
A Galerkin Method for RetardedBoundary Integral Equations withSmooth and Compatly SupportedTemporal Basis FuntionsS. Sauter∗ A. Veit†‡
AbstratWe onsider retarded boundary integral formulations of the three-dimensional waveequation in unbounded domains. Our goal is to apply a Galerkin method in spaeand time in order to solve these problems numerially. In this approah the om-putation of the system matrix entries is the major bottlenek. We will propose newtypes of �nite-dimensional spaes for the time disretization. They allow variabletime-stepping, variable order of approximation and simplify the quadrature problemarising in the generation of the system matrix substantially. The reason is that thebasis funtions of these spaes are globally smooth and ompatly supported.In order to perform numerial tests onerning our new basis funtions we onsiderthe speial ase that the boundary of the sattering problem is the unit sphere. Inthis ase expliit solutions of the problem are available whih will serve as referenesolutions for the numerial experiments.AMS subjet lassi�ations. 35L05, 65N38, 65R20Keywords: retarded potentials, aousti sattering, boundary integral equations,partition of unity method, Galerkin approah, variable timesteps.1. IntrodutionMathematial modeling of aousti and eletromagneti wave propagation and its e�ientand aurate numerial simulation is a key tehnology for numerous engineering applia-tions as, e.g., in detetion (nondestrutive testing, radar), ommuniation (optoeletroniand wireless) and mediine (soni imaging, tomography). An adequate model problemfor the development of e�ient numerial methods for suh types of physial appliationsis the three-dimensional wave equation in unbounded exterior domains. In this setting
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the method of integral equations is an elegant approah sine it redues the problem inthe unbounded domain to an integral equation on the bounded surfae of the satterer.In this paper we apply a Galerkin method for the disretization of these retarded boundaryintegral equations (f. [3, 14, 18, 19℄). This approah allows variable time stepping andspatially urved satterers. Appliations where variable time stepping beomes importantinlude problems with non-ompatible Dirihlet-data at time t = 0 and/or satterers withvery non-uniform exentriities. Until now, a severe drawbak of this method was, how-ever, that the domain for the spatial integration is the intersetion of (possibly urved)pairs of surfae panels with the disrete light one whih is very ompliated to handlenumerially. Quadrature shemes tailored to this problem were derived for example in[16, 22, 26℄. These methods are restrited to polyhedral satterers and their implementa-tion is di�ult.Other approahes for the numerial disretization of retarded boundary integral equa-tions use olloation shemes (f. [8, 9, 12, 15, 23℄). Although they play an importantrole in pratie, the mathematial analysis of these methods is hallenging. In more thantwo dimensions stability and onvergene of olloation shemes an only be shown forspeial geometries (f. [13℄). Furthermore the appliation of these tehniques to urvedsatterers is di�ult. More reent approahes inlude methods based on bandlimitedinterpolation and extrapolation (f. [32, 31, 33, 34℄) and onvolution quadrature (f.[4, 5, 6, 7, 10, 20, 21, 30℄). The latter enjoys nie stability properties and allows to ap-ply many tehniques known from frequeny domain problems. However the stepsize forthe time disretization must be onstant in these methods and a generalization to non-uniform time meshes is not straightforward.In our paper we will present a new time disretization method for the retarded potentialequations whih irumvents the numerial integration over intersetions of the light onewith the spatial surfae mesh. For this purpose, we will introdue in�nitely smooth andompatly supported basis funtions in time. These funtions are onstruted by usingthe Partition of Unity Method (f. [2℄).In order to test the hoie of the new basis funtions numerially we onsider the waveequation on the sphere with Dirihlet boundary onditions. For the resulting problemsexpliit representations of the exat solutions are available (f. [25℄). We apply a Galerkinmethod using our basis funtions to these problems and perform numerial experiments.2. Integral Formulation of the Wave EquationLet Ω ⊂ R
3 be a Lipshitz domain with boundary Γ. We onsider the homogeneous waveequation

∂2t u−∆u = 0 in Ω× [0, T ] (2.1a)with initial onditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)and Dirihlet boundary onditions

u = g on Γ× [0, T ] (2.1)on a time interval [0, T ] for T > 0. In appliations, Ω is often the unbounded exterior ofa bounded domain. For suh problems, the method of boundary integral equations is an2



elegant tool where this partial di�erential equation is transformed to an equation on thebounded surfae Γ. We employ an ansatz as a single layer potential for the solution u,
u(x, t) := Sφ(x, t) :=

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dΓy, (x, t) ∈ Ω× [0, T ] (2.2)with unknown density funtion φ. S is also referred to as retarded single layer potentialdue to the retarded time argument t− ‖x− y‖ whih onnets time and spae variables.The ansatz (2.2) satis�es the wave equation (2.1a) and the initial onditions (2.1b).Sine the single layer potential an be extended ontinuously to the boundary Γ, theunknown density funtion φ is determined suh that the boundary onditions (2.1) aresatis�ed. This results in the boundary integral equation for φ,

∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖ dΓy = g(x, t) ∀(x, t) ∈ Γ× [0, T ] . (2.3)In order to solve this boundary integral equation numerially we introdue the followingspae-time variational formulation (f. [3, 18℄ ): Find φ suh that

∫ T

0

∫

Γ

∫

Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)
4π‖x− y‖ dΓydΓxdt =

∫ T

0

∫

Γ
ġ(x, t)ζ(x, t)dΓxdt (2.4)for all ζ, where we denote by φ̇ the derivative with respet to time.3. Numerial DisretizationWe turn our attention to the disretization of (2.4). In order to �nd an approximatesolution we apply a Galerkin method in spae and time. The variational formulation(2.4) is oerive in

H−1/2,−1/2(Γ× [0, T ]) := L2(0, T ;H−1/2(Γ)) +H−1/2(0, T ;L2(Γ)) (3.1)(f. [18℄) and is uniquely solvable in this Sobolev spae. Furthermore this ensures exis-tene and uniqueness of the solution of a onforming Galerkin disretization.Let VGalerkin be a �nite dimensional subspae of (3.1) being spanned by N basis fun-tions {bi}Ni=1 in time and M basis funtions {ϕi}Ni=1 in spae. This leads to the ansatz
φGalerkin(x, t) =

N
∑

i=1

M
∑

j=1

α
j
iϕj(x)bi(t), (x, t) ∈ Γ× [0, T ] , (3.2)where αj

i are the unknown oe�ients. Plugging the ansatz (3.2) into the variationalformulation leads to the Galerkin disretization: Find αj
i , i = 1, . . . , N, j = 1, . . . ,M suhthat

∫ T

0

∫

Γ

∫

Γ

N
∑

i=1

M
∑

j=1

α
j
iϕj(y)ḃi(t− ‖x− y‖)ϕl(x)bk(t)

