Proposition 3.5. a) The subspace EL∂N is locally coisotropic in F∂N (its tangent
space at a smooth point is coisotropic in the tangent space to the space of fields at
this point).

b) ELN is still locally coisotropic when ∂N ̸= ∅.
The proof of a) is identical to the proof of Proposition 2.4 for closed manifolds.

The same proof carries through for b) by requiring η to vanish on the boundary. The
algebraic proof outlined after Proposition 2.4 also works, the only difference is that
one should take local functionals with test functions vanishing on the boundary.
An example of such functional is

∫
N
αa ∧ Xa where Xa are coordinate fields and

αa are test functions which vanish on ∂N .

1Strictly speaking the form α̃∂N becomes a connection on a line bundle over F∂N with the

curvature ω∂N . However in our examples this line bundle is trivial. This is why for the time being
we will assume this and will regard α∂N as a 1-form.
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Proposition 3.6. The subspace LN ⊂ EL∂N ⊂ F∂N is locally isotropic.

Proof. Assume X is a smooth point of ELN The equation (7) implies that

(14) ωX(Q̂Xξ, η)− ωX(ξ, Q̂Xη) = ω̃π(X)(δπ(ξ), δπ(η))

were ξ, η are tangent vectors to FN at the point X. If ξ and η are tangent to
ELN ⊂ FN then Q̂Xξ = Q̂Xη = 0. Therefore ω̃π(X)(δπ(ξ), δπ(η)) = 0 which means
that δπ(TXELN ) = Tπ(X)LN is an isotropic subspace in Tπ(X)F∂N . �

We proved that LN is always isotropic. We will prove in Section 3.4.3 (Corollary
3.21) that under a natural regularity assumption (see Definition 3.18), LN is in fact
Lagrangian.

Another natural property of a BV-BFV classical field theory is locality. If two
spacetime manifolds N1 and N2 have common boundary Σ (say Σ ⊂ ∂N1 and it is
identified by an orientation preserving diffeomorphism with part of the boundary
of N2) then

FN1∪ΣN2 = FN1 ×FΣ FN2

SN1∪ΣN2 = SN1 + SN2

3.2. The reduction of the boundary BFV theory. The boundary manifold
∂N is closed. This is why both the Q-reduction and the symplectic reduction for
the boundary BFV theory work as they do for the BV theory on closed spacetime
manifolds. The additional structure in the BV-BFV theory is the reduction of
the submanifold LN ⊂ EL∂N and the reduction of the fibers of the fiber bundle
π : ELN → LN .

3.2.1. The Q-reduction. The following Proposition is an immediate corollary of the
identity δπ ◦QN = Q∂N ◦ δπ.

Proposition 3.7. The distribution V ectQ∂ on F∂N generated by Lie brackets of
vector fields with Q∂N is parallel to LN .

Definition 3.8. Define Q-reductions of LN and of EL∂N as the space of leaves of
V ectQ∂ through LN and EL∂N respectively.

In general these spaces are singular. Because our goal here is to develop the set
up for the perturbative quantization in a vicinity of a generic classical solution, we
will focus on smooth points of EL∂N and LN and tangent spaces at such points.
See Appendix C below for the discussion of smooth points.

3.2.2. The symplectic reduction. Let EL∂N be the symplectic reduction of EL∂N .
We make the following assumption, which is the analogue of (3) for the boundary
fields:

Assumption 3.9. We assume that for any l ∈ EL∂N ,

(15) ker(Q̂l)
⊥ = Im(Q̂l)

in TlF∂N , where Q̂l is the linearization of Q∂N at l.

The following Proposition is the counterpart of the Remark 2.7.

Proposition 3.10. Under the assumption (15), locally, the symplectic reduction
of EL∂N is equal to its Q-reduction.
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The difference from Remark 2.7 is just in the shift of gradings.
Denote by LN ⊂ EL∂N the image of LN with respect to this reduction. That is

LN is the space of leaves of the characteristic foliation of EL∂N through LN . This
Proposition implies that locally the reduction LN of LN is equal to its Q-reduction
LN/Q .

Under the regularity assumption (see Definition 3.18, Proposition 3.20), LN ⊂
EL∂N is a Lagrangian submanifold.

3.3. The reduction of the bulk BV theory. The meaning of the Q-reduction
is passing from fields to gauge classes of fields. This is why it is natural to reduce
not the whole space of solutions to Euler-Lagrange equations but a subspace with
fixed boundary conditions. Points of this reduced space correspond to gauge classes
of fields with boundary values in a given boundary gauge class.

The space ELN is naturally fibered over LN = π(ELN ) where π : FN → F∂N is
the restriction mapping.

For l ∈ LN denote by [l] the leaf of V ectQ∂N through l, i.e. the image of l in the
Q-reduced space LN/Q. Denote by EL(N, [l]) the fiber of π over [l],

EL(N, [l]) = π−1([l]) ∩ ELN
Because the restriction mapping π intertwines vector fields QN and Q∂N , the

vector field QN is parallel to EL(N, [l]). It also induces the projection of reduced
spaces p : ELN/Q→ LN/Q where ELN/Q is the space of leaves of V ectQ in ELN .

Definition 3.11. The reduced space EL(N, [l])/Q is the space of leaves of V ectQ
on EL(N, [l]).

Because the projection π intertwines vector fields QN and Q∂N the reduced space
EL(N, [l])/Q is the fiber of p over [l]: EL(N, [l])/Q = p−1([l]).

Assume that the image of X ∈ ELN in EL(N, [π(X)])/Q is a smooth point. We
have the natural mappings of tangent spaces:

(16)

T[X]ELN/Q
ι←−−−− T[X]EL(N, [l])/Q

δp

y
T[l]LN/Q ⊂ T[l]EL∂N/Q

where l = π(X), and the horizontal mapping is the natural inclusion of fibers,

Im(ι) = ker(δp). We know that T[X]ELN/Q ≃ H(TXFN ; Q̂X), and that T[l]EL(∂N)/Q ≃
H(TlF∂N ; Q̂l)

2.
We also know that the short exact sequence

TXFN
i←−−−− ker(δπ)X

(δπ)X

y
TlF∂N

gives the long exact sequence

· · · → H•
Q̂X

(ker(δπ)X)
[i]→ H•

Q̂X
(TXFN )

[δπX ]→ H•
Q̂l
(TlF∂N )

ϕ→ H•+1

Q̂X
(ker(δπ)X)→ · · ·

2Recall that Q̂X is the linearization of QN at X ∈ ELN and Q̂l is the linearization of Q∂N at
l = π(X) ∈ EL∂N .
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on the Q̂-cohomology spaces.
Truncating this long exact sequence we obtain the short exact sequence

(17)

HQ̂X
(TXFN )

[i]←−−−− HQ̂X
(ker(δπ)X)/ϕ(HQ̂l

(TlF∂N ))

[δπX ]

y
[δπX ](HQ̂X

(TXFN )) ⊂ HQ̂l
(TlF∂N )

Because we have natural isomorphismsHQ̂X
(TXFN ) ∼= T[X]ELN/Q,HQ̂l

(TlF∂N ) ∼=
T[l]EL∂N/Q and [δπX ](HQ̂X

(TXFN )) = T[l]LN/Q ⊂ T[l]EL∂N/Q we can identify

T[X]EL(N, [l])/Q with the fiber of [δπX ]. We proved the following:

Proposition 3.12. If [π(X)] ∈ ELN/Q is a smooth point, then

T[X]EL(N, [l])/Q ∼= HQ̂X
(ker(δπX))/ϕ(HQ̂l

(TlF∂N ))

Here is another, equivalent characterization of this space. By definition

TXEL(N, [l]) = {ξ ∈ ker(Q̂X) | δπX(ξ) ∈ Im(Q̂l)}

On the other hand (V ectQ)X = Im(Q̂X). Therefore the tangent space to the
reduced space is the quotient

TXEL(N, [l])/Q = {ξ ∈ ker(Q̂X) | δπX(ξ) ∈ Im(Q̂l)}/Im(Q̂X)

This implies the following.

Proposition 3.13. We have

TXEL(N, [l])/Q ∼= {ξ ∈ ker(Q̂X) | δπX(ξ) = 0}/{ξ ∈ Im(Q̂X) | δπX(ξ) = 0}

3.4. Symplectic EL-moduli spaces. In previous sections we introduced EL-
moduli space as the Q-reduction of the space of solutions to Euler-Lagrange equa-
tions. In case when ∂N = ∅ we proved that they carry a symplectic structure coming
from symplectic reduction, but this is no longer true in the case with boundary.

In this subsection, for the case with boundary we will introduce a different re-
duction which is symplectic (see subsection 3.4.3), fibers over the Q-reduction and
has simple gluing properties. We call it the symplectic EL-moduli space.

Denote the bulk and boundary EL-moduli spaces by

MN = ELN/QN , M∂N = EL∂N/Q∂N
When N is fixed, we will usually suppress the subscript N for brevity.

3.4.1. The main construction. Denote by Ṽect
rel

Q the space of vector fields of the
form [QN , v] where v is a vertical vector field, i.e. a vector field tangent to the

fibers of π. This space is also a Lie subalgebra of ṼectQ. The restriction of Ṽect
rel

Q

to EL gives a distribution which we denote by VectrelQ .

Define the symplectic EL-moduli space Msymp as the space of leaves of VectrelQ
on EL:

Msymp = EL/VectrelQ
It is clear that

T[X]Msymp = ker(Q̂X)/Q̂X(ker(δπX))
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The restriction to the boundary π : F → F∂ induces the projection π∗ :
Msymp → EL∂ .

The distribution VectQ on EL induces the distribution b onMsymp which projects
to the distribution VectQ∂ on EL∂ by δπ∗. It is easy to see that b is involutive and
that

b[X] ≃ Im(Q̂X)/Q̂X(ker(δπX))

where [X] is the leaf of VectrelQ through X. The image of this projection can be

thought of as a quotient distribution VectQ/Vect
rel
Q .

Notice that there is a natural isomorphism TXF/ ker δπX ≃ TlF∂ where l =
π(X). We also have a natural degree 1 surjective map

β : TF∂ � b, βX : TlF∂ � b[X]

defined as follows: for ξ ∈ TXF and ξ + ker(δπ) being identified with an element
in TlF∂ , we set

βX(ξ + ker(δπ)) = Q̂X(ξ) + Q̂X(ker(δπ))

The following statement follows immediately from Q̂2
X = 0.

Lemma 3.14. β vanishes on Im(Q̂l).

The usual EL-moduli space, i.e. space of leaves of VectQ on EL, is naturally
isomorphic to the space of leaves of b on Msymp. This follows immediately from
the definition ofMsymp.

Finally, from the definitions above, it is clear that the following diagram is com-
mutative:

(18)

b[X] b[X]
⊂−−−−→ T[X]Msymp

β[X]

x (δπ∗)[X]

y (δπ∗)[X]

y
Tl[−1]F∂

Q̂l−−−−→ (VectQ∂ )l
⊂−−−−→ TlEL∂

3.4.2. More on tangent spaces. Define the vertical component T vert
[X] M

symp of the

tangent space T[X]Msymp as

T vert
[X] M

symp = ker((δπ∗)X) ⊂ T[X]Msymp

and denote the quotient map by χ : T vert
[X] M

symp → T[X]QM whereM is the usual

EL-moduli space for N , i.e. the space of leaves of VectQ on EL, and [X]Q is the
leaf of VectQ through X.

The projection π : F → F∂ restricted to EL induces the natural projection

πQ∗ :M→M∂ . Recall that the fiber of π
Q
∗ over [l] ∈M∂ is the space EL(N, [l])/Q

discussed in Section 3.3; the image of πQ∗ is the Q-reduction of the space L ⊂ EL
discussed in Section 3.2. Denote by ψ = δπQ∗ the corresponding mapping of tangent
bundles, ψ[X]Q : T[X]QM→ T[l]M∂ .

The restriction of the mapping β : TF∂ → b defined earlier to ker(Q̂l) vanishes on

Im(Q̂l) and therefore induces a linear mapping (β∗)[X] : Tl[−1]M∂ → T vert
[X] M

symp.

We have a sequence of linear maps:

(19) · · · → T[l][−1]M∂
β∗−→ T vert

[X] M
symp χ−→ T[X]QM

ψ−→ T[l]M∂ → · · ·

Proposition 3.15. This is an exact sequence.
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Proof. Sequence (19) can be written as

· · · → H•−1

Q̂l
(TlF∂)→ H•

Q̂X
(T vert
X F)→ H•

Q̂X
(TXF)→ H•

Q̂l
(TlF∂)→ · · ·

which is induced from the short exact sequence in the non-reduced picture

0→ T vert
X F → TXF → TlF∂ → 0

by passing to Q̂-cohomology and so is exact by snake lemma. �

3.4.3. Symplectic structure, Lefschetz duality. Denote by Q̂vert
X the restriction of

Q̂X to T vert
X F .

We know (cf. the proof of Proposition 3.5) that in TXF we have

Im(Q̂vert
X )⊥ = ker(Q̂X), Im(Q̂X)⊥ = ker(Q̂vert

X )

Assumption 3.16. We will assume that also the opposite holds:

(20) ker(Q̂X)⊥ = Im(Q̂vert
X ), ker(Q̂vert

X )⊥ = Im(Q̂X)

This is a stronger version of assumption (3); in our examples it follows from
Hodge-Morrey decomposition theorem for manifolds with boundary [14]. It imme-

diately implies that VectrelQ coincides with the characteristic distribution on EL,
thus we have the following.

Proposition 3.17. Assuming (20), Msymp is the symplectic reduction of EL and
carries a degree −1 symplectic structure ω coming from F .

Definition 3.18. We call a BV-BFV theory regular if the assumption (20) holds
for any X ∈ EL, together with the assumption (15) for any l ∈ EL∂ .

Symplectic structure ω on F induces a bilinear pairing HQ̂vert
X
⊗HQ̂X

[1]→ R or

equivalently T vert
[X] M

symp ⊗ T[X]Q [1]M → R which is well-defined due to (14) and

non-degenerate due to (20). Together with the symplectic structure onM∂ = EL∂
it gives the Lefschetz duality for the long exact sequence (19), i.e. a non-degenerate
pairing on T vert

[X] M
symp ⊕ T[X]Q [1]M⊕ T[l]M∂ :

(21) ⟨•, •⟩ :


T vert
[X] M

symp ⊗ T[X]Q [1]M → R
T[X]Q [1]M⊗ T vert

[X] M
symp → R

T[l]M∂ ⊗ T[l]M∂ → R
Observe that (14) implies that the map χ is self-adjoint with respect to ⟨•, •⟩, and
ψ and β∗ are adjoint to each other, therefore Lefschetz duality can be stated as an
injective chain map between the complex (19) and the dual one:

· · · −−−−−−→ T[l][−1]M∂
β∗−−−−−−→ Tvert

[X] Msymp χ−−−−−−→ T
[X]Q

M ψ−−−−−−→ T[l]M∂ −−−−−−→ · · ·y y y y
· · · −−−−−−→ T∗

[l][−1]M∂
ψ∗

−−−−−−→ T∗
[X]Q

[−1]M χ∗
−−−−−−→ (Tvert

[X] )∗[−1]Msymp (β∗)∗
−−−−−−→ T∗

[l]M∂ −−−−−−→ · · ·

In case of a topological field theory, the complex (19) consists of finite dimensional
vector spaces and vertical arrows in the diagram above become isomorphisms.

The form ω induces presymplectic structures ωsymp,vert on the fibers of π∗ :
Msymp → EL∂ . The form ωsymp,vert can be written in terms of Lefschetz duality
as:

ωsymp,vert
[X] = ⟨•, χ(•)⟩ : T vert

[X] M
symp ⊗ T vert

[X] [1]M
symp → R
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Proposition 3.19. Fibers of πQ∗ :M→M∂ carry a natural degree −1 symplectic
structure coming from F .

Proof. By non-degeneracy of (21), the kernel of ωsymp,vert is exactly the kernel of
χ. Thus ωsymp,vert induces a non-degenerate degree −1 symplectic structure on

Im(χ) = ker(ψ) ⊂ T[X]QM and hence on fibers of πQ∗ :M→M∂ . �
Thus, the Q-reduced fibers EL(N, [l])/Q have natural symplectic structure. We

call these reduced fibers the moduli spaces of vacua.

Proposition 3.20. The image of πQ∗ :M→M∂ is locally Lagrangian inM∂ .

Proof. Indeed, for a smooth point [l] = [π(X)] ∈ M∂ , tangent space to the image

of πQ∗ is Im(ψ : H•
Q̂X

(TXF)→ H•
Q̂l
(TlF∂)). Lagrangianity is proven as follows:

Im(ψ)⊥ = {a ∈ HQ̂l
(TlF∂) | ⟨a, ψ(b)⟩ = 0 ∀b ∈ HQ̂X

(TXF)}
= {a ∈ HQ̂l

| ⟨β∗(a), b⟩ = 0 ∀b ∈ HQ̂X
}

= ker(β∗)

= Im(ψ)

where in the third line we used the non-degeneracy of Lefschetz pairing. �
The following is a corollary of the above, using also Propositions A.1 and 3.7:

Corollary 3.21. The space L = π(EL) ⊂ F∂ is locally Lagrangian.

3.4.4. Digression: fibers of πQ∗ via symplectic reduction. Let Λ ⊂ F∂ be a La-
grangian submanifold which is transversal to L = π(EL). Assume that Λ intersects
L at the point l. The subspace π−1(Λ) ⊂ F is the space of fields with boundary
values on Λ. We will assume that the subspace π−1(Λ) is symplectic.

