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Abstra
tWe 
onsider retarded boundary integral formulations of the three-dimensional waveequation in unbounded domains. Our goal is to apply a Galerkin method in spa
eand time in order to solve these problems numeri
ally. In this approa
h the 
om-putation of the system matrix entries is the major bottlene
k. We will propose newtypes of �nite-dimensional spa
es for the time dis
retization. They allow variabletime-stepping, variable order of approximation and simplify the quadrature problemarising in the generation of the system matrix substantially. The reason is that thebasis fun
tions of these spa
es are globally smooth and 
ompa
tly supported.In order to perform numeri
al tests 
on
erning our new basis fun
tions we 
onsiderthe spe
ial 
ase that the boundary of the s
attering problem is the unit sphere. Inthis 
ase expli
it solutions of the problem are available whi
h will serve as referen
esolutions for the numeri
al experiments.AMS subje
t 
lassi�
ations. 35L05, 65N38, 65R20Keywords: retarded potentials, a
ousti
 s
attering, boundary integral equations,partition of unity method, Galerkin approa
h, variable timesteps.1. Introdu
tionMathemati
al modeling of a
ousti
 and ele
tromagneti
 wave propagation and its e�
ientand a

urate numeri
al simulation is a key te
hnology for numerous engineering appli
a-tions as, e.g., in dete
tion (nondestru
tive testing, radar), 
ommuni
ation (optoele
troni
and wireless) and medi
ine (soni
 imaging, tomography). An adequate model problemfor the development of e�
ient numeri
al methods for su
h types of physi
al appli
ationsis the three-dimensional wave equation in unbounded exterior domains. In this setting
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the method of integral equations is an elegant approa
h sin
e it redu
es the problem inthe unbounded domain to an integral equation on the bounded surfa
e of the s
atterer.In this paper we apply a Galerkin method for the dis
retization of these retarded boundaryintegral equations (
f. [3, 14, 18, 19℄). This approa
h allows variable time stepping andspatially 
urved s
atterers. Appli
ations where variable time stepping be
omes importantin
lude problems with non-
ompatible Diri
hlet-data at time t = 0 and/or s
atterers withvery non-uniform ex
entri
ities. Until now, a severe drawba
k of this method was, how-ever, that the domain for the spatial integration is the interse
tion of (possibly 
urved)pairs of surfa
e panels with the dis
rete light 
one whi
h is very 
ompli
ated to handlenumeri
ally. Quadrature s
hemes tailored to this problem were derived for example in[16, 22, 26℄. These methods are restri
ted to polyhedral s
atterers and their implementa-tion is di�
ult.Other approa
hes for the numeri
al dis
retization of retarded boundary integral equa-tions use 
ollo
ation s
hemes (
f. [8, 9, 12, 15, 23℄). Although they play an importantrole in pra
ti
e, the mathemati
al analysis of these methods is 
hallenging. In more thantwo dimensions stability and 
onvergen
e of 
ollo
ation s
hemes 
an only be shown forspe
ial geometries (
f. [13℄). Furthermore the appli
ation of these te
hniques to 
urveds
atterers is di�
ult. More re
ent approa
hes in
lude methods based on bandlimitedinterpolation and extrapolation (
f. [32, 31, 33, 34℄) and 
onvolution quadrature (
f.[4, 5, 6, 7, 10, 20, 21, 30℄). The latter enjoys ni
e stability properties and allows to ap-ply many te
hniques known from frequen
y domain problems. However the stepsize forthe time dis
retization must be 
onstant in these methods and a generalization to non-uniform time meshes is not straightforward.In our paper we will present a new time dis
retization method for the retarded potentialequations whi
h 
ir
umvents the numeri
al integration over interse
tions of the light 
onewith the spatial surfa
e mesh. For this purpose, we will introdu
e in�nitely smooth and
ompa
tly supported basis fun
tions in time. These fun
tions are 
onstru
ted by usingthe Partition of Unity Method (
f. [2℄).In order to test the 
hoi
e of the new basis fun
tions numeri
ally we 
onsider the waveequation on the sphere with Diri
hlet boundary 
onditions. For the resulting problemsexpli
it representations of the exa
t solutions are available (
f. [25℄). We apply a Galerkinmethod using our basis fun
tions to these problems and perform numeri
al experiments.2. Integral Formulation of the Wave EquationLet Ω ⊂ R
3 be a Lips
hitz domain with boundary Γ. We 
onsider the homogeneous waveequation

∂2t u−∆u = 0 in Ω× [0, T ] (2.1a)with initial 
onditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)and Diri
hlet boundary 
onditions

u = g on Γ× [0, T ] (2.1
)on a time interval [0, T ] for T > 0. In appli
ations, Ω is often the unbounded exterior ofa bounded domain. For su
h problems, the method of boundary integral equations is an2



elegant tool where this partial di�erential equation is transformed to an equation on thebounded surfa
e Γ. We employ an ansatz as a single layer potential for the solution u,
u(x, t) := Sφ(x, t) :=

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dΓy, (x, t) ∈ Ω× [0, T ] (2.2)with unknown density fun
tion φ. S is also referred to as retarded single layer potentialdue to the retarded time argument t− ‖x− y‖ whi
h 
onne
ts time and spa
e variables.The ansatz (2.2) satis�es the wave equation (2.1a) and the initial 
onditions (2.1b).Sin
e the single layer potential 
an be extended 
ontinuously to the boundary Γ, theunknown density fun
tion φ is determined su
h that the boundary 
onditions (2.1
) aresatis�ed. This results in the boundary integral equation for φ,

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dΓy = g(x, t) ∀(x, t) ∈ Γ× [0, T ] . (2.3)In order to solve this boundary integral equation numeri
ally we introdu
e the followingspa
e-time variational formulation (
f. [3, 18℄ ): Find φ su
h that

∫ T

0

∫

Γ

∫

Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)
4π‖x− y‖ dΓydΓxdt =

∫ T

0

∫

Γ
ġ(x, t)ζ(x, t)dΓxdt (2.4)for all ζ, where we denote by φ̇ the derivative with respe
t to time.3. Numeri
al Dis
retizationWe turn our attention to the dis
retization of (2.4). In order to �nd an approximatesolution we apply a Galerkin method in spa
e and time. The variational formulation(2.4) is 
oer
ive in

H−1/2,−1/2(Γ× [0, T ]) := L2(0, T ;H−1/2(Γ)) +H−1/2(0, T ;L2(Γ)) (3.1)(
f. [18℄) and is uniquely solvable in this Sobolev spa
e. Furthermore this ensures exis-ten
e and uniqueness of the solution of a 
onforming Galerkin dis
retization.Let VGalerkin be a �nite dimensional subspa
e of (3.1) being spanned by N basis fun
-tions {bi}Ni=1 in time and M basis fun
tions {ϕi}Ni=1 in spa
e. This leads to the ansatz
φGalerkin(x, t) =

N
∑

i=1

M
∑

j=1

α
j
iϕj(x)bi(t), (x, t) ∈ Γ× [0, T ] , (3.2)where αj

i are the unknown 
oe�
ients. Plugging the ansatz (3.2) into the variationalformulation leads to the Galerkin dis
retization: Find αj
i , i = 1, . . . , N, j = 1, . . . ,M su
hthat

∫ T

0

∫

Γ

∫

Γ

N
∑

i=1

M
∑

j=1

α
j
iϕj(y)ḃi(t− ‖x− y‖)ϕl(x)bk(t)

