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Abstract. We show that the Hochschild–Kostant–Rosenberg map from the

space of multivector fields on a graded manifold N (endowed with a Berezinian
volume) to the cohomology of the algebra of multidifferential operators on N

(as a subalgebra of the Hochschild complex of C∞(N)) is an isomorphism of

Batalin–Vilkovisky algebras. These results generalize to differential graded
manifolds.

1. Introduction

The multivector fields on a smooth manifold M can be seen as multidifferential
operators on the algebra C∞(M) of smooth functions on M . This assignment is
a particular case of the following general construction: given a graded associative
and commutative algebra A, one defines the Hochschild–Kostant–Rosenberg map

HKR: V•(A)→ Hoch•(A)

from the space of multivector fields V•(A) := S•(Der(A)[−1])[1] to the Hochschild
complex Hoch•(A), as the map which regards a multiderivation of A as a multilinear
operator. Actually the image of HKR is contained in the subcomplex D•(A) ⊂
Hoch•(A) of multidifferential operators.

If one considers V•(A) as a complex with trivial differential, then the HKR
map is a morphism of complexes, and the classical Hochschild–Kostant–Rosenberg
Theorem [10] states that when A is a smooth algebra, e.g., a polynomial algebra, the
HKR map induces isomorphisms in cohomology V•(A) ' H•(D•(A)) ' HHoch•(A).
In this paper we are primarily concerned with the case in which A is the algebra
of smooth functions on a graded manifold N . In this case it is known that HKR
still induces an isomorphism V•(N) ' H•(D•(N)), where we used the short-hand
notations V•(N) for V•(C∞(N)) and D•(N) for D•(C∞(N)); for a proof, see [25]
in case N is an ordinary manifold and [2] for the general case.

Many interesting algebraic structures can be defined on the objects introduced
above. It is well known that V•(A) and HHoch•(A) are Gerstenhaber algebras [8],
that H•(D•(A)) is a sub-Gerstenhaber algebra of HHoch•(A), and that HKR pre-
serves these structures. Moreover, when A is a finite dimensional algebra endowed
with a non-degenerate symmetric inner product compatible with the multiplication
of A, then V•(A), H•(D•(A)) and HHoch•(A) become Batalin–Vilkovisky (BV) al-
gebras [24]. The purpose of this paper is to extend this construction to the case in
which A is the algebra of smooth functions on a graded manifold N . In this case
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the algebra is not finite dimensional but we can remedy when N has a Berezinian
volume. We prove in fact the following
Theorem 5.3. Let N be a graded manifold endowed with a fixed Berezinian volume
v and whose body is a closed smooth manifold. Then V•(N) and H•(D•(N)) can
be endowed with BV algebra structures compatible with their classical Gerstenhaber
structures. Moreover HKR is a map of BV algebras.

The BV algebra structure on multidifferential operators is inspired by [24],
whereas the BV structure on V•(N) is the standard one on the space of multi-
vector fields of a graded manifold N . Both structures depend on the choice of a
Berezinian volume on N [12]. The HKR map lifts to an L∞ map [11, 2] and, at least
in the non graded case, to a G∞ map [22] between complexes. One may conjecture
that it also lifts to a BV∞ map [23]. This would be the analogue, for a graded
manifold, of Kontsevich’s cyclic formality conjecture [20].

In the second part of the paper, we generalize our results to differential graded
manifolds (N,Q). From an algebraic point of view, this corresponds to considering
differential graded commutative associative algebras (A,d). In this case, the Hoch-
schild complex is actually a bicomplex with differentials δ0 and δ1, and the Hoch-
schild cohomology will be the cohomology of the total complex. The Hochschild
bicomplex and its cohomology will be denoted by Hoch•DG(A) and HHoch•DG(A)
to distinguish them from the Hochschild complex and cohomology of A seen as a
graded algebra. The differential d gives rise to the differential {d, ·} on the space
V•(A) of multivector fields; the HKR map (V•(A), {d, ·}, 0) → (Hoch•DG(A), δ0, δ1)
(see Lemma 6.1) is a map of bicomplexes. We show by an example that the induced
map in cohomology is not an isomorphism in general. In particular we consider the
differential graded manifold N = T [1]M , where M is a smooth manifold, with d
given by the de Rham differential, so that C∞(T [1]M) is the de Rham algebra
Ω•(M) of M , and we prove the following
Theorem 6.2. If M is a simply connected closed oriented smooth manifold of
positive dimension, then the HKR map H•(V•(Ω•(M)), {d, ·})→ HHoch•DG(Ω•(M))
is not an isomorphism.

The key ingredient of the proof is the isomorphism [4] between the (shifted)
homology H•(LM)[dimM ] of the free loop space LM of M and the Hochschild
cohomology of the differential graded algebra Ω•(M) . We remark that when only
ordinary smooth manifolds are considered, it is not known whether the space of
multivector fields is quasi-isomorphic to the Hochschild cohomology. Up to our
knowledge, only a partial result in this direction is known [16], namely, when M
is a smooth manifold, V•(M) is quasi-isomorphic to the topological Hochschild
complex HHochtop(C∞(M)) consisting of continuous multilinear homomorphisms
(with respect to the Fréchet topology).