Let us prove that the subspace π−1(Λ) ∩ EL is locally coisotropic in π−1(Λ).
For this we need to prove that at a smooth point X the tangent space SX =
TXπ

−1(Λ) ∩ EL is a coisotropic subspace in TXF .
Because Lagrangian subspaces L and Λ are transversal, the intersection of their

tangent spaces is trivial, TXΛ∩TXL = {0}, and therefore for each ξ ∈ TXπ−1(Λ)∩
EL we have δπX(ξ) = 0. Thus

SX = {ξ ∈ ker(Q̂X) | δπ(ξ) = 0}
Denote

IX = {ξ ∈ Im(Q̂X) | δπ(ξ) = 0}
Observe that IX ⊂ SX and that

(22) SX/IX ∼= TXEL(N, [l])/Q
by Proposition 3.13.

Lemma 3.22. For a smooth point X, the symplectic orthogonal subspace to IX in
TXπ

−1(Λ) is SX .

Proof. The symplectic orthogonal of IX in TXπ
−1(Λ) is:

I⊥X = {η ∈ TXπ−1(Λ) | ωN (η, ξ) = 0, for any ξ ∈ IX}

That is for any ξ = Q̂Xλ such that δπ(λ) ∈ ker(Q̂∂). The orthogonality of ξ and η
is equivalent to

ω(Q̂Xη, λ) + ω∂(δπ(η), δπ(λ)) = 0
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for any λ such that δπ(λ) ∈ ker(Q̂l). Because the first term should vanish for all

λ, we have η ∈ ker(Q̂X). Thus the last term should vanish separately for any such

λ. This implies that δπ(η) is symplectic orthogonal to ker(Q̂l). By condition (15)

this implies that δπ(η) ∈ Im(Q̂l). Because Im(Q̂l) ⊂ TlL and because L and Λ are
transversal, we have δπ(η) = 0. Therefore I⊥X = SX .

�

Corollary 3.23. The subspace SX ⊂ TXπ−1(Λ) is coisotropic. Thus π−1(Λ)∩ EL
is locally coisotropic in π−1(Λ).

Lemma 3.24. The symplectic orthogonal subspace to SX in TXπ
−1(Λ) is IX .

Proof. By Lemma 3.22, I⊥X = SX , which implies IX ⊆ S⊥X . On the other hand, due
to (22) and to Proposition 3.19, SX/IX is symplectic and thus IX has to coincide
with S⊥X . �

The following is the immediate corollary of the Lemma above.

Proposition 3.25. The symplectic reduction of SX is

SX = SX/IX
Comparing with the Q-reduction of TXEL(N, [l]) we see that two reductions are
naturally isomorphic:

TXπ
−1(Λ) ∩ EL = TXEL(N, [l])/Q

Thus the fiber of πQ∗ :M→M∂ over [l] coincides with the symplectic reduction of
π−1(Λ) ∩ EL in π−1(Λ).

3.4.5. Example: symplectic EL-moduli space for the abelian Chern-Simons theory.
In the abelian Chern-Simons theory, see section 7.1 for details, the following occurs:

• The symplectic EL-moduli space is

Msymp = EL/VectrelQ =

= {A ∈ Ω•+1(N) | dA = 0}/(A ∼ A+ dα for any α ∈ Ω•(N) s.t. α|∂N = 0)

• The restriction map π∗ : Msymp → EL∂ = Ω•+1
closed(∂N) sends the class

[A] ∈Msymp to A|∂N ∈ EL∂ (which is well defined).
• Fibers of π∗ are isomorphic to the relative cohomology H•+1(N, ∂N).
• The map β[A] : TA|∂NF∂N → T[A]Msymp sends α∂ ∈ Ω•(∂N) to [dα̃] for
arbitrary α̃ ∈ Ω•(N) such that α̃|∂N = α∂ .
• Taking the quotient ofMsymp by the distribution b = im(β) gives the usual
EL-moduli space

Msymp/b =M = H•+1(N)

which is the absolute de Rham cohomology of N .
• Exact sequence (19) is the usual long exact sequence of relative cohomology

· · · → H•(∂N)→ H•+1(N, ∂N)→ H•+1(N)→ H•+1(∂N)→ · · ·

• The symplectic form ω on Ω•(N) descends to

ω([A], [B]) =

∫
N

A ∧B
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on Msymp. Lefschetz duality (21) is the usual Lefschetz duality between
absolute and relative cohomology, plus Poincaré duality for the cohomology
of the boundary.

3.5. The gluing (cutting) of symplectic EL-moduli spaces.

3.5.1. The non-reduced case. Assume that a manifold N is cut into two pieces
N1, N2 along a codimension 1 submanifold N∂

2 such that ∂N1 = N∂
1 ⊔ N∂

2 and
∂N2 = N∂

2 ⊔N∂
3 . We have natural commutative diagram:

(23)

FN −−−−→ FN1y y
FN2

−−−−→ FN∂2
The space of fields FN is the subspace in the fiber product of spaces FN1 and

FN2 over FN∂ consisting of fields which are smooth at N∂ .
The Euler-Lagrange space for N is the fiber product of Euler-Lagrange spaces

for N1 and for N2 :

ELN = ELN1 ×EL
N∂2

ELN2

3.5.2. The gluing. The gluing for symplectic EL-moduli spaces goes as follows. Let
N1, N2 be two spacetime manifolds with boundaries ∂N1 = N∂

1 ⊔ N∂
2 and ∂N2 =

(N∂
2 )

′ ⊔ N∂
3 respectively. Assume that N∂

2 diffeomorphic to (N∂
2 )

′, and denote by
N the result of gluing N1 and N2 along the common boundary component:

N = (N1 ⊔N2)/(N
∂
2 ∼ (N∂

2 )
′)

The spaceMsymp
N can be constructed intrinsically in terms ofMsymp

N1
andMsymp

N2

as follows:

(i) First consider the fiber product

(24) M̃ =Msymp
N1

×EL
N∂2

Msymp
N2

For any point X̃ ∈ M̃, we have a map

(25) β̃X̃ : Tπ1(X̃)FN∂1 × Tπ2(X̃)FN∂2 × Tπ3(X̃)FN∂3 → TX̃M̃

induced from the two maps

(β1 × β2)[X1] : Tπ1(X1)FN∂1 × Tπ2(X1)FN∂2 → T[X1]M
symp
N1

(β2′ × β3)[X2] : Tπ2′ (X2)F(N∂2 )′ × Tπ3(X2)FN∂3 → T[X2]M
symp
N2

(ii) The spaceMsymp
N now can be identified with the leaf space of the distribution

β̃(0× TFN∂2 × 0) on M̃:

Msymp
N = M̃/β̃(0× TFN∂2 × 0)

It inherits the quotient distribution

bN = b1N × b3N = im(β̃)/β̃(0× TFN∂2 × 0)

parameterized by TFN∂1 × TFN∂3 .
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The important point here is that the gluing of symplectic EL-moduli spaces is
done in intrinsic terms of the symplectically reduced picture, i.e. in terms of the
ingredients of diagram (18): (Msymp,F∂ , Q∂ , π∗, β).

3.5.3. Gluing tangent spaces. The construction of gluing of symplectic EL-moduli
spaces described above implies the following Mayer-Vietoris type long exact se-
quence for T[X]Msymp:

(26) · · · → T[π2(X)][−1]MN∂2

(β2−β2′ )∗−−−−−−→ T[X]Msymp
N →

→ T[X1]M
symp,Q2

N1
⊕ T[X2]M

symp,Q2′
N2

→ T[π2(X)]MN∂2
→ · · ·

HereMsymp,Q2

N1
is the quotient ofMsymp

N1
by the distribution b2. Similarly,Msymp,Q2′

N2

is the quotient ofMsymp
N2

by the distribution b2′ .
3

We have a similar long exact sequence for the tangent space to the usual EL-
moduli space:
(27)
· · · → T[π2(X)][−1]MN∂2

→ T[X]MN → T[X1]MN1⊕T[X2]MN2 → T[π2(X)]MN∂2
→ · · ·

Here [X] is the space of leaves of VectQ through X.

3.5.4. Example: gluing in abelian Chern-Simons theory. Here we will give an ex-
ample of gluing symplectic EL-moduli spaces. Let N = N1 ∪N∂2 N2 as before.

Then

M̃ =
{A ∈ Ω•+1(N) | dA = 0}

A ∼ A+ dα for any α ∈ Ω•(N) s.t. α|N∂1 = α|N∂2 = α|N∂3 = 0

Mapping (25) acts as

β̃[A] : (α
∂
1 , α

∂
2 , α

∂
3 ) 7→ [dα̃]

Here (α∂1 , α
∂
2 , α

∂
3 ) ∈ TA|

N∂1

FN∂1 × TA|
N∂2

FN∂2 × TA|
N∂3

FN∂3 and α̃ ∈ Ω•(N) is any

form such that α̃|N∂k = α∂k for k = 1, 2, 3. The class [dα̃] ∈ T[A]M̃ does not depend

on the choice of α̃. To pass from from M̃ toMsymp
N we should mod out differentials

of forms on the interface N∂
2 extended to N . Now we can write the symplectic EL-

moduli space as the quotient

Msymp
N = M̃/β̃(0× Ω•(N∂

2 )× 0) ≃

≃ {A ∈ Ω•+1(N) | dA = 0}
A ∼ A+ dα for any α ∈ Ω•(N) s.t. α|N∂1 = α|N∂3 = 0

It is equipped with two commuting distributions b1N , b
3
N parameterized by Ω•(N∂

1 ),Ω
•(N∂

3 )
respectively.

Mayer-Vietoris sequence (26) becomes the following:

· · · → H•(N∂
2 )→ H•+1(N,N∂

1 ⊔N∂
3 )→

→ H•+1(N1, N
∂
1 )⊕H•+1(N2, N

∂
3 )→ H•+1(N∂

2 )→ · · ·

3An equivalent description: Msymp,Q2
N1

= ELN1/V ectrel1Q where V ectrel1Q is the distribution

generated by vector fields of the form [QN1 , v] with v tangent to the fibers of π1. Likewise,

Msymp,Q2′
N2

= ELN2/V ectrel3Q .
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whereas the version for usual EL-moduli spaces (27) reads

· · · → H•(N∂
2 )→ H•+1(N)→ H•+1(N1)⊕H•+1(N2)→ H•+1(N∂

2 )→ · · ·

3.6. Higher codimensions. The BV-BFV theory is the extension of the BV the-
ory to manifolds with boundary. In a similar way the BV theory extends to higher
codimension submanifolds.

Definition 3.26. The following collection of data is called a k-extended BV
theory in dimension n.

For each i = 0, . . . , k − 1, a k-extended BV theory assigns to every (n − i)-
dimensional manifold Ni with boundary Ni+1:

(1) a space of fields FNi which is a graded manifold with exact symplectic form
ωNi = (−1)n−iδαNi with gh(ωNi) = gh(αNi) = i− 1, and with cohomolog-
ical vector field QNi ,

(2) a projection πi : FNi → FNi+1 ,
(3) an action functional SNi on FNi with gh(SNi) = i.

These data should satisfy the following axioms:

• δπi−1(QNi−1) = QNi ,

• ιQNi−1
ωNi−1 = (−1)n−i+1δSNi−1 + π∗

i (αNi)

We call k-extension of a given BV theory in dimension n a k-extended theory with
the original data for i = 0.

Definition 3.27. A BV field theory has length k if k is the maximal number such
that in its k-extension for i = 1, . . . , k, all πi−1(ELNi−1) = LNi−1 ⊂ ELNi ⊂ FNi
are Lagrangian and all Q-reduced fibers are finite dimensional. Here ELNi ⊂ FNi
is the set of zeroes of the vector field QNi . If k is equal to n, we say that the theory
is maximally extended.

Usually BV field theories have length 1. For example, scalar field theory in
dimension greater than one or Yang-Mills theory in dimension greater than two.
We never consider theories of length zero. In the rest of the paper we will show
that scalar field theory in dimension 1, Yang-Mills theory in dimension 2 and all
AKSZ theories are maximally extended (this includes BF , Chern-Simons theories
and the Poisson sigma model). Notice that scalar theory in dimension one is just
quantum mechanics and the Yang-Mills theory is dimension 2 is known to be almost
topological [57] (meaning that it only depends on the topology of the spacetime
manifold and on its volume).

Remark 3.28 (Extended BV theories on manifolds with corners). A k-extended
BV theory in dimension n naturally leads to an associated theory on n-dimensional
manifolds with corners up to codimension k. Namely, to such a manifold N we
associate the data for N0 = N and N1 the union of the codimension one4 strata
in ∂N . To each such stratum N ′ ⊂ ∂N we associate the data for N1 = N ′ and
N2 the union of the codimension one strata in ∂N ′ (notice that this is the union
of only some codimension two strata in ∂N). To each such stratum N ′′ ⊂ ∂N ′ we
associate the data for N2 = N ′′ and N3 the union of the codimension one strata in
∂N ′′ (notice that this is the union of only some codimension two strata in ∂N ′ and
in turn of some codimension three strata in ∂N), and so on.

4Here and in the following, the codimension of a boundary stratum is computed in terms of
the bulk manifold.
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3.7. Boundary conditions. In the current paper we insist on having free bound-
ary conditions. An alternative approach, first explored in [18, 43], fixes boundary
conditions in a way compatible with the BFV structure on the boundary. This cor-
responds to choosing a Lagrangian submanifold L of the BFV space of boundary
fields to which the boundary cohomological vector field is tangent and on which the
boundary 1-form vanishes. Equivalently, the boundary action should vanish on L.
We call such Lagrangian submanifolds adapted.

At first sight, it would also seem natural to impose L to be transversal to the
Lagrangian submanifold LM . However, this condition is too restrictive and rules
out a lot of interesting boundary conditions. Instead, a better assumption would
be that the intersection of L with LN should be finite dimensional after reduction.

As shown in [18], in the case of AKSZ theories, one can obtain an adapted
Lagrangian submanifold L by choosing an adapted Lagrangian submanifold Li of
the target manifold M for each boundary component ∂iN of the spacetime N .
The submanifold L =

∏
iMap(T [1]∂iN,Li) in this case is an adapted Lagranian in

F∂N . Notice that usually one does not require the decomposition ∂M = ∪i∂iM to
be disjoint, rather the pairwise intersections are assumed to be of lower dimension.
The adapted Lagrangian submanifolds of the target are usually referred to as branes.

In the case when the target is T ∗[1]P , with P a Poisson manifold, one can eas-
ily show that a brane is necessarily of the form N∗[1]C, where C is a coisotropic
submanifold of P and N∗C denotes its conormal bundle. When the target is a dif-
ferential graded symplectic manifold (with symplectic form of degree 2) associated
to a Courant algebroid over a manifold N , then a brane covering N is the same as
a Dirac structure.

An intermediate type of boundary condition consists in splitting the boundary
into two components and in choosing an adapted Lagrangian submanifold of the
BFV space of fields on the first component while keeping free boundary conditions
for the second component. The analysis performed in this paper still holds for
boundary fields of the second component. This mixed approach might have several
applications. For example [15], the study of the Poisson Sigma Model on the disk
whose boundary is split into an even number of ordered intervals Ii with boundary
conditions on I2s determined by the C = P ∀s leads to the construction of what is
known as the relative symplectic groupoid integrating P .

3.8. gh = 0 part of the BV-BFV theory.

3.8.1. Non reduced theory. The gh = 0 part of the BV-BFV theory is a first order

classical field theory with the space of fields FN = F (0)
N (the gh = 0 part of FN ),

the classical action S
(0)
N = SN |F(0)

N

.

The gh = 0 part of the space of boundary fields F∂N = F (0)
∂N is a symplectic

manifold with the symplectic form ω
(0)
∂N = δα

(0)
∂N which is the gh = 0 part of the

symplectic form ω∂N on boundary BFV fields. The one-form δα
(0)
∂N is the gh = 0

part of the form α∂N and it determined by the gh = 0 part of the classical action.
Gauge transformations are gh = 0 part of the BV-BFV gauge transformations

generated by vector fields [V,Q] and they are Hamiltonian on the boundary.
The gh = 0 part of the coisotropic submanifold EL∂N ⊂ FN is a coisotropic

submanifold C∂N = EL(0)
∂N ⊂ FN . It consists of boundary fields which can be
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extended to a solution to Euler-Lagrange equations in the vicinity of the boundary
in N .

In regular BV theories the space of solutions to the Euler-Lagrange equations

ELN = EL(0)
N projects to the Lagrangian subspace LN = L(0)

N = π(ELN ) ⊂ C∂N ⊂
F∂N .

3.8.2. The reduction. The classical moduli space ELN/GN is the gh = 0 part of the
EL-moduli space ELN/QN and maps to the reduced phase space C∂N/G∂N = C∂N ,
which is in turn the gh = 0 part of the boundary EL-moduli space EL∂N . Here GN
denotes the distribution on ELN induced by VectQN , likewise for G∂N ; also G∂N
can be seen as the coisotropic distribution on C∂N .

In the regular case, the image of

(28) π∗ : ELN/GN → C∂N

is the reduced Lagrangian LN/G∂N = LN .

Remark 3.29. In regular case, there is also the following relation between the
smooth loci (cf. Appendix C) of moduli spaces:

(29)

T ∗
vert[−1](ELN/GN )smooth ⊆−−−−→ (ELN/QN )smooth

π∗

y π∗

y
(C∂N )smooth ⊆−−−−→ (EL∂N )smooth

Here T ∗
vert denotes the dual of the vertical tangent bundle of the fibration (28). Hor-

izontal arrows in (29) may be strict inclusions (e.g. abelian Chern-Simons theory
where EL-moduli spaces contain additional smooth pieces: H0(N) and H3(N), cf.
section 7.1.3), or may be equalities (e.g. non-abelian Chern-Simons theory with a
simple gauge group G).

4. The BFV category

4.1. Spacetime categories. Recall that an n-dimensional spacetime category is
the category of n-dimensional cobordisms which may have additional structure
(smooth, Riemannian etc.). See [4, 51, 54] for the discussion of various examples.