4π‖x− y‖ dΓydΓxdt

=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdt3



for k = 1, . . . , N and l = 1, . . . ,M . A 
onvergen
e analysis of this Galerkin approa
husing pie
ewise polynomial basis fun
tions in spa
e and time is given in [3℄.Rearranging terms shows that the above formulation is equivalent to: Find α
j
i for i =

1 . . . , N and j = 1, . . . ,M su
h that
N
∑

i=1

M
∑

j=1

A
i,k
j,lα

j
i = gkl ∀1 ≤ k ≤ N ∀1 ≤ l ≤M, (3.3)where

gkl :=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdtand

A
i,k
j,l :=

∫

Γ

∫

Γ
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx

=

∫supp(ϕl)

∫supp(ϕj)
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx (3.4)with

ψi,k(r) :=

∫ T

0

ḃi(t− r)bk(t)

4πr
dt,where r ∈ R>0. The 
omputation of a Galerkin solution via (3.3) leads to large linearsystem with NM unknowns. The 
orresponding boundary element matrix 
onsists of

N ×N blo
ks of size M ×M . Ea
h matrix blo
k is symmetri
 and furthermore sparse ifthe basis fun
tions in spa
e and time have 
ompa
t support (
f. [25℄). This is due to thefa
t that ψi,k has 
ompa
t support in this 
ase and therefore only those 
ombinations of
j and l lead to nonzero matrix entries for whi
h

{‖x− y‖, x ∈ supp(ϕl), y ∈ supp(ϕj)} ∩ supp(ψi,k) 6= ∅.The numeri
al realization of the Galerkin method requires the e�
ient and a

urateapproximation of the matrix entries Ai,k
j,l whi
h is a major 
hallenge. In the literature(
f. [18, 19, 26℄) pie
ewise polynomial basis fun
tions in time are employed while, then,

ψi,k(‖x − y‖) in general is only a pie
ewise analyti
 fun
tion in x ∈ supp(ϕl) and y ∈
supp(ϕj) (even if supp(ϕl) and supp(ϕj) are properly separated). Consequently, highorder Gauss rules are 
onverging only at a suboptimal rate. To obtain a su�
iently higha

ura
y, the integration is 
arried out on the interse
tions of the surfa
e panels with thedis
rete light 
one, i.e., with the support of ψi,k(‖x − y‖). The stable handling of theseinterse
tions and the implementation of these quadrature rules is di�
ult and espe
ially
ompli
ated for 
urved surfa
e pat
hes.In this paper, we will introdu
e in�nitely smooth and 
ompa
tly supported basis fun
-tions in time. This will simplify the problem of 
omputing the matrix entries Ai,k

j,l 
on-siderably while maintaining the sparsity of the system matrix. Sin
e the integrand willbe smooth in this 
ase we 
an apply standard quadrature rules to the double integral in(3.4). Furthermore the dis
retization with 
urved surfa
e panels is straightforward sin
ethe numeri
al handling of the 
ompli
ated geometry of the interse
tion of panels with thedis
rete light 
one is 
ir
umvented. 4



The basis fun
tions in time that we will 
onstru
t here, will not lead to a lower triangu-lar Toeplitz system as standard s
hemes using pie
ewise polynomial basis fun
tions andequidistant time grids. In our 
ase the boundary element matrix will be a blo
kmatrixwhere the lower triangular part in general is non-zero and also a few o�-diagonals arenon-vanishing. Therefore FFT-type methods for Toeplitz matri
es 
annot be used forthis type of matri
es � instead, e�
ient iterative methods have to be employed (and,�rstly, developed). We expe
t that for 
ertain 
lasses of appli
ations, e.g., for problemswith non-
ompatible Diri
hlet data, the savings by using substantially less (variable)timesteps 
ompared to uniform time stepping are signi�
ant and lead to a faster algo-rithm.The 
onstru
tion of the aforementioned basis fun
tions in time is in the spirit of thePartition of Unity Method (PUM) (
f. [2℄). Before we de�ne and 
onstru
t the �niteelement spa
e in time we re
all some basi
 de�nitions of the PUM.De�nition 3.1. Let Θ := [0, T ] be the time interval and {Θi} be a 
losed 
over of Θsatisfying the overlap 
ondition
∃L ∈ N s.t ∀t ∈ Θ, #{i|t ∈ Θi} ≤ L.Let {ϕi} ⊂ Cm(R),m ∈ N0 be a partition of unity subordinate to the 
over {Θi} with
suppϕi ⊂ Θi,

∑

i ϕi ≡ 1 on Θ,

‖ϕi‖L∞(R) ≤ C∞, ‖ϕ′
i‖L∞(R) ≤ CG

|Θi| ,for all i where C∞ and CG are 
onstants and |Θi| denotes the length of the interval Θi.Then {ϕi} is 
alled a (L,C∞, CG) partition of unity of degree m subordinate to the 
over
{Θi}.Multiplying su
h a partition of unity with lo
alized �nite dimensional spa
es Si 
on-sisting of fun
tions with support in Θi leads to PUM spa
es on [0, T ].De�nition 3.2. Let Θ and {Θi} be as in De�nition 3.1 and let {ϕi} be a (L,C∞, CG)partition of unity subordinate to {Θi}. Let Si ⊂

{

w ∈ L2(Θ) : suppw ∈ Θi

} be given.Then the spa
e
S :=

∑

i

ϕiSi :=

{

∑

i

ϕivi | vi ∈ Si

}

⊂ L2(Θ)is 
alled the PUM spa
e. The spa
es Si are the lo
al approximation spa
es.In De�nition 3.2, S is a subspa
e of L2(Θ). We 
an easily obtain smoother spa
esby 
hoosing an appropriate partition of unity and smooth lo
al approximation spa
es.As mentioned above our goal is to de�ne a PUM spa
e S ⊂ C∞(R) with smooth and
ompa
tly supported basis fun
tions. Therefore we will �rst 
onstru
t a partition of unityof in�nite degree. Consider the fun
tion∗
f(t) :=











erf(2 ar
tanh(t)), for |t| < 1,

−1, for t ≤ −1,

1, for t ≥ 1.

(3.5)
∗Note that this 
hoi
e of f is by no means unique. In [11, Se
. 6.1℄, C∞ (R) bump fun
tions are
onsidered (in a di�erent 
ontext) whi
h have 
ertain Gevrey regularity. They also 
ould be used forour partition of unity. 5



Lemma 3.3. The fun
tion f as de�ned in (3.5) belongs to C∞(R).Proof. It 
an be proved by indu
tion that the m-th derivative of f in the interval (−1, 1)
an be written as
f (m)(t) = C e−4 arctanh2(t)(t2 − 1)−m

m−1
∑

i=0

αi arctanh
i (t) tm−i−1for 
onstants C and αi. Therefore

lim
|t|→1

f (m)(t) = 0for arbitrary m ∈ N.Let a < b be two real numbers. We make a 
hange of variable and de�ne
ha,b(t) :=

1

2
f

(

2
t− a

b− a
− 1

)

+
1

2
.Then ha,b : R → [0, 1] is a C∞-fun
tion su
h that

ha,b(t) =

{

0, for t ≤ a,

1, for t ≥ b.Now we 
an de�ne a C∞-bump fun
tion ρa,b,c for real numbers a < b < c by
ρa,b,c(t) :=

{

ha,b(t), for t ≤ b,

1− hb,c(t), for t ≥ b.Due to the above properties, ρa,b,c satis�es ρa,b,c ≥ 0 in R and
ρa,b,c(t) =