4π‖x− y‖ dΓydΓxdt

=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdt3



for k = 1, . . . , N and l = 1, . . . ,M . A onvergene analysis of this Galerkin approahusing pieewise polynomial basis funtions in spae and time is given in [3℄.Rearranging terms shows that the above formulation is equivalent to: Find α
j
i for i =

1 . . . , N and j = 1, . . . ,M suh that
N
∑

i=1

M
∑

j=1

A
i,k
j,lα

j
i = gkl ∀1 ≤ k ≤ N ∀1 ≤ l ≤M, (3.3)where

gkl :=

∫ T

0

∫

Γ
ġ(x, t)ϕl(x) bk(t)dΓxdtand

A
i,k
j,l :=

∫

Γ

∫

Γ
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx

=

∫supp(ϕl)

∫supp(ϕj)
ϕj(y)ϕl(x)ψi,k(‖x− y‖)dΓydΓx (3.4)with

ψi,k(r) :=

∫ T

0

ḃi(t− r)bk(t)

4πr
dt,where r ∈ R>0. The omputation of a Galerkin solution via (3.3) leads to large linearsystem with NM unknowns. The orresponding boundary element matrix onsists of

N ×N bloks of size M ×M . Eah matrix blok is symmetri and furthermore sparse ifthe basis funtions in spae and time have ompat support (f. [25℄). This is due to thefat that ψi,k has ompat support in this ase and therefore only those ombinations of
j and l lead to nonzero matrix entries for whih

{‖x− y‖, x ∈ supp(ϕl), y ∈ supp(ϕj)} ∩ supp(ψi,k) 6= ∅.The numerial realization of the Galerkin method requires the e�ient and aurateapproximation of the matrix entries Ai,k
j,l whih is a major hallenge. In the literature(f. [18, 19, 26℄) pieewise polynomial basis funtions in time are employed while, then,

ψi,k(‖x − y‖) in general is only a pieewise analyti funtion in x ∈ supp(ϕl) and y ∈
supp(ϕj) (even if supp(ϕl) and supp(ϕj) are properly separated). Consequently, highorder Gauss rules are onverging only at a suboptimal rate. To obtain a su�iently highauray, the integration is arried out on the intersetions of the surfae panels with thedisrete light one, i.e., with the support of ψi,k(‖x − y‖). The stable handling of theseintersetions and the implementation of these quadrature rules is di�ult and espeiallyompliated for urved surfae pathes.In this paper, we will introdue in�nitely smooth and ompatly supported basis fun-tions in time. This will simplify the problem of omputing the matrix entries Ai,k

j,l on-siderably while maintaining the sparsity of the system matrix. Sine the integrand willbe smooth in this ase we an apply standard quadrature rules to the double integral in(3.4). Furthermore the disretization with urved surfae panels is straightforward sinethe numerial handling of the ompliated geometry of the intersetion of panels with thedisrete light one is irumvented. 4



The basis funtions in time that we will onstrut here, will not lead to a lower triangu-lar Toeplitz system as standard shemes using pieewise polynomial basis funtions andequidistant time grids. In our ase the boundary element matrix will be a blokmatrixwhere the lower triangular part in general is non-zero and also a few o�-diagonals arenon-vanishing. Therefore FFT-type methods for Toeplitz matries annot be used forthis type of matries � instead, e�ient iterative methods have to be employed (and,�rstly, developed). We expet that for ertain lasses of appliations, e.g., for problemswith non-ompatible Dirihlet data, the savings by using substantially less (variable)timesteps ompared to uniform time stepping are signi�ant and lead to a faster algo-rithm.The onstrution of the aforementioned basis funtions in time is in the spirit of thePartition of Unity Method (PUM) (f. [2℄). Before we de�ne and onstrut the �niteelement spae in time we reall some basi de�nitions of the PUM.De�nition 3.1. Let Θ := [0, T ] be the time interval and {Θi} be a losed over of Θsatisfying the overlap ondition
∃L ∈ N s.t ∀t ∈ Θ, #{i|t ∈ Θi} ≤ L.Let {ϕi} ⊂ Cm(R),m ∈ N0 be a partition of unity subordinate to the over {Θi} with
suppϕi ⊂ Θi,

∑

i ϕi ≡ 1 on Θ,

‖ϕi‖L∞(R) ≤ C∞, ‖ϕ′
i‖L∞(R) ≤ CG

|Θi| ,for all i where C∞ and CG are onstants and |Θi| denotes the length of the interval Θi.Then {ϕi} is alled a (L,C∞, CG) partition of unity of degree m subordinate to the over
{Θi}.Multiplying suh a partition of unity with loalized �nite dimensional spaes Si on-sisting of funtions with support in Θi leads to PUM spaes on [0, T ].De�nition 3.2. Let Θ and {Θi} be as in De�nition 3.1 and let {ϕi} be a (L,C∞, CG)partition of unity subordinate to {Θi}. Let Si ⊂

{

w ∈ L2(Θ) : suppw ∈ Θi

} be given.Then the spae
S :=

∑

i

ϕiSi :=

{

∑

i

ϕivi | vi ∈ Si

}

⊂ L2(Θ)is alled the PUM spae. The spaes Si are the loal approximation spaes.In De�nition 3.2, S is a subspae of L2(Θ). We an easily obtain smoother spaesby hoosing an appropriate partition of unity and smooth loal approximation spaes.As mentioned above our goal is to de�ne a PUM spae S ⊂ C∞(R) with smooth andompatly supported basis funtions. Therefore we will �rst onstrut a partition of unityof in�nite degree. Consider the funtion∗
f(t) :=











erf(2 artanh(t)), for |t| < 1,

−1, for t ≤ −1,

1, for t ≥ 1.

(3.5)
∗Note that this hoie of f is by no means unique. In [11, Se. 6.1℄, C∞ (R) bump funtions areonsidered (in a di�erent ontext) whih have ertain Gevrey regularity. They also ould be used forour partition of unity. 5



Lemma 3.3. The funtion f as de�ned in (3.5) belongs to C∞(R).Proof. It an be proved by indution that the m-th derivative of f in the interval (−1, 1)an be written as
f (m)(t) = C e−4 arctanh2(t)(t2 − 1)−m

m−1
∑

i=0

αi arctanh
i (t) tm−i−1for onstants C and αi. Therefore

lim
|t|→1

f (m)(t) = 0for arbitrary m ∈ N.Let a < b be two real numbers. We make a hange of variable and de�ne
ha,b(t) :=

1

2
f

(

2
t− a

b− a
− 1

)

+
1

2
.Then ha,b : R → [0, 1] is a C∞-funtion suh that

ha,b(t) =

{

0, for t ≤ a,

1, for t ≥ b.Now we an de�ne a C∞-bump funtion ρa,b,c for real numbers a < b < c by
ρa,b,c(t) :=

{

ha,b(t), for t ≤ b,

1− hb,c(t), for t ≥ b.Due to the above properties, ρa,b,c satis�es ρa,b,c ≥ 0 in R and
ρa,b,c(t) =