In most general terms objects of a d-dimensional spacetime category are (d− 1)-
dimensional manifolds (space manifolds). In specific examples of spacetime cat-
egories, space manifolds are equipped with a structure (orientation, symplectic
structure, Riemannian metric, etc.).

A morphism between two space manifolds Σ1 and Σ2 is a d-dimensional manifold
M , possibly with a structure (orientation, symplectic, Riemannian metric, etc.),
together with the identification of Σ1 ⊔Σ2 with the boundary of M . Here Σ is the
manifold Σ with reversed orientation.

Composition of morphisms is the gluing along the common boundary. Here are
examples of spacetime categories.

The d-dimensional topological category. Objects are smooth, compact,
oriented (d − 1)-dimensional manifolds. A morphism between Σ1 and Σ2 is a d-
dimensional smooth compact oriented manifold with ∂M = Σ1 ⊔ Σ2. The ori-
entation on M should agree with the orientations of Σi in a natural way. The
composition consists of gluing two morphisms along the common boundary.
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The d-dimensional Riemannian category. Objects are oriented (d − 1)
Riemannian manifolds with collars. Morphisms between two objects N1 and N2

are oriented d-dimensional Riemannian manifolds M , such that ∂M = N1 ⊔ N2.
The orientation on all three manifolds should naturally agree, and the metric onM
agrees with the metric on N1 and N2 on a collar of the boundary. The composition
is the gluing of such Riemannian cobordisms. For details see [54].

The d-dimensional metrized cell complexes. Objects are (d−1)-dimensional
oriented metrized cell complexes (edges have length, 2-cells have area, etc.). A
morphism between two such complexes C1 and C2 is an oriented metrized d-
dimensional cell complex C together with two embeddings of metrized cell com-
plexes i : C1 ↪→ C, j : C2 ↪→ C where i is orientation reversing and j is orientation
preserving. The composition is the gluing of such triples along the common (d−1)-
dimensional subcomplex.

This is the underlying category for all lattice models in statistical mechanics.

The Pseudo-Riemannian category The difference between this category and
the Riemannian category is that morphisms are pseudo-Riemannian with the sig-
nature (d− 1, 1). This is the most interesting category for physics. When d = 4 it
represents the spacetime structure of our universe.

4.2. The BFV category. The category BFV has the following objects, morphisms
and compositions of morphisms.

Objects of BFV are triples (F , α,Q) where F is an exact graded symplectic
manifolds with the symplectic form ω = dα with ghost number 0, and Q is a
cohomological vector field (i.e. its Lie derivative squares to zero) with ghost number
1. The symplectic form should be preserved by Q:

LQω = 0

Let EL be the space of zeroes of the vector field Q. The restriction of the Lie
subalgebra V ectQ = [V ect(F), Q] ⊂ V ect(F) defines an involutive5 distribution on
EL.

Morphisms between (F1, α1, Q1) and (F2, α2, Q2) are differential graded mani-
folds F with symplectic form ωF with ghost number −1, with cohomological vector
field QF with ghost number 1, with the function SF (action function) on F with
gh(SF ) = 0, and with two projection mappings πi : F → Fi. These data should
satisfy the following conditions:

• Projections πi are mappings of differential graded manifolds, i.e. δπi(Q
F ) =

Qi.
• The following identity should hold

ιQFωF = (−1)nδSF − π∗
1(α1) + π∗

2(α2),

• Let ELF be the zero-locus of the vector field QF , then LF = (π1 ×
π2)(ELF ) ⊂ F1×F2 should be Lagrangian. Here F1 is the dg manifold F1

with symplectic form −ω1.

5We will always assume that this distribution is actually integrable, which is not automatic in
the infinite dimensional case.
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• For each Lagrangian submanifold L which is generic, relative to LF (the
intersection is transversal), the preimage (π1 × π2)

−1(L) ⊂ F should be
symplectic.

Composition of morphisms Let F : F1 → F2 and F ′ : F2 → F3 be two morphisms
in BFV. The composition F ′ · F is the fiber product F ×F2 F ′ = {(x, x′) ∈ F ×
F ′|π2(x) = π2(x

′)}. It is a submanifold in F ′ ×F .
The symplectic form on F ′ · F is the pullback of the symplectic form on F ′ ×

F . The vector field Q + Q′ on F ′ × F is tangent to F ′ · F ⊂ F ′ × F and it
induced the vector field Qcomp on the fiber product. The action function is additive:
SF ′·F (x, x′) = SF (x) + SF ′

(x′).
Let f be a mapping which assigns to each object F of BFV the functional fF

on F . Define the mapping Ff : BFV→ BFV as as follows. It acts trivially on F . It
acts on one forms αΣ as

αF → αF + δfF

and does not change QF . On the morphism (F , ωF , QF , SF ) : F1 → F2 this
mapping acts it as follows. It acts trivially on ωF , on QF , and on F while on the
action SF it acts as

SF → SF + π∗
1(f

F1)− π∗
2(f

F2)

It is easy to see that F is a covariant endofunctor for BFV.

Remark 4.1. The notion of BV-BFV category introduced above has a natural
generalization where the objects are quadruples (F ,L, α,Q). Here F is a Z-graded
manifold, L is a line bundle over it, α is a connection on L and Q is a cohomological
degree 1 vector field on F .

A morphism between (F1,L1, α1, Q1) and (F2,L2, α2, Q2) is a Z-graded manifold
with the same data as before but instead of SF being a function on F we have a
section of the line bundle LF = π∗(L1×L2) over F which is horizontal for the flat
connection (−1)n−1 i

~ (ιQFωF + π∗
1(α1)− π∗

2(α2)) on LF , cf. Remark 3.3.

4.3. The BV functor. Now classical BV-BFV theories can be regarded as functors
from spacetime categories to BFV category.

Fix a spacetime category. A classical BV-BFV field theory for a spacetime from
this category defines the covariant functor, the BV functor, from the spacetime
category to the BFV category.

On objects: The BV functor assigns the space of fields FΣ to the object Σ of the
spacetime category with the BFV data αΣ and QΣ.

On morphisms: The BV functor assigns the space of fields FN for a morphism
N : Σ1 → Σ2 with the BV data ωN , QN , SN , and mappings πi : FN → FΣi .

The properties of the BV-BFV field theories guarantee that this mapping is a
covariant functor.

Remark 4.2. The BFV category is 1-category. The corresponding BV functor is
a functor from 1-category of cobordisms to the BFV category. This can be extended
to higher categories. The natural target structure is a k-extended BFV category. It
is a k-category. The k-extended classical BV field theory is the k-functor from the
k-category of k-cobordisms to the k-extended BFV category, similar to k-extended
topological quantum field theories [6, 39]. We will discuss extended theories in
another publication.
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5. Examples of BV-BFV theories

5.1. Electrodynamics. Here we will consider the BV-extended classical Euclidean
electrodynamics in the trivial U(1)-bundle. Spacetime manifolds in Euclidean
electrodynamic are smooth oriented n-dimensional Riemannian manifolds. By
∗ : Ωi(N)→ Ωn−i(N) we denote the Hodge operation induced by the metric on N .

5.1.1. The BV-BFV structure for classical electrodynamics. The space of fields
in the BV-extended classical electrodynamics on the spacetime manifold N is
T ∗[−1]EN . Here EN = Ω1(N) ⊕ Ωn−2(N) ⊕ Ω0(N)[1] where the first summand
is the space of connections A in the trivial U(1) bundle over N , the second sum-
mand is the space of fields B, the Hamiltonian counterpart (“momentum”) of A,
the third summand is the space of ghost fields. The total space of fields in BV
classical electrodynamics is

FN = Ω1(N)⊕ Ωn−2(N)⊕ Ω0(N)[1]⊕ Ωn−1(N)[−1]⊕ Ω2(N)[−1]⊕ Ωn(N)[−2]
We will use notations A,B, c, A†, B†, c† for the fields from corresponding sum-
mands6. Here we regard Ωk(N) as a vector space concentrated in degree zero.

The BV-symplectic form on the space of fields is the canonical symplectic form
on T ∗[−1]EN :

ωN =

∫
N

(δA ∧ δA† + δB ∧ δB† + δc ∧ δc†)

It has degree −1.
The BV-extended action of the classical electrodynamics on N has degree zero:

SN =

∫
N

(
B ∧ F (A) + 1

2
B ∧ ∗B +A† ∧ dc

)
,

where F (A) = dA is the curvature of the connection A. The vector field QN is

QN =

∫
N

(
dc ∧ δ

δA
+ dB ∧ δ

δA† + (∗B + dA) ∧ δ

δB† + dA† ∧ δ

δc†

)
and it has gh = 1.

It acts on coordinate fields as

QNA = dc, QNA
† = dB, QNB

† = ∗B + dA, QNc
† = dA†

On other coordinate fields QN acts trivially. Here and below we are using the same
notation for the vector field QN an for its Lie derivative.

The boundary BFV theory has the space of fields

F∂N = Ω1(∂N)⊕ Ωn−2(∂N)⊕ Ω0(∂N)[1]⊕ Ωn−1(∂N)[−1]
We will denote corresponding fields by A,B, c,A† respectively. The projection
π : FN → F∂N acts as

π(A) = i∗(A), π(B) = i∗(B), π(c) = i∗(c), π(A†) = i∗(A†), π(B†) = 0, π(c†) = 0

The boundary symplectic form is the differential of the form

α∂N =

∫
∂N

(B ∧ δA+A† ∧ δc)

ω∂N = δα∂N =

∫
∂N

(δB ∧ δA+ δA† ∧ δc)

6Here we discuss the minimal BV extension of Hamiltonian classical electrodynamics.
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The boundary vector field Q∂N = δπQN is

(30) Q∂N =

∫
∂N

(
dB ∧ δ

δA† + dc ∧ δ

δA

)
The boundary action is

S∂N =

∫
∂N

c ∧ dB

Proposition 5.1. The data described above satisfy the BV-BFV axioms.

Proof. The only non-trivial computation is to check the classical master equation
(7) when ∂N ̸= ∅. Contracting the vector field QN with the symplectic form ωN
we obtain

ιQNωN =

∫
N

(dc ∧ δA† + δA ∧ dB + δB ∧ (∗B + dA) + dA† ∧ δc)

The differential of the action is easy to compute:

δSN =

∫
N

(δB ∧ dA+B ∧ dδA+ δB ∧ ∗B + δA† ∧ dc+A† ∧ dδc)

Comparing these two formulae and using the Stokes formula we obtain the classical
master equation . �

Remark 5.2. The connection field A in electrodynamics is called the vector poten-
tial. When n = 4 and N = [t1, t2] ×M is equipped with Minkowsky metric choose
a basis e0, e1, e2, e3 in the tangent space where e0 is a time direction. On ELN the
components B0i, i = 1, 2, 3 give the magnetic field on M and the components Bij
give the electric field.

5.1.2. The Q-reduction of ELN . The Euler-Lagrange equations in the bulk are:

dB = 0, B = − ∗ dA, dA† = 0, dc = 0

Note that this implies the usual Maxwell’s equation for the vector potential d∗dA =
0.

This defines the subspace ELN ⊂ FN :

(31) ELN = {(A,B) ∈ Ω1(N)⊕ Ωn−2(N) | d ∗ dA = 0, B = − ∗ dA}⊕
⊕ Ω0

closed(N)[1]⊕ Ωn−1
closed(N)[−1]⊕ Ω2(N)[−1]⊕ Ωn(N)[−2]

The summands correspond to fields A,B, c,A†, B†, c† respectively.

Proposition 5.3. The Q-reduced space of solutions to the Euler-Lagrange equa-
tions is

(32) ELN/Q ≃ Ω1
Maxw(N)/Ω1

exact(N)⊕H0(N)[1]⊕Hn−1(N)[−1]⊕Hn(N)[−2]

Here Ω1
Maxw(N) is the space of solutions to Maxwell’s equations, i.e. 1-forms A ,

such that d ∗ dA = 0. The summands represent quotient spaces in fields A, c,A†, c†

respectively.

Proof. Let us first find the Q-reduced tangent space to ELN :

TXELN/Q = ker(Q̂X)/Im(Q̂X)
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Because ELN is a vector space its tangent space, which is isomorphic to ker(Q̂X),

is given by (31). The image of Q̂X is easy to compute:

(33) Im(Q̂X) = Ω1
exact(N)⊕ {(A†, B†) ∈ Ωn−1(N)[−1]⊕

Ω2(N)[−1] | A† = dβ,B† = ∗β + exact, β ∈ Ωn−2(N)} ⊕ Ωnexact(N)[−2]

Here the components correspond to fields A,A†, B†, c† respectively. Let us prove
now that

(34) {(A†, B†) ∈ Ωn−1(N)⊕ Ω2(N) | A† = dβ,

B† = ∗β + exact, β ∈ Ωn−2(N)} = Ωn−1
exact(N)⊕ Ω2(N)

By the Hodge-Morrey decomposition (see for example [14] and references therein)
we can write Ω(N) = Ωcoclosed(N) + Ωexact(N). Using this decomposition, for an
exact (n − 1)-form A† = dγ and an arbitrary 2-form B† we can write B† − ∗γ =
∗θ + dη with θ closed. Then A† = dβ, B† = ∗β + dη for β = γ + θ and therefore
the r.h.s. of (34) is the subspace of l.h.s. and since to opposite inclusion is obvious
we proved (34).

Now we can write

Im(Q̂X) = Ω1
exact(N)⊕ Ωn−1

exact(N)[−1]⊕ Ω2(N)[−1]⊕ Ωnexact(N)[−2]

Together with the formula (31) this proves the Proposition. �

Proposition 5.4. When ∂N = ∅

ELN/Q = H1(N)⊕H0(N)[1]⊕Hn−1(N)[−1]⊕Hn(N)[−2]

The summands correspond to fields A, c,A†, c† respectively.

Proof. A 1-form A satisfies the Maxwell’s equation d ∗ dA = 0 if and only if dA ∈
ker(d∗). The metric on N gives the Hodge decomposition:

Ω(N) = H(N)⊕ Ωd−exact(N)⊕ Ωd∗−exact(N)

where H(N) are harmonic forms representing cohomology classes of N . It is clear
from this decomposition that the first summand in (32) is H1(N). �

WhenN does not have a boundary the space ELN/Q described above has a natu-
ral symplectic structure given by the Poincaré pairing between H1(N) an Hn−1(N)
and between H0(N) and Hn(N).

5.1.3. The reduction of boundary structures. Recall that the space of boundary
fields is

F∂N = Ω1(∂N)⊕ Ωn−2(∂N)⊕ Ω0(∂N)[1]⊕ Ωn−1(∂N)[−1]

Where the summands correspond to pullbacks of fields A,B, c,A† respectively. The
Euler-Lagrange equations on the boundary (equations for zeroes of the vector field
Q∂N ) are

dB = 0, dc = 0

Thus, the space of solutions to boundary Euler-Lagrange equations is

EL∂N = Ω1(∂N)⊕ Ωn−2
closed(∂N)⊕ Ω0

closed(∂N)[1]⊕ Ωn−1(∂N)[−1]

Because it is a vector space, it is isomorphic to its tangent space at every point.
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Similarly to the discussion for the bulk, for l ∈ EL∂N we get

(35) Im(Q̂l) = Ω1
exact(∂N)⊕ Ωn−1

exact(∂N)[−1] ⊂ TlEL∂N

Taking the quotient space ker(Q̂∂N )/Im(Q̂∂N ) and identifying the tangent space
with the space itself we prove the following.

Proposition 5.5. The Q-reduced space of boundary fields is

EL(∂N)/Q = Ω1(∂N)/{exact} ⊕ Ωn−2
closed(∂N)⊕H0(∂N)[1]⊕Hn−1(∂N)[−1]

Here summands correspond to fields A,B, c, A† respectively.

This space is clearly infinite-dimensional. It coincides with the symplectic re-
duction of EL∂N with symplectic structure given by the natural pairing between
the first and the second and between the third and the fourth summands.

Proposition 5.6. BV-extended classical electrodynamics is a regular theory (in the
sense of Definition 3.18).

Proof. By direct calculation, we have

ker(Q̂X) = {(a, b) ∈ Ω1 ⊕ Ωn−2 | b = − ∗ da, db = 0}︸ ︷︷ ︸
∼=Ω1

cl⊕Ωn−2
coex,cl

⊕(36)

⊕Ω0
cl[1]⊕ Ωn−1

cl [−1]⊕ Ω2[−1]⊕ Ωn[−2],
Im(Q̂X) = Ω1

ex ⊕ Ωn−1
ex [−1]⊕ Ω2[−1]⊕ Ωnex[−2],(37)

ker(Q̂vert
X ) = Ω1

cl,D ⊕ Ω0
cl,D[1]⊕ Ωn−1

cl,D[−1]⊕ Ω2[−1]⊕ Ωn[−2],(38)

Im(Q̂vert
X ) = Ω1

ex,D ⊕ Ωnex,D[−2]⊕(39)

⊕{(db, da+ ∗b) ∈ Ωn−1 ⊕ Ω2 | a ∈ Ω1
D, b ∈ Ωn−2

D }︸ ︷︷ ︸
∼=Ωn−1

ex,D⊕(Ω2
ex,D⊕Ω2

cocl,N)

[−1]

Here we use a shorthand notation with ex, cl, coex, cocl,D,N standing for exact,
closed, coexact, coclosed, Dirichlet, Neumann respectively (the last two indicating
the imposed boundary condition; Ωex,D means exact, with the primitive being
subject to Dirichlet condition). Hodge-Morrey decomposition theorem implies that
subspaces (36) and (39) are mutually orthogonal in TXFN , and (38) and (37) are
mutually orthogonal too. Thus the assumption (20) holds.