{

0, for t ≤ a and t ≥ c,

1, for t = b.Let us now 
onsider the 
losed interval Θ = [0, T ] and N (not ne
essarily equidistant)timesteps ti su
h that 0 = t0 < t1 < t2 < . . . < tN−2 < tN−1 = T . We de�ne τi := [ti−1, ti]for i = 1, . . . , N − 1. Then a 
losed 
over {Θi} of Θ, satisfying the pointwise overlap
ondition in De�nition 3.1 with L = 2, is given by
Θ1 := τ1,

Θi := τi−1 ∪ τi for i = 2, . . . , N − 1,

ΘN := τN−1.Next we de�ne
ϕ1(t) := 1− ht0,t1(t),

ϕi(t) := ρti−2,ti−1,ti(t) for i = 2, . . . , N − 1,

ϕN (t) := htN−2,tN−1
(t).6
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Θ8Figure 3.1: Partition of unity {ϕi} subordinate to the 
over {Θi} for N = 4.Then {ϕi} is a smooth partition of unity subordinate to the 
over {Θi}. Figure 3.1shows an example of su
h a set of fun
tions.We want a more detailed 
hara
terization of this partition of unity in the sense ofDe�nition 3.1 in order to get error estimates for the PUM. Therefore we assume that thepartition is lo
ally quasiuniform:
1 ≤ |Θi|

min{|τi−1|, |τi|}
≤ cmax for i = 2, . . . , N − 1with a moderate 
onstant cmax. By taking into a

ount

‖h′a,b‖L∞(R) =

∣

∣

∣

∣

h′a,b

(

a+ b

2

)∣

∣

∣

∣

=
4π−1/2

b− awe get
‖ϕ′

1‖L∞([0,T ]) =
4π−1/2

|Θ1|
,

‖ϕ′
i‖L∞([0,T ]) =

4π−1/2

min{|τi−1|, |τi|}
≤ 4π−1/2 cmax

|Θi|
for i = 2, . . . , N − 1,

‖ϕ′
N‖L∞([0,T ]) =

4π−1/2

|ΘN | .Sin
e ‖ϕi‖L∞([0,T ]) = 1 for i = 1, . . . , N we get that {ϕi} is a (2, 1, 4π−1/2cmax) partitionof unity of in�nite degree subordinate to the 
over {Θi}.With this 
onstru
tion of a smooth and 
ompa
tly supported partition of unity we willde�ne the global �nite element spa
e a

ording to De�nition 3.2. By taking into a

ountthat the exa
t solution of (2.1) and its derivative vanish at t = 0 we de�ne, for givenpolynomial degree p ∈ N, the spa
es
S1 := t2Pp−2 on Θ1,

Si := Pp on Θi, i = 2, . . . , N,where Pp denotes the spa
e of polynomials of degree p and, formally, we set P−2 := P−1 :=
P0. 7



Remark 3.4. The de�nition of the spa
es Si 
ould be generalized by 
hoosing lo
al poly-nomial degrees pi depending on the lo
al pat
hes Θi in the spirit of adaptive hp methods.We do not elaborate on this aspe
t here.The global PUM spa
e S 
ontains linear 
ombinations of produ
ts of polynomials andfun
tions of the partition of unity {ϕi}. To derive error estimates for the PUM we remarkthat the spa
es Si meet the following approximation property: Let u ∈ Hk(Θ), k ≥ 1.Then, for ea
h pat
h Θi, 1 ≤ i ≤ N , there exists uSi ∈ Si su
h that
‖u− uSi‖L2(Θi) ≤ C1|Θi|min(k−1,p)+1‖u‖Hk(Θi),

‖u′ − u′Si
‖L2(Θi) ≤ C2|Θi|min(k−1,p)‖u‖Hk(Θi),where C1 and C2 depend on k, p and cmax. From [2, Theorem 1℄ we 
on
lude that theglobal approximation
uS =

N
∑

i=1

ϕiuSi ∈ S ⊂ H1(Θ)satis�es the error bounds
‖u− uS‖L2(Θ) ≤ 2C1Θ̃

min(k−1,p)+1‖u‖Hk(Θ), (3.6)
‖u′ − u′S‖L2(Θ) ≤ 2C2

√

8π−1/2cmax + 2 Θ̃min(k−1,p)‖u‖Hk(Θ).where Θ̃ := max1≤i≤N |Θi|. For the implementation of this method we need a basis ofthe PUM spa
e. It 
an be determined by multiplying the basis elements of the lo
alapproximation spa
es with the appropriate partition of unity fun
tion. An L2(−1, 1)-orthogonal basis of Pp is given by the Legendre polynomials {Pm}pm=0. An appropriates
aling results in a basis of the PUM spa
e S:
b1,m (t) := ϕ1(t) t

2Pm−2

(

2

t1
t− 1

)

m = 2, . . . ,max(2, p),

bi,m (t) := ϕi(t)Pm

(

2
t− ti−2

ti − ti−2
− 1

)

m = 0, . . . , p, i = 2, . . . , N − 1, (3.7)
bN,m (t) := ϕN (t)Pm

(

2
t− tN−2

tN−1 − tN−2
− 1

)

m = 0, . . . , p.Figure 3.2 shows the shape of these basis fun
tions for some di�erent values of m on anonuniform time grid. For m = 0 the basis fun
tions are simply the shape fun
tions of thepartition of unity. For higher m this fun
tion is multiplied by the appropriate Legendrepolynomial.4. Properties of the temporal basis fun
tionsIn this se
tion we investigate the growth behaviour of the k-th derivative of the bumpfun
tions ρa,b,c whi
h were introdu
ed in the last se
tion. In the 
ontext of a Galerkindis
retization, an important property of these fun
tions and fun
tions whi
h are 
omposedof them is, whether they allow for a fast numeri
al integration. In this light, we analyzethe error that arises from approximating integrals of the form
Iρa,b,c :=

∫ c

a
ρa,b,c(t) dt =

c− a

2
(4.1)8
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Figure 3.2: Basis fun
tion of S for t0 = 0,t1 = 0.8 and t2 = 2by a n-point Gauss-Legendre quadrature rule in the interval [a, c], denoted by Qnρa,b,c.We 
arry out the quadrature error analysis for these simple integrals in quite some detailby using the derived growth estimates of our bump fun
tions and its derivatives. We
onsider this analysis as an important �rst step in order to estimate the quadrature errorfor integrals of the form (3.4) using tensorized Gauss quadrature rules. Note, however,that for the full spa
e-time integrals the singularity at r = ‖x− y‖ = 0 has to be takeninto a

ount in the spatial part of the quadrature method, e.g., by using regularizing
oordinates (
f. [24℄). An analysis of the arising quadrature error for the full spa
e-timeintegral is still an open question and we expe
t that it 
an be based on the results derivedin this se
tion.Re
all that for given a < b < c ∈ R, the fun
tions ρa,b,c(t) are C∞-bump fun
tions withsupp ρa,b,c = [a, c]. It is well known that Gauss-Legendre quadrature 
onverges exponen-tially for integrands that are analyti
 in a su�
iently large (
omplex) neighborhood ofthe integration domain. Sin
e the fun
tions ρa,b,c(t) are smooth but not analyti
 in thepoints a, b and c, these 
lassi
al estimates for the quadrature error
Enρa,b,c := |Iρa,b,c −Qnρa,b,c|do not hold. We de�ne the linear s
aling fun
tions

ζr,s : [r, s] → [−1, 1], t 7→ 2
t− r

s− r
− 1 and its inverse

ξr,s : [−1, 1] → [r, s], t 7→ 1

2
(s− r)(t+ 1) + r.In order to �nd bounds for Enρa,b,c we need the following Lemma.9



