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Abstract

We consider retarded boundary integral formulations of the three-dimensional wave
equation in unbounded domains. Our goal is to apply a Galerkin method in space
and time in order to solve these problems numerically. In this approach the com-
putation of the system matrix entries is the major bottleneck. We will propose new
types of finite-dimensional spaces for the time discretization. They allow variable
time-stepping, variable order of approximation and simplify the quadrature problem
arising in the generation of the system matrix substantially. The reason is that the
basis functions of these spaces are globally smooth and compactly supported.

In order to perform numerical tests concerning our new basis functions we consider
the special case that the boundary of the scattering problem is the unit sphere. In
this case explicit solutions of the problem are available which will serve as reference
solutions for the numerical experiments.
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1. Introduction

Mathematical modeling of acoustic and electromagnetic wave propagation and its efficient
and accurate numerical simulation is a key technology for numerous engineering applica-
tions as, e.g., in detection (nondestructive testing, radar), communication (optoelectronic
and wireless) and medicine (sonic imaging, tomography). An adequate model problem
for the development of efficient numerical methods for such types of physical applications
is the three-dimensional wave equation in unbounded exterior domains. In this setting
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the method of integral equations is an elegant approach since it reduces the problem in
the unbounded domain to an integral equation on the bounded surface of the scatterer.

In this paper we apply a Galerkin method for the discretization of these retarded boundary
integral equations (cf. [3, 14, 18, 19]). This approach allows variable time stepping and
spatially curved scatterers. Applications where variable time stepping becomes important
include problems with non-compatible Dirichlet-data at time ¢t = 0 and/or scatterers with
very non-uniform excentricities. Until now, a severe drawback of this method was, how-
ever, that the domain for the spatial integration is the intersection of (possibly curved)
pairs of surface panels with the discrete light cone which is very complicated to handle
numerically. Quadrature schemes tailored to this problem were derived for example in
[16, 22, 26]. These methods are restricted to polyhedral scatterers and their implementa-
tion is difficult.

Other approaches for the numerical discretization of retarded boundary integral equa-
tions use collocation schemes (cf. [8, 9, 12, 15, 23]). Although they play an important
role in practice, the mathematical analysis of these methods is challenging. In more than
two dimensions stability and convergence of collocation schemes can only be shown for
special geometries (cf. [13]). Furthermore the application of these techniques to curved
scatterers is difficult. More recent approaches include methods based on bandlimited
interpolation and extrapolation (cf. [32, 31, 33, 34|) and convolution quadrature (cf.
[4, 5, 6, 7, 10, 20, 21, 30]). The latter enjoys nice stability properties and allows to ap-
ply many techniques known from frequency domain problems. However the stepsize for
the time discretization must be constant in these methods and a generalization to non-
uniform time meshes is not straightforward.

In our paper we will present a new time discretization method for the retarded potential
equations which circumvents the numerical integration over intersections of the light cone
with the spatial surface mesh. For this purpose, we will introduce infinitely smooth and
compactly supported basis functions in time. These functions are constructed by using
the Partition of Unity Method (cf. [2]).

In order to test the choice of the new basis functions numerically we consider the wave
equation on the sphere with Dirichlet boundary conditions. For the resulting problems
explicit representations of the exact solutions are available (cf. [25]). We apply a Galerkin
method using our basis functions to these problems and perform numerical experiments.

2. Integral Formulation of the Wave Equation

Let © C R3 be a Lipschitz domain with boundary I'. We consider the homogeneous wave
equation
O*u—Au=0 in Qx[0,T] (2.1a)

with initial conditions
u(+,0) = Ou(-,0) =0 in Q (2.1b)

and Dirichlet boundary conditions
u=g onl x[0,T] (2.1c)

on a time interval [0,7] for T' > 0. In applications, € is often the unbounded exterior of
a bounded domain. For such problems, the method of boundary integral equations is an



elegant tool where this partial differential equation is transformed to an equation on the
bounded surface I'. We employ an ansatz as a single layer potential for the solution w,

. ¢y, t — llz —yll)
u(z,t) := So(x,t) / 471”:5 i ary, (z,t)eQx[0,T] (2.2)
with unknown density function ¢. S is also referred to as retarded single layer potential
due to the retarded time argument ¢ — ||z — y|| which connects time and space variables.

The ansatz (2.2) satisfies the wave equation (2.1a) and the initial conditions (2.1b).
Since the single layer potential can be extended continuously to the boundary I, the
unknown density function ¢ is determined such that the boundary conditions (2.1c) are
satisfied. This results in the boundary integral equation for ¢,

oy 9D s N
/ 47r|]$—yH dly = g(x,t) V(z,t) €T x[0,T]. (2.3)

In order to solve this boundary integral equation numerically we introduce the following
space-time variational formulation (cf. [3, 18] ): Find ¢ such that

T (Z;(yvt - H‘T - y”)((‘rvt) - T o -
/0 /F/r 4rllz -y drydrxdt—/o /Fg( ,£)C(, t)dly dt (2.4)

for all ¢, where we denote by é the derivative with respect to time.

3. Numerical Discretization

We turn our attention to the discretization of (2.4). In order to find an approximate
solution we apply a Galerkin method in space and time. The variational formulation
(2.4) is coercive in

HY2=12(1 x [0,T)) := L2(0,T; HV2(T)) + H/2(0, T; L*(I")) (3.1)

(cf. [18]) and is uniquely solvable in this Sobolev space. Furthermore this ensures exis-
tence and uniqueness of the solution of a conforming Galerkin discretization.