Also,

ker(Q̂l) = Ω1
∂ ⊕ Ωn−2

cl,∂ ⊕ Ω0
cl,∂ [1]⊕ Ωn−1

∂ [−1]

and

Im(Q̂l) = Ω1
ex,∂ ⊕ Ωn−1

ex,∂ [−1]

(where ∂ stands for forms on the boundary) are mutually orthogonal in TlF∂N due
to Hodge decomposition on ∂N , thus the assumption (15) also holds. Therefore
electrodynamics is a regular theory. �

5.1.4. The Lagrangian subspace LN and its reduction. Now let us describe the evo-
lution relation LN = π(ELN ) ⊂ F∂N and its reduction. Due to regularity, LN
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is Lagrangian. This subspace consists of pullbacks of fields A,B, c,A† satisfying
Euler-Lagrange equation in N :

(40) LN = {(i∗(A), i∗(− ∗ dA)) ∈ Ω1(∂N)⊕ Ωn−2(∂N) | d ∗ dA = 0, A ∈ Ω1(N)}
⊕ i∗(Ω0

closed(N))[1]⊕ i∗(Ωn−1
closed)[−1]

The Q-reduction of the Lagrangian subspace LN , or equivalently, its symplectic
reduction is:

(41) LN/Q = {(i∗(A), i∗(− ∗ dA)) ∈ Ω1(∂N)⊕ Ωn−2(∂N) |

d ∗ dA = 0, A ∈ Ω1(N)}/{ exact A} ⊕ H̃0(∂N)[1]⊕ H̃n−1(∂N)[−1]

Here H̃i(∂N) are cohomology classes of ∂N which are pullbacks of cohomology
classes on N .

5.1.5. Gauge classes of solutions to Euler-Lagrange equations with fixed gauge classes
of boundary values. It is clear that the tangent space TXEL(N, [l]) depends neither
on X nor on l and is

(42)

{(A,− ∗ dA) ∈ Ω1(∂N)⊕ Ωn−2(∂N) | d ∗ dA = 0, i∗(A) exact , A ∈ Ω1(N)}⊕

⊕ Ω0
closed(N, ∂N)[1]⊕ {A† ∈ Ωn−1

closed(N)[−1] | i∗(A†) exact }⊕
⊕ Ω2(N)[−1]⊕ Ωn(N)[−2]

For the quotient space we have:

(43) TXEL(N, [l])/Im(Q̂X) =

=
H1(N, ∂N)

H0(∂N)
⊕ Hn−1(N, ∂N)

Hn−2(∂N)
[−1]⊕H0(N, ∂N)[1]⊕Hn(N)[−2]

It is the Q-reduction of the tangent space TXEL(N, [l]). It is a finite dimensional
symplectic space. Since we are in a linear case, EL(N, [l])/Q is isomorphic to (43).

5.1.6. Codimension 2 BV structure. Here we will describe the extension of the BV
electrodynamics to codimension 2 strata. Let Σ be an (n−1)-dimensional manifold
with the boundary ∂Σ. The boundary ∂Σ is closed and the space of boundary fields
is

F∂Σ = Ωn−2(∂Σ)⊕ Ω0(∂Σ)[1]

where the summands correspond to pullbacks of fields B and c from Σ to the
boundary. We will denote the pullbacks of B and c by the same letters.

The restriction mapping π : FΣ → F∂Σ acts as π(A) = π(A†) = 0 and π(B) = B,
π(c) = c.

The symplectic structure on this space is exact

ω∂Σ =

∫
∂Σ

δB ∧ δc = δα∂Σ

where

α∂Σ =

∫
∂Σ

δB ∧ c

The action and the vector field Q on F∂Σ are trivial:

S∂Σ = 0, Q∂Σ = 0
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Proposition 5.7. The action SΣ =
∫
Σ
c ∧ dB satisfies the equation (7).

The proof is a straightforward computation.
It is clear that

EL∂Σ = F∂Σ,
The evolution relation LΣ = π(ELΣ)

LΣ = i∗(Ωn−2
closed(Σ))⊕ i

∗(Ω0
closed(Σ))[1]

When there is only one connected component of the boundary

LΣ = Ωn−2
exact(∂Σ)⊕ Ω0

closed(∂Σ)[1]

Because Q∂Σ = 0 the reduction is trivial: the reduced structures are the same
as non-reduced ones. The reduced fiber over l = (B, c) is

EL(Σ, [l])/Q = Ω1(Σ)/{exact} ⊕ Ωn−2
closed(Σ)⊕H

0(Σ, ∂Σ)[1]⊕Hn−1(Σ)[−1]
This space is infinite dimensional for n > 2 and it is finite dimensional when n = 2.

Remark 5.8. The reduced space LΣ/Q and fibers of π : ELΣ/Q → LΣ/Q are
infinite dimensional when n > 2. When n = 2 they are finite dimensional. This
corresponds to two dimensional electrodynamics which is an almost topological field
theory [57].

5.2. Yang-Mills theory. As in the classical Euclidean electrodynamics spacetime
manifolds in the Yang-Mills theory are oriented compact smooth, possibly with
boundary (and with corners), Riemannian manifolds. Let g be the Lie algebra of
a finite dimensional simply connected Lie group G with g-invariant scalar product.
To simplify notations we assume that g is a matrix algebra and that the scalar
product is given by the trace: < a, b >= tr(ab).

5.2.1. The non-reduced theory. In the first order formulation of Yang-Mills theory
fields are connections A in a principal G-bundle P over N and (n−2)-forms B with
coefficients in the associated adjoint bundle. For simplicity, we assume that the
principal bundle is trivial and consider connections as 1-forms with coefficients in
g and B fields as (n− 2)-forms with coefficients in g. The ghost fields c are 0-forms
with coefficients in g. The BV extension includes anti-fields A†, B†, c†. The total
space of BV extended Yang-Mills theory is7

FN = g⊗ Ω1(N)︸ ︷︷ ︸
A

⊕ g⊗ Ωn−2(N)︸ ︷︷ ︸
B

⊕ g⊗ Ω0(N)[1]︸ ︷︷ ︸
c

⊕

⊕ g⊗ Ωn−1(N)[−1]︸ ︷︷ ︸
A†

⊕ g⊗ Ω2(N)[−1]︸ ︷︷ ︸
B†

⊕ g⊗ Ωn(N)[−2]︸ ︷︷ ︸
c†

This is a graded infinite dimensional vector space with the symplectic form

ωN =

∫
N

tr
(
δA ∧ δA† + δB ∧ δB† + δc ∧ δc†

)
The action functional is

SN =

∫
N

tr

(
B ∧ FA +

1

2
B ∧ ∗B +A† ∧ dAc+B† ∧ [B, c] +

1

2
c† ∧ [c, c]

)
7Here, as in the case of classical electrodynamics we only discuss the minimal BV extension.

When n = 4 the BV extension of Yang-Mills theory can also be presented in a different way using
the decomposition of 2-forms into self-dual and anti-self-dual parts, see [16] and [22].
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where FA = dA+ 1
2 [A,A], and the cohomological vector field is

QN =

∫
N

tr

(
dAc ∧

δ

δA
+ [B, c] ∧ δ

δB
+

1

2
[c, c] ∧ δ

δc
+
(
dAB + [A†, c]

)
∧ δ

δA†+

+
(
FA + ∗B + [B†, c]

)
∧ δ

δB† +
(
dAA

† + [B,B†] + [c, c†]
)
∧ δ

δc†

)
The boundary structure. We will denote the pullback to the boundary of

forms A,B,A†, c by the same letters. The space of boundary fields is the quotient
space of the pullback of FN to the boundary over the kernel of the form δα̃∂N , as
it is explained in section 3.1:

F∂N = g⊗ Ω1(∂N)[1]︸ ︷︷ ︸
A, gh=0

⊕ g⊗ Ωn−2(∂N)[n− 2]︸ ︷︷ ︸
B, gh=0

⊕

⊕ g⊗ Ω0(∂N)[1]︸ ︷︷ ︸
c, gh=1

⊕ g⊗ Ωn−1(∂N)[n− 2]︸ ︷︷ ︸
A†, gh=−1

The structure of an exact symplectic manifold on F∂N is given by

α∂N =

∫
∂N

tr
(
B ∧ δA+A† ∧ δc

)
,

ω∂N =

∫
∂N

tr
(
δB ∧ δA+ δA† ∧ δc

)
The vector field Q∂N and the action S∂N for the boundary BFV theory are

Q∂N =

∫
∂N

tr

(
dAc ∧

δ

δA
+ [B, c] ∧ δ

δB
+

+(dAB + [A†, c]) ∧ δ

δA† +
1

2
[c, c] ∧ δ

δc

)
,

S∂N =

∫
∂N

tr

(
B ∧ dAc+

1

2
A† ∧ [c, c]

)
The codimension 2 structure. Let Σ be a stratum of codimension 2. The

BV-BFV theory on N and on ∂N induce the following data associated on Σ (see
section 3.1. The space of fields:

FΣ = g⊗ Ωn−2(Σ)[n− 2]︸ ︷︷ ︸
B, gh=0

⊕ g⊗ Ω0(Σ)[1]︸ ︷︷ ︸
c, gh=1

,

Here we denoted the pullback of B and of c to Σ by the same letters. The rest
of the BFV data, the exact symplectic form, the vector field Q and the action S
(which can be obtained from Q by the Roytenberg’s construction) are:

αΣ =

∫
Σ

tr(B ∧ δc),

ωΣ =

∫
Σ

tr(δB ∧ δc),

QΣ =

∫
Σ

tr

(
[B, c] ∧ δ

δB
+

1

2
[c, c] ∧ δ

δc

)
,

SΣ =

∫
Σ

tr

(
1

2
B ∧ [c, c]

)
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5.2.2. The non-reduced gh = 0 part.
The bulk. The fields A and it Hamiltonian counterpart remain, so the space of
fields is

FN = g⊗ Ω1(∂N)︸ ︷︷ ︸
A

⊕ g⊗ Ωn−2(∂N)︸ ︷︷ ︸
B

The classical action is

SclN =

∫
N

tr

(
B ∧ FA +

1

2
B ∧ ∗B

)
Its critical points are solutions to Euler-Lagrange equations

dAB = 0, FA + ∗B = 0

or, equivalently

dA ∗ FA = 0, B = − ∗ FA
Infinitesimal gauge transformations are infinitesimal automorphisms of the trivial

G-bundle over N , i.e. elements of the Lie algebra Map(N, g), They act as

A 7→ A+ dAα, B 7→ B + [B,α]

where α ∈ Ω0(N, g).
The boundary. Boundary fields in the Yang-Mills theory are pullbacks of fields

A and B. We will denote them by the same letter:

F∂N = g⊗ Ω1(∂N)︸ ︷︷ ︸
A

⊕ g⊗ Ωn−2(∂N)︸ ︷︷ ︸
B

The exact symplectic structure on F∂N is given by

αcl∂N =

∫
∂N

tr(B ∧ δA)

ωcl∂N =

∫
∂N

tr(δB ∧ δA) = δαcl∂N

Euler-Lagrange subspace, gh = 0 part of EL∂N , is defined by the constraint

dAB = 0

Boundary gauge transformations are:

A 7→ A+ dAα, B 7→ B + [B,α]

The action of the Lie algebra of gauge transformations is Hamiltonian with the
moment map µ : F∂N −→ g⊗ Ωn−1(∂N):

(A,B) 7→ dAB

Codimension 2 part. The gh = 0 part of the codimension 2 structure is given
by the pullback of B to the boundary:

FΣ = g⊗ Ωn−2(Σ)

with no constraints and the gauge transformations given by

B 7→ B + [B,α]

where α ∈ Ω0(Σ, g).
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5.2.3. The reduction in the gh = 0 part. The space ELN is naturally isomorphic
to the space of solutions to the Yang-Mills equation dA ∗ F (A) = 0.

The classical moduli space is naturally isomorphic to the space of gauge classes
of solutions to the YM equation:

ELN/GN =

= {(A,B) | A ∈ g⊗Ω1(N), dA∗FA = 0, B = −∗FA}/{(A,B) ∼ (A+dAα,B+[B,α])}

The reduced phase space is naturally isomorphic to the cotangent bundle of the
space of gauge classes of all connections:

EL∂N/G∂N =

{{(A,B) | A ∈ g⊗Ω1(∂N), B ∈ g⊗Ωn−2(∂N), dAB = 0}}/{(A,B) ∼ (A+dAα,B+[B,α])}

The gh = 0 part of the EL-moduli space for a codimension 2 stratum is simply

ELΣ/GΣ
∼= (g⊗ Ωn−2(Σ))/G

where Σ is (n− 2)-dimensional and the quotient is by the adjoint action of G.
The restriction map

π∗ : ELN/GN → EL∂N/G∂N

is the pullback of the connection A and of the form B to the boundary. The fibers
are finite-dimensional. One way to see this is by homological perturbation theory
around electrodynamics.

The reduced phase space EL∂N/G∂N is infinite-dimensional for n ≥ 3. The case
n = 2 is special as for n = 2 we have

EL∂N/G∂N ∼= T ∗MG
∂N

whereMG
∂N denotes the moduli space of flat G-connections on ∂N which is finite-

dimensional.
Under the regularity assumption, the image of π∗ is Lagrangian. Smooth loci

of EL-moduli spaces for the bulk and the boundary are described by diagram (29)
with horizontal arrows being equalities (we assume the group G to be simple for
this to hold).

5.3. Scalar field.

5.3.1. The non-reduced picture. For the massless free n-dimensional scalar field the
bulk BV data is:

FN = Ω0(N)︸ ︷︷ ︸
ϕ

⊕Ωn−1(N)︸ ︷︷ ︸
p

⊕Ωn(N)[−1]︸ ︷︷ ︸
ϕ†

⊕Ω1(N)[−1]︸ ︷︷ ︸
p†

ωN =

∫
N

(δϕ ∧ δϕ† + δp ∧ δp†)

SN =

∫
N

(p ∧ dϕ+
1

2
p ∧ ∗p)

QN =

∫
N

(
dp ∧ δ

δϕ†
+ (dϕ+ ∗p) ∧ δ

δp†

)
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The boundary BFV data in this theory is:

F∂N = Ω0(∂N)︸ ︷︷ ︸
ϕ

⊕Ωn−1(∂N)︸ ︷︷ ︸
p

α∂N =

∫
∂N

p ∧ δϕ

ω∂N = δα∂N =

∫
∂N

δp ∧ δϕ

Q∂N = 0

S∂N = 0

It is easy to derive them from the BV data in the bulk as it is explained in section
3.1. It is clear that the theory has length one.

For the Euler-Lagrange space we have

(44) ELN = {(ϕ, p, ϕ†, p†) | dp = 0, p = − ∗ dϕ}

At the boundary EL∂N = F∂N .

5.3.2. The reduction. Similarly to the case of electrodynamics we have,

ker(Q̂)/Im(Q̂) ≃ Ω0
Harm(N)⊕Hn(N)[−1]

where Ω0
Harm(N) are harmonic zero-forms on N ; the first summand correspond

to the field ϕ and the second to ϕ†. Because of the linearity, the moduli space
ELN/QN is given by the same formula.

Remark 5.9. If ∂N = ∅ then ELN/QN ≃ H0(N) ⊕ Hn(N)[−1] is a finite-
dimensional odd-symplectic space.

Because Q∂N = 0, the reduced boundary Euler-Lagrange space is the space of
boundary fields:

(45) EL∂N/Q∂N = F∂N = Ω0(∂N)⊕ Ωn−1(∂N)

The reduced evolution relation is the same as the non-reduced one:

(46) LN =

= {(ϕ, p) ∈ F∂N | p = −(∗dϕ̃)|∂N for ϕ̃ a harmonic continuation of ϕ into N} ≃
≃ Ω0(∂N)

Because the harmonic continuation ϕ̃ exists and is unique, the subspace LN is
Lagrangian.

The restriction (the pullback to the boundary) mapping is surjective over LN

(47)

ELN/QNy
LN ⊂ EL∂N/Q∂N

Its fibers are finite-dimensional odd-symplectic spaces canonically isomorphic to

(48) H0(N, ∂N)⊕Hn(N)[−1] ≃ T ∗[−1]Rk

Where k ≥ 0 is the number of closed connected components of N .
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5.3.3. Massive scalar field. The BV extension of the massive scalar field is similar
to the massless scalar filed. The space of fields and the symplectic structure are
the same. The action and the vector field QN are

SN =

∫
N

(
p ∧ dϕ+

1

2
p ∧ ∗p− m2

2
ϕ ∧ ∗ϕ

)
(49)

QN =

∫
N

(
(dp−m2 ∗ ϕ) ∧ ∂

∂ϕ†
+ (dϕ+ ∗p) ∧ ∂

∂p†

)
(50)

The boundary data are unchanged. The reduced bulk Euler-Lagrange space is

(51) ELN/QN ≃ Ω0
Klein−Gordon(N)

Here Ω0
Klein−Gordon(N) is the space of functions satisfying the equation ∆ϕ−m2ϕ =

0. It fibers over L ≃ Ω0(∂N) with zero fibers. That is, when m ̸= 0 the fibers of
the EL-moduli spaces over given boundary values are trivial.

It is also easy to construct BV extensions of scalar fields interacting with the
Yang-Mills theory, and to generalize it to Dirac and Majorana fermions.

5.4. Abelian BF theory.

5.4.1. The BV-BFV structure of BF theory. Here we will focus on the BV-BFV
extension of the classical abelian BF gauge theory. Let us start with the description
of the corresponding BV theory.

The space of fields in this theory is:

FN = Ω•(N)[1]⊕ Ω•(N)[n− 2]

For coordinate fields we will write A ∈ Ω•(N)[1] and B ∈ Ω•(N)[n − 2]. Here
Ω•(N) is regarded as a Z-graded vector space with Ωk(N) being its component of
degree −k.