If we further assume that (N,Q) is an SQ-manifold, i.e., that the vector field Q is
divergence-free, then a BV structure is induced on the cohomology H•(V•(A), {d, ·})
and on the Hochschild cohomology HHoch•DG(A), and the HKR map is a morphism
of BV algebras (although, as remarked above, not an isomorphism in general). An
example is the de Rham algebra (Ω•(M),d) of a closed manifoldM . In this case, the
BV structure on HHoch•DG(Ω•(M)) corresponds to the one found in [3] on the homol-
ogy of the free loop space [5, 15], whereas the BV structure on H•(V•(Ω•(M), {d, ·}))
is the trivial one.



ON THE HKR MAP FOR GRADED MANIFOLDS 3

The plan of the paper is as follows. We begin by constructing the BV structure
on the space of multivector fields in Section 2. Next we recall some facts on Hoch-
schild cohomology in Section 3. Then we discuss BV structures on the space of
multidifferential operators in Section 4, and in Section 5 we define the HKR map,
describe its main properties, and prove Theorem 5.3. Finally in Sections 6 and 7 we
present a generalization of these results to the case of differential graded manifolds
and prove Theorem 6.2.

Acknowledgment. We thank Thomas Tradler and the Referee for useful comments
on a first draft of the paper. R. L. thanks the Universität Zürich–Irchel and D. F.
thanks the IHÉS for their hospitality.

2. BV structure on multivector fields

Let A be a graded commutative and associative algebra and let Der(A) =
⊕j∈ZDerj(A) be the graded Lie algebra of derivations of A, namely Derj(A) consists
of linear maps φ : A → A of degree j such that φ(ab) = φ(a)b+ (−1)j |a|aφ(b) and
the bracket is {φ, ψ} = φ ◦ ψ − (−1)|φ||ψ|ψ ◦ φ.

The space of multiderivations V•(A) := S•(Der(A)[−1])[1] can be endowed with
a Gerstenhaber structure, with the wedge product and the bracket which is the
extension of the graded commutator {·, ·} on Der(A) to V•(A) by the Leibnitz rule.
Since A is graded, the space V•(A) has a natural double grading given by

Vi,j(A) = {φ ∈ Si(Der(A)[1])[−1] | deg(φ) = j}.

We want to construct an operator ∆ on V•(A) which makes this Gerstenhaber
algebra into a BV algebra. We will use as an auxiliary tool the complex I•(A) of
integral forms of A, closely following [7]; a different approach to the BV algebra
structures on V•(A) can be found in [12]. Denote by Ω1(A) the space of 1-forms of
A, namely, the space Hom(V1(A), A), and assume that the Berezinian Ber(Ω1(A))
is free and generated by one element v. To a divergence operator div, viz. an even
linear map div : Der(A)→ A satisfying

div(fX) = fdiv(X) + (−1)|f ||X|X(f),

we associate a linear operator L : V1(A)⊗A Ber(Ω1(A))→ Ber(Ω1(A)) by the rule

L(X ⊗ v) = div(X) v.

Observe that for every f ∈ A and every X ∈ Der(A), we have LX(fv) = X(f) v +
(−1)|f ||X|f LX(v) where we are using the notation LX(v) := L(X ⊗ v).

We now introduce the space I•(A) of integral forms [7] as the A-module gen-
erated by the elements of Ber(Ω1(A)) and by the operations ιX with X ∈ V1(A),
acting on the left and subject to the rules [ιX , ιY ] = 0 and ιfX = fιX . The
action of LX is extended to I•(A) by the rule [LX , ιY ] = ι{X,Y } One can de-
fine an exterior derivative d on I•(A) by imposing dv = 0 and forcing Cartan’s
identity dιX + ιXd = LX . Indeed, a consequence of Cartan’s formula is that
d(ιX1 · · · ιXkv) = LX1(ιX2 · · · ιXkv)− ιX1d(ιX2 · · · ιXkv), and the action of d on ele-
ments of I•(A) can be computed inductively. The exterior derivative d defined by
this procedure is a differential precisely when [LX , LY ] = L{X,Y }. This is equivalent
to the vanishing of the curvature of div; namely,

div({X,Y })−X(div(Y )) + (−1)|X| |Y |Y (div(X)) = 0.
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Once the generator v of Ber(Ω1(A)) is fixed, iterated “contractions” ιX induce an
isomorphism

V•(A) ∼−→ I•(A)

and the differential d induces on the space of multivector fields an operator ∆ of
degree −1 such that ∆2 = 0. An easy computation shows that ∆(X) = div(X) for
any X ∈ Der(A), and that ∆ satisfies the seven term relation

(2.1)
∆(a ∧ b ∧ c) + ∆(a) ∧ b ∧ c+ (−1)|a|a ∧∆(b) ∧ c+ (−1)|a|+|b|a ∧ b ∧∆(c) =

= ∆(a ∧ b) ∧ c+ (−1)|a|a ∧∆(b ∧ c) + (−1)(|a|+1)|b|b ∧∆(a ∧ c)

and the compatibility with the bracket

(2.2) {a, b} := (−1)|a|
(

∆(a ∧ b)−∆(a) ∧ b− (−1)|a|a ∧∆(b)
)
.

Therefore we have proved

Lemma 2.1. If the Berezinian Ber(Ω1(A)) is a free A-module of rank one and div
is a curvature-free divergence operator, then the operator ∆ defined as above endows
V•(A) with a BV structure compatible with the usual Gerstenhaber structure.