{

0, for t ≤ a and t ≥ c,

1, for t = b.Let us now onsider the losed interval Θ = [0, T ] and N (not neessarily equidistant)timesteps ti suh that 0 = t0 < t1 < t2 < . . . < tN−2 < tN−1 = T . We de�ne τi := [ti−1, ti]for i = 1, . . . , N − 1. Then a losed over {Θi} of Θ, satisfying the pointwise overlapondition in De�nition 3.1 with L = 2, is given by
Θ1 := τ1,

Θi := τi−1 ∪ τi for i = 2, . . . , N − 1,

ΘN := τN−1.Next we de�ne
ϕ1(t) := 1− ht0,t1(t),

ϕi(t) := ρti−2,ti−1,ti(t) for i = 2, . . . , N − 1,

ϕN (t) := htN−2,tN−1
(t).6
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Θ8Figure 3.1: Partition of unity {ϕi} subordinate to the over {Θi} for N = 4.Then {ϕi} is a smooth partition of unity subordinate to the over {Θi}. Figure 3.1shows an example of suh a set of funtions.We want a more detailed haraterization of this partition of unity in the sense ofDe�nition 3.1 in order to get error estimates for the PUM. Therefore we assume that thepartition is loally quasiuniform:
1 ≤ |Θi|

min{|τi−1|, |τi|}
≤ cmax for i = 2, . . . , N − 1with a moderate onstant cmax. By taking into aount

‖h′a,b‖L∞(R) =

∣

∣

∣

∣

h′a,b

(

a+ b

2

)∣

∣

∣

∣

=
4π−1/2

b− awe get
‖ϕ′

1‖L∞([0,T ]) =
4π−1/2

|Θ1|
,

‖ϕ′
i‖L∞([0,T ]) =

4π−1/2

min{|τi−1|, |τi|}
≤ 4π−1/2 cmax

|Θi|
for i = 2, . . . , N − 1,

‖ϕ′
N‖L∞([0,T ]) =

4π−1/2

|ΘN | .Sine ‖ϕi‖L∞([0,T ]) = 1 for i = 1, . . . , N we get that {ϕi} is a (2, 1, 4π−1/2cmax) partitionof unity of in�nite degree subordinate to the over {Θi}.With this onstrution of a smooth and ompatly supported partition of unity we willde�ne the global �nite element spae aording to De�nition 3.2. By taking into aountthat the exat solution of (2.1) and its derivative vanish at t = 0 we de�ne, for givenpolynomial degree p ∈ N, the spaes
S1 := t2Pp−2 on Θ1,

Si := Pp on Θi, i = 2, . . . , N,where Pp denotes the spae of polynomials of degree p and, formally, we set P−2 := P−1 :=
P0. 7



Remark 3.4. The de�nition of the spaes Si ould be generalized by hoosing loal poly-nomial degrees pi depending on the loal pathes Θi in the spirit of adaptive hp methods.We do not elaborate on this aspet here.The global PUM spae S ontains linear ombinations of produts of polynomials andfuntions of the partition of unity {ϕi}. To derive error estimates for the PUM we remarkthat the spaes Si meet the following approximation property: Let u ∈ Hk(Θ), k ≥ 1.Then, for eah path Θi, 1 ≤ i ≤ N , there exists uSi ∈ Si suh that
‖u− uSi‖L2(Θi) ≤ C1|Θi|min(k−1,p)+1‖u‖Hk(Θi),

‖u′ − u′Si
‖L2(Θi) ≤ C2|Θi|min(k−1,p)‖u‖Hk(Θi),where C1 and C2 depend on k, p and cmax. From [2, Theorem 1℄ we onlude that theglobal approximation
uS =

N
∑

i=1

ϕiuSi ∈ S ⊂ H1(Θ)satis�es the error bounds
‖u− uS‖L2(Θ) ≤ 2C1Θ̃

min(k−1,p)+1‖u‖Hk(Θ), (3.6)
‖u′ − u′S‖L2(Θ) ≤ 2C2

√

8π−1/2cmax + 2 Θ̃min(k−1,p)‖u‖Hk(Θ).where Θ̃ := max1≤i≤N |Θi|. For the implementation of this method we need a basis ofthe PUM spae. It an be determined by multiplying the basis elements of the loalapproximation spaes with the appropriate partition of unity funtion. An L2(−1, 1)-orthogonal basis of Pp is given by the Legendre polynomials {Pm}pm=0. An appropriatesaling results in a basis of the PUM spae S:
b1,m (t) := ϕ1(t) t

2Pm−2

(

2

t1
t− 1

)

m = 2, . . . ,max(2, p),

bi,m (t) := ϕi(t)Pm

(

2
t− ti−2

ti − ti−2
− 1

)

m = 0, . . . , p, i = 2, . . . , N − 1, (3.7)
bN,m (t) := ϕN (t)Pm

(

2
t− tN−2

tN−1 − tN−2
− 1

)

m = 0, . . . , p.Figure 3.2 shows the shape of these basis funtions for some di�erent values of m on anonuniform time grid. For m = 0 the basis funtions are simply the shape funtions of thepartition of unity. For higher m this funtion is multiplied by the appropriate Legendrepolynomial.4. Properties of the temporal basis funtionsIn this setion we investigate the growth behaviour of the k-th derivative of the bumpfuntions ρa,b,c whih were introdued in the last setion. In the ontext of a Galerkindisretization, an important property of these funtions and funtions whih are omposedof them is, whether they allow for a fast numerial integration. In this light, we analyzethe error that arises from approximating integrals of the form
Iρa,b,c :=

∫ c

a
ρa,b,c(t) dt =

c− a

2
(4.1)8
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Figure 3.2: Basis funtion of S for t0 = 0,t1 = 0.8 and t2 = 2by a n-point Gauss-Legendre quadrature rule in the interval [a, c], denoted by Qnρa,b,c.We arry out the quadrature error analysis for these simple integrals in quite some detailby using the derived growth estimates of our bump funtions and its derivatives. Weonsider this analysis as an important �rst step in order to estimate the quadrature errorfor integrals of the form (3.4) using tensorized Gauss quadrature rules. Note, however,that for the full spae-time integrals the singularity at r = ‖x− y‖ = 0 has to be takeninto aount in the spatial part of the quadrature method, e.g., by using regularizingoordinates (f. [24℄). An analysis of the arising quadrature error for the full spae-timeintegral is still an open question and we expet that it an be based on the results derivedin this setion.Reall that for given a < b < c ∈ R, the funtions ρa,b,c(t) are C∞-bump funtions withsupp ρa,b,c = [a, c]. It is well known that Gauss-Legendre quadrature onverges exponen-tially for integrands that are analyti in a su�iently large (omplex) neighborhood ofthe integration domain. Sine the funtions ρa,b,c(t) are smooth but not analyti in thepoints a, b and c, these lassial estimates for the quadrature error
Enρa,b,c := |Iρa,b,c −Qnρa,b,c|do not hold. We de�ne the linear saling funtions