Let VGalerkin be a finite dimensional subspace of (3.1) being spanned by N basis func-
tions {b;}, in time and M basis functions {¢;}Y, in space. This leads to the ansatz

¢Galerk1n T, t Zzaz ()0] 7 (.Z',t) el'x [07T] ) (32)

=1 j=1

where ozg are the unknown coefficients. Plugging the ansatz (3.2) into the variational
formulation leads to the Galerkin discretization: Find ag,i =1,...,N,j=1,..., M such

that

od 0y (bt — [l — yl))n(@)br(t)
/ // Uzl = T dT it
T
- /0 /F 32, 1) () by (1)t




fork=1,...,Nand !l = 1,...,M. A convergence analysis of this Galerkin approach

using piecewise polynomial basis functions in space and time is given in |3]. ‘

Rearranging terms shows that the above formulation is equivalent to: Find o for i =
.,Nand j=1,..., M such that

ZZA;’;o/_gl VI<k<N VI<I<M, (3.3)
=1 j=1
where
T
=/ /Q'(l’at) @i (x) b (t)dl zdt
0 T
and
Ak //90 y) @1(%) i (|l — y)dTydT,
/ / o1(2) i ([l — y]) LT (3.4)
supp(e;) Sur)p(%
with

T (+_ r
7/)2'716(7‘) ::/0 Mdt’
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where 7 € Ryo. The computation of a Galerkin solution via (3.3) leads to large linear
system with NM unknowns. The corresponding boundary element matrix consists of
N x N blocks of size M x M. Each matrix block is symmetric and furthermore sparse if
the basis functions in space and time have compact support (cf. [25]). This is due to the
fact that v; ,, has compact support in this case and therefore only those combinations of
7 and [ lead to nonzero matrix entries for which

{llz = yll,z € supp(w1),y € supp(w;)} Nsupp(¥ix) # 0.

The numerical realization of the Galerkln method requires the efficient and accurate
approximation of the matrix entries A" l which is a major challenge. In the literature
(cf. [18, 19, 26]) piecewise polynomial ba51s functions in time are employed while, then,
Vi k(||lz — yH) in general is only a piecewise analytic function in = € supp(y;) and y €
supp(yp;) (even if supp(y;) and supp(yp;) are properly separated). Consequently, high
order Gauss rules are converging only at a suboptimal rate. To obtain a sufficiently high
accuracy, the integration is carried out on the intersections of the surface panels with the
discrete light cone, i.e., with the support of v (|| — y||). The stable handling of these
intersections and the implementation of these quadrature rules is difficult and especially
complicated for curved surface patches.

In this paper, we will introduce infinitely smooth and compactly supported basw func-
tions in time. This will simplify the problem of computing the matrix entries A]l con-
siderably while maintaining the sparsity of the system matrix. Since the integrand will
be smooth in this case we can apply standard quadrature rules to the double integral in
(3.4). Furthermore the discretization with curved surface panels is straightforward since
the numerical handling of the complicated geometry of the intersection of panels with the
discrete light cone is circumvented.



The basis functions in time that we will construct here, will not lead to a lower triangu-
lar Toeplitz system as standard schemes using piecewise polynomial basis functions and
equidistant time grids. In our case the boundary element matrix will be a blockmatrix
where the lower triangular part in general is non-zero and also a few off-diagonals are
non-vanishing. Therefore FFT-type methods for Toeplitz matrices cannot be used for
this type of matrices — instead, efficient iterative methods have to be employed (and,
firstly, developed). We expect that for certain classes of applications, e.g., for problems
with non-compatible Dirichlet data, the savings by using substantially less (variable)
timesteps compared to uniform time stepping are significant and lead to a faster algo-
rithm.

The construction of the aforementioned basis functions in time is in the spirit of the
Partition of Unity Method (PUM) (cf. [2]). Before we define and construct the finite
element space in time we recall some basic definitions of the PUM.

Definition 3.1. Let © := [0,T] be the time interval and {©;} be a closed cover of ©
satisfying the overlap condition

dLeN st VteO, #{iteO;} <L
Let {¢;} € C™(R), m € Ny be a partition of unity subordinate to the cover {©;} with

supp ;i C 0, Yipi=1o0n06,
C,
@il ooy < Cooy il Loom) < 16T

for all i where Co and Cg are constants and |©;| denotes the length of the interval ©;.
Then {¢;} is called a (L,Coo, Cq) partition of unity of degree m subordinate to the cover

{©:}.

Multiplying such a partition of unity with localized finite dimensional spaces S; con-
sisting of functions with support in ©; leads to PUM spaces on [0, 7.

Definition 3.2. Let © and {O;} be as in Definition 3.1 and let {p;} be a (L,Coo,Cq)
partition of unity subordinate to {©;}. Let S; C {w € L*(©) : suppw € ©;} be given.

Then the space
S = Z%Sl = {Z(pi’ui | v; € SZ} C L2(@)

1s called the PUM space. The spaces S; are the local approzimation spaces.

In Definition 3.2, S is a subspace of L?(©). We can easily obtain smoother spaces
by choosing an appropriate partition of unity and smooth local approximation spaces.
As mentioned above our goal is to define a PUM space S C C*°(R) with smooth and
compactly supported basis functions. Therefore we will first construct a partition of unity
of infinite degree. Consider the function®

erf(2arctanh(t)), for |¢t| <1,

ft) =< -1, for t < —1, (3.5)
1, for t > 1.

*Note that this choice of f is by no means unique. In [11, Sec. 6.1], C*° (R) bump functions are
considered (in a different context) which have certain Gevrey regularity. They also could be used for
our partition of unity.



Lemma 3.3. The function f as defined in (3.5) belongs to C*°(R).

Proof. Tt can be proved by induction that the m-th derivative of f in the interval (—1,1)
can be written as

m—1
f(m) (t) — Ce—4 arctanh?(t) (t2 - 1)—m Z o arctanh’ (t) tm—i—l
1=0

for constants C' and «;. Therefore

lim f™(t) =0

[t|—1

for arbitrary m € N. U

Let a < b be two real numbers. We make a change of variable and define

1 t—a 1
== 2 -1 —.
ha7b(t) 2f< b_a >+2
Then h,p : R — [0, 1] is a C*°-function such that

ha (1) = 0, fort<a,
ST, fort > b

Now we can define a C°°-bump function pg, . for real numbers a < b < ¢ by

Pabe(t) =

hap(t), for t <b,
1—hp(t), fort>b.