The main example of this construction is when A = C∞(N), N being a graded
manifold endowed with a Berezinian volume v. In this case the operators LX and
ιX are just the classical Lie derivatives and contraction operators, and the complex
I•(N) is the complex of integral forms of the graded manifold. Since the Berezinian
is a line bundle and v is a nowhere zero section, there exists an operator div defined
uniquely by the equation LY (v) = div(Y ) v, which is indeed a divergence operator
whose curvature vanishes. Observe that in the case when N is an oriented smooth
manifold, this amounts to choosing an ordinary volume form v. In the case when
N = T [1]M , with M an oriented smooth manifold, there is a canonical Berezinian
volume v characterized by∫

N

α v =
∫
M

α, ∀α ∈ C∞(N) = Ω•(M).

Remark 2.2. The geometry of T [1]M is closely related to the geometry of the formal
neighborhood of M inside its cotangent bundle T ∗M . Namely, the Liouville volume
form on T ∗M induces a curvature-free divergence operator ∆ on V•(T ∗M), which
makes it a BV algebra. The algebra A = Γ(S•TM) of smooth functions on T ∗M
which are polynomial along the fibers is a BV subalgebra of V(T ∗M); it can be
considered as the algebra of multivector fields on T ∗M which are “infinitesimal in
the cotangent direction”. As a consequence of the “Fourier transform” [2, 17], the
Gerstenhaber algebras V•(T [1]M) and V•(A) are isomorphic. But it can be easily
verified that they are also isomorphic as BV algebras.
Remark 2.3. For a smooth manifold M , integral forms are just ordinary differential
forms and I•(M) is naturally identified with Ω•(M). On the other hand, for a
graded manifold N which is non trivial in odd degrees, the complex I•(N) of
integral forms is not isomorphic to the de Rham complex of N (see [7] for details).
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3. BV structure on Hochschild cohomology

The aim of this Section is to recall some standard facts about Hochschild coho-
mology and fix notations for the rest of the paper. We address the reader to [13]
and [24] for a comprehensive treatment.

3.1. Hochschild cohomology. Let A = ⊕j∈ZAj be a graded algebra over R, with
a graded commutative associative product µ and a unit 1. We also suppose that
A is endowed with a non degenerate symmetric inner product compatible with the
algebra multiplication, namely such that 〈a, b〉 = (−1)|a| |b|〈b, a〉 and 〈µ(a⊗ b), c〉 =
〈a, µ(b⊗ c)〉. Finally, a graded bimodule B over the algebra A is given.

Let us set T (A) :=
⊕

k≥0A
⊗k and TB(A) := R⊕

⊕
k,l≥0A

⊗k ⊗ B ⊗ A⊗l. It is
well known that T (A) is a coalgebra and TB(A) a bi-comodule over T (A) with the
coproducts

T (A)→ T (A)⊗ T (A)

(a1, . . . , an) 7→
n∑
i=0

(a1, . . . , ai)⊗ (ai+1, . . . , an)

and

TB(A)→ (T (A)⊗ TB(A))⊕ (TB(A)⊗ T (A))

(a1, . . . , ak, b, ak+1, . . . , an) 7→
k∑
i=0

(a1, . . . , ai)⊗ (ai+1, . . . , b, . . . , an)+

+
n∑
i=k

(a1, . . . , b, . . . , ai)⊗ (ai+1, . . . , an).

Hence we can define the space Coder(T (A), TB(A)), of coderivations from T (A) to
TB(A), with respects to the above coproducts.

The Hochschild cochain complex of A with values in B is defined as

Hoch•(A,B) := Coder(T (A[1]), TB[1](A[1]))[−1]

where by A[1] we mean the graded algebra obtained by shifting the degrees of A
by 1; namely, A[1] = ⊕j∈Z(A[1])j with (A[1])j := Aj+1. As usual one can make the
identification

Hoch•(A,B) =
∏
n

Hom(A[1]⊗n, B[1])[−1] =
∏
n

Hom(A⊗n, B)[−n].

Let us denote by µ̃B and µ̃ the lifts of the bimodule structure µB : A⊗B⊗A→ B
and of the multiplication µ : A ⊗ A → A to coderivations of T (A[1]) with values
in TB[1](A[1]). Then, on the Hochschild cochain complex we can define a degree 1
differential δB : Hoch•(A,B)→ Hoch•(A,B), by setting δB(f) := µ̃B◦f−(−1)|f |f ◦
µ̃. It is easy to check that (δB)2 = 0; the cohomology of the Hochschild complex
with respect to the differential δB is called Hochschild cohomology of A with values
in B and it is denoted by HHoch•(A,B). When B = A with the canonical bimodule
structure we write HHoch•(A) for HHoch•(A,A); moreover δA is simply denoted
by δ.
Remark 3.1. Since A and B are graded objects, the Hochschild complex Hoch(A,B)
is a bigraded object: in the identification Hoch•(A,B) =

∏
n Hom(A[1]⊗n, B[1])[−1],
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the horizontal degree is provided by the number of A-factors, and the vertical degree
by the degree of the maps:

Hochi,j(A,B) = {f ∈ Hom(A[1]⊗i, B[1])[−1]| deg(f) = j}.