ζr,s : [r, s] → [−1, 1], t 7→ 2
t− r

s− r
− 1 and its inverse

ξr,s : [−1, 1] → [r, s], t 7→ 1

2
(s− r)(t+ 1) + r.In order to �nd bounds for Enρa,b,c we need the following Lemma.9



Lemma 4.1. Let n ∈ N and 1 ≤ k ≤ 2n. Then we have for g ∈ Ck+1([a, b]),
|Ig −Qng| ≤

32

15π

(

b− a

2

)k+1 1

k(2n + 1− k)k

∫ b

a

|g(k+1)(t)|
√

1− ζa,b(t)2
dt.Proof. For the interval [a, b] = [−1, 1], Theorem 4.5 in [28℄ gives

|Ig −Qng| ≤
32

15π

1

k(2n + 1− k)k

∫ 1

−1

|g(k+1)(t)|√
1− t2

dtfor k ∈ {1, . . . , 2n}. For general [a, b], a linear hange of variable leads to
|Ig −Qng| ≤

32

15π

(

b− a

2

)k+2 1

k(2n + 1− k)k

∫ 1

−1

|g(k+1)(ξa,b(t))|√
1− t2

dt.The substitution t = ζa,b(t) leads to the desired result.In our ase Lemma 4.1 reads
Enρa,b,c ≤

32

15π

(

c− a

2

)k+1 1

k(2n + 1− k)k

∫ c

a

∣

∣

∣
ρ
(k+1)
a,b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt.The de�nition of ρa,b,c(t) leads to

Enρa,b,c ≤
32

15π

(

c− a

2

)k+1 1

k(2n + 1− k)k





∫ b

a

∣

∣

∣
h
(k+1)
a,b (t)

∣

∣

∣

√

1− ζa,c(t)2
dt+

∫ c

b

∣

∣

∣
h
(k+1)
b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt



 .(4.2)The formula above shows that we have to estimate the derivatives of the uto� funtions
ha,b and hb,c .Lemma 4.2. The uto� funtion ha,b satis�es the estimate

∣

∣

∣h
(k+1)
a,b (t)

∣

∣

∣ ≤ C2

b− a

(

2C1

b− a

)k

k!

∣

∣

∣

∣

∣

e−2 arctanh2(ζa,b(t))

(1− ζa,b(t)2)
k+1

∣

∣

∣

∣

∣

qk(ζa,b(t))for k ≥ 1 with q(t) := ln 4
1−t2

, C1 := 6
√
2 e and C2 =

10κ√
π

C1 ln(4)
C1 ln(4)−2 where κ ≈ 1.086435.Proof. Use Theorem A.4 and the hain rule.Further estimation of the bound in Lemma 4.2 leads to:Lemma 4.3. Let q(x), C1 and C2 be as in Lemma 4.2. Then we have

∥

∥

∥h
(k+1)
a,b

∥

∥

∥

∞
≤ C2

b− a

(

2λ41/λC1

b− a

)k

k! eσ(1+1/λ)k+1for k ≥ 1 and λ > 0, where
σα :=

1

4
α2 +

1

2
− ln

(

1

2
α+

1

2

√

α2 − 4

)10



for α ≥ 2.Proof. Sine
qk(x) =

(

ln
4

1− x2

)k

≤
(

41/λλ
)k
(

1

1− x2

)k/λfor λ > 0, the result follows from Lemma 4.2and Lemma A.5. 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

α

σα

Corollary 4.4. The bump funtion ρa,b,c satis�es the estimate
‖ρ(k+1)

a,b,c ‖∞ ≤ ‖h(k+1)
a,b ‖∞ in the ase b− a ≤ c− b,

‖ρ(k+1)
a,b,c ‖∞ ≤ ‖h(k+1)

b,c ‖∞ in the ase c− b ≤ b− a.In order to estimate Enρa,b,c, we assume that b−a ≤ c− b, the other ase being treatedanalogously. Furthermore we assume c− a ≤ cmax(b− a), whih orresponds to the loalquasiuniformity of a given time mesh. With
1

√

1− ζa,c(t)2
≤ cmax
√

1− ζa,b(t)2
, t ∈ (a, b),Lemma 4.2, Lemma A.5, and Lemma A.6 we get

∫ b

a

∣

∣

∣h
(k+1)
a,b (t)

∣

∣

∣

√

1− ζa,c(t)2
dt ≤ C2

b− a

(

2C1

b− a

)k

k!

∫ b

a

∣

∣

∣e−2 arctanh2(ζa,b(t))
∣

∣

∣ qk(ζa,b(t))
∣

∣

∣
(1− ζa,b(t)2)

k+1
∣

∣

∣

√

1− ζa,c(t)2
dt

≤ C2cmax

b− a

(

2C1

b− a

)k

k!

∫ b

a

∣

∣

∣e−2 arctanh2(ζa,b(t))
∣

∣

∣ qk(ζa,b(t))
∣

∣

∣
(1− ζa,b(t)2)

k+3/2
∣

∣

∣

dt

≤ C2cmax

b− a

(

2C1

b− a

)k

k! eσk+3/2

∫ b

a
qk(ζa,b(t))dt

≤ C2cmax

2

(

2C1

b− a

)k

k! eσk+3/2

∫ 1

−1
qk(t)dt

≤ 8C2cmax

(

2C1

b− a

)k

(k!)2 eσk+3/2 ,where σk+3/2 is as in Lemma 4.3. Similar arguments show that also
∫ c

b

∣

∣

∣
h
(k+1)
b,c (t)

∣

∣

∣

√

1− ζa,c(t)2
dt ≤ 8C2cmax

(

2C1

b− a

)k

(k!)2 eσk+3/2holds. With (4.2) the quadrature error an be estimated by
Enρa,b,c ≤

256C2 cmax (c− a)

15π

1

k(2n + 1− k)k
(C1cmax)

k (k!)2 eσk+3/211



for k ∈ {1, . . . , 2n}. Finally, Stirling's estimate k! ≤ 1.1
√
2πk kk e−k yields

Enρa,b,c ≤ 41.5C2 cmax (c− a)

(

C1cmaxk
2

(2n + 1− k) e2

)k

eσk+3/2for k ∈ {1, . . . , 2n}. It remains to hoose k suh that the right-hand side in the aboveinequality beomes small. We de�ne
Ecmax(n, k) :=

(

C1cmaxk
2

(2n+ 1− k) e2

)k

eσk+3/2for k ∈ {1, . . . , 2n}. The next Lemma shows that Ecmax(n, k) deays superalgebraiallyfor an appropriate hoie of k.Lemma 4.5. Let γ ∈
(