Due to the above properties, pq . satisfies pgp . > 0 in R and

() = 0, fort<aandt>c,
Pabell) = 1, fort=a.

Let us now consider the closed interval © = [0, 7] and N (not necessarily equidistant)
timesteps ¢; such that 0 = tg < t; <to < ... <tny_o <ty—_1 =T. Wedefine 7; := [t;_1, ;]
fori = 1,...,N — 1. Then a closed cover {O;} of O, satisfying the pointwise overlap
condition in Definition 3.1 with L = 2, is given by

@1 =T,
0, =7_1U7r; for 1=2,...,N—1,
@N = TN-1-

Next we define
Qpl(t) =1- hto,tl (t)v

©i(t) == pt, ot; 1t;(t) for i=2,... N —1,
PN (t) = hey sy, (D).
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Figure 3.1: Partition of unity {p;} subordinate to the cover {©;} for N = 4.

Then {p;} is a smooth partition of unity subordinate to the cover {©;}. Figure 3.1
shows an example of such a set of functions.

We want a more detailed characterization of this partition of unity in the sense of
Definition 3.1 in order to get error estimates for the PUM. Therefore we assume that the
partition is locally quasiuniform:

@.
6] < Cmax for i=2,...,N—1

1< — <
= min{|7_1], 7|}

with a moderate constant cpax. By taking into account

Hh, || N _ |y a+b _ 47r_1/2
a7b L (R) a,b 2 b_ a
we get
Il i
¥1 LOO([O,TD - |®1| )
An—1/2 An—1/2 ¢
AT = max - f =2,...,N—1
||(pz||L ({0, 17) min{\n_l\,]m} = ‘92‘ or 17 ) ) ’
I G
PNIL>=(0,1]) = ENE

Since [|@; || peo(jo,r)) = 1 for i = 1,..., N we get that {¢;} is a (2, 1,47~ 2 cpay) partition
of unity of infinite degree subordinate to the cover {©;}.

With this construction of a smooth and compactly supported partition of unity we will
define the global finite element space according to Definition 3.2. By taking into account
that the exact solution of (2.1) and its derivative vanish at ¢ = 0 we define, for given
polynomial degree p € N, the spaces

Sl = tz]P)p_Q on @1,
Si=P, on©;, i=2,...,N,

where [P, denotes the space of polynomials of degree p and, formally, we set P_o :=P_; :=
Py.



Remark 3.4. The definition of the spaces S; could be generalized by choosing local poly-
nomial degrees p; depending on the local patches ©; in the spirit of adaptive hp methods.
We do not elaborate on this aspect here.

The global PUM space S contains linear combinations of products of polynomials and
functions of the partition of unity {¢;}. To derive error estimates for the PUM we remark
that the spaces S; meet the following approximation property: Let u € H*(0),k > 1.
Then, for each patch ©;, 1 <¢ < N, there exists ug, € S; such that

||U . uSiHL?(@i) < Cl|@i|min(k—1,P)+1HuHHk(@i)’
I’ — w120, < Cal O™ * 1P [ul| gx o,

where C; and Cy depend on k,p and cpax. From |2, Theorem 1] we conclude that the
global approximation

N
ug = Z%‘USZ- €S c HYO)
i=1
satisfies the error bounds

lu—uslL2@) < 210" LD || g, (3.6)

”'LL, — UigHL2(@) < 202\/87T_1/2Cmax + 2 émin(k_lm)HUHHk(@).

where © := maxi<;<n |©;|. For the implementation of this method we need a basis of
the PUM space. It can be determined by multiplying the basis elements of the local
approximation spaces with the appropriate partition of unity function. An L?(—1,1)-
orthogonal basis of P, is given by the Legendre polynomials {P,,}> _,. An appropriate
scaling results in a basis of the PUM space S:

2
bl,m (t) = Qpl(t) 2(:2P1’n—2 <t_t - 1> m = 27 cee ,maX(Z,p),
1
t—1t;_o .
bim (t) == ¢i(t)Pm <2W—1> m=20,...,p,i=2,...,N —1, (3.7)
i — Ui—2

bnm (t) := on(t) P <2H$ - 1> m=0,...,p.
IN—1 —IN—2
Figure 3.2 shows the shape of these basis functions for some different values of m on a
nonuniform time grid. For m = 0 the basis functions are simply the shape functions of the
partition of unity. For higher m this function is multiplied by the appropriate Legendre
polynomial.

4. Properties of the temporal basis functions

In this section we investigate the growth behaviour of the k-th derivative of the bump
functions pgp. which were introduced in the last section. In the context of a Galerkin
discretization, an important property of these functions and functions which are composed
of them is, whether they allow for a fast numerical integration. In this light, we analyze
the error that arises from approximating integrals of the form

c—a
2

Ipa,b,c = / pa,b,c(t) dt = (41)
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Figure 3.2: Basis function of S for to = 0,t; = 0.8 and toa = 2

by a n-point Gauss-Legendre quadrature rule in the interval [a, ¢], denoted by Qnpqp,c-
We carry out the quadrature error analysis for these simple integrals in quite some detail
by using the derived growth estimates of our bump functions and its derivatives. We
consider this analysis as an important first step in order to estimate the quadrature error
for integrals of the form (3.4) using tensorized Gauss quadrature rules. Note, however,
that for the full space-time integrals the singularity at r = ||z — y|| = 0 has to be taken
into account in the spatial part of the quadrature method, e.g., by using regularizing
coordinates (cf. [24]). An analysis of the arising quadrature error for the full space-time
integral is still an open question and we expect that it can be based on the results derived
in this section.

Recall that for given a < b < ¢ € R, the functions p,p.(t) are C°°-bump functions with
SUPP Pabec = |a,c]. It is well known that Gauss-Legendre quadrature converges exponen-
tially for integrands that are analytic in a sufficiently large (complex) neighborhood of
the integration domain. Since the functions pgp(t) are smooth but not analytic in the
points a,b and c, these classical estimates for the quadrature error

gnpa,b,c = ‘Ipa,b,c - ana,b,c’

do not hold. We define the linear scaling functions

t—r
Grs i [rys] = [—1,1], t— 2 —1 and its inverse
s—r

Era: [=1,1] = [ 8], £ %(s (1)

In order to find bounds for &, pq . we need the following Lemma.