The differential δB is a horizontal differential, since it increases the number of
factors by one, leaving the degree of the maps unchanged. So one can think of the
Hochschild complex as a bicomplex, with horizontal differential δB1 (f) := µ̃B ◦ f −
(−1)|f |f ◦ µ̃ and trivial vertical differential δB0 := 0, and to consider δB as the total
differential δB = δB0 + δB1 . We will come back to this point of view when we will be
discussing the Hochschild cohomology of differential graded algebras in Section 7.

3.2. Operations on the Hochschild cochain complex. On the Hochschild co-
chain complex Hoch•(A) one can define various operations. First, there is a compo-
sition f ◦g whose graded antisymmetrization {f, g} := f ◦g−(−1)|f | |g|g◦f gives rise
to a graded odd Lie bracket of degree +1, also known as the Gerstenhaber bracket.
Notice that the associativity of the product µ of A is equivalent to {µ̃, µ̃} = 0,
which immediately implies that the Hochschild differential δ(f) = {µ̃, f} indeed
squares to zero. Similar relations holds for µ̃B and δB .

Next, using the identification of Hoch•(A) with
∏
n≥0 Hom(A⊗n, A)[−n] we de-

fine a product between φ ∈ Hom(A⊗k, A)[−k] and ψ ∈ Hom(A⊗l, A)[−l] as

(φ ∪ ψ)(a1 ⊗ · · · ⊗ ak+l) := (−1)εµ(φ(a1 ⊗ · · · ⊗ ak)⊗ ψ(ak+1 ⊗ · · · ⊗ ak+l)),

where ε = l(|a1|+ · · ·+ |ak|+ k). This associative product is non-commutative but
it gives rise to a graded commutative product in cohomology. The cup product and
the Gerstenhaber bracket satisfy in cohomology the graded Leibnitz rule

{a, b ∪ c} = {a, b} ∪ c+ (−1)(|a|+1)|b|b ∪ {a, c}.

Therefore (HHoch•(A),∪, {·, ·}) is a Gerstenhaber algebra [8]. In addition, on the
complex Hoch•(A,A∗) one has an operator β given by the dual to Connes’ B-
operator [6]. More explicitly, one defines β : Hoch•(A,A∗)→ Hoch•−1(A,A∗) as

(β(f)(a1, . . . , an))(an+1) :=
n+1∑
i=1

(−1)ε(f(ai, . . . , an+1, a1, . . . , ai−1))(1)

where 1 is the unit of A and ε = |f |+ |a1|+ · · ·+ |an+1|+ (|ai|+ · · ·+ |an|)(|a1|+
· · ·+ |ai−1|).

The inner product on A gives rise to an injection P : A → A∗ which is an A-
bimodule map, and, by composing the Hochschild cochains with the injection P , one
obtains an injective map ℘ : Hoch•(A) → Hoch•(A,A∗). If moreover ℘ is a quasi-
isomorphism, i.e., induces an isomorphism H(℘) in cohomology, then we can define
an operator ∆β of degree −1 on HHoch•(A) by setting ∆β = H(℘)−1 ◦ β ◦H(℘).
As shown in [24] (see also [14]), the operator ∆β squares to zero in cohomology and
is compatible with the Gerstenhaber structure on HHoch•(A) in the sense that (cf.
equation (2.1))

∆β(a ∪ b ∪ c) + ∆β(a) ∪ b ∪ c+ (−1)|a|a ∪∆β(b) ∪ c+ (−1)|a|+|b|a ∪ b ∪∆β(c) =

= ∆β(a ∪ b) ∪ c+ (−1)|a|a ∪∆β(b ∪ c) + (−1)(|a|+1)|b|b ∪∆β(a ∪ c)
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and (cf. equation (2.2))

{a, b} = (−1)|a|
(

∆β(a ∪ b)−∆β(a) ∪ b− (−1)|a|a ∪∆β(b)
)
.

In other words (HHoch•(A),∪, {·, ·},∆β) is a BV algebra. Summing up, we have
Proposition 3.2. If the map ℘ : Hoch•(A) → Hoch•(A,A∗) induced by the inner
product of A is a quasi-isomorphism, then HHoch•(A) is endowed with a BV algebra
structure, compatible with its Gerstenhaber structure.

A trivial example is when A is finite dimensional, and hence ℘ is an isomorphism.
A more interesting case is the algebra of functions on a graded manifold N endowed
with a Berezinian volume v. In this case the pairing is defined by

(3.1) 〈f1, f2〉 =
∫
N

f1f2 v.

In general, when N is a graded manifold, Hoch•(C∞(N)) is not necessarily quasi-
isomorphic to Hoch•(C∞(N), C∞(N)∗), and hence we do not know whether we can
define a BV structure on Hoch•(C∞(N)). However we will see in Section 4 that a
version of Proposition 3.2 can be applied to a certain subcomplex of the Hochschild
complex, namely to the subcomplex of multidifferential operators.

4. BV structure on multidifferential operators

The Hochschild complex of A has a sub-Gerstenhaber algebra D•(A) consisting
of multidifferential operators, namely sums of cochains of the form (a1, . . . , an) 7→∏n
i=1 φi(ai) where φi are compositions of derivations. The bigrading on the Hoch-

schild complex induces a bigrading on the subalgebra of multidifferential operators:

Di,j(A) := D•(A) ∩ Hochi,j(A).