Lemma 4.1. Let n ∈ N and 1 ≤ k ≤ 2n. Then we have for g ∈ Ck+1([a, b]),
|Ig −Qng| ≤

32

15π

(

b− a

2

)k+1 1

k(2n + 1− k)k

∫ b

a

|g(k+1)(t)|
√

1− ζa,b(t)2
dt.Proof. For the interval [a, b] = [−1, 1], Theorem 4.5 in [28℄ gives

|Ig −Qng| ≤
32

15π

1

k(2n + 1− k)k

∫ 1

−1

|g(k+1)(t)|√
1− t2

dtfor k ∈ {1, . . . , 2n}. For general [a, b], a linear 
hange of variable leads to
|Ig −Qng| ≤

32

15π

(

b− a

2

)k+2 1

k(2n + 1− k)k

∫ 1

−1

|g(k+1)(ξa,b(t))|√
1− t2

dt.The substitution t = ζa,b(t) leads to the desired result.In our 
ase Lemma 4.1 reads
Enρa,b,c ≤

32

15π

(

c− a

2

)k+1 1

k(2n + 1− k)k

∫ c

a

∣

∣

∣
ρ
(k+1)
a,b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt.The de�nition of ρa,b,c(t) leads to

Enρa,b,c ≤
32

15π

(

c− a

2

)k+1 1

k(2n + 1− k)k





∫ b

a

∣

∣

∣
h
(k+1)
a,b (t)

∣

∣

∣

√

1− ζa,c(t)2
dt+

∫ c

b

∣

∣

∣
h
(k+1)
b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt



 .(4.2)The formula above shows that we have to estimate the derivatives of the 
uto� fun
tions
ha,b and hb,c .Lemma 4.2. The 
uto� fun
tion ha,b satis�es the estimate

∣

∣

∣h
(k+1)
a,b (t)

∣

∣

∣ ≤ C2

b− a

(

2C1

b− a

)k

k!

∣

∣

∣

∣

∣

e−2 arctanh2(ζa,b(t))

(1− ζa,b(t)2)
k+1

∣

∣

∣

∣

∣

qk(ζa,b(t))for k ≥ 1 with q(t) := ln 4
1−t2

, C1 := 6
√
2 e and C2 =

10κ√
π

C1 ln(4)
C1 ln(4)−2 where κ ≈ 1.086435.Proof. Use Theorem A.4 and the 
hain rule.Further estimation of the bound in Lemma 4.2 leads to:Lemma 4.3. Let q(x), C1 and C2 be as in Lemma 4.2. Then we have

∥

∥

∥h
(k+1)
a,b

∥

∥

∥

∞
≤ C2

b− a

(

2λ41/λC1

b− a

)k

k! eσ(1+1/λ)k+1for k ≥ 1 and λ > 0, where
σα :=

1

4
α2 +

1

2
− ln

(

1

2
α+

1

2

√

α2 − 4

)10



for α ≥ 2.Proof. Sin
e
qk(x) =

(

ln
4

1− x2

)k

≤
(

41/λλ
)k
(

1

1− x2

)k/λfor λ > 0, the result follows from Lemma 4.2and Lemma A.5. 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

α

σα

Corollary 4.4. The bump fun
tion ρa,b,c satis�es the estimate
‖ρ(k+1)

a,b,c ‖∞ ≤ ‖h(k+1)
a,b ‖∞ in the 
ase b− a ≤ c− b,

‖ρ(k+1)
a,b,c ‖∞ ≤ ‖h(k+1)

b,c ‖∞ in the 
ase c− b ≤ b− a.In order to estimate Enρa,b,c, we assume that b−a ≤ c− b, the other 
ase being treatedanalogously. Furthermore we assume c− a ≤ cmax(b− a), whi
h 
orresponds to the lo
alquasiuniformity of a given time mesh. With
1

√

1− ζa,c(t)2
≤ cmax
√

1− ζa,b(t)2
, t ∈ (a, b),Lemma 4.2, Lemma A.5, and Lemma A.6 we get

∫ b

a

∣

∣

∣h
(k+1)
a,b (t)

∣

∣

∣

√

1− ζa,c(t)2
dt ≤ C2

b− a

(

2C1

b− a

)k

k!

∫ b

a

∣

∣

∣e−2 arctanh2(ζa,b(t))
∣

∣

∣ qk(ζa,b(t))
∣

∣

∣
(1− ζa,b(t)2)

k+1
∣

∣

∣

√

1− ζa,c(t)2
dt

≤ C2cmax

b− a

(

2C1

b− a

)k

k!

∫ b

a

∣

∣

∣e−2 arctanh2(ζa,b(t))
∣

∣

∣ qk(ζa,b(t))
∣

∣

∣
(1− ζa,b(t)2)

k+3/2
∣

∣

∣

dt

≤ C2cmax

b− a

(

2C1

b− a

)k

k! eσk+3/2

∫ b

a
qk(ζa,b(t))dt

≤ C2cmax

2

(

2C1

b− a

)k

k! eσk+3/2

∫ 1

−1
qk(t)dt

≤ 8C2cmax

(

2C1

b− a

)k

(k!)2 eσk+3/2 ,where σk+3/2 is as in Lemma 4.3. Similar arguments show that also
∫ c

b

∣

∣

∣
h
(k+1)
b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt ≤ 8C2cmax

(

2C1

b− a

)k

(k!)2 eσk+3/2holds. With (4.2) the quadrature error 
an be estimated by
Enρa,b,c ≤

256C2 cmax (c− a)

15π

1

k(2n + 1− k)k
(C1cmax)

k (k!)2 eσk+3/211



for k ∈ {1, . . . , 2n}. Finally, Stirling's estimate k! ≤ 1.1
√
2πk kk e−k yields

Enρa,b,c ≤ 41.5C2 cmax (c− a)

(

C1cmaxk
2

(2n + 1− k) e2

)k

eσk+3/2for k ∈ {1, . . . , 2n}. It remains to 
hoose k su
h that the right-hand side in the aboveinequality be
omes small. We de�ne
Ecmax(n, k) :=

(

C1cmaxk
2

(2n+ 1− k) e2

)k

eσk+3/2for k ∈ {1, . . . , 2n}. The next Lemma shows that Ecmax(n, k) de
ays superalgebrai
allyfor an appropriate 
hoi
e of k.Lemma 4.5. Let γ ∈
(

0, 34
) and a, b, c ∈ R with c− a ≤ cmax(b− a) be given. If n ∈ N≥3satis�es the 
ondition
(lnn)2n−3/4+γ ≤ 2− e−2

C1cmax e−1/4
, (4.3)the error bound

Enρa,b,c ≤ Ĉn−γ ln(n)holds, with Ĉ := 41.5C2 cmax (c− a)
(

2− e−2
)

e17/16.Proof. Sin
e
σk+3/2 ≤

1

4
k2 +

3

4
k +

17

16
,we have

Ecmax(n, k) ≤ e17/16
(

C̃
)k
k2k(2n + 1− k)−k ek

2/4where C̃ := C1cmax e
−5/4. We set k = ⌊ln(n)⌋ and get

Ecmax(n, ⌊ln(n)⌋) ≤ e17/16
(

C̃
)⌊ln(n)⌋

⌊ln(n)⌋2⌊ln(n)⌋(2n + 1− ⌊ln(n)⌋)−⌊ln(n)⌋ e⌊ln(n)⌋
2/4

≤ e17/16
(

C̃
)ln(n)

ln(n)2 ln(n)(2n+ 1− ln(n))− ln(n)+1 e(lnn)2/4 .Simple 
al
ulus shows
1− ln(n) ≥ − e−2 n for n ∈ N,so that the error 
an be estimated by