Remark 5.10. The BV-BF theory is an example of the AKSZ theory ( cf. section
6) with the target manifold T ∗[1]R and with Θ = 0.

Remark 5.11. Dimensions n = 2, 3 are special. When n = 2 the theory is equiv-
alent to the topological sector of electrodynamics. When n = 3 it is equivalent to
two copies of abelian Chern-Simons theories.

The BV symplectic form

ωN =

∫
N

δA ∧ δB

The total degree (ghost number) is gh(ωN ) = −1.
The action functional is:

SN =

∫
N

B ∧ dA

The vector field QN is

QN =

∫
N

(
dA ∧ δ

δA
+ dB ∧ δ

δB

)
On “coordinate functions” it acts as

(52) QNA = dA, QNB = dB
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The space ELN of solutions to Euler-Lagrange equations, i.e. the space of zeroes
of the vector field QN , is the space of closed forms:

ELN = Ω•
closed(N)[1]⊕ Ω•

closed(N)[n− 2]

Clearly this space is coisotropic in FN .
The space of boundary fields is:

F∂N = Ω•(∂N)[1]⊕ Ω•(∂N)[n− 2]

and the natural restriction map π : FN → F∂N is the pullback of forms to the
boundary.

The space of boundary fields is a symplectic space with the exact symplectic
form of degree 0:

ω∂N = δα∂N , α∂N =

∫
∂N

A ∧ δB

The boundary cohomological vector field Q∂N = δπQN is

Q∂NA = dA, Q∂NB = dB
The Euler-Lagrange subspace EL∂N ⊂ F∂N is the subspace of closed forms on

∂N .

Proposition 5.12. The data described above is an example of the BV-BFV theory.

The proof is a straightforward computation which proves identities from section
3.1.

The evolution relation LN ⊂ EL∂N consists of closed forms on ∂N which extend
to closed forms on N .

Proposition 5.13. The subspace LN ⊂ EL∂N ⊂ F∂N is Lagrangian.

To prove this Proposition we need the following lemma.

Lemma 5.14. Denote by ι∗ : H•(∂N)→ H•(N) the pushforward by ι : ∂N ↪→ N in
homology. The subspace ker(ι∗) is isotropic in H•(∂N) with respect to the bilinear
form given by the intersection pairing.

Proof. Let U and V be two cycles in N relative to the boundary, with dim(U) +
dim(V ) = dim(N) + 1, and let u = ∂U , v = ∂V be their boundaries in ∂N . By
general position argument we can assume that U ∩ V is a one dimensional chain.
This chain gives a cobordism between u ∩ v and the empty set. Hence the sum of
coefficients in u ∩ v, which is the intersection pairing, vanishes. �

Proof of Proposition 5.13. By the natural identification of H•(∂N)∗ with H•(∂N),
the annihilator of ker(ι∗) is Im(ι∗). Therefore, by Lemma 5.14, the subspace Im(ι∗)
is coisotropic in H•(∂N).

Because LN ⊂ ELN is isotropic by Proposition 3.6, the reduced space LN is
also isotropic. Since we just proved that it is coisotropic, we conclude that it
is Lagrangian. By Proposition A.1 the preimage of a Lagrangian subspace with
respect to the symplectic reduction is Lagrangian if it contains the kernel of the
presymplectic form. In our case this kernel consists of exact forms on ∂N , and
exact forms are clearly in LN .

�

Proposition 5.15. Abelian BF theory is regular.
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Proof. We have

ker(Q̂X) = Ω•
closed(N)[1]⊕ Ω•

closed(N)[n− 2],(53)

Im(Q̂X) = Ω•
exact(N)[1]⊕ Ω•

exact(N)[n− 2],(54)

ker(Q̂vert
X ) = Ω•

closed(N, ∂N)[1]⊕ Ω•
closed(N, ∂N)[n− 2],(55)

Im(Q̂vert
X ) = d(Ω•(N, ∂N))[0]⊕ d(Ω•(N, ∂N))[n− 3],(56)

ker(Q̂l) = Ω•
closed(∂N)[1]⊕ Ω•

closed(∂N)[n− 2],(57)

Im(Q̂l) = Ω•
exact(∂N)[1]⊕ Ω•

exact(∂N)[n− 1](58)

Due to Hodge-Morrey decomposition for forms on N , pairs of subspaces (53), (56)
and (55), (54) are mutually orthogonal. Due to Hodge decomposition on ∂N ,
subspaces (57), (58) are also mutually orthogonal. Thus the theory is regular. �

5.4.2. The reduction of boundary structures. From section 2.4 we know that the
Q-reduced Euler-Lagrange space coincides with its symplectic reduction and is

EL∂N/Q = EL∂N = H•(∂N)[1]⊕H•(∂N)[n− 2]

The reduced space LN/Q is the space of cohomology classes of closed forms on ∂N
which continue to closed forms on N , and we already proved that it is Lagrangian.

5.4.3. The reduction of of bulk fields. The Q-reduced space of solutions to the EL
equations is:

ELN/Q = H•(N)[1]⊕H•(N)[n− 2]

To compute the space EL(N, [l])/Q, for l ∈ LN consider the natural exact sequence:

0→ Ω•(N, ∂N)→ Ω•(N)
ι∗→ Ω•(∂N)→ 0

where ι∗ is the pullback to the boundary corresponding to the inclusion mapping
ι : ∂N ↪→ N , and Ω•(N, ∂N) are forms vanishing on the boundary (their pullback to
the boundary is zero). It induces the standard long exact sequence for cohomology
spaces:

. . . → H•(N, ∂N)
χ→ H•(N)

ι∗→ H•(∂N)
β→

→ H•+1(N, ∂N)
χ→ H•+1(N)

ι∗→ H•+1(∂N)
β→ . . .

For l ∈ LN the Q-reduction of the space EL(N, [l])) = π−1([l]) ∩ ELN is the
Q-reduced space EL(N, [l])/Q = (π−1([l]) ∩ ELN )/Q

(59) EL(N, [l])/Q = Im(χ)[1]⊕ Im(χ)[n− 2] ≃
≃ H•(N, ∂N)/Im(β)[1]⊕H•(N, ∂N)/Im(β)[n− 2]

Recall that [l] is the leaf of V ectQ through l. Due to regularity, (59) is symplectic,
with the symplectic structure coming from the Lefschetz duality between H•(N)
and H•(N, ∂N).

In terms of the long exact sequence of the pair (N, ∂N), the reduced space LN
is:

LN/Q = Im(ι∗)[1]⊕ Im(ι∗)[n− 2] ⊂ H•(∂N)[1]⊕H•(∂N)[n− 2]
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Remark 5.16. The symplectic reduction of ELN is infinite dimensional and, as a
vector space,

ELN = H•(N, ∂N)[1]⊕H•(N, ∂N)[n− 2]⊕ Ω•
closed(∂N)[1]⊕ Ω•

closed(∂N)[n− 2]

Indeed, it is easy to check that the symplectic orthogonal subspace EL⊥,symp
N to ELN

is

Ωexact(N, ∂N)[1]⊕ Ωexact(N, ∂N)[n− 2]

where Ωexact(N, ∂N) is the space of exact forms with the pullback to the boundary

being zero. The symplectic reduction is the quotient space ELN/EL⊥,symp
N . It is the

symplectic EL-moduli space discussed in section 3.4 and comes with residual gauge
symmetry data, which in particular allow for a simple gluing formula.

5.4.4. BV extensions to strata of codimension k. The BF theory can be maximally
extended. On an n− k dimensional stratum Nk the space of fields is

FNk = Ω•(Nk)[1]⊕ Ω•(Nk)[n− 2]

The symplectic form is

ωNk =

∫
Nk

δA ∧ δB

The cohomological vector field QNk is

QNk =

∫
Nk

(
dA ∧ δ

δA
+ dB ∧ δ

δB

)
The action is

SNk =

∫
Nk

B ∧ dA

Formulae for α,Q, S are structurally the same for all k. This is a general feature
of AKSZ theories of which abelian BF theory is an example.

5.4.5. The gh = 0 part of the abelian BF theory. In this section we will consider
the restriction of the abelian BF theory to the fields with gh = 0.

The gh = 0 part of the space of fields is FN = Ω1(N)⊕Ωn−2(N). The action is
the restriction of the BV action to the gh = 0 sector:

SN =

∫
N

B ∧ dA

where A ∈ Ω1(N) and B ∈ Ωn−2(N).
Euler-Lagrange equations are:

dA = 0, dB = 0,

Solutions are closed forms

ELN = Ω1
closed(N)⊕ Ωn−2

closed(N)

This is the degree zero part of the space ELN in the BF -BV theory.
The gauge group GN = Ω0(N)⊕ Ωn−3(N) acts on fields as

A 7→ A+ dα, B 7→ B + dβ

Vector fields generated by these transformations are degree zero parts of vector
fields V ectQ . The action of the abelian BF theory is invariant with respect to
these transformations.
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The set of gauge classes of solutions is the degree zero part of the Q-reduced
Euler-Lagrange space:

ELN/GN = H1(N)⊕Hn−2(N)

Non-reduced boundary theory. The boundary fields are:

F∂N = Ω1(∂N)⊕ Ωn−2(∂N)

This is a symplectic manifold with the symplectic form induced by the intersec-
tion pairing:

ω∂N =

∫
N

δA ∧ δB

This form is restriction of the symplectic form in the BF theory to the gh = 0
subspace in the space of fields.

The boundary Euler-Lagrange subspace consists of closed 1- and (n − 2)-forms
on ∂N :

EL∂N = Ω1
closed(∂N)⊕ Ωn−2

closed(∂N)

It is a coisotropic subspace of F∂N .
The evolution relation LN = π(ELN ) is the space of closed 1- and (n− 2)-forms

on ∂N which continue to closed forms on N . As follows from Lemma 5.14, LN is
a Lagrangian subspace in EL∂N .

Reduced boundary theory. Boundary gauge groupG∂N = Ω0(∂N)⊕Ωn−3(∂N)
is the pullback of the group of gauge transformations on N to the boundary.

The symplectically reduced Euler-Lagrange subspace EL∂N is the set of leaves of
the characteristic foliation of EL∂N (the foliation of EL∂N by Hamiltonian vector
fields generated by the ideal IEL∂N of functions on F∂N vanishing on EL∂N .

Remark 5.17. Because the action of the gauge group is Hamiltonian with

Hα =

∫
∂N

α ∧ dB, Hβ =

∫
∂N

β ∧ dA

The reduced space EL∂N is also the result of Hamiltonian reduction: EL∂N =
J−1(0)/G∂N , where J : F∂N → [Ω0(∂N)⊕Ωn−3(∂N)]∗ is the moment map (A,B) 7→
(Hα,Hβ). It is also clear that EL∂N = J−1(0).

The Q-reduced Euler-Lagrange space

EL∂N/G∂N = H1(∂N)⊕Hn−2(∂N)

has the natural symplectic structure given by the Poincaré pairing.
The reduced evolution relation LN/G∂N consists of cohomology classes of closed

forms on ∂N which continue to closed forms on N . In other words, this is the image
of the restriction mapping:

H1(N)⊕Hn−2(N)
ι∗⊕ι∗→ H1(∂N)⊕Hn−2(∂N)

where ι : ∂N ↪→ N is the inclusion of the boundary mapping. As follows from the
Proposition 5.13, it is a Lagrangian subspace.

The kernel of the restriction map is isomorphic to

H1(N)/Im(β0)⊕Hn−2(N)/Im(βn−3)

Here βi : H
i(∂N)→ Hi+1(N, ∂N) is the mapping in the long exact sequence of

the pair (N, ∂N).
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6. The AKSZ construction of classical topological gauge theories

In this section we will recall the construction of classical topological field theories
for closed manifolds known as the AKSZ construction [1] and we will extend this
construction to manifolds with boundary. We will show that this extension gives
an example of a BV theory for spacetimes with boundary. The AKSZ construction
generalizes the BV extension of the BF gauge theory.

6.1. The target manifold.

6.1.1. Hamiltonian dg manifolds. The AKSZ construction requires the choice of a
Hamiltonian differential graded manifold as the target space.

Recall that a differential graded (dg) manifold is a pair (M, Q) where M is a
graded manifold and Q is a cohomological vector field of degree one. A vector field
is cohomological if its Lie derivative squares to zero.

A dg manifold is a dg symplectic manifold of degree m if it has a symplectic form
ω of degree m which is Q-invariant (i.e. LQω = 0 where LQ is the Lie derivative
with respect to Q). We denote the degree by deg.

Definition 6.1. A dg symplectic manifold (M, ω,Q) of degree m is Hamiltonian
if there exists an element Θ ∈ Fun(M) with deg(Θ) = m+ 1 such that

(60) {Θ,Θ} = 0

and Q is the Hamiltonian vector field of Θ.

Remark 6.2. A graded symplectic manifold is always exact when deg(ω) ̸= 0:
ω = dα. If deg(ω) = 0 we will require it to be exact. A dg symplectic manifold is
automatically Hamiltonian when deg(ω) ̸= −1,−2. See section 2.2 and [46].

Notice that a Hamiltonian dg manifold is actually defined by the symplectic
form and by the function Θ satisfying (60). The vector field Q is defined as the
Hamiltonian vector field of Θ and acts of functions as on functions onM as:

Qf = {Θ, f}

In local coordinates

Qf =
∑
ab

Θ

←−
∂
←−
∂ xa

ωab
−→
∂
−→
∂ xb

f

For polynomial functions f we have

df

dt
(x+ tϵ) =

∑
a

ϵa
−→
∂
−→
∂ xa

f =
∑
a

f

←−
∂
←−
∂ xa

ϵa

were deg(t) = 0.
The condition (60) implies

Q2 = 0

Because deg(ω) = m, we have deg(ω−1) = −m and because deg(Θ) = m + 1, we
have deg(Q) = 1.
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6.1.2. Examples of Hamiltonian dg manifolds. Here we will give few examples of
Hamiltonian dg manifolds.

Example 1. Let m = 2, g be a finite dimensional Lie algebra with an invariant
inner product, and xa be coordinates on g in an orthonormal linear basis ea

8 .
ChooseM = g[1] with deg(xa) = 1 and define

ω =
1

2

∑
a

dxa ∧ dxa

and

Θ =
1

6

∑
abc

fabcx
axbxc

where fabc are structure constants of g in the basis ea. Clearly deg(ω) = 2, and
deg(Θ) = 3, which agrees with m = 2.

The differential Q in this example is given by

Q =
1

2

∑
abc

f cabx
axb

∂

∂xc

which corresponds to the Chevalley-Eilenberg differential for the Lie algebra g.
This example describes the target space for the Chern-Simons theory in the BV

formalism.
Example 2 Let n be any integer and g be a finite dimensional Lie algebra.

Define
M = g[1]⊕ g∗[n− 2] = T ∗[n− 1](g[1])

Let xa be coordinates on g, and pa be corresponding coordinates on the dual space
g∗, gh(xa) = 1, gh(pa) = n− 2. Define

ω =
∑
a

dpa ∧ dxa, α =
∑
a

padx
a

Θ =
1

2

∑
abc

fabcpax
bxc

It is is clear that deg(ω) = n− 1 and deg(Θ) = n.
This is the target space for BF models. When n = 2 this space is the same as

in the next example (Poisson sigma model) for M = g∗ with the Kirillov-Kostant
Poisson structure.

Example 3 Let m = 1 and M = T ∗[1]M , where M is a finite dimensional
Poisson manifold with the Poisson tensor π. Let xi be local coordinates on M , and
pi be corresponding coordinates on the cotangent space T ∗

xM . The grading is such
that deg(xi) = 0 and deg(pi) = 1

Define
ω =

∑
i

dpi ∧ dxi, α =
∑
i

pidx
i

and

Θ =
1

2

∑
ij

πij(x)pipj

Condition (60) is equivalent to the fact that π is Poisson. Clearly deg(ω) = 1, and
deg(Θ) = 2 which agrees with m = 1.

This example describes the target space in the Poisson sigma model.

8g can be also a Lie superalgebra



CLASSICAL BV THEORIES ON MANIFOLDS WITH BOUNDARY 43

Example 4 When m = 2 and the Lie algebra has an invariant bilinear form, the
Example 2 can be modified by adding a cubic term in p to Θ. For this we identify g
and g∗ using the Killing form and assume xa, pa are coordinates in an orthonormal
basis. The new potential is

Θ =
1

2

∑
abc

fabcpax
bxc ± 1

6
fabcpapbpc

This Hamiltonian dg manifold is isomorphic to two copies of the Hamiltonian dg
manifold from the first example.

Example 5 When m = 3 and g has an invariant bilinear form, we can add a
quadratic term to Θ. The new potential is

Θ =
1

2

∑
abc

fabcpax
bxc +

1

2

∑
a

p2a

6.2. The space of fields. Fix a Hamiltonian dg manifold (M, ω,Θ) of degree
n− 1. The classical n-dimensional AKSZ field theory with the target manifoldM
on the spacetime manifold N has FN = Map(T [1]N,M) as the space of fields9. We
assume that the spacetime is a compact oriented smooth manifold. See Appendix
B for basic facts on graded manifolds and their mapping spaces. As in the previous
sections we will say that the grading on the space of fields is given by ghost numbers
gh.