Lemma 4.1. Let n € N and 1 < k < 2n. Then we have for g € C**1([a, b)),

Zg— Qg < 22 (=)™ 1 GO
97 5ndl= 150 2 R2n+1—RF Jy /T Gy(02
Proof. For the interval [a,b] = [—1,1], Theorem 4.5 in [28] gives
32 1 Lgt(
Zg — Qugl < / Ciaind Olp
Brk@n+1-—kFE ) | Vi-
for k € {1,...,2n}. For general [a,b], a linear change of variable leads to
Tg— Oual < 22 (22a) ___1 /1 9" (],
=15 U2 kE2n+1—-k* J_, V1I— ‘
The substitution ¢t = (,;(t) leads to the desired result. O
In our case Lemma 4.1 reads
k+1
o c’(t)(

8 <£ c—a k+1 1 c
nPabe = 150\ "2 k(2n+1— k) «/71—@0

The definition of pgp(t) leads to

32 [c—a\F? b c
& < — ’—dt
nPebe =I5 ( 2 ) k(2n+1—k)F 1 - \/ cac 1= Cael(t)?
(4.2)
The formula above shows that we have to estimate the derivatives of the cutoff functions
hap and hy . .

. ‘h(kﬂ)(t)‘

Lemma 4.2. The cutoff function hgj satisfies the estimate
e

(] < L (24 kk'
Tbh-a\b—a) Tl (1- ()t

for k> 1 with q(t) :=1n —g, Ci :=6v2e and Cy = 10; Cfllnl?(;l) where k ~ 1.086435.

Proof. Use Theorem A.4 and the chain rule. O

—2arctanh? (Ca,b(t))

qk (Ca,b (t))

Further estimation of the bound in Lemma 4.2 leads to:

Lemma 4.3. Let q(x),Cy and Cy be as in Lemma 4.2. Then we have

for k> 1 and A > 0, where

ab o b—a b—a

k
1/X
h(k+1)H < @ <2A4/ Cl) kleG1/2m+1

1 1 1 1
o :Za2+§—ln<§a+§ a2—4>

10



for o > 2. 5‘2
Proof. Since .

k k/X\ .3

4 k 1
k _ 1/A
q (a:)—<ln1_x2> §<4/ )\> (1—3;2) Ta

for A > 0, the result follows from Lemma 4.2 Lj
and Lemma A.5. O ' « '

Corollary 4.4. The bump function pay . satisfies the estimate

”pgf;cl lloo < Hh (k1) Hoo in the case b—a <c—0b,

IIpfflfcl oo < ||h k+1 Hoo in the case ¢ —b<b—a.

In order to estimate &£,p4p ¢, we assume that b —a < ¢ —b, the other case being treated
analogously. Furthermore we assume ¢ — a < ¢pax(b — @), which corresponds to the local
quasiuniformity of a given time mesh. With

1 Cm ax

< , te(ab),
1- Ca,c(t)z 1-— Ca,b(t)z
Lemma 4.2, Lemma A.5, and Lemma A.6 we get
‘h )‘ 02 < 201 >kk' /b ‘e—Zarctanh Cap(t ‘q Cab(t)) »
e VTG Shmalbma) B, (1= Canl®) | VT = Gt

IN

dt

Cgcmax 201
b—a

& b ‘e—Zarctanh Can(t ‘q (Can(1))
k!/“ ‘(1 — Cap(t)2)FH32

< Cl;zc <b€1> k! eak+3/2/ q"(Cap(t))dt

—a

Cgcmax < 201

k 1
ol e7k+3/2 / g (t)dt
—1

[\

k
< 802Cmax <b2i> (k')2 ea'k+3/27

k

dt < 8C%Cmax (

holds. With (4.2) the quadrature error can be estimated by

256 C5 Cmax (¢ — a) 1

Lom kE(2n +1—k)k (Clcmax)k (K1)2 e7k+3/2

gnpa,b,c <

11



for k € {1,...,2n}. Finally, Stirling’s estimate k! < 1.1v/27k k¥ e 7% yields

Cicmaxk 2

k
5n/0a,b,c < 41.5 02 Cmax (C — a) <m> elk+3/2

for k € {1,...,2n}. It remains to choose k such that the right-hand side in the above
inequality becomes small. We define

C’lcmaxkz g
b, k)= ——m——————— Tk+3/2
max(n ) <(2n + 1 _ k) e2> e

for k € {1,...,2n}. The next Lemma shows that E.
for an appropriate choice of k.

n, k) decays superalgebraically

max (

Lemma 4.5. Let vy € (0, %) and a,b,c € R with ¢ —a < ¢max(b—a) be given. If n € N>g
satisfies the condition

-2
(Inn)?n =347 < 2-¢

= Cegce 70 -

the error bound X
gnpa,b,c < Cn—’yln(n)

holds, with C := 41.5 C3 ciax (¢ — a) (2 — e72) e!7/16,

Proof. Since

1, 3 17
< = — .
O'k+3/2_4k +4k+16,

we have

E

Cmax

N\ k
(n, k) < el7/16 <C> k2 (2n + 1 — k) ket

where C 1= Clemax e /4. We set k = |In(n)]| and get

Un(n)J2Lln(n)J (2n+1— Lln(n)J)_Un(")J oln(n)]2/4

~\ [In(n
Ecmax(n7 UH(’I’L)J) g 617/16 (C)L ( )J

< l7/16 (é) In(n) In(n)20) (2 + 1 — In(n))~ B+ o(lnn)?/a
Simple calculus shows
1—In(n)>—e2n forn €N,
so that the error can be estimated by

In(n)
- n(n) . —In(n n(n)?
Ecmax(n7 Lln(n)J) g (2 — € 2) 617/16 (m) (ln ’I’L)21 ( )TL 1 ( )+1 el ( ) /4 .