Ecmax(n, ⌊ln(n)⌋) ≤
(

2− e−2
)

e17/16

(

C̃

2− e−2

)ln(n)

(ln n)2 ln(n)n− ln(n)+1 eln(n)
2/4 .Applying the logarithm on both sides yields

ln
(

Ecmax(n, ⌊ln(n)⌋)
)

≤ ln
(

(

2− e−2
)

e17/16
)

+ ln(n)

[

ln

(

C̃

2− e−2

)

+ 2 ln(ln(n)) + 1− 3

4
ln(n)

]

.12



For given γ ∈
(

0, 34
), let n satisfy 
ondition (4.3). Then we get

ln
(

Ecmax(n, ⌊ln(n)⌋)
)

≤ ln
(

(

2− e−2
)

e17/16
)

− γ(ln n)2,whi
h leads to the desired result.Remark 4.6. The asymptoti
 behaviour of the error bound in Lemma 4.5 is sharp in thesense that the 
hoi
e k = ⌊(lnn)δ⌋ with δ > 1 leads to the divergen
e of Ecmax(n, k) if ntends to in�nity.Although Lemma 4.5 suggests that the error of Gauss-Legendre quadrature applied tointegrals of the form (4.1) de
reases superalgebrai
ally but not exponentially, we wantto show numeri
ally that Ecmax(n, k) de
ays faster for 
ertain ranges of n. In order todemonstrate this, an appropriate 
hoi
e of k is 
ru
ial. Lemma 4.5 shows that k has tobe 
hosen very small 
ompared to n due to the fast growth of the derivatives of ρa,b,c.To illustrate this, Table 1 shows the optimal k, denoted by kopt, su
h that Ecmax(n, k) isminimal for given n and di�erent cmax.
cmax = 2.0

n 2-680 681-5929 5930-33776 33777-157999 158000-659277
kopt 1 2 3 4 5

cmax = 2.2
n 2-748 749-6522 6523-37153 37154-173799 173800-725205
kopt 1 2 3 4 5

cmax = 2.4
n 2-816 817-7115 7116-40531 40532-189598 189599-791132
kopt 1 2 3 4 5Table 1: kopt for di�erent ranges of n and di�erent cmax .Based on these observations we 
hoose k optimal for every n and want to determine

r, δ ∈ R≥0 su
h that the estimate
Ecmax(n, kopt) ≤ r e−nδholds for a preferably large range nmin ≤ n ≤ nmax.

cmax δ r nmin nmax Ecmax(nmax, kopt)2.0 0.25 18 11 846975 ≈ 1.2 · 10−120.26 18 12 92231 ≈ 5.9 · 10−82.2 0.25 20 11 649170 ≈ 9.4 · 10−120.26 20 12 67353 ≈ 3.0 · 10−72.4 0.25 22 11 545048 ≈ 3.5 · 10−110.26 22 12 33776 ≈ 6.4 · 10−6Table 2: Results for di�erent 
hoi
es of cmax, δ and r.Table 2 shows the results of numeri
al experiments. It 
an be observed that Enρa,b,c =
O
(

e−n1/4
) for a large range of n in the 
ase cmax ∈ {2.0, 2.2, 2.4}.13



Figure 4.1 shows the de
ay of the error in the 
ase of the bump fun
tion ρ0, 10
11

,2 whi
h
orresponds to cmax = 2.2. It 
an be observed that Enρ0, 10
11

,2, whi
h represents the relativeerror sin
e Iρ0, 10
11

,2 = 1, de
ays even faster than predi
ted by theory at least for thosea

ura
ies that are of interest in pra
ti
al 
omputations.The in�uen
e of cmax is rather small in pra
ti
e. Numeri
al tests show that the errorbehaviour is similar to the one in Figure 4.1 for di�erent (moderate) cmax.
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11
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e−n3/5

Figure 4.1: Quadrature error for the 
ase cmax = 2.2, i.e., we 
onsider the bump fun
tion ρ0, 10
11

,2.5. Appli
ation to a problem on the sphereIn this se
tion we apply a Galerkin method using our new basis fun
tions in time to theintegral equation (2.3) in the 
ase where the boundary Γ is the unit sphere S
2. Further-more we assume that the right-hand side g is 
ausal i.e. g(x, t) = 0 for t ≤ 0 and that atleast the �rst time derivative of g vanishes at t = 0. Moreover, g is supposed to be of theform

g(x, t) = g(t)Y m
n ,where Y m

n denotes a spheri
al harmoni
 of degree n and order m. This setting was alreadyused in [6℄ and allows to redu
e the boundary integral equation (2.3) to a univariateproblem in time. To see this note that an equivalent formulation of the retarded singlelayer potential (2.2) is given by
Sφ(x, t) =

∫ t

0

∫

Γ
k(x− y, t− τ)φ(y, τ)dΓydτ, (x, t) ∈ Ω× [0, T ] , (5.1)14



where k(z, t) is the fundamental solution of the wave equation,
k(z, t) =

δ(t− ‖z‖)
4π‖z‖ ,

δ(t) being the Dira
 delta distribution. Furthermore we introdu
e the single layer poten-tial for the Helmholtz operator ∆U − s2U = 0 whi
h is given by
(V (s)ϕ)(x) :=

∫

Γ
K(s, x− y)ϕ(y, τ)dΓy ,where

K(s, z) :=
e−s‖z‖

4π‖z‖is the fundamental solution of the Helmholtz equation in three dimensions. An importantproperty of the single layer potential V (s) is that
V (s)Y m

n = λn(s)Y
m
n , (5.2)i.e., the spheri
al harmoni
s Y m

n are eigenfun
tions of this operator with eigenvalues λn(s).The latter 
an be expressed in terms of modi�ed Bessel fun
tions Iκ and Kκ (see [1℄)
λn(s) = In+ 1

2
(s)Kn+ 1

2
(s). (5.3)Next, we will transform equation (2.3) into frequen
y domain using Lapla
e transforma-tions. Property (5.2) and a ba
k transformation then leads to a univariate problem intime. Re
all the de�nition of the Lapla
e transform

φ̂(s) := (Lφ)(s) =
∫ ∞

0
φ(t) e−st dtwith inverse

(L−1φ̂)(s) =
1

2πi

∫ σ+i∞

σ−i∞
φ̂(s) est ds.Note that the fundamental solution of the Helmholtz equation is the Lapla
e transformof the fundamental solution of the wave equation. Using the representation (5.1) for Sand expressing k in terms of its Lapla
e transform leads to the integral equation

g(t)Y m
n =

∫ t

0

∫

Γ
k(t− τ, ‖x− y‖)φ(y, τ)dΓydτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0
esτ
∫

Γ
K(s, ‖x− y‖)φ(y, t− τ)dΓydτds

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0
esτ (V (s)φ(·, t− τ))(x)dτds.Inserting the ansatz φ(x, t) = φ(t)Y m

n and using (5.2) leads to the one dimensional prob-lem: Find φ(t) su
h that
∫ t

0
L−1(λn)(τ)φ(t − τ)dτ = g(t), t ∈ [0, T ]. (5.4)Note that φ(t)Y m

n where φ(t) satis�es (5.4) is a solution of the full problem (2.1) in the
ase where Γ = S
2 and g(x, t) = g(t)Y m

n . In order to analyse our new approa
h for thetemporal dis
retization we 
hoose (5.4) as our model problem.15



Example. Expli
it representations of the exa
t solutions of (5.4) were 
omputed in [25,29℄.(a) For n = 0 the solution is given by
φ(t) = 2

⌊t/2⌋
∑

k=0

g′(t− 2k). (5.5)(b) For n = 1 we have
φ(t) = 2

⌊t/2⌋
∑

k=0

(−1)kg′(t− 2k) + 2

∫ t

0
sinh(τ)g′(t− τ)dτ

− 2

⌊t/2⌋
∑

k=1

k
∑

j=1

∫ t

2k
(c

(2)
k,j + c

(3)
k,jτ − c

(3)
k,j2k)(τ − 2k)j−1 eτ−2k g′(t− τ)dτ. (5.6)where

c
(2)
k,j = (−1)k+1

j−1
∑

m=0

(1− (−1)j−m)k!