Let f be a smooth function of fixed degree on M and X ∈ FN , then the com-
position Xf = f ◦X is a smooth function on T [1]N . Let ξi be local coordinates on
the fiber Tu[1]N , u ∈ N . Then Xf at (ξ, u) can be written as

Xf (ξ, u) =

n∑
k=0

Xf (u)i1,...,ikξ
i1 . . . ξik

with gh(Xf (u)i1,...,ik) = deg(f)− k.
We have natural identification ϕ : C∞(T [1]N) ≃ Ω(N). In coordinates this

mapping brings the function Xf to the form

ϕ(Xf )(u) =
n∑
k=0

Xf (u)i1,...,ikdu
i1 ∧ · · · ∧ duik

Let xa, a = 1, . . . n be homogeneous local coordinates onM. Denote by Xa the
composition of the field X ∈ FN and the coordinate function xa. Component fields
Xa can be regarded as forms ϕ(Xa)(u) on N , a = 1, . . . , n:

(61) ϕ(Xa)(u) =
d∑
k=0

Xa(u)i1,...,ikdu
i1 ∧ · · · ∧ duik

We will denote the component of degree k by Xa
k (u). We will also call forms Xa(u)

coordinate fields, or superfields, when it will not cause a confusion.
As it follows from the definition of Xa(u)i1,...,ik the ghost number of this field is

gh(Xa
k ) = deg(xa)− k.

9The AKSZ construction does not have to have T [1]N as the source graded manifold. However
we will consider only these cases, as they seem to be more important in field theory
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6.3. The non-reduced AKSZ theory for spacetime manifolds with bound-
ary.

6.3.1. The AKSZ theory in terms of coordinate fields. The AKSZ action consists
of “kinetic” and “interaction” parts:

SN [X] = SkinN [X] + SintN [X]

Let xa be local coordinates onM and α(x) =
∑
a αa(x)dx

a. In local coordinates
the “kinetic” part of the AKSZ action is

SkinN [X] =

∫
N

∑
a

αa(X(u)) ∧ dXa(u)

Here and below Xa(u) are coordinate components of fields as in (61). It is easy
to see that gh(SkinN ) = 0.

The “interaction” part of the AKSZ action is the functional

SintN [X] =

∫
N

Θ(X)

where Θ is the potential function for the target manifold. Because deg(Θ) = n,
the action has the zero grading, i.e. gh(SintN ) = 0. Here and below the expression∫
N
Θ(X) for a homogeneous polynomial Θ(x) =

∑
{a} Θ{a}x

a1 . . . xak of degree k

onM means
∑

{a} Θ{a}
∫
N
Xa1 ∧ · · · ∧Xak .

Assume that in local coordinates ωM = 1
2

∑
ab ωabdx

a ∧ dxb, then

ωN =
1

2

∫
N

∑
ab

ωab(X(u)) ∧ δXa(u) ∧ δXb(u)

where δXa(x) is the de Rham differential on the space of fields.
In local coordinates, the action of QN on local functionals is:

QNF =

∫
N

(
dXa + ωab(X) ∧ ∂Θ

∂xb
(X)

)
∧ δF

δXa

Here ωab are components of the Poisson bivector field corresponding to the sym-
plectic form ω. Because deg(ω) = n− 1 and deg(Θ) = n, we have gh(QN ) = 1.

It acts on coordinate fields as:

(62) QNX
a = dXa + ωab(X) ∧ ∂Θ

∂xb
(X)

The variation of SN :

δSN [X] =

∫
N

(δXa(u) ∧ ∂aαb(X(u)) ∧ dXb(u) + αa(X(u)) ∧ δdXa(u) + δΘ(X))

After integration by parts this expression becomes∫
∂N

αa(X(u)) ∧ δXa(u) +

∫
N

(
ωab(X(u)) ∧ dXa(u) +

∂Θ

∂Xb
(X(u))

)
∧ δXb(u)

In this section we assume that ∂N = ∅, which means the first term is absent. The
Euler-Lagrange equations are:

(63) dXa(u) +
∑
b

ωab(X(u)) ∧ ∂Θ

∂xa
(X(u)) = 0

The same formulae hold for the boundary BFV action S∂N , for the boundary
symplectic form ω∂N , and for the boundary cohomological vector field Q∂N . One
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should simply substitute ∂N instead of N . The only difference is the degree change.
Because dim(∂N) = n− 1, gh(S∂N ) = 1, gh(ω∂N ) = −1 and gh(Q∂N = −1 as in
the bulk N .

The BV and BFV data described above have the right grading and give an
example of a BV-BFV theory:

Proposition 6.3. The cohomological vector field QN is Hamiltonian, up to a
boundary term:

(64) ιQNωN = (−1)dim(N)δSN + π∗α∂N

We defer the proof to Appendix D.

Remark 6.4. When N has a non-empty boundary, the AKSZ action depends of
the choice of the form α, not only on its cohomology class as in case of closed
manifolds. Let S̃N be the action corresponding to α̃ = α+ df , then

S̃N [X] = SN [X] +

∫
N

df(X) = SN +

∫
∂N

f(X)

Any AKSZ theory can be maximally extended. On an n−k dimensional stratum
Σ the space of fields is the space of maps FΣ = Map(T [1]Σ,M). The symplectic
form ωΣ, the form αΣ, the action functional SΣ and the vector field QΣ are all given
by the same formulae as above. The difference from the n-dimensional stratum is
only in the grading:

gh(ωΣ) = k − 1, gh(QΣ) = 1, gh(SΣ) = k

7. Examples of AKSZ theories

7.1. Abelian Chern-Simons theory. The target space for this AKSZ theory is
R[1] with symplectic structure ω = da ∧ da, where a is the coordinate on R[1] and
Θ = 0.

7.1.1. The bulk BV theory. The space of fields on the 3-dimensional spacetime
manifold N is :

FN = Ω•(N)[1]

The fields corresponding to forms of degree 0, 1, 2, 3 will be denoted by c, A,A†, c†

respectively. The ghost numbers are 1, 0,−1,−2. We will write A = c+A+A†+c†

for the BV superfield.
The symplectic form, the vector field Q, and the classical action are:

ωN =
1

2

∫
N

δA ∧ δA =

∫
N

(δc ∧ δc† + δA ∧ δA†)

QN =

∫
N

dA ∧ δ

δA
=

∫
N

(dc ∧ δ

δA
+ dA ∧ δ

δA† + dA† ∧ δ

δc†
)

SN =
1

2

∫
N

A ∧ dA =
1

2

∫
N

(A ∧ dA+A† ∧ dc+ c ∧ dA†)

The Euler-Lagrange space is

ELN = Ω•
closed(N)[1]
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7.1.2. The boundary BFV theory. Boundary fields are pullbacks of the bulk fields
to the boundary.

F∂N = Ω•(N)[1]

We will use the same notation for pullbacks as for bulk fields. This means 0, 1, 2
forms will be denoted by c, A,A† respectively. They have ghost numbers 1, 0,−1.

The one form α∂N , the symplectic structure, the vector field Q and the action
for the boundary BFV theory are:

α∂N =
1

2

∫
∂N

A ∧ δA =
1

2

∫
∂N

(A ∧ δA+ c ∧ δA† +A† ∧ δc)

ω∂N =
1

2

∫
∂N

δA ∧ δA =

∫
∂N

(
1

2
δA ∧ δA+ δc ∧ δA†

)
Q∂N =

∫
∂N

dA ∧ δ

δA
=

∫
∂N

(
dc ∧ δ

δA
+ dA ∧ δ

δA†

)
S∂N =

1

2

∫
∂N

A ∧ δA =

∫
∂N

c ∧ dA

The boundary Euler-Lagrange space is

EL∂N = Ω•
closed(∂N)[1]

The evolution relation LN ⊂ EL∂N is the subspace of forms in Ω•
closed(∂N)[1] which

continue to closed forms on N .
Abelian Chern-Simons theory is regular, which is proven similarly to Proposition

5.15.

7.1.3. Reduced BV-BFV theory. Reduced bulk and boundary Euler-Lagrange spaces
are

ELN/Q ≃ H•(N)[1], EL∂N/Q ≃ H•(∂N)[1]

respectively. The symplectic form on EL∂N/Q is given by the Poincaré duality.
The pullback mapping π : FN → F∂N induces the mapping of reduced spaces:

π∗ : ELN/Q→ EL∂N/Q

The reduced evolution relation LN/Q = Im(π∗) ⊂ EL∂N/Q is a Lagrangian sub-
space.

Because π∗ is a linear mapping, its fiber over any point of EL∂N/Q is simply
ker(π∗). This space

ker(π∗) ≃ H•(N, ∂N)/H•−1(∂N)[1]

has a natural symplectic structure of degree −1 coming from the Lefschetz duality.

7.1.4. The gh = 0 part of the theory. The gh = 0 part of the space of fields is
FN = Ω1(N). The gh = 0 part of V ectQ gives the gauge action of Ω0(N) on
the space of fields: A → A + dβ where A ∈ FN and β ∈ Ω0(N). The abelian
Chern-Simons action

SclN =
1

2

∫
N

A ∧ dA

is gauge invariant when ∂N = ∅. When N has non-empty boundary the gauge
transformation generated by β changes the action by

∫
∂N

β ∧A.
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The space ELN is the space of closed 1-forms on N . The space of boundary
fields F∂N = Ω1(∂N) is exact symplectic with

α∂N =
1

2

∫
∂N

A ∧ δA, ω∂N = δα∂N =
1

2

∫
∂N

δA ∧ δA

The gh = 0 part of the boundary Euler-Lagrange space, the space C∂N , is the space
of closed 1-forms on ∂N . It is clearly coisotropic. The gauge action is Hamiltonian
with the momentum map µ = d : Ω1(∂N)→ Ω2(∂N), where we consider Ω2(N) as
the dual space to the abelian Lie algebra of 0-forms.

The gh = 0 part of the moduli space ELN/Q is the space of gauge orbits
ELN/GN , and we have the natural isomorphism ELN/GN ≃ H1(N). The gh = 0
part of the moduli space EL∂N/Q is isomorphic to the space C∂N/G∂N of gauge
orbits through C∂N , or equivalently, since the action is Hamiltonian, this space is
the symplectic reduction of C∂N . It is clear that we have the natural isomorphism
C∂N/G∂N ≃ H1(∂N). This space is symplectic with the symplectic structure given
by the Poincaré duality.

The pullback to the boundary π : FN → F∂N induces the restriction mapping
π∗ : H1(N)→ H1(∂N). The subspace

LN = Im(π∗) ⊂ H1(∂N)

is Lagrangian. The fiber over any point of C∂N/G∂N is ker(π∗).

7.2. Non-abelian Chern-Simons theory. In this case the target manifold is
constructed from a Lie algebra g with an invariant scalar product (for example a
simple Lie algebra). The target manifold is described in details in section 6.1.2.
We assume that the Lie algebra and the corresponding simply connected Lie group
are matrix groups and will write tr(ab) for the Killing form evaluated on two Lie
algebra elements.

7.2.1. The bulk BV theory. Fields are graded connections in a principal G-bundle
over the spacetime N . We assume the bundle is trivial, so the space of fields is

FN = Ω•(N, g)[1]

Here Ω•(N, g)[1] = Ω•(N) ⊗ g[1]. The fields corresponding to forms of degree
0, 1, 2, 3 will be denoted by c, A,A†, c† respectively. The ghost numbers are 1, 0,−1,−2.
We will write A = c+A+A† + c† for the BV superfield.

The symplectic form, the vector field Q, and the classical action are:

ωN =
1

2

∫
N

tr(δA ∧ δA) =
∫
N

tr(δc ∧ δc† + δA ∧ δA†),

(65) QN =

∫
N

tr

(
(dA+

1

2
[A,A]) ∧ δ

δA

)
=

=

∫
N

tr

(
dAc ∧

δ

δA
+ (F (A) + [c, A†]) ∧ δ

δA† + (dAA
† + [c, c†]) ∧ δ

δc†
+

1

2
[c, c] ∧ δ

δc

)
,

(66) SN =

∫
N

tr

(
1

2
A ∧ dA+

1

6
A ∧ [A,A]

)
=

=

∫
N

tr

(
1

2
A ∧ dA+

1

6
A ∧ [A,A] +

1

2
A† ∧ dAc+

1

2
c ∧ dAA† +

1

2
c† ∧ [c, c]

)
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The Euler-Lagrange space is the space of flat graded connections

ELN = {A ∈ FN | dA+
1

2
[A,A] = 0}

In coordinate fields the Euler-Lagrange space consists of c, A,A†, c† which satisfy

[c, c] = 0, dAc = 0, F (A) + [c, A†] = 0, dAA
† + [c, c†] = 0

The tangent space atA ∈ ELN is kernel of Q̂A. It consists of elements (γ, α, α†, γ†) ∈
Ω•(N)[1] such that

(67) [γ, c] = 0, dAγ + [α, c] = 0, dAα+ [c, α†] + [γ,A†] = 0,

dAα
† + [c, γ†] + [A†, α] + [c†, γ] = 0,

The point A belongs to the gh = 0 part of ELN if and only if c = c† = A† = 0
and F (A) = 0. The gh = 0 part of ELN is the space flat connections. The tangent
space to ELN at such point is naturally isomorphic to

(68) Ω•
dA−closed(N, g)

where forms are closed with respect to the differential dA = d+ [A, ·].
In this case the reduced tangent space is

ker(Q̂A)/Im(Q̂A) ≃ H•
dA(N, g)

7.2.2. The boundary BFV theory. Boundary fields in the non-abelian Chern-Simons
theory are pullbacks of the bulk fields to the boundary.

F∂N = Ω•(N, g)[1]

We will use the same notation for pullbacks as for bulk fields. This means 0, 1, 2
forms will be denoted by c, A,A† respectively. They have ghost numbers 1, 0,−1.

The one form α∂N , the symplectic structure, the vector field Q and the action
for the boundary BFV theory are:

α∂N =
1

2

∫
∂N

tr(A ∧ δA) = 1

2

∫
∂N

tr(A ∧ δA+ c ∧ δA† +A† ∧ δc),

ω∂N =
1

2

∫
∂N

tr(δA ∧ δA) =
∫
∂N

tr

(
1

2
δA ∧ δA+ δc ∧ δA†

)
,

Q∂N =

∫
∂N

tr

((
dA+

1

2
[A,A]

)
∧ δ

δA

)
=

=

∫
∂N

tr

(
dAc ∧

δ

δA
+ (F (A) + [c, A†]) ∧ δ

δA† +
1

2
[c, c] ∧ δ

δc

)
,

S∂N =

∫
∂N

tr

(
1

2
A ∧ dA+

1

6
A ∧ [A,A]

)
=

∫
∂N

tr

(
c ∧ F (A) + 1

2
[c, c] ∧A†

)
The boundary Euler-Lagrange space is the space of graded flat g-connections on
∂N :

EL∂N = {A ∈ F∂N |dA+
1

2
[A,A] = 0}

The evolution relation LN ⊂ EL∂N is the subspace of graded flat g-connections on
G× ∂N which continue to flat graded g-connections on G×N .

The flatness of the graded connection A means its graded components satisfy

[c, c] = 0, dAc = 0, F (A) + [c, A†] = 0,
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The tangent space TAEL∂N ⊂ TAF∂N is the kernel of Q̂A:

(69) ker(Q̂A) = {(γ, α, α†)|[γ, c] = 0, dAγ+[α, c] = 0, dAα+[c, α†]+[γ,A†] = 0}

In gh = 0 part of EL∂N we have c = A† = 0 and F (A) = 0

(70) ker(Q̂A) = {(γ, α, α†)| dAγ = 0, dAα = 0} ≃ Ω•
dA−closed(∂N, g)[1]

Im(Q̂A) = {(0, dAγ̃, dAα̃)}
Thus, in this case the reduced tangent space is

ker(Q̂A)/Im(Q̂A) ≃ H•
dA(∂N, g)[1]

The smooth locus of the Euler-Lagrange space EL∂N is the vector bundle over
the space of flat connections on ∂N with fibers ⊕i ̸=1Ω

i
dA−closed(∂N). The smooth

locus of the boundary EL-moduli space for the non-abelian Chern-Simons theory
is isomorphic to a vector bundle over the smooth locus of the representation vari-
ety Hom(π1(∂N), G)/G with fiber H0

dA
(∂N, g) ⊕ H2

dA
(∂N, g) with the symplectic

structure naturally extending the Atiyah-Bott symplectic form on the representa-
tion variety.

Regularity for non-abelian Chern-Simons theory can be proven using homolog-
ical perturbation theory around the abelian Chern-Simons theory. This argument
extends to general AKSZ theories.

7.2.3. Reduced BV-BFV theory. Reduced Euler-Lagrange spaces for the bulk and
for the boundary are the spaces of leaves of the foliation V ectQ on ELN and EL∂N
respectively. We will write

ELN/QN = {A ∈ FN |dA+
1

2
[A,A] = 0}/{A 7→ A+ dλ+ [A, λ]|λ ∈ Ω•(N)}

and similarly for ∂N . These notations indicate that leaves of V ectQ should be
considered as gauge orbits on ELN .

The projection π : FN → F∂N (the pullback to the boundary) defines the
mapping

π∗ : ELN/QN → EL∂N/Q∂N
Its image LN/Q ⊂ EL∂N/Q is Lagrangian.

Tangent spaces to ELN and EL∂N are kernels of corresponding operators Q̂ and
are described in components in (67), (69). The image of Q̂ is also easy to compute.
For the bulk we have

Im(Q̂A) = {[γ̃, c], dAγ̃+[α̃, c], dAα̃+[c, α̃†]+[γ̃, A†], dAα̃
†+[c, γ†]+[A†, α̃]+[c†, γ]}

for the boundary:

Im(Q̂A) = {([γ̃, c], dAγ̃ + [α̃, c], dAα̃+ [c, α̃†] + [γ̃, A†])}

The reduced spaces are quotient spaces ker(Q̂)/Im(Q̂). In other words these are
cohomology spaces of the cochain complexes Ω•(N)[1] and Ω•(∂N)[1] respectively
with respect to the differential dAω = [c, ω] + dAω + [A†, ω].