Applying the logarithm on both sides yields

I (B, (n, [In(n) ) < In (2 e72) 17/19)

2 —e2

+ In(n) [ln ( c ) +2In(ln(n)) + 1 — Z In(n)

12



For given v € (0, 3), let n satisfy condition (4.3). Then we get

I (Egyoc(n, [In(n)])) < In (2= 72) !/16) — y(lnn)?,
which leads to the desired result. O

Remark 4.6. The asymptotic behaviour of the error bound in Lemma 4.5 is sharp in the
sense that the choice k = |(Inn)°| with & > 1 leads to the divergence of E,_,. (n, k) if n
tends to infinity.

max (

Although Lemma 4.5 suggests that the error of Gauss-Legendre quadrature applied to
integrals of the form (4.1) decreases superalgebraically but not exponentially, we want
to show numerically that E._, (n,k) decays faster for certain ranges of n. In order to
demonstrate this, an appropriate choice of k is crucial. Lemma 4.5 shows that k has to
be chosen very small compared to n due to the fast growth of the derivatives of pgp.c.
To illustrate this, Table 1 shows the optimal &, denoted by kop, such that E. . (n,k) is
minimal for given n and different cpax.

max (

A n | 2-680 | 681-5929 | 5930-33776 | 33777-157999 | 158000-659277
kopt 1 2 3 4 5

o = 2.9 n | 2-748 | 749-6522 | 6523-37153 | 37154-173799 | 173800-725205
kopt 1 2 3 4 5

o =24 n | 2-816 | 817-7115 | 7116-40531 | 40532-189598 | 189599-791132
kopt 1 2 3 4 5

Table 1: k. for different ranges of n and different cmax -

Based on these observations we choose k optimal for every n and want to determine
7,0 € R>¢ such that the estimate

Ecmax (n7 kOPt) S T e_n(s

holds for a preferably large range nmin < n < Nmax-

Cmax | 0 | T | min | Pmax | Pemax (Mmaxs Fopt)
20 0.25 | 18 | 11 | 846975 ~1.2-10712
0.26 | 18 | 12 | 92231 ~59-1078
55 0.25 |20 | 11 | 649170 ~9.4-10712
0.26 | 20 | 12 | 67353 ~3.0-1077
54 0.25 | 22| 11 | 545048 ~3.5-10711
0.26 | 22| 12 | 33776 ~6.4-1076

Table 2: Results for different choices of ¢max, d and r.

Table 2 shows the results of numerical experiments. It can be observed that &,pq. =
@) <e_"1/4> for a large range of n in the case cpax € {2.0,2.2,2.4}.
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Figure 4.1 shows the decay of the error in the case of the bump function Po,10 5 which

corresponds to cpmax = 2.2. It can be observed that &£,p, 10 5, which represents the relative
b 11 b

error since Zp, 105 = 1, decays even faster than predicted by theory at least for those

accuracies that are of interest in practical computations.
The influence of c¢pax is rather small in practice. Numerical tests show that the error
behaviour is similar to the one in Figure 4.1 for different (moderate) cpax.

-12

10

0 50 100 150
Number of quadrature points

Figure 4.1: Quadrature error for the case cpmax = 2.2, i.e., we consider the bump function P0,10 5-

5. Application to a problem on the sphere

In this section we apply a Galerkin method using our new basis functions in time to the
integral equation (2.3) in the case where the boundary T is the unit sphere S?. Further-
more we assume that the right-hand side g is causal i.e. g(x,t) =0 for ¢t < 0 and that at
least the first time derivative of g vanishes at ¢ = 0. Moreover, g is supposed to be of the
form

g(z,t) = g(O)Y,",

where Y, denotes a spherical harmonic of degree n and order m. This setting was already
used in [6] and allows to reduce the boundary integral equation (2.3) to a univariate
problem in time. To see this note that an equivalent formulation of the retarded single
layer potential (2.2) is given by

So(x,t) = /0 /Fk;(a: —y,t —71)o(y, 7)dlydr, (z,t) € Qx[0,T7, (5.1)

14



where k(z,t) is the fundamental solution of the wave equation,
o(t — |l=)
k(z,t) = ,
Arr 2|

d(t) being the Dirac delta distribution. Furthermore we introduce the single layer poten-
tial for the Helmholtz operator AU — s2U = 0 which is given by

(V(s)p)(x) == /F K(s, — y)p(y,)dT,,

where

e—slzl
2]

is the fundamental solution of the Helmholtz equation in three dimensions. An important
property of the single layer potential V'(s) is that

V()Y = A(s)Yy,", (5.2)

K(s,z):=

i.e., the spherical harmonics Y, are eigenfunctions of this operator with eigenvalues A, (s).
The latter can be expressed in terms of modified Bessel functions I,; and K, (see [1])

An(s) = In+%(s)Kn+%(s). (5.3)

Next, we will transform equation (2.3) into frequency domain using Laplace transforma-
tions. Property (5.2) and a back transformation then leads to a univariate problem in
time. Recall the definition of the Laplace transform

3(s) = (L)(s) = /0 oty et dt
with inverse

O'+iOOA
(L713)(s) = 1/ B(s) et ds.

211 —ico

Note that the fundamental solution of the Helmholtz equation is the Laplace transform
of the fundamental solution of the wave equation. Using the representation (5.1) for S
and expressing k in terms of its Laplace transform leads to the integral equation

_ / t / k(t — 7. llw — gy, )dr  dr

o+100
/ /K Nz —ylDe(y,t — 7)dlydrds

o+ioco
27” e / (-t —7))(z)drds.

Inserting the ansatz ¢(x,t) = ¢(¢t)Y,"" and using (5.2) leads to the one dimensional prob-
lem: Find ¢(t) such that

2772

/ L O ()6(t — P)dr = g(b), ¢ € [0, T, (5.4)

Note that ¢(¢)Y, where ¢(t) satisfies (5.4) is a solution of the full problem (2.1) in the
case where I' = S? and g(z,t) = g(t)¥,”. In order to analyse our new approach for the
temporal discretization we choose (5.4) as our model problem.