(j − 1)!m!(k − j)!(j −m)!
and

c
(3)
k,j = (−1)k+1 2j−1(k − 1)!

(j − 1)!j!(k − j)!
.These formulas will serve as referen
e solutions for our numeri
al experiments.In order to apply a Galerkin method to (5.4) we need a suitable variational formulation.If we 
hoose VGalerkin in (3.2) by VGalerkin = Y m

n S, the spa
e-time Galerkin dis
retizationde
ouples and redu
es to the purely temporal problem:Find φS ∈ S :

∫ T

0

∫ t

0
L−1(λn)(τ)φ̇S(t− τ)ζ(t)dτdt =

∫ T

0
ġ(t)ζ(t)dt ∀ζ ∈ S. (5.7)For the numeri
al solution of this equation we employ the representation with respe
t tothe PUM basis (
f. (3.7)) and de�ne the index set

Pi :=

{

{2, 3, . . .max {2, p}} i = 1,

{0, 1, . . . , p} 2 ≤ i ≤ N.Then, inserting the ansatz
φS(t) =

N
∑

i=1

∑

m∈Pi

αi,mbi,m(t)leads to the dis
rete problem: Find αi,m su
h that
N
∑

i=1

∑

m∈Pi

αi,m

∫ T

0

∫ t

0
L−1(λn)(t− τ)ḃi,m(τ)bj,k(t)dτdt =

∫ T

0
ġ(t)bj,k(t)dt (5.8)16



for j = 1, 2, . . . , N and k ∈ Pj . In order to �nd the solution of (5.8) we have to 
ompute
L−1(λn)(t). After some algebrai
 manipulations (
f. [25℄) we obtain from (5.3)

λn(s) =

2n
∑

l=0

cIn,l

sl+1
+ e−2s

2n
∑

l=0

cIIn,l

sl+1
,where

cIn,l :=

{

∑l
j=0

1
2 (−1)l−j(n, l − j)(n, j), for l ≤ n,

∑n
j=l−n

1
2(−1)l−j(n, l − j)(n, j), for n < l ≤ 2n,and

cIIn,l :=

{

∑l
j=0

1
2(−1)n+1(n, l − j)(n, j), for l ≤ n,

∑n
j=l−n

1
2 (−1)n+1(n, l − j)(n, j), for n < l ≤ 2nwith (n, k) := (n+k)!

2kk!(n−k)!
. The inverse Lapla
e transform of λn(s) is therefore given by

L−1(λn)(t) =

2n
∑

l=0

cIn,l

l!
tlH(t) +

2n
∑

l=0

cIIn,l

l!
(t− 2)lH(t− 2),where

H(t) =

{

0 t ≤ 0,

1 t > 0denotes the Heaviside step fun
tion. This shows that the dis
rete problem (5.8) is equiv-alent to: Find αi,m su
h that
N
∑

i=1

∑

m∈Pi

αi,m

[∫ T

0

∫ t

0
qIn(t− τ)bi,m(τ)ḃj,k(t)dτdt

+

∫ T

0

∫ t

0
qIIn (t− τ − 2)H(t− τ − 2)bi,m(τ)ḃj,k(t)dτdt

]

=

∫ T

0
g(t)ḃj,k(t)dt (5.9)for j = 1, . . . , N , k ∈ Pj , where

qIn(t) :=

2n
∑

l=0

cIn,l

l!
tl and qIIn (t) :=

2n
∑

l=0

cIIn,l

l!
tl.We now turn our attention to the numeri
al 
omputation of the double integral

∫ T

0

∫ t

0
qIn(t− τ)bi,m(τ)ḃj,k(t)dτdt (5.10)arising in (5.9). Therefore letsupp bi,m = Θi = [mi,Mi] andsupp bj,k = Θj = [mj,Mj ].We write � . . .� short for �qIn(t−τ)bi,m(τ)ḃj,k(t)dτdt� and distinguish between the followingsix 
ases (see Figure 5.1): 17



t

τ (T, T )

Θj̃

Θĩ(a) Domain of integration 
ase(i) t

τ (T, T )

Θj̃

Θĩ

(b) Domain of integration 
ase(ii) t

τ (T, T )

Θj̃

Θĩ

(
) Domain of integration 
ase(iii)
t

τ (T, T )

Θj̃

Θĩ

(d) Domain of integration 
ase(iv) t

τ (T, T )

Θj̃

Θĩ

(e) Domain of integration 
ase(v) t

τ (T, T )

Θj̃

Θĩ

(f) Domain of integration 
ase(vi)Figure 5.1: Di�erent domains of integration for integral (5.10)(i) mi ≤Mi ≤ mj ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫

Θj

∫

Θi

. . .(ii) mi ≤ mj ≤Mi ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫ Mi

mj

∫ t

mi

. . .+

∫ Mj

Mi

∫

Θi

. . .(iii) mj ≤ mi ≤Mj ≤Mi. Then,
∫ T

0

∫ t

0
. . . =

∫ Mj

mi

∫ t

mi

. . .(iv) mi ≤ mj ≤Mj ≤Mi. Then,
∫ T

0

∫ t

0
. . . =

∫

Θj

∫ t

mi

. . .

18



(v) mj ≤ mi ≤Mi ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫

Θi

∫ t

mi

. . . +

∫ Mj

Mi

∫

Θi

. . .(vi) mj ≤Mj ≤ mi ≤Mi. Then,
∫ T

0

∫ t

0
. . . = 0.The 
omputation of the se
ond double integral

∫ T

0

∫ t

0
qIIn (t− τ − 2)H(t − τ − 2)bi,m(τ)ḃj,k(t)dτdtin (5.9) is similar. Note that this integral vanishes for T ≤ 2. For T > 2 we have todistinguish between six 
ases as for the integrals in (5.10). We do not detail this here.Remark 5.1. The resulting integration domains in the 
ases (i)-(vi) are either re
tanglesor triangles. Be
ause simplex 
oordinates transform triangles to squares, we 
an restri
t tore
tangular integration domains and apply properly s
aled n-point tensor Gauss-Legendrequadrature rules for the numeri
al approximation of the arising integrals.6. Numeri
al ExperimentsIn this se
tion we present the results of numeri
al experiments. We solve the set ofequations (5.9) in order to obtain a numeri
al solution of (5.4). The resulting error ofthe approximation, φS − φ, will be measured in the L2(0, T ) norm. L2(0, T ) is a suitablespa
e for the solutions of (5.4) sin
e it 
an be shown that if φ(t) ∈ L2(0, T ), then the
orresponding solution of the full problem (2.3) satis�es φ(t)Y m