We now want to discuss under which conditions the cohomology of D•(A) admits a
natural BV structure. As above we are assuming that there exists a non degenerate
symmetric inner product on A compatible with the multiplication, and hence an
injective map ℘ : Hoch•(A) → Hoch•(A,A∗). The point is to determine when the
Connes cyclic β-operator β : Hoch•(A,A∗) → Hoch•−1(A,A∗) induces an operator
∆β : D•(A)→ D•−1(A) making the diagram

D•(A)
℘ //

∆β

���
�
�

Hoch•(A,A∗)

β

��
D•−1(A)

℘ // Hoch•−1(A,A∗)

commutative. To answer this question, we look at the problem from a more general
perspective; namely, let C•(A) be any sub-Gerstenhaber algebra of Hoch•(A) whose
℘-image in Hoch•(A,A∗) is closed under β. Since ℘ is injective, β induces a well-
defined operator ∆β on the complex C•(A). Following [24] and [14], the operator
∆β squares to zero in the cohomology of C•(A), and endows H•(C•(A)) with a BV
algebra structure compatible with its Gerstenhaber structure.

We now specialize to the case when A = C∞(N), where N is a graded mani-
fold endowed with a Berezinian volume v. In order to prove that the cohomology
H•(D•(N)) of the algebra of multidifferential operator admits a natural BV struc-
ture, we only need to prove that (β ◦ ℘)(D•(N)) ⊆ ℘(D•(N)) with ℘ induced by
the pairing (3.1). We first need the following “integration-by-parts” Lemma.
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Lemma 4.1. Let D be a multidifferential operator. Then there exist a multidiffer-
ential operator D̃ such that

〈D(f1, . . . , fn),1〉 = 〈D̃(f1, . . . , fn−1), fn〉
Then we observe that for every D ∈ Dn(N) and for every i = 1, . . . , n, the

operator

Di(f1, . . . , fn) := D(fi, . . . , fn, f1, . . . , fi−1), f1, . . . , fn ∈ A,
is still in Dn(N). Finally

(β ◦ ℘(D))(f1, . . . , fn−1)(fn) =
n∑
i=1

(−1)ε〈D(fi, . . . , fn, f1, . . . , fi−1),1〉 =

=
n∑
i=1

(−1)ε〈Di(f1, . . . , fn),1〉 =
n∑
i=1

(−1)ε〈D̃i(f1, . . . , fn−1), fn〉 =

= ℘

(
n∑
i=1

(−1)εD̃i

)
(f1, . . . , fn−1)(fn).

Proof of Lemma 4.1. The proof is by induction on the order of the multidifferential
operator D. If D is homogeneous of order zero,

D(f1, . . . , fn) = λf1 · · · fn
for some constant λ, so that

〈D(f1, . . . , fn),1〉 =
∫
N

λf1 · · · fn v = 〈λf1 · · · fn−1, fn〉

and we are done. Now assume the claim proved for operators up to order k and
prove it for order k + 1 operators by the following argument. A homogeneous
component of an order k + 1 multidifferential operator can be written as

D(f1, . . . , fn) = D0(f1, . . . fi−1, X(fi), fi+1, . . . , fn)

for a suitable multidifferential operator D0 of order k, some index i and some vector
field X. We compute

〈D(f1, . . . , fn),1〉 = 〈D0(f1, . . . , X(fi), . . . , fn),1〉
Here we have to distinguish two cases. If i 6= n, by the induction hypothesis applied
to D0, we can write

〈D0(f1, . . . , X(fi), . . . , fn),1〉 = 〈D̃0(f1, . . . , X(fi), . . . , fn−1), fn〉
and we are done. If i = n then the induction hypothesis gives

〈D0(f1, . . . , fn−1, X(fn)),1〉 = 〈D̃0(f1, . . . , fn−1), X(fn)〉.
For any vector field Y , Cartan’s formula gives LY (v) = diY (v) + iY d(v) = diY (v),
since d(v) = 0 [7]. Hence, by Stokes’ Theorem we have that

0 =
∫
N

diY (f v) =
∫
N

Y (f) v + (−1)|f | |Y |
∫
N

f LY (v).

Recall for Section 2 that there exists an operator div defined uniquely by the equa-
tion LY (v) = div(Y ) v. Therefore

(4.1) 〈Y (f),1〉 =
∫
N

Y (f) v = −(−1)|f | |Y |
∫
N

f div(Y ) v = −〈div(Y ), f〉.
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Going back to our problem with D0, we apply the previous formula to the vector
field Y = D̃0(f1, . . . , fn−1)X and obtain

〈D̃0(f1, . . . , fn−1), X(fn)〉 =
∫
N

D̃0(f1, . . . , fn−1)X(fn) v

= 〈div(D̃0(f1, . . . , fn−1)X), fn〉.

The map (f1, · · · , fn−1) 7→ div(D̃0(f1, . . . , fn−1)X) is a multidifferential operator,
and the Lemma is proved by setting D̃(f1, . . . , fn−1) = div(D̃0(f1, . . . , fn−1)X). �

5. The Hochschild–Kostant–Rosenberg map

The Hochschild–Kostant–Rosenberg (HKR) map is defined as follows:

(5.1)
V•(A) −→ Hoch•(A)

φ1 ∧ · · · ∧ φn 7→ 1
n!