15



Example. Explicit representations of the exact solutions of (5.4) were computed in [25,
29.

(a) For n =0 the solution is given by

t/2]
o) =2 g'(t—2k) (5.5)
k=0
(b) Forn =1 we have
t/2] ¢
o) =23 (—1)*g/(t - 2/<:)+2/ sinh(r)g/ (¢ — 7)dr
k=0 0
1t/2] k& ‘
-2 Z Z/ ck )+ ck ]7' - 0123;2]‘3)( 2kY L™ 2k g/ (t — )T, (5.6)
k=1 j=1
where
@ _ (ke = (= (DR
= (=1
o = (0 X G gy ™

(3) kil 2j_1(/<:— 1)!
¢ =(—1 - - —.
kg = (1) (G — DGk — 4)!

These formulas will serve as reference solutions for our numerical experiments.

In order to apply a Galerkin method to (5.4) we need a suitable variational formulation.
If we choose Vialerkin i (3.2) by Vaalerkin = Y,'S, the space-time Galerkin discretization
decouples and reduces to the purely temporal problem:

T
Find ¢ € S - / / L On)(P)ds(t—1)C (1) drdt = /O Jmcwdt  Vees. (57)

For the numerical solution of this equation we employ the representation with respect to
the PUM basis (cf. (3.7)) and define the index set

P; = {2737"-111&)({27])}} 1= ;
1 {071,...7])} 2§ZSN.

Then, inserting the ansatz

N
=2 D imbim(!)
i=1 meP;
leads to the discrete problem: Find «; ,, such that

T
Z S aim / / L7V ) — )i ()b (1) drdt = /O JObDdt (58)

i=1 meP;
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=1,2,...,N and k € P;. In order to find the solution of (5.8) we have to compute
L7Y(\n)(t). After some algebraic manipulations (cf. [25]) we obtain from (5.3)

2n CI . 2n Hl
_ n, —2s n,
An(s) = RESERE JRES
1=0 1=0
where l ‘
CI — ZjZO %(_1)l_](n7l - ])(n7])7 for { < n,
M S 5D T = ), for <l < 2m,
and l
Ji ) Xm0z (D) L= G)(n, ), for L<m,
M e (1 (0, = (), for n <1< 2n
with (n, k) := % The inverse Laplace transform of \,(s) is therefore given by
2n CI . 2n CHZ
L)) =Y tH(E) + Y = (=2 H(t - 2),
1=0 1=0
where
0 t<0
H(t) = .
1 t>0

denotes the Heaviside step function. This shows that the discrete problem (5.8) is equiv-
alent to: Find o, such that

N T
Q n(t— T )0 m\T ). T
5 [ [t
T t T
11 ) - P . _ 3 '
+/0 /0 qn (t - T = Z)H(t - T 2)bz,m( )b],k(t)d dt:| /0 g(t)b%k(t)dt (5 9)

forj=1,...,N, k € Pj, where

2n I 2n CH

Cn,i 1
() = %tl and  ¢(t) == %tl.
=0 =0

We now turn our attention to the numerical computation of the double integral

T ot
/ / Gh (= 7)1 (1) (8t (5.10)
0o Jo
arising in (5.9). Therefore let

supp bjm = ©; = [m;, M;] and
supp bj,k = @j = [mj, Mj].

We write “...” short for “gl (t—7)b; . (7)b; 1(t)drdt” and distinguish between the following
six cases (see Figure 5.1):
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Tl T.7) 7] (T,T) 71 (7,T)
S bl
©; |
T 1y 1o I
Lo ©;
©;
©; ¢ ©; ¢ ©; t
(a) Domain of integration case (b) Domain of integration case (c) Domain of integration case
(i) (ii) (iii)
Tl (T.7) 71 (T,7) 7] (T.T)
Joo e __“i____:
| o-
. [ 1. e — if ! [
o | o]
% |
4. 4. L
O; t O; t O; t
(d) Domain of integration case (e) Domain of integration case (f) Domain of integration case
(iv) (v) (vi)

Figure 5.1: Different domains of integration for integral (5.10)

(1) my; § Mz S ’I’)’Lj S Mj. Then,

/OT/::/@/@

(11) my; § m]‘ S Mz S Mj. Then,

T oyt M; pt M;

(111) mj S m; S Mj S MZ Then,

/T /t /]\/[j /t
0 0 m; m;

(IV) m; S m]' S Mj S MZ Then,

18



(v) mj <m; < M; < M;. Then,

(vi) m; < M; <m; < M;. Then,
T rt
/ / =0
0 0

The computation of the second double integral

/ ! / CQUE = = 2 H (= 7 — D7) s ()t
0 0

in (5.9) is similar. Note that this integral vanishes for 7' < 2. For T' > 2 we have to
distinguish between six cases as for the integrals in (5.10). We do not detail this here.

Remark 5.1. The resulting integration domains in the cases (i)-(vi) are either rectangles
or triangles. Because simplex coordinates transform triangles to squares, we can restrict to
rectangular integration domains and apply properly scaled n-point tensor Gauss-Legendre
quadrature rules for the numerical approximation of the arising integrals.

6. Numerical Experiments

In this section we present the results of numerical experiments. We solve the set of
equations (5.9) in order to obtain a numerical solution of (5.4). The resulting error of
the approximation, ¢g — ¢, will be measured in the L2(0,T) norm. L?(0,T) is a suitable
space for the solutions of (5.4) since it can be shown that if ¢(¢t) € L%*(0,T), then the
corresponding solution of the full problem (2.3) satisfies ¢(t)Y;™ € H~Y/2~1/2(I' x [0,T)).
¢ could also be considered in larger spaces than L?(0,7T) but we expect analogous results
of the numerical experiments in such spaces. We begin with the numerical tests and set

0 tte 2 t>0,
=0 t<0.