0, 34
) and a, b, c ∈ R with c− a ≤ cmax(b− a) be given. If n ∈ N≥3satis�es the ondition
(lnn)2n−3/4+γ ≤ 2− e−2

C1cmax e−1/4
, (4.3)the error bound

Enρa,b,c ≤ Ĉn−γ ln(n)holds, with Ĉ := 41.5C2 cmax (c− a)
(

2− e−2
)

e17/16.Proof. Sine
σk+3/2 ≤

1

4
k2 +

3

4
k +

17

16
,we have

Ecmax(n, k) ≤ e17/16
(

C̃
)k
k2k(2n + 1− k)−k ek

2/4where C̃ := C1cmax e
−5/4. We set k = ⌊ln(n)⌋ and get

Ecmax(n, ⌊ln(n)⌋) ≤ e17/16
(

C̃
)⌊ln(n)⌋

⌊ln(n)⌋2⌊ln(n)⌋(2n + 1− ⌊ln(n)⌋)−⌊ln(n)⌋ e⌊ln(n)⌋
2/4

≤ e17/16
(

C̃
)ln(n)

ln(n)2 ln(n)(2n+ 1− ln(n))− ln(n)+1 e(lnn)2/4 .Simple alulus shows
1− ln(n) ≥ − e−2 n for n ∈ N,so that the error an be estimated by

Ecmax(n, ⌊ln(n)⌋) ≤
(

2− e−2
)

e17/16

(

C̃

2− e−2

)ln(n)

(ln n)2 ln(n)n− ln(n)+1 eln(n)
2/4 .Applying the logarithm on both sides yields

ln
(

Ecmax(n, ⌊ln(n)⌋)
)

≤ ln
(

(

2− e−2
)

e17/16
)

+ ln(n)

[

ln

(

C̃

2− e−2

)

+ 2 ln(ln(n)) + 1− 3

4
ln(n)

]

.12



For given γ ∈
(

0, 34
), let n satisfy ondition (4.3). Then we get

ln
(

Ecmax(n, ⌊ln(n)⌋)
)

≤ ln
(

(

2− e−2
)

e17/16
)

− γ(ln n)2,whih leads to the desired result.Remark 4.6. The asymptoti behaviour of the error bound in Lemma 4.5 is sharp in thesense that the hoie k = ⌊(lnn)δ⌋ with δ > 1 leads to the divergene of Ecmax(n, k) if ntends to in�nity.Although Lemma 4.5 suggests that the error of Gauss-Legendre quadrature applied tointegrals of the form (4.1) dereases superalgebraially but not exponentially, we wantto show numerially that Ecmax(n, k) deays faster for ertain ranges of n. In order todemonstrate this, an appropriate hoie of k is ruial. Lemma 4.5 shows that k has tobe hosen very small ompared to n due to the fast growth of the derivatives of ρa,b,c.To illustrate this, Table 1 shows the optimal k, denoted by kopt, suh that Ecmax(n, k) isminimal for given n and di�erent cmax.
cmax = 2.0

n 2-680 681-5929 5930-33776 33777-157999 158000-659277
kopt 1 2 3 4 5

cmax = 2.2
n 2-748 749-6522 6523-37153 37154-173799 173800-725205
kopt 1 2 3 4 5

cmax = 2.4
n 2-816 817-7115 7116-40531 40532-189598 189599-791132
kopt 1 2 3 4 5Table 1: kopt for di�erent ranges of n and di�erent cmax .Based on these observations we hoose k optimal for every n and want to determine

r, δ ∈ R≥0 suh that the estimate
Ecmax(n, kopt) ≤ r e−nδholds for a preferably large range nmin ≤ n ≤ nmax.

cmax δ r nmin nmax Ecmax(nmax, kopt)2.0 0.25 18 11 846975 ≈ 1.2 · 10−120.26 18 12 92231 ≈ 5.9 · 10−82.2 0.25 20 11 649170 ≈ 9.4 · 10−120.26 20 12 67353 ≈ 3.0 · 10−72.4 0.25 22 11 545048 ≈ 3.5 · 10−110.26 22 12 33776 ≈ 6.4 · 10−6Table 2: Results for di�erent hoies of cmax, δ and r.Table 2 shows the results of numerial experiments. It an be observed that Enρa,b,c =
O
(

e−n1/4
) for a large range of n in the ase cmax ∈ {2.0, 2.2, 2.4}.13



Figure 4.1 shows the deay of the error in the ase of the bump funtion ρ0, 10
11

,2 whihorresponds to cmax = 2.2. It an be observed that Enρ0, 10
11

,2, whih represents the relativeerror sine Iρ0, 10
11

,2 = 1, deays even faster than predited by theory at least for thoseauraies that are of interest in pratial omputations.The in�uene of cmax is rather small in pratie. Numerial tests show that the errorbehaviour is similar to the one in Figure 4.1 for di�erent (moderate) cmax.
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Figure 4.1: Quadrature error for the ase cmax = 2.2, i.e., we onsider the bump funtion ρ0, 10
11

,2.5. Appliation to a problem on the sphereIn this setion we apply a Galerkin method using our new basis funtions in time to theintegral equation (2.3) in the ase where the boundary Γ is the unit sphere S
2. Further-more we assume that the right-hand side g is ausal i.e. g(x, t) = 0 for t ≤ 0 and that atleast the �rst time derivative of g vanishes at t = 0. Moreover, g is supposed to be of theform

g(x, t) = g(t)Y m
n ,where Y m

n denotes a spherial harmoni of degree n and order m. This setting was alreadyused in [6℄ and allows to redue the boundary integral equation (2.3) to a univariateproblem in time. To see this note that an equivalent formulation of the retarded singlelayer potential (2.2) is given by
Sφ(x, t) =

∫ t

0

∫

Γ
k(x− y, t− τ)φ(y, τ)dΓydτ, (x, t) ∈ Ω× [0, T ] , (5.1)14



where k(z, t) is the fundamental solution of the wave equation,
k(z, t) =

δ(t− ‖z‖)
4π‖z‖ ,

δ(t) being the Dira delta distribution. Furthermore we introdue the single layer poten-tial for the Helmholtz operator ∆U − s2U = 0 whih is given by
(V (s)ϕ)(x) :=

∫

Γ
K(s, x− y)ϕ(y, τ)dΓy ,where

K(s, z) :=
e−s‖z‖

4π‖z‖is the fundamental solution of the Helmholtz equation in three dimensions. An importantproperty of the single layer potential V (s) is that
V (s)Y m

n = λn(s)Y
m
n , (5.2)i.e., the spherial harmonis Y m

n are eigenfuntions of this operator with eigenvalues λn(s).The latter an be expressed in terms of modi�ed Bessel funtions Iκ and Kκ (see [1℄)
λn(s) = In+ 1