When A is of degree zero, i.e. c = c† = A† = 0 and F (A) = 0 we have

TAELN/QN = H•
dA(N, g)[1], TAEL∂N/Q∂N = H•

dA(∂N, g)[1]
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7.2.4. The gh = 0 part of the theory. The non-reduced gh = 0 part of the theory
has the space of fields FN = Ω1(N, g). In case of a general principal G-bundle, this
is the space of connections. The classical action is the Chern-Simons functional:

SclN =

∫
N

tr

(
1

2
A ∧ dA+

1

6
A ∧ [A,A]

)
Its critical points are flat connections: F (A) = dA + 1

2 [A,A] = 0. The g-valued

zero-forms act by infinitesimal gauge transformations A 7→ A+ dAα, α ∈ ω0(N, g).
The gh = 0 part of the space of boundary fields is F∂N = Ω1(N, g). This is an

exact symplectic space with

α∂N =
1

2

∫
∂N

tr(A ∧ δA), ω∂N = δα∂N =
1

2

∫
∂N

tr(δA ∧ δA)

The degree zero part C∂N of the boundary Euler-Lagrange space is the space of
flat connections in a trivial G-bundle over ∂N . It is coisotropic in the space of all
connections.

The gauge group G∂N = Map(∂N,G) acts on F∂N by Hamiltonian transfor-
mations. Infinitesimally, the action is A → A + dAα. The momentum map
µ : Ω1(N, g) → Ω2(N, g) is the curvature. The symplectic reduction of C∂N coin-
cides with the Hamiltonian reduction. The reduced space C∂N/G∂N is the moduli
space of flat G-connections on the trivial G-bundle over ∂N .

The reduced gh = 0 part of the Euler-Lagrange space is the moduli space of flat
connections in the trivial G-bundle over N . The mapping π∗ : MG

N → MG
∂N is

the natural restriction mapping of representations of π1(N) to representations of
π1(∂N) ⊂ π1(N). The image of this mapping is the Lagrangian subvariety inMG

∂N ,
the fibers are those representations of π1(N) which restrict trivially to π1(∂N). For
detailed exposition of the global aspects of the classical Chern-Simons theory see
[26].

7.3. Non-abelian BF theory. The target space for the non-abelian BF theory
is described in section 6.1.2.

7.3.1. The bulk BV theory. The space of fields in the BV-extended non-abelian BF
theory is

FN = Ω•(N, g)[1]⊕ Ω•(N, g)[n− 2]

ωN =

∫
N

tr(δB ∧ δA)

QN =

∫
N

tr

((
dA+

1

2
[A,A]

)
∧ δ

δA
+ dAB ∧

δ

δB

)
SN =

∫
N

tr

(
B ∧

(
dA+

1

2
[A,A]

))
The Euler-Lagrange space:

ELN = {(A,B) ∈ FN |dA+
1

2
[A,A] = 0, dAB = 0}

As in the Chern-Simons theory we are interested in the smooth locus of the
Euler-Lagrange space which is, in this case, a vector bundle over the space of flat
connections on G×N with fiber (⊕i ̸=1Ω

i
dA−closed(N, g)[1])⊕Ω•

dA−closed(N, g)[n−2]
over a flat connection A.
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7.3.2. The boundary BFV theory. The space of boundary fields is

F∂N = Ω•(∂N, g)[1]⊕ Ω•(∂N, g)[n− 2]

The BFV structure on it is given by the AKSZ construction:

α∂N =

∫
∂N

tr(B ∧ δA), ω∂N = δα∂N =

∫
∂N

tr(δA ∧ δB)

Q∂N =

∫
∂N

tr

((
dA+

1

2
[A,A]

)
∧ δ

δA
+ dAB ∧

δ

δB

)

S∂N =

∫
∂N

tr

(
B ∧

(
dA+

1

2
[A,A]

))
The boundary Euler-Lagrange space is

EL∂N = {(A,B) ∈ F∂N |dA+
1

2
[A,A] = 0, dAB = 0}

7.3.3. The gh = 0 part of the theory. The degree zero gauge theory has the space
of fields FN = Ω1(N, g) ⊕ Ωn−2(N, g) we will denote 1-forms A and (n − 2)-forms
B. The action is

SclN =

∫
N

tr(B ∧ F (A))

Euler-Lagrange equations are

F (A) = 0, dAB = 0

Infinitesimal gauge transformations act as

A→ A+ dAµ, B → B + [B,µ] + dAλ

The space of boundary fields is the pullback of bulk fields. The restriction
mapping is the pullback. The symplectic structure on the space of bulk fields is
exact with ωN = δαN where

αN =

∫
∂N

tr(B ∧ δA), ωN =

∫
∂N

tr(δA ∧ δB)

The coisotropic submanifold C∂N is the gh = 0 part of EL∂N . The Lagrangian
submanifold LN = π(ELN ) consists of pairs (A,B) where A is a flat connection on
∂N which continues to a flat connection on N and B ∈ Ωn−2(∂N, g) is horizontal
with respect to the flat connection A and extends to a horizontal (n − 2)-form on
N .

The reduced space ELN/GN is a vector bundle over the moduli space of flat
connections on the trivial G-bundle on N with fiber Hn−2

A (N, g) over a gauge class
[A].

The moduli space EL∂N/G∂N has the same structure and can be identified with
T ∗MG

∂N .

7.4. BF +B2 theory. In this theory the space is 4-dimensional. The target space
is the same as the one for the BF theory.
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7.4.1. The bulk BV theory. The space of fields is the same as in the 4-dimensional
BV -extended BF -theory with the same symplectic structure.

The action and the vector field QN are:

QN = tr

∫
N

((
dA+

1

2
[A,A] + B

)
∧ δ

δA
+ dAB ∧

δ

δA

)

SN = tr

∫
N

(
B ∧

(
dA+

1

2
[A,A]

)
+

1

2
B ∧ B

)
The Euler-Lagrange space:

ELN = {(A,B) ∈ FN | dA+
1

2
[A,A] + B = 0, dAB = 0} ≃ Ω•(N, g)[1]

Indeed, the first condition F (A) + B = 0 gives no restriction on A, and the second
condition dAB = 0 follows from the first one and from the Bianchi identity.

7.4.2. The boundary BFV theory. The space of boundary fields is the same as for
the BF theory with the same symplectic structure of degree 0.

The boundary vector field Q∂N and the boundary action are

Q∂N = tr

∫
∂N

((
dA+

1

2
[A,A] + B

)
∧ δ

δA
+ dAB ∧

δ

δA

)

S∂N = tr

∫
∂N

(
B ∧

(
dA+

1

2
[A,A]

)
+

1

2
B ∧ B

)
The boundary Euler-Lagrange space:

EL∂N ≃ Ω•(∂N)[1]

7.4.3. The gh = 0 part of the theory. The space of fields is the same as the space
of fields of the non-abelian BF theory in four dimensions. The action is

SclN = tr

∫
N

(
B ∧ F (A) + 1

2
B ∧B

)
Euler-Lagrange equations are

B + F (A) = 0, dAB = 0

The second equation follows from the first and from the Bianchi identity. Infinites-
imal gauge transformations are

A 7→ A+ dAα− β, B 7→ B + [B,α] + dAβ

The reduced theory is trivial:

ELN/Q = {0}, EL∂N/Q = {0}

so the gh = 0 part of it also trivial.

7.5. The Poisson sigma model. The target space for the Poisson sigma model is
described in section 6.1.2. In this section M is a Poisson manifold with the Poisson
tensor π(x). In local coordinates π(x) =

∑
ab π

ab(x)∂a∂b.
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7.5.1. The bulk BV theory. In case of the Poisson sigma model the spacetime is
two dimensional. The space of fields in the models is FN = Map(T [1]N,T ∗[1]M).

We will use coordinate field X̃a = Xa + η+,a + β+,a for coordinates qa on M and
η̃a = βa + ηa +X†

a for coordinates pa in the cotangent directions. Components of

fields X̃a and η̃a are forms of degree 0, 1, 2 respectively. They have ghost numbers
gh(X) = 0, gh(η†) = −1, gh(β†) = −2, gh(β) = 1, gh(η) = 0, gh(X†) = −1. The
symplectic form and the action functional are given by the AKSZ construction:

ωN =

∫
N

∑
a

δη̃a ∧ δX̃a =

∫
N

∑
a

(δXa ∧ δX†
a + δη+,a ∧ δηa + δβ+,a ∧X†

a)

SN =

∫
N

∑
a

(
η̃a ∧ dX̃a +

1

2

∫
N

∑
ab

πab(X̃) ∧ η̃a ∧ η̃b

)
In field components this action is

(71) SN =

∫
N

(
ηa ∧ dXa − η+,a ∧ βa +

1

2
πab(X) ∧ ηa ∧ ηb + πab(X) ∧ βa ∧X†

b+

η+,a ∧ ∂aπbc(X) ∧ βb ∧ ηc +
1

2
β+,c ∧ ∂cπab(X) ∧ βb ∧ βc +

1

4
η+,c ∧ η+,d ∧ ∂c∂dπab(X) ∧ βa ∧ βb

)
The vector field Q is

QN =

∫
N

(
(dX̃a + πab(X̃) ∧ η̃a ∧ η̃b) ∧

δ

δX̃a
+ (dη̃a +

1

2
∂aπ

bc(X̃) ∧ η̃b ∧ η̃c) ∧
δ

δη̃a

)
The Euler-Lagrange space ELN is the space of zeroes of Q (the space of critical

points of SN ), or the space of solutions to

dX̃a + πab(X̃) ∧ η̃a ∧ η̃b = 0, dη̃a +
1

2
∂aπ

bc(X̃) ∧ η̃b ∧ η̃c

7.5.2. The boundary BFV theory. We will use the same notations for coordinate
fields in the space of boundary fields F∂N = Map(T [1]∂N, T ∗[1]M). In terms of
this coordinate fields the BFV data for the Poisson sigma model are:

α∂N =

∫
∂N

η̃a ∧ δX̃a

ω∂N =

∫
∂N

δη̃a ∧ δX̃a

Q∂N =

∫
∂N

(
(dX̃a + πab(X̃) ∧ η̃a ∧ η̃b) ∧

δ

δX̃a
+ (dη̃a +

1

2
∂aπ

bc(X̃) ∧ η̃b ∧ η̃c) ∧
δ

δη̃a

)

S∂N =

∫
∂N

(∑
a

η̃a ∧ dX̃a +
1

2

∑
ab

πab(X̃) ∧ η̃a ∧ η̃b

)
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Appendix A. Coisotropic submanifolds and reduction

In this paper we use the definition of Lagrangian submanifolds as submanifolds
which are both isotropic and coisotropic. This is because many of the symplectic
spaces we work with are infinite dimensional. In finite dimensional symplectic
manifolds, Lagrangian submanifolds have half-dimension of the total manifold. In
the infinite dimensional case this property becomes meaningless.

Let W be a presymplectic space (possible infinite-dimensional) and K ⊂ W be
the kernel of its presymplectic form. Then W ′ = W/K is symplectic. Denote by
p :W →W ′ the natural projection map. For a subspace L ⊂W define L′ ⊂W ′ as
L′ = p(L) = L/L ∩K.

It is clear that p−1(L) = L+K, and it is easy to see that p−1((L′)⊥) = L⊥. Here
A⊥ is the orthogonal space with respect to the symplectic (presymplectic) form.

Proposition A.1. The subspaces L and L′ have the following properties:

(1) L is isotropic if and only if L′ is isotropic.
(2) If L is Lagrangian, then L′ is also Lagrangian.
(3) If L′ is Lagrangian and K ⊂ L, then L is Lagrangian.

Proof. For ξ, η ∈ W , denote by [ξ], [η] ∈ W ′ the equivalence classes of these ele-
ments. By definition of the symplectic structure on W ′:

([ξ], [η])W ′ = (ξ, η)

The first statement is obvious from this definition.
Now assume that L is coisotropic, i.e. if (ξ, η) = 0 for any η ∈ L, then ξ ∈ L.

This implies that also (ξ + κ1, η + κ2) = 0 for each κi ∈ K . But this means
that if ([ξ], [η])W ′ = 0 for each [η] ∈ L′ then [ξ] ∈ L′. This means L′ is contains its
symplectic orthogonal and therefore is coisotropic. We proved the second statement.

To prove the last statement, we have to prove that if L′ is coisotropic and K ⊂ L
then L is coisotropic. Then the first statement implies the third one.

Assume L′ is coisotropic, i.e. that if ([ξ], [η])W ′ = 0 for each [η] ∈ L′ then
[ξ] ∈ L′. But this means that if (ξ + κ1, η + κ2) = 0 for each η ∈ L and κ1, κ2 ∈ K
then ξ ∈ L+K. If K ⊂ L, this means that if (ξ, η) = 0 for each η ∈ L then ξ ∈ L.
That is that L ⊂W is coisotropic.

�

An important particular case is when W is a coisotropic subspace in a bigger
symplectic space. In this caseK =W⊥. The spaceW ′ is the Hamiltonian reduction
of the space W .

Remark A.2. If L ⊂ V , the space V is symplectic and W ⊂ V is coisotropic but
we do not assume that L ⊂W , then the first statement holds when L′ = p(L ∩W )
but the second and the third statements do not hold in general unless V is finite
dimensional.

Now, let W be a presymplectic manifold and K ⊂ TW be the integrable distri-
bution which is the kernel of the presymplectic form. Assume the space of leaves
of K is a smooth manifold W ′. Let L ⊂W be a submanifold, and L′ be the space
of leaves of K which passes through L. Assume it is also smooth. Then Propo-
sition A.1 holds but the condition in the last statement should be replaced with
K|L ⊂ TL.
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Appendix B. Some facts on graded manifolds

B.1. Graded manifolds. Recall that a smooth super manifold M with body Me

is a sheaf of super algebras over Me locally isomorphic to the tensor product of the
algebra of smooth functions on the body with an exterior algebra. Namely, there
is an atlas {(Uα, ϕα)} of Me with super algebra isomorphisms

Φα : M |Uα → C∞(ϕα(Uα))⊗
∧
V ∗ =: Aα

for a fixed vector space V . The coordinate map ϕαs take values in some given
vector space W . For infinite dimensional supermanifolds one needs more structure:
W is assumed to be a Banach or Fréchet space and, if V is infinite dimensional,
the tensor product has to be completed (the dual has also to be defined properly).

If V = ⊕k∈ZVk and W = ⊕k∈ZWk are Z-graded vector spaces (it is safer to
assume they have only finitely many nontrivial, but possibly infinite dimensional,
summands), then Aα gets additional structure as it contains the Z-graded subal-
gebra of polynomial functions where by definition linear functions on Wk or Vk
have degree −k. To extend the notion of grading to nonpolynomial functions, we
introduce the local graded Euler vector field E as follows: Pick graded bases (i.e.,
bases adapted to the decompositions) {xi} and {yi} of W ∗ and V ∗, respectively;
then define

E :=
∑
i

|xi|xi ∂
∂xi

+
∑
i

|yi|yi ∂
∂yi

,

where |xi| := −k for xi ∈ (Wk)
∗ and |yi| := −k for yi ∈ (Vk)

∗. Notice that this
definition is independent of the choice of graded bases. We then say that a function
f is of degree k if it satisfies E(f) = kf .

If it is possible to choose an atlas ofM as above such that all transition functions
are compatible with the local graded Euler vector fields on charts,10 then we say that
M is a graded manifold. Notice that a graded manifold is a super manifold with
additional structure; namely, that of a globally well-defined graded Euler vector
field, which we will keep denoting by E. A global function is said to have degree k
if it satisfies

E(f) = kf.

One may let E act on vector fields and differential forms by Lie derivative and define
degree accordingly. Namely, a vector field X has degree k if satisfies [E,X] = kX
and a differential form α has degree k if LEα := iEdα + diEα = kα. Notice that
the graded Euler vector field has degree zero. We recall from [46] some useful facts
whose proof is a straightforward computation:

(1) Let ω be a closed form of degree m ̸= 0. Then ω = dθ with θ = 1
m ιEω.

(2) Let X be a vector field of degree l and ω a closed X-invariant form of degree
m with m+ l ̸= 0. Then ιXω = dS with S = 1

m+l ιEιXω.

In particular, this implies that symplectic forms of degree different from zero are au-
tomatically exact and that a symplectic cohomological vector field is automatically
Hamiltonian if the degree of the symplectic form is different from −1.

Definition B.1. Morphisms of graded manifolds are morphisms of the underlying
supermanifolds that respect the graded Euler vector fields.

10That is, for any two charts Uα and Uβ we have Eβ(Φβ ◦ Φ−1
α )∗f = (Φβ ◦ Φ−1

α )∗Eαf for all

f ∈ Aα.
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Remark B.2. A different definition of graded manifolds commonly used in the
literature is that of a sheaf M of graded algebras over the degree zero body M0

locally isomorphic to the tensor product of smooth functions on the degree zero body
with the graded symmetric algebra of a graded vector space. In this setting functions
(and transition functions) are polynomial in the coordinates of degree different from
zero. To distinguish graded manifolds defined this way from the ones defined above
we will call them polygraded manifolds. Notice that a polygraded manifold is not a
super manifold with additional structure. On the other hand, if a graded manifold
happens to have an atlas for which all transition functions are polynomial in the
coordinates of degree different from zero, then it can be given the structure of a
polygraded manifold simply by restricting the sheaf. In all the examples discussed
in this paper we could work with polygraded manifolds, but this would be problematic
for functional integral quantization where one exponentiates the action and wants
to consider integration.

Remark B.3. A common notion in the literature is that of an N-manifold. This is
a graded manifold with no coordinates of negative degree. They are commonly used
as targets of the AKSZ construction. Notice that by degree reasons all transition
functions are polynomial in the coordinates of degree different from zero.