∑
σ∈Sn

sign(σ) φσ(1) ∪ · · · ∪ φσ(n).

Note that the HKR map is actually a map of bigraded vector spaces: Vi,j(A) →
Hochi,j(A). We have already observed that both V•(A) and HHoch•(A) are Ger-
stenhaber algebras, and it is well known that the HKR map in fact preserves these
structures. More explicitly
Theorem 5.1. If V•(A) is endowed with the zero differential, then HKR is a
morphism of complexes. Moreover the induced map in cohomology is a morphism
of Gerstenhaber algebras.

Proof. This is a standard result: the fact that HKR respects the product structures
in cohomology follows directly from the fact that the cup product is commutative
in cohomology [8]. An easy check shows that for X,Y ∈ Der(A) we have

{HKR(X),HKR(Y )} −HKR({X,Y }) = 0

and hence, by the compatibility between the bracket and the product, HKR induces
in cohomology a map of Gerstenhaber algebras. �

The classical Theorem of Hochschild, Kostant and Rosenberg [10] states that
when A is a smooth algebra (e.g. for the coordinate ring of a smooth affine algebraic
variety) then the HKR map is a quasi-isomorphism, i.e., induces an isomorphism
V•(A) ∼−→ HHoch•(A).

One sees from equation (5.1) that the HKR map actually takes its values in
the subcomplex D•(A) of multidifferential operators. For a smooth algebra A, the
inclusion D•(A) ↪→ Hoch•(A) is a quasi-isomorphism, so the classical Hochschild-
Kostant-Rosenberg theorem can then be stated as follows.
Theorem 5.2. If A is a smooth algebra, then HKR: V•(A) → H•(D•(A)) is an
isomorphism of Gerstenhaber algebras.

Our main result is a version of Theorem 5.2 for graded manifolds, namely, we
prove
Theorem 5.3. Let N be a graded manifold endowed with a fixed Berezinian vol-
ume v and whose body is a smooth closed manifold. Then V•(N) and H•(D•(N))
can be endowed with BV algebra structures compatible with their classical Gersten-
haber structures. Moreover HKR: V•(N) → H•(D•(N)) is an isomorphism of BV
algebras.
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Proof. We have seen in Sections 2 and 4 that, in case A = C∞(N) is the algebra of
smooth functions of a graded manifold N endowed with a Berezinian volume form,
then both V•(N) and H•(D•(N)) are BV algebras in a way compatible with their
classical Gerstenhaber structures.

We know from Theorem 5.1 that HKR induces in cohomology a morphism of
Gerstenhaber algebras. Moreover we know from [2] that HKR: V•(N) → D•(N)
is a quasi-isomorphism. Therefore, by the compatibility between the BV Laplacian
and the Gerstenhaber bracket, we only need to prove that for every vector field
X ∈ V1(N) on a graded manifold N , we have

HKR(∆(X)) = ∆β(HKR(X)).

To see this, consider the diagram

V1(N) HKR //

∆

��

D1(N)
℘ //

∆β

��

Hoch1(C∞(N), C∞(N)∗)

β

��
V0(N) HKR // D0(N)

℘ // Hoch0(C∞(N), C∞(N)∗)

Since the diagram on the right commutes and ℘ is injective, commutativity of the
diagram on the left follows from the commutativity of the external diagram. This
is indeed the case since on the one side, for X ∈ V1(N) and f ∈ C∞(N), we have
that

(5.2) (β(℘(HKR(X)))) (f) = −〈X(f),1〉,
on the other side

(5.3) (℘(HKR(∆(X)))) (f) = 〈∆(X), f〉.
By Section 2, ∆(X) = div(X), and the right-hand sides of equations (5.2) and (5.3)
coincide by means of equation 4.1. �

6. The HKR theorem for differential graded manifolds

We now consider the more general case of differential graded manifolds, i.e., of
graded manifolds N endowed with a degree 1 integrable vector field Q. Note that,
since the degree of Q is 1, the integrability condition {Q,Q} = 0 is equivalent to
Q2 = 0. The algebraic counterpart of a differential graded manifold (N,Q) is a
differential graded algebra (A,d), where d is a degree one differential on the graded
algebra A. A classical example is given by the de Rham algebra (Ω•(M),d) of a
differential manifold M with the de Rham differential. The corresponding graded
manifold is T [1]M ; the de Rham differential on differential forms corresponds to a
degree 1 integrable vector field on T [1]M . Note that ordinary graded manifolds can
be considered as differential graded manifolds with the trivial vector field Q = 0.

The construction of the Hochschild complex of a graded algebra A with values
in B described in Section 3 generalizes to the case of a differential graded algebra
(A,d). In this case one actually gets a nontrivial vertical differential by setting
δB0 (f) := d̃ ◦ f − (−1)|f |f ◦ d̃, where d̃ denotes the lift of the differential d : A→ A,
to coderivations of T (A[1]) with values in TB[1](A[1]). The horizontal differential
δB1 is the same as in the case of graded algebras described in Section 3. One
easily checks that the total differential δB = δB0 + δB1 squares to zero. We show
this in the particular case B = A, the general case being similar. By definition,
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δ1 = {µ̃, ·} and δ0 = {d̃, ·}; the associativity of the product µ is equivalent to
{µ̃, µ̃} = 0, the fact that d is a derivation for µ is equivalent to {d̃, µ̃} = 0, and
d2 = 0 is equivalent to {d̃, d̃} = 0. These three properties immediately imply that
the Hochschild differential δ(f) = {µ̃+ d̃, f} indeed squares to zero.