2
(s)Kn+ 1

2
(s). (5.3)Next, we will transform equation (2.3) into frequeny domain using Laplae transforma-tions. Property (5.2) and a bak transformation then leads to a univariate problem intime. Reall the de�nition of the Laplae transform

φ̂(s) := (Lφ)(s) =
∫ ∞

0
φ(t) e−st dtwith inverse

(L−1φ̂)(s) =
1

2πi

∫ σ+i∞

σ−i∞
φ̂(s) est ds.Note that the fundamental solution of the Helmholtz equation is the Laplae transformof the fundamental solution of the wave equation. Using the representation (5.1) for Sand expressing k in terms of its Laplae transform leads to the integral equation

g(t)Y m
n =

∫ t

0

∫

Γ
k(t− τ, ‖x− y‖)φ(y, τ)dΓydτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0
esτ
∫

Γ
K(s, ‖x− y‖)φ(y, t− τ)dΓydτds

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0
esτ (V (s)φ(·, t− τ))(x)dτds.Inserting the ansatz φ(x, t) = φ(t)Y m

n and using (5.2) leads to the one dimensional prob-lem: Find φ(t) suh that
∫ t

0
L−1(λn)(τ)φ(t − τ)dτ = g(t), t ∈ [0, T ]. (5.4)Note that φ(t)Y m

n where φ(t) satis�es (5.4) is a solution of the full problem (2.1) in thease where Γ = S
2 and g(x, t) = g(t)Y m

n . In order to analyse our new approah for thetemporal disretization we hoose (5.4) as our model problem.15



Example. Expliit representations of the exat solutions of (5.4) were omputed in [25,29℄.(a) For n = 0 the solution is given by
φ(t) = 2

⌊t/2⌋
∑

k=0

g′(t− 2k). (5.5)(b) For n = 1 we have
φ(t) = 2

⌊t/2⌋
∑

k=0

(−1)kg′(t− 2k) + 2

∫ t

0
sinh(τ)g′(t− τ)dτ

− 2

⌊t/2⌋
∑

k=1

k
∑

j=1

∫ t

2k
(c

(2)
k,j + c

(3)
k,jτ − c

(3)
k,j2k)(τ − 2k)j−1 eτ−2k g′(t− τ)dτ. (5.6)where

c
(2)
k,j = (−1)k+1

j−1
∑

m=0

(1− (−1)j−m)k!

(j − 1)!m!(k − j)!(j −m)!
and

c
(3)
k,j = (−1)k+1 2j−1(k − 1)!

(j − 1)!j!(k − j)!
.These formulas will serve as referene solutions for our numerial experiments.In order to apply a Galerkin method to (5.4) we need a suitable variational formulation.If we hoose VGalerkin in (3.2) by VGalerkin = Y m

n S, the spae-time Galerkin disretizationdeouples and redues to the purely temporal problem:Find φS ∈ S :

∫ T

0

∫ t

0
L−1(λn)(τ)φ̇S(t− τ)ζ(t)dτdt =

∫ T

0
ġ(t)ζ(t)dt ∀ζ ∈ S. (5.7)For the numerial solution of this equation we employ the representation with respet tothe PUM basis (f. (3.7)) and de�ne the index set

Pi :=

{

{2, 3, . . .max {2, p}} i = 1,

{0, 1, . . . , p} 2 ≤ i ≤ N.Then, inserting the ansatz
φS(t) =

N
∑

i=1

∑

m∈Pi

αi,mbi,m(t)leads to the disrete problem: Find αi,m suh that
N
∑

i=1

∑

m∈Pi

αi,m

∫ T

0

∫ t

0
L−1(λn)(t− τ)ḃi,m(τ)bj,k(t)dτdt =

∫ T

0
ġ(t)bj,k(t)dt (5.8)16



for j = 1, 2, . . . , N and k ∈ Pj . In order to �nd the solution of (5.8) we have to ompute
L−1(λn)(t). After some algebrai manipulations (f. [25℄) we obtain from (5.3)

λn(s) =

2n
∑

l=0

cIn,l

sl+1
+ e−2s

2n
∑

l=0

cIIn,l

sl+1
,where

cIn,l :=

{

∑l
j=0

1
2 (−1)l−j(n, l − j)(n, j), for l ≤ n,

∑n
j=l−n

1
2(−1)l−j(n, l − j)(n, j), for n < l ≤ 2n,and

cIIn,l :=

{

∑l
j=0

1
2(−1)n+1(n, l − j)(n, j), for l ≤ n,

∑n
j=l−n

1
2 (−1)n+1(n, l − j)(n, j), for n < l ≤ 2nwith (n, k) := (n+k)!

2kk!(n−k)!
. The inverse Laplae transform of λn(s) is therefore given by

L−1(λn)(t) =

2n
∑

l=0

cIn,l

l!
tlH(t) +

2n
∑

l=0

cIIn,l

l!
(t− 2)lH(t− 2),where

H(t) =

{

0 t ≤ 0,

1 t > 0denotes the Heaviside step funtion. This shows that the disrete problem (5.8) is equiv-alent to: Find αi,m suh that
N
∑

i=1

∑

m∈Pi

αi,m

[∫ T

0

∫ t

0
qIn(t− τ)bi,m(τ)ḃj,k(t)dτdt

+

∫ T

0

∫ t

0
qIIn (t− τ − 2)H(t− τ − 2)bi,m(τ)ḃj,k(t)dτdt

]

=

∫ T

0
g(t)ḃj,k(t)dt (5.9)for j = 1, . . . , N , k ∈ Pj , where

qIn(t) :=

2n
∑

l=0

cIn,l

l!
tl and qIIn (t) :=

2n
∑

l=0

cIIn,l

l!
tl.We now turn our attention to the numerial omputation of the double integral

∫ T

0

∫ t

0
qIn(t− τ)bi,m(τ)ḃj,k(t)dτdt (5.10)arising in (5.9). Therefore letsupp bi,m = Θi = [mi,Mi] andsupp bj,k = Θj = [mj,Mj ].We write � . . .� short for �qIn(t−τ)bi,m(τ)ḃj,k(t)dτdt� and distinguish between the followingsix ases (see Figure 5.1): 17



t

τ (T, T )

Θj̃

Θĩ(a) Domain of integration ase(i) t

τ (T, T )

Θj̃

Θĩ

(b) Domain of integration ase(ii) t

τ (T, T )

Θj̃

Θĩ

() Domain of integration ase(iii)
t

τ (T, T )

Θj̃

Θĩ

(d) Domain of integration ase(iv) t

τ (T, T )

Θj̃

Θĩ

(e) Domain of integration ase(v) t

τ (T, T )

Θj̃

Θĩ

(f) Domain of integration ase(vi)Figure 5.1: Di�erent domains of integration for integral (5.10)(i) mi ≤Mi ≤ mj ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫

Θj

∫

Θi

. . .(ii) mi ≤ mj ≤Mi ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫ Mi

mj

∫ t

mi

. . .+

∫ Mj

Mi

∫

Θi

. . .(iii) mj ≤ mi ≤Mj ≤Mi. Then,
∫ T

0

∫ t

0
. . . =

∫ Mj

mi

∫ t

mi

. . .(iv) mi ≤ mj ≤Mj ≤Mi. Then,
∫ T

0

∫ t

0
. . . =

∫

Θj

∫ t

mi

. . .