n ∈ H−1/2,−1/2(Γ× [0, T ]).
φ 
ould also be 
onsidered in larger spa
es than L2(0, T ) but we expe
t analogous resultsof the numeri
al experiments in su
h spa
es. We begin with the numeri
al tests and set

g(t) =

{

t4 e−2t t ≥ 0,

0 t < 0.In the following we 
he
k the sharpness of the 
onvergen
e rates predi
ted by the theoryin (3.6) for n = 0 and n = 1. We saw that the formulas for the exa
t solution of (5.4)involve derivatives of the right-hand side g (
f. (5.5) and (5.6)). Sin
e g ∈ H4(R) wetherefore have φ ∈ H3(R). Thus we expe
t a 
onvergen
e rate with respe
t to the L2error of h if we 
hoose p = 0, i.e., if we approximate simply by the shape fun
tions ofthe partition of unity. We expe
t a 
onvergen
e rate of h2 if we 
hoose p = 1. These
onvergen
e rates 
ould be 
on�rmed by the numeri
al experiments (see Figure 6.1).Next, we investigate the behaviour of the method for a right-hand side that is lesssmooth:
g(t) =

{

sin2(2t) e−t t ≥ 0,

0 t < 0.Note that g ∈ H2(R) and therefore φ ∈ H1(R). Hen
e we expe
t a 
onvergen
e rate of hin the 
ase p = 0. Due to the la
k of smoothness of the solution we do not expe
t that19
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(b) lo
al polynomial approximation spa
es ofdegree p = 1Figure 6.1: Log-log s
ale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) = t4 e−2t and n as in (5.4).higher order PUM spa
es lead to better 
onvergen
e rates. Indeed Figure 6.2(b) indi
atesthat in the 
ase p = 1 a 
onvergen
e rate of h2 is not a
hieved.The PUM with smooth basis fun
tions (3.7) allows variable time steps whi
h 
an beadapted to the smoothness, e.g., of the right-hand side. In the following we illustrate thebene�t of this feature by a numeri
al example. We 
hoose the right-hand side by
g(t) =

{

− sin(35t)t3 e−12(4t−4)2 t ≥ 0,

0 t < 0.As we 
an see in Figure 6.3 this fun
tion has a sharp pulse in the interval (1− 1
5 , 1 +

1
5)and is almost zero otherwise. A similar behaviour 
an be observed for the 
orrespondingsolution φ for n = 0. The 2-periodi
ity in (5.5) however implies that φ has peaks in smallneighborhoods of all time points t = 2l + 1, l ∈ N (
f. Figure 6.4). Therefore we willemploy a time mesh whi
h is graded towards the time points t = 2l+1 where the solutionis highly os
illatory. We use a quadrati
 grading of the uniformly distributed mesh pointstowards the origin:

±
(

i

m

)2

0 ≤ i ≤ m.We number these mesh points from left to right −1 = t̃0 < . . . < t̃2m = 1. Translation ofthese points to the time intervals [2l, 2l + 2] leads to the time mesh in Figure 6.4.Figure 6.5 shows the error plots for this right-hand side for n = 0 and p = 1, 2. One 
ansee that the error for the variable time mesh is 
onsiderably smaller than the error for theequidistant grid. Moreover the 
onvergen
e starts earlier and the asymptoti
 
onvergen
erate is already in the preasymptoti
 range. This shows that variable time stepping 
animprove the dis
retization substantially if knowledge about the solution is available. Weexpe
t similar bene�ts for the full problem.Finally, we will show the performan
e of our method as a p-version for problems withsmooth solutions, where we �x the number of timesteps and in
rease the polynomialdegree of the lo
al approximation spa
es. Figure 6.6 shows two error plots for 5 and20
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Figure 6.4: Corresponding solution of (5.4)for n = 0 and a time grid with variable mesh-width.
10 timesteps, where we again set g(t) = t4 e−2t for t > 0. Re
all that g ∈ H4(R) andtherefore φ ∈ H3(R). Thus the following error estimate holds (
f. [2℄):

‖φS − φ‖L2([0,6]) ≤ Cp−2‖φ‖H3([0,6]).7. Con
lusionWe have introdu
ed a new set of basis fun
tions in time for the dis
retization of retardedboundary integral formulations of the wave equation. The obtained basis fun
tions aresmooth, 
ompa
tly supported, allow variable order of approximation and 
an be easilyde�ned on an arbitrary time grid. In order to test the approa
h we applied a Galerkinmethod to a spe
ial 
ase of the wave equation on the sphere for whi
h analyti
 solutions are21
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ale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) = t4 e−2t.available. These solutions were used as referen
e solutions for the numeri
al experiments.It 
ould be shown that the use of variable stepsizes in time 
an improve the 
onvergen
eof the Galerkin s
heme 
onsiderably provided that information about the behaviour ofthe solution is known in advan
e.In a forth
oming paper we will apply this approa
h to the full problem i.e. we will use aGalerkin method in spa
e and time where we 
hoose pie
ewise polynomial basis fun
tionsin spa
e and our smooth PUM spa
e in time in order to dis
retize the problem. The globalsmoothness of the basis fun
tion in time will simplify the 
omputation of the entries of theboundary element matrix 
onsiderably sin
e the numeri
al handling of the 
ompli
ated22



geometry of the dis
rete light 
one with the surfa
e panels be
omes super�uous � the useof 
urved surfa
e panels be
omes straightforward. Furthermore the boundary elementmatrix will be sparse due to the 
ompa
t support of the basis fun
tions.A
knowledgement. Thanks are due to Christoph S
hwab for fruitful dis
ussions 
on-
erning the use of the PUM for the time dis
retization.A. Te
hni
al estimatesIn this se
tion we want to estimate the n-th derivative of the fun
tion f as de�ned in(3.5). Therefore let
h (z) := erf (z) and g (x) := arctanh x =

1

2
ln

1 + x

1− xsu
h that f := h ◦ 2g. Note that [1, (7.1.19)℄ implies
h(n+1) (z) = (−1)n

2√
π
Hn (z) e

−z2 n = 0, 1, 2, . . .where Hn are the Hermite polynomials. Hen
e,
f (n+1) (x) =

(

d

dx

)n( 4√
π (1− x2)

e−4g2(x)

) (A.1)
=

4√
π

n
∑

ℓ=0

(n
ℓ

)

(

1

1− x2

)(ℓ)
(

e−4g2(x)
)(n−ℓ)

.Lemma A.1 (Derivatives of g). It holds
(

1

1− x2

)(ℓ)

=
ℓ!pℓ (x)

(1− x2)ℓ+1
∀x ∈ (−1, 1) ,where

pℓ (x) :=
(x+ 1)ℓ+1 − (x− 1)ℓ+1

2
.Furthermore, we have

∣

∣

∣
g(ℓ) (x)

∣

∣

∣
≤























1
2 ln

4

1− x2
ℓ = 0

(ℓ− 1)!2ℓ−1

(1− x2)ℓ
ℓ ∈ N≥1

∀x ∈ (−1, 1) , (A.2)as well as the more generous estimate
∣

∣

∣g(ℓ) (x)
∣

∣

∣ ≤ q (x)
ℓ!2ℓ−1

(1− x2)ℓ
∀ℓ ∈ N0 (A.3)with q (x) = ln 4

1−x2 . 23



Lemma A.2 (Derivative of 
omposite fun
tions). For n ≥ 1 and x ∈ (−1, 1) we have
(

e−4g2(x)
)(n)

= e−4g2(x)
n
∑

k=1

An,k (x) (−1)kHk (2g (x)) , (A.4a)where
An,k (x) =

2k

k!

k
∑

ν=1

(−1)k−ν (k
ν

)

gk−ν (x) (gν)(n) (x) (A.4b)and
(gν)(n) =

n
∑

ℓν−1=0

ℓν−1
∑

ℓν−2=0

...