The total complex will be denoted by HochDG(A,B); its cohomology is called
Hochschild cohomology of A with values in B and it is denoted by HHoch•DG(A,B),
where the subscript DG means that we are working in the category of differential
graded algebras. Clearly, one recovers the Hochschild cohomology of a graded
algebra A by considering it as a differential graded algebra with trivial differential.
When B = A with the canonical bimodule structure, we write HHoch•DG(A) for
HHoch•DG(A,A). As in the graded case, the differential graded Hochschild complex
HochDG(A) has a graded Lie algebra structure, and both δ0 and δ1 are operators of
adjoint type for this Lie algebra structure.

Since the vector field Q squares to zero, it induces a differential on the algebra
of multivector fields of the differential graded manifold (N,Q). Algebraically, this
amounts to saying that the operator {d, ·} acts as a differential on V•(A). We can
therefore look at V•(A) as a bicomplex: the horizontal differential is zero, and the
vertical differential is {d, ·}. We have a HKR map V•(A) → HochDG(A), which is
defined as in the case of differential algebras.

Lemma 6.1. The HKR map (V•(A), {d, ·}, 0) → (HochDG(A), δ0, δ1) is a map of
bicomplexes.

Proof. What we have said on the HKR map for graded algebras implies that
HKR: (V•(A), 0) → (HochDG(A), δ1) is a map of complexes. So we are left with
checking the compatibility of {d, ·} with the differential δ0. This follows from the
following more general fact: given a vector field X and a multivector field Y , then
HKR({X,Y }) = {HKR(X),HKR(Y )}, as one can easily verify. Note that for an
arbitrary multivector field X, the above identity only holds up to homotopy. Since
δ0(HKR(Y )) = {HKR(d),HKR(Y )}, this concludes the proof. �

Being compatible with the differentials, the HKR map induces a map between
the cohomologies of the total complexes H•(V•(A), {d, ·})→ HHoch•DG(A), which is
a map of graded Lie algebras. In contrast with the case of smooth algebras which
are the subject of the classical HKR theorem, this map is not an isomorphism in
general, as the next theorem shows.

Theorem 6.2. If M is a simply connected closed oriented smooth manifold of
positive dimension, then the HKR map H•(V•(Ω•(M)), {d, ·})→ HHoch•DG(Ω•(M))
is not an isomorphism.

We need the following Lemma, relating the {d, ·}-cohomology of multivector
fields on T [1]M to the de Rham cohomology of M :

Lemma 6.3. For any differential manifold M , there is an isomorphism

H•(V•(Ω•(M), {d, ·})) ' H•deRham(M).

Proof. Recall that V•(Ω•(M)) is the algebra of multivector fields on the graded
manifold T [1]M . We fix local coordinates {xi, θj} on T [1]M , where xi are (even)
coordinates on M and θj (odd) coordinates on the fibers. Consider the globally
well-defined derivation ιE which on the local generators of multivector fields acts
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as

ιE
(
xi
)

= 0 ; ιE
(
θi
)

= 0 ; ιE

(
∂

∂xi

)
=

∂

∂θi
; ιE

(
∂

∂θi

)
= 0 .

The derivation {d, ·} acts as{
d, xi

}
= θi ;

{
d, θi

}
= 0 ;

{
d,

∂

∂xi

}
= 0 ;

{
d,

∂

∂θi

}
=

∂

∂xi
.

It follows that LE = {d, ·} ◦ ιE + ιE ◦ {d, ·} is a derivation on V(T [1]M) which,
when restricted to the fields of degree m, is the multiplication by m; namely

LE
(
xi
)

= 0 ; LE
(
θi
)

= 0 ; LE

(
∂

∂xi

)
=

∂

∂xi
; LE

(
∂

∂θi

)
=

∂

∂θi
.

Now, suppose that Ψ is a {d, ·}-closed multivector field of degree m ≥ 1. Then it
is also {d, ·}-exact:

Ψ =
1
m
LE(Ψ) =

1
m
{d, ιEΨ}+

1
m
ιE({d,Ψ})

= {d, 1
m
ιEΨ}

This shows that higher cohomology groups vanish, and we are left to prove that
H0(V•(T [1]M), {d, ·}) = H•deRham(M). To see this, just notice that the 0-vector
fields on T [1]M are the differential forms onM and the action of {d, ·} on V0(T [1]M)
is precisely the action of the de Rham differential on Ω•(M). �

Proof of Theorem 6.2. Let LM be the free loop space on M . On the one hand we
have Chen’s isomorphism [4, 9]

H•(LM)[dimM ] ' HHoch•DG(Ω•(M)).