18



(v) mj ≤ mi ≤Mi ≤Mj . Then,
∫ T

0

∫ t

0
. . . =

∫

Θi

∫ t

mi

. . . +

∫ Mj

Mi

∫

Θi

. . .(vi) mj ≤Mj ≤ mi ≤Mi. Then,
∫ T

0

∫ t

0
. . . = 0.The omputation of the seond double integral

∫ T

0

∫ t

0
qIIn (t− τ − 2)H(t − τ − 2)bi,m(τ)ḃj,k(t)dτdtin (5.9) is similar. Note that this integral vanishes for T ≤ 2. For T > 2 we have todistinguish between six ases as for the integrals in (5.10). We do not detail this here.Remark 5.1. The resulting integration domains in the ases (i)-(vi) are either retanglesor triangles. Beause simplex oordinates transform triangles to squares, we an restrit toretangular integration domains and apply properly saled n-point tensor Gauss-Legendrequadrature rules for the numerial approximation of the arising integrals.6. Numerial ExperimentsIn this setion we present the results of numerial experiments. We solve the set ofequations (5.9) in order to obtain a numerial solution of (5.4). The resulting error ofthe approximation, φS − φ, will be measured in the L2(0, T ) norm. L2(0, T ) is a suitablespae for the solutions of (5.4) sine it an be shown that if φ(t) ∈ L2(0, T ), then theorresponding solution of the full problem (2.3) satis�es φ(t)Y m

n ∈ H−1/2,−1/2(Γ× [0, T ]).
φ ould also be onsidered in larger spaes than L2(0, T ) but we expet analogous resultsof the numerial experiments in suh spaes. We begin with the numerial tests and set

g(t) =

{

t4 e−2t t ≥ 0,

0 t < 0.In the following we hek the sharpness of the onvergene rates predited by the theoryin (3.6) for n = 0 and n = 1. We saw that the formulas for the exat solution of (5.4)involve derivatives of the right-hand side g (f. (5.5) and (5.6)). Sine g ∈ H4(R) wetherefore have φ ∈ H3(R). Thus we expet a onvergene rate with respet to the L2error of h if we hoose p = 0, i.e., if we approximate simply by the shape funtions ofthe partition of unity. We expet a onvergene rate of h2 if we hoose p = 1. Theseonvergene rates ould be on�rmed by the numerial experiments (see Figure 6.1).Next, we investigate the behaviour of the method for a right-hand side that is lesssmooth:
g(t) =

{

sin2(2t) e−t t ≥ 0,

0 t < 0.Note that g ∈ H2(R) and therefore φ ∈ H1(R). Hene we expet a onvergene rate of hin the ase p = 0. Due to the lak of smoothness of the solution we do not expet that19
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(b) loal polynomial approximation spaes ofdegree p = 1Figure 6.1: Log-log sale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) = t4 e−2t and n as in (5.4).higher order PUM spaes lead to better onvergene rates. Indeed Figure 6.2(b) indiatesthat in the ase p = 1 a onvergene rate of h2 is not ahieved.The PUM with smooth basis funtions (3.7) allows variable time steps whih an beadapted to the smoothness, e.g., of the right-hand side. In the following we illustrate thebene�t of this feature by a numerial example. We hoose the right-hand side by
g(t) =

{

− sin(35t)t3 e−12(4t−4)2 t ≥ 0,

0 t < 0.As we an see in Figure 6.3 this funtion has a sharp pulse in the interval (1− 1
5 , 1 +

1
5)and is almost zero otherwise. A similar behaviour an be observed for the orrespondingsolution φ for n = 0. The 2-periodiity in (5.5) however implies that φ has peaks in smallneighborhoods of all time points t = 2l + 1, l ∈ N (f. Figure 6.4). Therefore we willemploy a time mesh whih is graded towards the time points t = 2l+1 where the solutionis highly osillatory. We use a quadrati grading of the uniformly distributed mesh pointstowards the origin:

±
(

i

m

)2

0 ≤ i ≤ m.We number these mesh points from left to right −1 = t̃0 < . . . < t̃2m = 1. Translation ofthese points to the time intervals [2l, 2l + 2] leads to the time mesh in Figure 6.4.Figure 6.5 shows the error plots for this right-hand side for n = 0 and p = 1, 2. One ansee that the error for the variable time mesh is onsiderably smaller than the error for theequidistant grid. Moreover the onvergene starts earlier and the asymptoti onvergenerate is already in the preasymptoti range. This shows that variable time stepping animprove the disretization substantially if knowledge about the solution is available. Weexpet similar bene�ts for the full problem.Finally, we will show the performane of our method as a p-version for problems withsmooth solutions, where we �x the number of timesteps and inrease the polynomialdegree of the loal approximation spaes. Figure 6.6 shows two error plots for 5 and20



10
1

10
2

10
0

Number of timesteps

L2 −
E

rr
or

 

 
n=0
n=1

h1

(a) loal polynomial approximation spaesof degree p = 0

10
1

10
2

10
−2

10
−1

10
0

Number of timesteps

L2 −
E

rr
or

 

 
n=0
n=1

h1

h2(b) loal polynomial approximation spaesof degree p = 1Figure 6.2: Log-log sale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) = sin2(2t) e−t and n as in(5.4).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.3: g(t) = − sin(35t)t3 e−12(4t−4)2 . 0 1 2 3 4 5 6
−60

−40

−20

0

20

40

60

80

Figure 6.4: Corresponding solution of (5.4)for n = 0 and a time grid with variable mesh-width.
10 timesteps, where we again set g(t) = t4 e−2t for t > 0. Reall that g ∈ H4(R) andtherefore φ ∈ H3(R). Thus the following error estimate holds (f. [2℄):

‖φS − φ‖L2([0,6]) ≤ Cp−2‖φ‖H3([0,6]).7. ConlusionWe have introdued a new set of basis funtions in time for the disretization of retardedboundary integral formulations of the wave equation. The obtained basis funtions aresmooth, ompatly supported, allow variable order of approximation and an be easilyde�ned on an arbitrary time grid. In order to test the approah we applied a Galerkinmethod to a speial ase of the wave equation on the sphere for whih analyti solutions are21



10
1

10
2

10
0

10
1

10
2

Number of timesteps

L2 −
E

rr
or

 

 
equidistant
variable

(a) loal polynomial approximation spaesof degree p = 1

10
1

10
2

10
−1

10
0

10
1

10
2

Number of timesteps

L2 −
E

rr
or

 

 
equidistant
variable

(b) loal polynomial approximation spaesof degree p = 2Figure 6.5: Log-log sale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) as in Figure 6.3 and n = 0.Comparison of equidistant and variable time meshes.