ℓ2
∑

ℓ1=0

( n
ℓν−1

)(ℓν−1

ℓn−2

)

· · ·
(ℓ2
ℓ1

)

g(n−ℓν−1)g(ℓν−1−ℓν−2) · · · g(ℓ2−ℓ1)g(ℓ1).(A.5)Proof. The representation (A.4) follows from [27, formulae (2), (7)℄, while (A.5) is provedby indu
tion using Leibniz' produ
t rule for di�erentiation.Lemma A.3 (Estimate of derivatives of 
omposite fun
tions). For n ≥ 1 and x ∈ (−1, 1)we have
∣

∣

∣

∣

(

e−g2(x)
)(n)

∣

∣

∣

∣

≤ 5

2
κn! e−2g2(x)

(

C1q (x)

1− x2

)n (A.6)with κ ≈ 1.086435 and C1 = 6
√
2 e.Proof. From (A.3) and (A.5) we 
on
lude for all n ≥ 1, ν ≥ 1, and x ∈ (−1, 1)

∣

∣

∣
(gν)(n) (x)

∣

∣

∣
≤ n!2n−ν qν (x)

(1− x2)n

n
∑

ℓν−1=0

ℓν−1
∑

ℓν−2=0

...

ℓ2
∑

ℓ1=0

1

= n!2n−ν qν (x)

(1− x2)n

(

n+ ν − 1

ν − 1

)

. (A.7)Thus, from (A.4b) we get that
|An,k (x)| ≤

2kn!

k!

qk (x)

(1− x2)n

k
∑

ν=1

(

k
ν

)

2n−ν

(

n+ ν − 1

ν − 1

)

≤ 2nn!

k!

qk (x)

(1− x2)n

(

n+ k

k

)k k
∑

ν=1

(

k
ν

)

2k−ν

≤ 2nn!

k!

1

(1− x2)n

(

3 (n+ k) q (x)

k

)k

. (A.8)From [1, (22.14.17)℄ we obtain
Hk (2g (x)) ≤ e2g

2(x) κ2k/2
√
k!.
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The 
ombination of (A.4), (A.5), (A.7) and (A.8) results in the estimate for the n-thderivative of e−4g2(x):
∣

∣

∣

∣

(

e−4g2(x)
)(n)

∣

∣

∣

∣

≤ κ2nn!
e−2g2(x)

(1− x2)n

n
∑

k=1

1√
k!

(

3
√
2 (n+ k) q (x)

k

)k

≤ κn! e−2g2(x)

(

6
√
2q (x)

1− x2

)n n
∑

k=1

1√
k!

(

n+ k

k

)k

≤ κn! e−2g2(x)

(

6
√
2 e q (x)

1− x2

)n n
∑

k=1

1√
k!

≤ 5

2
κn! e−2g2(x)

(

6
√
2 e q (x)

1− x2

)n

.Theorem A.4 (Estimate of n-th derivative of f ). We have
|f (n+1) (x) | ≤ C2C

n
1 n!

q(x)n

(1− x2)n+1
e−2g2(x)with C2 =

10κ√
π

C1 ln(4)
C1 ln(4)−2 .Proof. From (A.1), (A.2) and (A.6) we get

|f (n+1) (x) | ≤ 10κ√
π

n
∑

l=0

(

n

l

)

l!2l

(1− x2)l+1
(n− l)!

(

C1q(x)

1− x2

)n−l

e−2g2(x)

≤ 10κ√
π
Cn
1 n!

q(x)n

(1− x2)n+1
e−2g2(x)

n
∑

l=0

(

2

C1q(x)

)l

≤ 10κ√
π

C1 ln(4)

C1 ln(4)− 2
Cn
1 n!

q(x)n

(1− x2)n+1
e−2g2(x),whi
h leads to the desired result.Lemma A.5. For x ∈ (−1, 1) and α ≥ 2, we have

∥

∥

∥

∥

∥

e−2g2(x)

(1− x2)α

∥

∥

∥

∥

∥

∞
≤ eσαwith

σα :=
1

4
α2 +

1

2
− ln

(

1

2
α+

1

2

√

α2 − 4

)

.Proof. We set
e−2g2(x)

(1− x2)α
= esn(x),where

sn(x) := −2 arctanh(x)2 − α ln(1− x2).25



With the de�nition of arctanh(x) we get
sn(x) =− 2

[

1

2
ln(1 + x)− 1

2
ln(1− x)

]2

− α ln(1− x)− α ln(1 + x)

=− 1

2
[ln(1 + x)]2 + ln(1 + x) ln(1− x)− 1

2
[ln(1− x)]2

− α ln(1− x)− α ln(1 + x).Sin
e sn(x) is symmetri
 we assume 0 ≤ x < 1 and get
sn(x) ≤ −1

2
[ln(1− x)]2 − α ln(1− x) + ln(1 + x) ln(1− x) =: s̃n(x).

s̃n(x) is stri
tly in
reasing in the interval [0, 0.5] for arbitrary α ∈ R≥2. Therefore wemay restri
t to �nd an upper bound for s̃n(x) in the interval [0.5, 1[. With the inequality
ln(1 + x) ln(1− x) ≤ − ln(− ln(1− x)) we get

s̃n(x) ≤ −1

2
[ln(1− x)]2 − α ln(1− x)− ln(− ln(1− x)) =: ŝn(x)in [0.5, 1[. The derivative of ŝn(x) is given by
ŝ′n(x) =

[ln(1− x)]2 + α ln(1− x) + 1

(1− x) ln(1 − x)whi
h has the root
x0 = 1− e−θα ,where θα := 1

2α+ 1
2

√
α2 − 4. Inserting this above shows that

sn(x) ≤ αθα − 1

2
θ2α − ln θαwhi
h leads to the desired result after some straightforward manipulations.Lemma A.6. It holds

∫ 1

−1

(

ln
4

1− t2

)n

dt ≤ 16n!for n ∈ N.Proof. We �rst note that
∫ 1

−1
| ln(1− t)|i | ln(1 + t)|k−idt

=

∫ 0

−1
| ln(1− x)|i | ln(1 + t)|k−idt+

∫ 1

0
| ln(1− x)|i | ln(1 + t)|k−idt

≤ (ln 2)i
∫ 0

−1
| ln(1 + t)|k−idt+ (ln 2)k−i

∫ 1

0
| ln(1− t)|idt

= (ln 2)i
∫ 1

0
| ln(t)|k−idt+ (ln 2)k−i

∫ 1

0
| ln(t)|idt

= (ln 2)i(k − i)! + (ln 2)k−ii!,26



where we used [17, (2.711)℄ in the last step. With these 
omputations we get
∫ 1

−1

∣

∣

∣

∣

(

ln
4

1− t2

)n∣
∣

∣

∣

dt ≤
n
∑

k=0

(

n

k

)∫ 1

−1
| ln(1− t2)|k(ln 4)n−kdt

≤
n
∑

k=0

k
∑

i=0

(

n

k

)(

k

i

)

(ln 4)n−k
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−1
| ln(1− t)|i | ln(1 + t)|k−idt

≤
n
∑

k=0

k
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k

)(
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i

)
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∑
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)
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∑
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∑
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)
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∑
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