In the following we check the sharpness of the convergence rates predicted by the theory
in (3.6) for n = 0 and n = 1. We saw that the formulas for the exact solution of (5.4)
involve derivatives of the right-hand side g (cf. (5.5) and (5.6)). Since g € H*(R) we
therefore have ¢ € H3(R). Thus we expect a convergence rate with respect to the L?
error of h if we choose p = 0, i.e., if we approximate simply by the shape functions of
the partition of unity. We expect a convergence rate of h? if we choose p = 1. These
convergence rates could be confirmed by the numerical experiments (see Figure 6.1).

Next, we investigate the behaviour of the method for a right-hand side that is less
smooth:

() = sin?(2t)e™t ¢ >0,
g 0 t <0.

Note that g € H?(R) and therefore ¢ € H'(R). Hence we expect a convergence rate of h
in the case p = 0. Due to the lack of smoothness of the solution we do not expect that
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Figure 6.1: Log-log scale plots of ||¢s — ¢||L2(jo,r) for T =6, g(t) = t* e~ and n as in (5.4).

higher order PUM spaces lead to better convergence rates. Indeed Figure 6.2(b) indicates
that in the case p = 1 a convergence rate of h? is not achieved.

The PUM with smooth basis functions (3.7) allows variable time steps which can be
adapted to the smoothness, e.g., of the right-hand side. In the following we illustrate the
benefit of this feature by a numerical example. We choose the right-hand side by

—sin(35¢)t3 e~ 12(4=4)7 ¢ > 0
g(t) =
0 t<0.

As we can see in Figure 6.3 this function has a sharp pulse in the interval (1 — %, 1+ %)
and is almost zero otherwise. A similar behaviour can be observed for the corresponding
solution ¢ for n = 0. The 2-periodicity in (5.5) however implies that ¢ has peaks in small
neighborhoods of all time points ¢ = 2l + 1, I € N (cf. Figure 6.4). Therefore we will
employ a time mesh which is graded towards the time points ¢t = 2l + 1 where the solution
is highly oscillatory. We use a quadratic grading of the uniformly distributed mesh points

towards the origin:
N
i<i> 0<i<m.
m

We number these mesh points from left to right —1 = to < ... < toy, = 1. Translation of
these points to the time intervals [2[, 2] 4 2] leads to the time mesh in Figure 6.4.

Figure 6.5 shows the error plots for this right-hand side for n = 0 and p = 1,2. One can
see that the error for the variable time mesh is considerably smaller than the error for the
equidistant grid. Moreover the convergence starts earlier and the asymptotic convergence
rate is already in the preasymptotic range. This shows that variable time stepping can
improve the discretization substantially if knowledge about the solution is available. We
expect similar benefits for the full problem.

Finally, we will show the performance of our method as a p-version for problems with
smooth solutions, where we fix the number of timesteps and increase the polynomial
degree of the local approximation spaces. Figure 6.6 shows two error plots for 5 and
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Figure 6.2: Log-log scale plots of |[¢s — ¢llr2(j0, 1)) for T = 6, g(t) = sin?(2t) e~* and n as in

(5:4)-
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0.6
401
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[
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Figure 6.3: g(t) = — sin(35¢)t3 e—12(4t=4)*  Figure 6.4: Corresponding solution of (5.4)
for n =0 and a time grid with variable mesh-
width.

10 timesteps, where we again set g(t) = t*e™% for t > 0. Recall that g € H*(R) and
therefore ¢ € H3(R). Thus the following error estimate holds (cf. [2]):

lps — dllz2o.61) < C 2110l ((0,6))-

7. Conclusion

We have introduced a new set of basis functions in time for the discretization of retarded
boundary integral formulations of the wave equation. The obtained basis functions are
smooth, compactly supported, allow variable order of approximation and can be easily
defined on an arbitrary time grid. In order to test the approach we applied a Galerkin
method to a special case of the wave equation on the sphere for which analytic solutions are
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Figure 6.5: Log-log scale plots of ||[¢s — @||r2(0,1)) for T =6, g(t) as in Figure 6.3 and n = 0.
Comparison of equidistant and variable time meshes.
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Figure 6.6: Log-log scale plots of ||ps — ¢||2(jo,r)) for T =6, g(t) = t*e 2.

available. These solutions were used as reference solutions for the numerical experiments.
It could be shown that the use of variable stepsizes in time can improve the convergence
of the Galerkin scheme considerably provided that information about the behaviour of
the solution is known in advance.

In a forthcoming paper we will apply this approach to the full problem i.e. we will use a
Galerkin method in space and time where we choose piecewise polynomial basis functions
in space and our smooth PUM space in time in order to discretize the problem. The global
smoothness of the basis function in time will simplify the computation of the entries of the
boundary element matrix considerably since the numerical handling of the complicated
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geometry of the discrete light cone with the surface panels becomes superfluous — the use
of curved surface panels becomes straightforward. Furthermore the boundary element
matrix will be sparse due to the compact support of the basis functions.

Acknowledgement. Thanks are due to Christoph Schwab for fruitful discussions con-
cerning the use of the PUM for the time discretization.