On the other hand, we have the isomorphism

H•(V•(Ω•(M), {d, ·})) ' H•deRham(M)

from Lemma 6.3. Finally, H•(LM)[dimM ] 6' H•deRham(M) for any simply con-
nected closed oriented smooth manifold of positive dimension [21]. �

Remark 6.4. Observe that another way of proving Lemma 6.3 goes through the
Gerstenhaber isomorphism described in Remark 2.2. In fact, it is not difficult to
see that the image of the multivector field d under this isomorphism is the restric-
tion to A = Γ(S•TM) of the canonical Poisson bivector field on the symplectic
manifold T ∗M . Thus, H•(V•(T [1]M), {d, ·}) is isomorphic to the Poisson cohomol-
ogy of T ∗M (restricted to functions polynomial along the fibers) which in turn (by
nondegeneracy of the Poisson structure) is isomorphic to the de Rham cohomology
of the total space and hence of the base.

7. BV structures in the differential graded case

By forgetting the differential, i.e., by looking at a differential graded manifolds
simply as a graded manifolds, we obtain a BV structure on the space of their
multivector fields, as in Section 2. In general, this BV structure does not induce
a BV structure on the {Q, ·}-cohomology of multivector fields. Indeed, the BV
generator ∆ is a derivation of the BV bracket, so it does not map {Q, ·}-closed
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vector fields to {Q, ·}-closed vector fields. Rather, if X is a {Q, ·}-closed vector
field, then

{Q,∆(X)} = {∆(Q), X}.
Yet, this implies that, if the vector field Q is divergence-free, i.e., if ∆(Q) = 0 then
∆ induces a BV structure on the {Q, ·}-cohomology, since

∆{Q,X} = −{Q,∆(X)}

and so {Q, ·}-exact multivector fields are mapped to {Q, ·}-exact multivector fields.
Note that, since the divergence operator ∆ we are considering in this paper is
defined as the variation of the Berezinian volume form of N along a vector field,
the condition ∆(Q) = 0 means that the volume form is Q-invariant. A differential
graded manifold (N,Q) with a Q-invariant Berezinian volume form is usually called
an SQ-manifold [18, 19].
Remark 7.1. In case N is an odd symplectic manifold and the vector field Q is
Hamiltonian, one speaks of PQ-manifolds [1]. Note that, if Q = HS , i.e., if S is
the function on N whose Hamiltonian vector field is Q, then div(Q) = ∆(S) and
{Q,Q} = H{S,S} where on the right we have the odd Poisson bracket associated to
the odd symplectic structure on N . Therefore, under the mild assumption that S
has at least one critical point, the two equations {Q,Q} = 0 and div(Q) = 0 imply
the quantum master equation for S, namely ∆(S) +

√
−1

2~ {S, S} = 0.
As far as concerns the BV structures on Hochschild cohomology, the same con-

struction we described in Section 3 also works in the differential graded case: if
(A,d) is the differential graded algebra of functions on the SQ-manifold (N,Q), then
we have a BV structure on HHoch•DG(A) under the hypothesis that ℘ : Hoch•DG(A)→
Hoch•DG(A,A∗) is a quasi-isomorphism. Moreover, by the same argument used in
Section 5, the HKR map H•(V•(A), {d, ·})→ Hoch•DG(A) is a BV map in this case.

An example is given by the de Rham algebra (Ω•(M),d) of a smooth closed
manifold M . In the coordinates {xi, θj} on T [1]M , the de Rham differential on
Ω•(M) is written

d =
dimM∑
i=1

θi
∂

∂xi
,

so that its divergence is

div(d) =
dimM∑
i=1

∂θi

∂xi
= 0.

The pairing on Ω•(M) induced by the canonical Berezinian volume form on T [1]M
is the usual Poincaré duality pairing:

〈ω1, ω2〉 =
∫
M

ω1 ∧ ω2.

The induced map ℘ : Hoch•DG(Ω•(M))→ Hoch•DG(Ω•(M),Ω•(M)∗) is a quasi-isomor-
phism [15], and so there exists a BV algebra structure on HHoch•DG(Ω•(M)). This
BV algebra structure coincides, via Chen’s isomorphism

HHoch•DG(Ω•(M)) ' H•(LM)[dimM ],

with the Chas–Sullivan BV structure on the homology of the free loop space of M
[3, 4, 5, 9, 15, 24]. Also the {d, ·}-cohomology of V•(Ω•(M)) has a nice geometrical



14 A. S. CATTANEO, D. FIORENZA, AND R. LONGONI

interpretation: we have shown in the proof of Lemma 6.3 that

Hp(V•(Ω•(M)), {d, ·}) =

{
0 if p 6= 0
H•deRham(M) if p = 0.

Note that, since the {d, ·}-cohomology of V•(Ω•(M)) is concentrated in degree zero,
the BV structure on H•(V•(Ω•(M)), {d, ·}) is the trivial one. Finally, the BV map
H•(V•(Ω•(M)), {d, ·})→ HHoch•DG(Ω•(M)) is the natural map

H•deRham(M) ' H•(M)[dimM ]→ H•(LM)[dimM ]

induced by the natural embedding M ↪→ LM which identifies the points of M with
the constant loops in LM .
Remark 7.2. The constructions of Section 4 also work in the differential graded case:
a BV structure is defined on the total cohomology of any sub-Gerstenhaber algebra
C•DG(A) of Hoch•DG(A), whose ℘-image in Hoch•DG(A,A∗) is closed under β. This
way we obtain a BV structure on the total cohomology of multidifferential operators
on an SQ-manifold. Moreover, the HKR map H•(V•(A), {d, ·}) → H•DG(D•(A)) is
a BV map.
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