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

Polynomial degree p

L2 −
er

ro
r

 

 
n=0
n=1

(a) Number of timesteps: 5 10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

Polynomial degree p

L2 −
er

ro
r

 

 
n=0
n=1

(b) Number of timesteps: 10Figure 6.6: Log-log sale plots of ‖φS − φ‖L2([0,T ]) for T = 6, g(t) = t4 e−2t.available. These solutions were used as referene solutions for the numerial experiments.It ould be shown that the use of variable stepsizes in time an improve the onvergeneof the Galerkin sheme onsiderably provided that information about the behaviour ofthe solution is known in advane.In a forthoming paper we will apply this approah to the full problem i.e. we will use aGalerkin method in spae and time where we hoose pieewise polynomial basis funtionsin spae and our smooth PUM spae in time in order to disretize the problem. The globalsmoothness of the basis funtion in time will simplify the omputation of the entries of theboundary element matrix onsiderably sine the numerial handling of the ompliated22



geometry of the disrete light one with the surfae panels beomes super�uous � the useof urved surfae panels beomes straightforward. Furthermore the boundary elementmatrix will be sparse due to the ompat support of the basis funtions.Aknowledgement. Thanks are due to Christoph Shwab for fruitful disussions on-erning the use of the PUM for the time disretization.A. Tehnial estimatesIn this setion we want to estimate the n-th derivative of the funtion f as de�ned in(3.5). Therefore let
h (z) := erf (z) and g (x) := arctanh x =

1

2
ln

1 + x

1− xsuh that f := h ◦ 2g. Note that [1, (7.1.19)℄ implies
h(n+1) (z) = (−1)n

2√
π
Hn (z) e

−z2 n = 0, 1, 2, . . .where Hn are the Hermite polynomials. Hene,
f (n+1) (x) =

(

d

dx

)n( 4√
π (1− x2)

e−4g2(x)

) (A.1)
=

4√
π

n
∑

ℓ=0

(n
ℓ

)

(

1

1− x2

)(ℓ)
(

e−4g2(x)
)(n−ℓ)

.Lemma A.1 (Derivatives of g). It holds
(

1

1− x2

)(ℓ)

=
ℓ!pℓ (x)

(1− x2)ℓ+1
∀x ∈ (−1, 1) ,where

pℓ (x) :=
(x+ 1)ℓ+1 − (x− 1)ℓ+1

2
.Furthermore, we have

∣

∣

∣
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∣

∣
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1
2 ln

4

1− x2
ℓ = 0

(ℓ− 1)!2ℓ−1

(1− x2)ℓ
ℓ ∈ N≥1

∀x ∈ (−1, 1) , (A.2)as well as the more generous estimate
∣

∣

∣g(ℓ) (x)
∣

∣

∣ ≤ q (x)
ℓ!2ℓ−1

(1− x2)ℓ
∀ℓ ∈ N0 (A.3)with q (x) = ln 4

1−x2 . 23



Lemma A.2 (Derivative of omposite funtions). For n ≥ 1 and x ∈ (−1, 1) we have
(

e−4g2(x)
)(n)

= e−4g2(x)
n
∑

k=1

An,k (x) (−1)kHk (2g (x)) , (A.4a)where
An,k (x) =

2k

k!

k
∑

ν=1

(−1)k−ν (k
ν

)

gk−ν (x) (gν)(n) (x) (A.4b)and
(gν)(n) =

n
∑

ℓν−1=0

ℓν−1
∑

ℓν−2=0

...

ℓ2
∑
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( n
ℓν−1

)(ℓν−1
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)

· · ·
(ℓ2
ℓ1

)

g(n−ℓν−1)g(ℓν−1−ℓν−2) · · · g(ℓ2−ℓ1)g(ℓ1).(A.5)Proof. The representation (A.4) follows from [27, formulae (2), (7)℄, while (A.5) is provedby indution using Leibniz' produt rule for di�erentiation.Lemma A.3 (Estimate of derivatives of omposite funtions). For n ≥ 1 and x ∈ (−1, 1)we have
∣

∣

∣

∣

(

e−g2(x)
)(n)

∣

∣

∣

∣

≤ 5

2
κn! e−2g2(x)

(

C1q (x)

1− x2

)n (A.6)with κ ≈ 1.086435 and C1 = 6
√
2 e.Proof. From (A.3) and (A.5) we onlude for all n ≥ 1, ν ≥ 1, and x ∈ (−1, 1)
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. (A.7)Thus, from (A.4b) we get that
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(
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. (A.8)From [1, (22.14.17)℄ we obtain
Hk (2g (x)) ≤ e2g

2(x) κ2k/2
√
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The ombination of (A.4), (A.5), (A.7) and (A.8) results in the estimate for the n-thderivative of e−4g2(x):
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.Theorem A.4 (Estimate of n-th derivative of f ). We have
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C1 ln(4)−2 .Proof. From (A.1), (A.2) and (A.6) we get
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e−2g2(x),whih leads to the desired result.Lemma A.5. For x ∈ (−1, 1) and α ≥ 2, we have

∥

∥

∥

∥

∥

e−2g2(x)

(1− x2)α

∥

∥

∥

∥

∥

∞
≤ eσαwith

σα :=
1

4
α2 +

1

2
− ln

(

1

2
α+

1

2

√

α2 − 4

)

.Proof. We set
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sn(x) := −2 arctanh(x)2 − α ln(1− x2).25



With the de�nition of arctanh(x) we get
sn(x) =− 2

[

1

2
ln(1 + x)− 1

2
ln(1− x)

]2

− α ln(1− x)− α ln(1 + x)

=− 1

2
[ln(1 + x)]2 + ln(1 + x) ln(1− x)− 1

2
[ln(1− x)]2

− α ln(1− x)− α ln(1 + x).Sine sn(x) is symmetri we assume 0 ≤ x < 1 and get
sn(x) ≤ −1

2
[ln(1− x)]2 − α ln(1− x) + ln(1 + x) ln(1− x) =: s̃n(x).

s̃n(x) is stritly inreasing in the interval [0, 0.5] for arbitrary α ∈ R≥2. Therefore wemay restrit to �nd an upper bound for s̃n(x) in the interval [0.5, 1[. With the inequality
ln(1 + x) ln(1− x) ≤ − ln(− ln(1− x)) we get
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x0 = 1− e−θα ,where θα := 1

2α+ 1
2

√
α2 − 4. Inserting this above shows that

sn(x) ≤ αθα − 1

2
θ2α − ln θαwhih leads to the desired result after some straightforward manipulations.Lemma A.6. It holds
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where we used [17, (2.711)℄ in the last step. With these omputations we get
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