A. Technical estimates

In this section we want to estimate the n-th derivative of the function f as defined in
(3.5). Therefore let

1+
1—=x

1
h(z):=erf(z) and g¢g(x):=arctanhz = 3 In
such that f := ho2g. Note that [1, (7.1.19)] implies

h("+1) (Z) = (—1)” Hn (Z) e_z n = 07 17 27 s

NG
where H,, are the Hermite polynomials. Hence,
a\" 4 2
(n+1) _ (% —4g*(z) Al
o= () (Famme ) =
1 & 1 9D /=0
- n —4g°(z)
-0 () (e
\/7_1-6:0 1—=z ( )
Lemma A.1 (Derivatives of g). It holds

1 ®  pg ()
< > —(17 Ve e (—1,1),

1 _ 22 _ )t

where e+1 e+1
z+1 —(z—-1
ety = EXY T ==
Furthermore, we have
4
1 _
3 ln 1= :1}2 E =0
‘g(@ (x)( < R Vo e (—1,1), (A.2)
ﬁ ¢ e N>y
-z
as well as the more generous estimate
01261
9 (@) < q (@) Qo VM (A.3)

with q () = In %g.
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Lemma A.2 (Derivative of composite functions). Forn > 1 and z € (—1,1) we have

(cmi @)™ = o) ZAM ) Hi (29 (),

where

and

(A.4da)

(A.4b)

u 1
= Z Z Z ZV 1 .. (gj)g("—fufl)g(fufl—fufz) .. 9(52—61)9(51)'

ly—1=04£,_2=0 £1=0

(A.5)

Proof. The representation (A.4) follows from |27, formulae (2), (7)], while (A.5) is proved

by induction using Leibniz’ product rule for differentiation.

O

Lemma A.3 (Estimate of derivatives of composite functions). Forn > 1 and x € (—1,1)

we have

(") )

with K ~ 1.086435 and C; = 6/2e.

1 — 22

< §Hn!e—2g2(x) <CIQ(x)>n
2

Proof. From (A.3) and (A.5) we conclude for allm > 1, v > 1, and = € (—1,1)

R - DD D Y

by _1=04,_2=0 £1=0

., ¢ () (m+v-—1
=nl2" ——— .
! <1—x2>"< v >

Thus, from (A.4b) we get that

k(1 —ax2)" — v—1

2"n! ¢F (z n+k\" _
<y () o

2"n! 1 3(n+k)q(x)\"
< e ()

From [1, (22.14.17)] we obtain

Hy (29 (z)) < 20 (@) 1,2k /2\/R1.
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The combination of (A.4), (A.5), (A.7) and (A.8) results in the estimate for the n-th
derivative of e~4¢°(®);

n

‘(e—@z(m)“"gﬁgnnn o2 aby 1 (?M (n+k)g ())"

(1- < VE! k

_ 6v2q (z) 1 (n+k\"
< kn! 29%(x) -
< vl (1_962 ;m '
_ 6\/_eq " 1
< ! 2¢%(z) _—
< rnle ( 2eq ) Z;m
5 _ 6v2eq(z)
< Zrnle 20 :
—2 < 1— 22 =

Theorem A.4 (Estimate of n-th derivative of f). We have

n n q(z)"” —2¢2%(z
|f( +1) (;17)|§0201n!#e 2g°(z)

. x Ci1ln(4
with Cy = %701 lln(4()22'
Proof. From (A.1), (A.2) and (A.6) we get

n—I
D) (5 10/€Z< ) 112! - (n 1) (Clhq(x?)> o 20%()
— X

n

10k nq(fciyle—zg%x) 2
\/_C'l '( — g2yt Z<C’1Q($)>

=0
10_’% Ol IH( ) C"p) q(x)n e—2gz(m)
= VT Ciln(4) —2 (1 — 22)ntl ’

which leads to the desired result. O

Lemma A.5. For z € (—1,1) and o > 2, we have

— || <e%
(1—a2)"| — ¢
with ) ) )
2
o= ——In|(= —4
o 1¢ + 3 <2a + 5 >
Proof. We set
—92g2
g9°(z) on(®)
(1—a?) ’
where
sp(x) := —2arctanh(z)? — aln(1 — 2?).
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With the definition of arctanh(z) we get

=—-2 11 1 11 1 2 In(1 In(1
sp(z) =— gn( —1—33)—5 n(l—z)| —aln(l—2)—aln(l +x)

1 1
=-3 (1 +2)]* +In(1 4+ z)In(1 — ) — 5 [In(1 — z))?
—aln(l —z) — aln(l + z).
Since s, (x) is symmetric we assume 0 < z < 1 and get

sn(z) < —=[In(1 — 2)]* — aln(l — z) + In(1 + ) In(1 — ) =: 5, (x).

N =

Sp(z) is strictly increasing in the interval [0,0.5] for arbitrary o € R>9. Therefore we
may restrict to find an upper bound for §,(z) in the interval [0.5,1[. With the inequality
In(14+2z)In(1 —2) < —In(—In(1 — z)) we get

(1 — )] — aln(l — 2) — In(—In(1 — z)) =: §,(x)

N =

Sp(x) < —
in [0.5,1[. The derivative of §,(z) is given by

& () = (1 —z)]*+aln(l —z)+1
nAs (1 —2)In(1 —x)

which has the root

o =1 —e_‘ga,

where 6, := %oz + %\/ a? — 4. Inserting this above shows that

sp(z) < aby, — %63 —1Iné,

which leads to the desired result after some straightforward manipulations. O

1 4 n
| < 16n!
/_1<n1_t2> dt < 16n

Lemma A.6. It holds

forn e N.
Proof. We first note that

1
/ (1 — £)[f | In(1 + £)[F~idt
-1

0 . . 1 . .
= / |In(1 — 2)|" | In(1 + ) |*~dt + / IIn(1 — 2)|" | In(1 + ¢)|*~dt
-1 0

. 0 . . 1 .
< (In2) / (1 +)[Fidt + (In2)F— / (1 — #)[idt
0

—1
1 1

— (In 7 n k—1 n k—1 n 7

_q 2)/0 [ In(8)[*~idt + (In2) /0 | n(t)[ dt

= (In2)’(k — 4)! 4+ (In2)*~%!,
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where we used [17, (2.711)] in the last step. With these computations we get

/.

4 n
<ln Tz t2>

n 1
dt < (Z) / IIn(1 — 2)[F(In 4)"*dt
k=0

-1

< Zk: (Z) (f) (1114)"—’*6/1 |In(1 — t)|*|In(1 + t)|* it

-1

< :0 i: (Z) (f) (In 4)"—* ((mz)i(k — i)l + (In 2)k_iz'!)
k

: n e " (In2)i In 2)k—i
= <k>(ln4) k<k!.z( a +klzﬁ)
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