Remark B.4. A special class of (poly)graded manifolds are those in which the Z
and Z2 gradings agree. This means that W2k+1 = 0 = V2k for all k or, equivalently,
that for all k homogenous sections of degree 2k (2k+1) are even (odd) with respect
to the original super algebra grading. These graded manifolds occur in the BV
formalism whenever no fermionic physical fields are present. In this paper we will
restrict to this case throughout.

B.2. Mapping spaces. LetM and N be finite dimensional super manifolds. Then
the set of morphisms Mor(M,N) can naturally be given the structure of a (usually
infinite dimensional) manifold (non super) as follows: If the target is a super vector
space Z, then Mor(M,Z) is the (usually infinite dimensional) vector space

(72) (C∞(M)⊗ Z)e = C∞(M)e ⊗ Ze ⊕ C∞(M)o ⊗ Zo
For the general case, one applies this construction to local charts of the target to
define local charts of the manifold of morphisms.

It is important to extend this construction to define the mapping space Map(M,N)
as a (usually infinite dimensional) super manifold with body Mor(M,N). Again
this is done in terms of local charts, so it is enough to define Map(M,Z). This
is just the super space C∞(M) ⊗ Z (of which (72) is the even part). The main
property of the mapping space is

Mor(X ×M,N) = Mor(X,Map(M,N)) ∀X.
Vector fields on the source and on the target can naturally be lifted to the

mapping space. If XM (YN ) is a vector field on M (N), we denote by X̌M (ŶN )

its lift. Notice that the map YN 7→ ŶN is a morphism of Lie algebras, whereas the
map XM 7→ X̌M is an antimorphism.

If M and N are graded manifolds, with graded Euler vector fields EM and
EN , then one can give Map(M,N) the structure of a (usually infinite dimensional)
graded manifold with graded Euler vector field

EMap(M,N) = ÊN − ĚM .
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The set of morphisms from M to N in the category of graded manifolds can then
be regarded as the degree zero submanifold of Map(M,N).

Remark B.5. In the category of polygraded manifolds, one can also define the
mapping space as a polygraded manifold. In this case the local data are given by
Map(M,Z) for Z a graded vector space. Here Map(M,Z) is defined as the graded
tensor product

C∞(M)⊗ Z =
⊕
k

(C∞(M)⊗ Z)k

with

(C∞(M)⊗ Z)k =
⊕
j

C∞(M)j ⊗ Zk−j .

Appendix C. On smooth points of the moduli space EL/Q

Here we will discuss the notion of smooth points in the EL-moduli spaces which
we use throughout the paper. We will use notations: F for the space of BV fields,
F for its gh = 0 part, EL for BV Euler-Lagrange space and EL for its gh = 0 part.
We assume F is given together with the cohomological vector field Q. Denote by
V ectQ the Lie subalgebra of the Lie algebra of vector fields on F formed by Lie
brackets with Q and by G the distribution on the body F of F induced by the
span of V ectQ. The distribution G on F should be regarded as infinitesimal gauge
transformations.

For a x ∈ F the Taylor expansion of a vector field Q in the formal neighborhood
of x is:

Qformal
x = Q(0)

x +Q(1)
x +Q(2)

x + · · ·
where each

Q(k)
x ∈ Coder(ŜTxF)

is the extension of a k-linear map Q̂
(k)
x : Sk(TxF)→ TxF to a coderivation of ŜTxF

by co-Leibniz identity. The linear maps Q̂
(k)
x arise from the Taylor expansion of Q

at x. By the natural inclusion Coder(ŜTxF) ↪→ Der(ŜT ∗
xF), Qformal

x acts on ŜT ∗
xF

as a derivation.
If x ∈ EL ⊂ F , then Q̂

(0)
x = 0 and Qformal

x endows Tx[−1]F with the structure

of L∞ algebra with differential Q̂
(1)
x and higher polylinear operations Q̂

(k)
x , k ≥ 2.

We define the formal neighborhood of [x] ∈ EL/G in EL/Q as

(73) U formal
[x] (EL/Q) := Spec(HQformal

x
(ŜT ∗

xF))

It can be regarded as the “BV” (or “stable”) version of the Maurer-Cartan set for

the L∞ structure on Tx[−1]F . When operations Q̂
(k)
x for k ≥ 2 are identically zero,

the spectrum (73) is

H
Q̂

(1)
x
(TxF)

which means that the formal neighborhood of [x] in EL/Q is the graded vector
space H

Q̂
(1)
x
(TxF).

When operations Q̂
(k)
x do not vanish for k ≥ 2 they induce operations Q̂

′(k)
x on

the cohomology space Vx = H
Q̂

(1)
x
(TxF). These operations endow the graded space

Vx[−1] with the structure of minimal L∞ algebra. In other words the formal series

Q′
x = Q′(0)

x +Q′(1)
x +Q′(2)

x + · · · ∈ Coder(Ŝ(Vx))
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is a (formal) cohomological vector field on Vx. Note that first two terms vanish by
our assumptions.

This construction is known as homological perturbation theory [33] (see also
[31] for a more concise exposition), more specifically, as the homotopy transfer of
L∞ algebras [37, 38]. By the same homological perturbation theory the formal
neighborhood of [x] ∈ EL/G ⊂ EL/Q is

U formal
[x] (EL/Q) = Spec(HQ′

x
(Ŝ(Vx)

∗))

This is a singular variety unless Q′
x vanishes.

This is why we define a smooth point [x] ∈ EL/G as a point for which all induced

L∞ operations Q̂
′(k)
x vanish. The set of such points we will call the smooth locus

of the body of the EL-moduli space and will denote it (EL/G)smooth.

The smooth locus in the EL-moduli space is a graded vector bundle over (EL/G)smooth

with fiber H ̸=0

Q̂
(1)
x

(TxF) over [x]. Here H ̸=0 means that we do not count the cohomol-

ogy in ghost number 0 to avoid double counting of geometric (gh = 0) directions
for the tangent space.

Appendix D. Cartan calculus of local differential forms

D.1. Transgression map from forms on the target to forms on the map-
ping space. Recall that the space of fields in the AKSZ theory is FN = Map(T [1]N,M)
withM a Hamiltonian dg manifold.

Consider natural projections

FN × T [1]N
ev→ M

p ↓
FN

Here ev(f, x) = f(x) and p(f, x) = f . The pullback ev∗ of a fromM gives a form
on FN × T [1]N . Let Ω be a form on FN × T [1]N of type (k, 0). The pushforward
p∗ of a form on FN × T [1]N gives a form on FN .

p∗(Ω)(X) =

∫
T [1]N

i∗X(Ω)

Here iX is the composition of the natural isomorphism of T [1]N with the fiber
(X,T [1]N) = p−1(X) and the embedding of this fiber into FN × T [1]N . The
integration over T [1]N is defined as usual taking into account natural isomorphism
ϕ : C∞(T [1]N) ≃ Ω•(N). If f ∈ C∞(T [1]N)∫

T [1]N

f
def
=

∫
N

ϕ(f)

Having in mind this formula we will write for p∗

p∗(Ω)(X) =

∫
N

Ω

The transgression map is defined as

TN := p∗ev
∗ : Ω•(M)→ Ω•(FN )
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Given α ∈ Ω•(M) which is α =
∑

{a} αa1,...,akdx
a1 . . . dxak in local coordinates,

its transgression is

(74) (TNα)(X) =

∫
N

∑
a1,...,ak

αa1,...,ak(X(u))δXa1(u) . . . δXak(u)

where Xa(u) are coordinate fields and δXa(u) are their de Rham differentials (on
FN ).

Define the space of ultra local forms Ω•
uloc(FN ) as the image of the transgression

map.

D.2. De Rham and lifted vector fields. Recall that the de Rham differential for
N can be regarded as a vector field DN on T [1]N of degree 1. The identification of
forms on N with functions on T [1]N identifies the action of the de Rham differential
on forms with the action of the vector field DN on functions on T [1]N . In local
coordinates {ui} on N and ξi = dui on Tu[1]N the Lie derivative of a function

along the de Rham vector field on T [1]N is DNf =
∑
i ξ
i ∂f
∂ui .

The de Rham vector field ĎN is defined as the lift of de Rham vector field ξi ∂
∂ui

on N to the mapping space FN .
Indeed, the tangent space TXFN is the space of mappings Y : T [1]N → TM

such that (ξ, u) 7→ Y (u, ξ) ∈ TX(u,ξ)M. A vector field V on FN is a section of the
tangent bundle, i.e. it assigns a vector VX : FN → TXFN to each X ∈ FN .

For de Rham vector field ĎN on FN the vector (ĎN )X ∈ TXFN is the mapping

(ĎN )X : T [1]N
DN→ T (T [1]N)

dX→ TM
Here dX : T (T [1]N)→ TM is the differential of X. In local coordinates:

(ĎN )X(ξ, u) =
∑
a

∑
{i},j

∂Xa
i1,...,ik

∂uj
(u)ξjξi1 . . . ξik

∂

∂xa

The de Rham vector field on FN has ghost number +1.
Another important class of vector fields on FN comes from lifting vector fields

onM to the mapping space FN . If v :M→ TM is a vector field onM, its lifting
is the vector field v̂ on FN with v̂X ∈ TXFN given by the mapping

T [1]N
X→M v→ TM

D.3. Local differential forms. Local differential forms11 are defined as substitu-
tions of several copies of ĎN into an ultra-local form:

(75) T kNχ := (ιĎN )
kTNχ, k ≥ 0

The space of forms Ω•(M) is naturally bi-graded with (de Rham degree of forms
on M, Z-grading on M). The space Ω•(FN ) is also naturally bi-graded with
(de Rham degree of forms on FN , ghost number). Transgression mappings T kN :
Ω•(M)→ Ω•(FN ) are bi-graded with

deg(T kN ) = (−k,−dim(N) + k)

Also note that if χ ∈ Ωn(M) and k > n, by degree reasons we have T kNχ = 0.
Let {xa} be local coordinates on M and Xa(u) be corresponding coordinate

fields. If α =
∑

{a} αa1,...,akdx
a1 ∧ · · · ∧ dxak is a differential form onM written in

11Note that, by our definition, local 0-forms are special cases of local functionals.



60 ALBERTO S. CATTANEO, PAVEL MNEV, AND NICOLAI RESHETIKHIN

local coordinates, the corresponding local forms on FN can be written in coordinate
fields as

T lN (α) =

∫
N

∑
{a}={aI}⊔{aII}

α{aI}⊔{aII}(X(u)) ∧ dX{aI}(u) ∧ δX{aII}(u)

Here the sum is taken over partitions of the set {a} into two subsets, so that {a}
is a shuffle of {aI} and {aII}. We denote dX{a} = dXa1 ∧ · · · ∧ dXak .

We will use the notation Ω•
loc(FN ) for the space of such forms.

D.4. The Cartan calculus. Let us denote π : FN → F∂N the restriction map
(pullback by the natural inclusion ∂N ↪→ N) and let

(76) π∗ : Ω•(F∂N )→ Ω•(FN )

be the pullback by π for differential forms on the space of fields.
Objects we introduced satisfy the following properties:

(i) De Rham differential δ on FN acts on local forms by

(77) δ(T kNχ) = (−1)dim(N)(T kNdχ− k · π∗(T k−1
∂N χ))

where d is the de Rham differential on target.
(ii) “Total derivative property”, which is a special case of (77) for k = degχ+ 1:

(78) χ ∈ Ωn(M) ⇒ Tn+1
N (dχ) = (n+ 1) · π∗(Tn∂Nχ)

(iii) Substitution of ĎN into a local form:

(79) ιĎN (T
k
Nχ) = T k+1

N χ

by definition (75).
(iv) Substitution of a lifted vector field into a local form:

(80) ιv̂(T
k
Nχ) = (−1)(gh(v)+1)·dim(N)T kN (ιvχ)

for any vector field v ∈ Vect(M) of ghost number gh(v) on target.
(v) Rules for commuting the substitution of a vector field on FN with the map

π∗ (76):

ιĎNπ
∗ = π∗ιĎ∂N(81)

ιv̂π
∗ = π∗ιṽ(82)

Here ṽ is the lifting of the vector field v on M to a vector field on F∂N .
This is a manifestation of the fact that vector fields ĎN , v̂ ∈ Vect(FN ) are
projectable by the restriction map π : FN → F∂N with projections being
Ď∂N , ṽ ∈ Vect(F∂N ) respectively.

(vi) The Lie derivative of a local form along ĎN :

(83) LĎN (T
k
Nχ) = (−1)dim(N)π∗(T k∂Nχ)

We define the Lie derivative by Cartan formula LV := [ιV , δ] = ιV ◦ δ +
(−1)gh(V )δ ◦ ιV for any vector field V ∈ Vect(FN ). With this definition the
formula (83) comes as a consequence of (77), (79), (81).

(vii) Lie derivative of a local form along a lifted vector field:

(84) Lv̂(T
k
Nχ) = (−1)gh(v)·dim(N)T kN (Lvχ)

(this is a consequence of (77), (80), (82)).
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(viii) Commutators of vector fields:

(85) [ĎN , ĎN ] = 0

This is because d2 = 0 on the source N . Also

(86) [ĎN , v̂] = 0

and

(87) [û, v̂] = [̂u, v]

D.5. Applications to AKSZ theories.

D.5.1. Invariant definition of AKSZ theories. Recall that the target manifold in
an n-dimensional AKSZ theory is a Hamiltonian dg manifold of degree n − 1. In
other words, it is symplectic with an exact symplectic form ω = dα ∈ Ω2(M) and
deg(ω) = n− 1 and with a potential function Θ of degree n such that {Θ,Θ} = 0.
The potential function generates the cohomological vector field Q of degree 1:

ιQω = dΘ

By definition of Q, the symplectic form ω is Q-invariant, i.e.

LQω = 0

where LQη is the Lie derivative of η. The condition {Θ,Θ} = 0 implies that

L2
Q = 0

which we will write as Q2 = 0.
The AKSZ action is the following local functional on the space Map(T [1]N →

M)

SN = SkinN + SintN

where

SkinN = T 1
Nα

SintN = T 0
NΘ

are kinetic and interaction parts of the action respectively. Here T kN are the trans-
gression maps defined above.

The BV cohomological vector field QN in this theory is defined as

QN = QkinN +QintN ∈ Vect(FN )

with

QkinN = ĎN

QintN = Q̂

Here Q̂ is the lift of the vector field Q onM to a vector field on FN , see subsection
D.2.

The BV 2-form and its primitive 1-form:

ωN = T 0
Nω

αN = T 0
Nα

Note that with our conventions we have an extra sign: ωN = (−1)dim(N)δαN .
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These formulae applied to the boundary ∂N of N also define the BFV action
S∂N , the cohomological vector field Q∂N , BFV 2-form ω∂N and its primitive 1-form
α∂N .

D.5.2. Proof of Proposition 6.3. Using the definition of QN and the Cartan calculus
we can compute the contraction of kinetic and interaction parts of QN with ωN :

ιQkinN ωN = ιĎN (T
0
Nω) = T 1

Nω = T 1
Nδα

The rule (77) from Cartan calculus on local forms implies that this is equal to

(88) (−1)dim(N)δT 1
Nα+ π∗(T 0

∂Nα) = (−1)dim(N)δSkinN + π∗α∂N

Contracting QintN with ωN we obtain

ιQintN
ωN = ιQ̂(T

0
Nω) = T 0

N (ιQω)

Here in the last equality we used (80). Because Q is a Hamiltonian vector field
generated by Θ, ιQω = dΘ and for the above expression we obtain

(89) T 0
N (dΘ) = (−1)dim(N)δ(T 0

NΘ) = (−1)dim(N)δSintN

Here the first equality follows from (77).
Equations (88), (89) together give (64).

D.5.3. Further applications to the AKSZ formalism. Here we will reprove the Propo-
sition 3.1 using the Cartan calculus.

Proposition D.1. The following identity holds:

(90) LQNSN = (−1)dim(N)π∗(2S∂N − ιQ∂Nα∂N )

Proof. The proof is computational:

(91) LQkinN SkinN = LĎNT
1
Nα = (−1)dim(N)π∗(T 1

∂Nα) =

= (−1)dim(N)π∗(ιQkin∂N α∂N ) = (−1)dim(N)π∗(2Skin∂N − ιQkin∂N α∂N )

Here we used ιQkin∂N α∂N = Skin∂N .

(92) LQkinN SintN = LĎN (T
0
NΘ) = (−1)dim(N)π∗(T 0

∂NΘ) =

= (−1)dim(N)π∗(Sint∂N )

(93) LQintN
SkinN = LQ̂(T

1
Nα) = (−1)dim(N)T 1

N (LQα) =︸︷︷︸
Cartan formula

= (−1)dim(N)T 1
N (ιQdα− dιQα) = (−1)dim(N)T 1

Nd(Θ− ιQα)
Here we used the Cartan formula and the exactness of the symplectic form on the
target, ω = dα. Now applying (78) we obtain

(94) = (−1)dim(N)π∗T 0
∂N (Θ− ιQα) = (−1)dim(N)π∗(Sint∂N − ιQint∂N

α∂N )

(95) LQintN
SintN = LQ̂T

0
NΘ = (−1)dim(N)T 0

N (LQΘ) = 0

Collecting (91)–(95), we obtain (90).
�
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The following is a corollary of Proposition 6.3 but here we give an independent
proof.

Proposition D.2. The following holds:

(96) LQNωN = (−1)dim(N)π∗ω∂N

Proof. Indeed:

(97) LQkinN ωN = LĎN (T
0
Nω) = (−1)dim(N)π∗ T 0

∂Nω︸ ︷︷ ︸
ω∂N

where we used the rule (83). Also,

(98) LQintN
ωN = LQ̂(T

0
Nω) = (−1)dim(N)T 0

N (LQω) = 0

where we used the rule (84) and the fact that the target cohomological vector field
is symplectic. Putting (97) and (98) together we get (96). �
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