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Abstract

In this paper, we derive regularity estimates for the electric field inte-
gral operator which arises when formulating the time-harmonic Maxwell
problem as a boundary integral equation. More precisely, we show that
the regularity constants can be bounded polynomially in terms of the
frequency, where the degree of the polynomial depends on the regularity
order and is given explicitly. The paper concludes with an application
of these results to the electric field integral equation with distributional
right-hand side.
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1 Introduction

Computation of the propagation of electromagnetic waves scattered by a bounded
obstacle is important in applications, e.g., the design and analysis of antennas,
but also as a model problem for numerical methods developed to compute wave
propagation in infinite domains. An important class of such methods are the
time-domain boundary integral equations.

The formulation of time-dependent electromagnetic scattering problems as
time-domain boundary integral equations (TDBIEs) goes back to the 1960s (cf.
[14]), while the efficient and accurate numerical solution is an active field of
research. Important discretization techniques include Galerkin methods based
on space-time variational formulations (cf. [5, 31, 3, 1, 16, 29]) and methods
based on bandlimited interpolation and extrapolation (cf. [34]).

An alternative approach to solve TDBIEs numerically is to employ convo-
lution quadrature — a method for discretizing convolutions introduced in the
1980s (cf. [20, 21]). Convolution quadrature based on linear multistep methods
has been applied to numerous problems (cf. [22, 8, 30, 33, 12]); fast numerical
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implementations were developed in [18, 17, 19]. For a review of convolution
quadrature and its applications we refer to [23, 9]. The advantages of this dis-
cretization scheme for TDBIEs include its excellent stability properties and the
fact that only the Laplace transform of the time-domain fundamental solution is
required and thus distributional kernels are avoided. An important assumption
for the stability of convolution quadrature is the A-stability of the underlying
time-discretization method. Since A-stable linear multistep methods cannot ex-
ceed a convergence order of 2, convolution quadratures based on Runge-Kutta
methods have recently been considered and analyzed in order to obtain high or-
der and low dissipation schemes (cf. [24, 6, 7]). For the TDBIE of the Maxwell
Equations on a three-dimensional scatterer, this has been developed in [4].

A key ingredient in the convergence theory in [4] is a regularity assumption
for the electric field boundary integral equation of the time-harmonic Maxwell
equations which is explicit with respect to complex frequencies. This problem is
interesting in its own right and is in the spirit of the coefficient-explicit regularity
results for scalar second order elliptic boundary value problems (cf. [25]).

To be more precise we consider the propagation of time-dependent electro-
magnetic fields in a homogeneous medium arising from the scattering of incom-
ing waves at a perfectly conducting obstacle. The formulation of this problem
as an integral equation results in the time-domain electric field integral equa-
tion (EFIE). For the analysis of convolution quadrature for the convolution in
time, the EFIE operator V (s) in the Laplace domain has to be investigated for
complex frequencies in the half-plane

Iσ0 := {s ∈ C | Re s ≥ σ0} for some σ0 > 0, (1)

more precisely, estimates of the norm of the inverse operator V−1 (s) which are
explicit in s ∈ Iσ0 are needed. Such estimates are known, see [4], in the energy
norm, however estimates in more regular spaces are to the best of our knowledge
not available in the literature.

Although the regularity theory for systems of elliptic equations is well es-
tablished — see, e.g., the monograph [13], the derivation of frequency-explicit
regularity estimates for systems of boundary integral equations is far from triv-
ial. It requires the use of high-order Maxwell-harmonic extension operators
along with indexed Sobolev norms on the boundary and on the domain. We
will show that the regularity constant grows polynomially with higher order
regularity in terms of the complex frequency. As an application of our theory
we will derive frequency-explicit regularity estimates for the dual problem which
arises when the Aubin-Nitsche trick (cf., e.g., [28, Section 4.2.5]) is applied to
estimate the error of field point evaluations (cf. [4]).

The paper is structured as follows. In Section 2 we will introduce the relevant
Sobolev spaces for Euclidean domains and Lipschitz manifolds and recall the
definitions of the tangential trace operators. In Section 3 we will define the
Laplace domain electric field integral operator on the boundary of the domain.
Since trace liftings will play an essential role for the regularity estimates we
introduce corresponding interior and exterior Maxwell problems in a form that
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allows to apply classical regularity estimates to this system. In Section 4 we
will derive the regularity results for the electric field integral operators where
the dependence of the regularity constant on the complex frequency is explicit.
Finally, in Section 5 we apply our theory to estimate the potential of the electric
field in field points of the exterior domain explicitly in terms of the frequency.

2 Setting

Let Ω− be an open bounded set in R3 with Lipschitz boundary Γ, unitary outer
normal n, and complement Ω+ := R

3 \ Ω−. In this paper we will consider
the propagation of time-dependent electromagnetic fields near a perfectly con-
ducting body. We consider three-dimensional exterior scattering problems in a
homogeneous, isotropic medium with constant, positive electric permittivity ε
and constant, positive magnetic permeability µ. Furthermore we assume that
there are no external sources.

First, we have to introduce some notation. The inner product of two vectors
a,b ∈ C3 is denoted by 〈a,b〉; as a convention, the complex conjugation is al-
ways applied to the first argument in scalar products. The usual vector product
is denoted by a×b. We will use the notation Ω to indicate that a statement is
true for both Ω− and Ω+. The standard square-integrable Lebesgue and Sobolev
spaces are denoted by L2 (Ω) (with norm ‖·‖Ω) andHs (Ω) (with norm ‖·‖Hs(Ω))

(cf. [2]). We will use bold letters L2 (Ω) andHs (Ω) for the corresponding spaces
of vector-valued functions. Let

H (curl,Ω) :=
{
v ∈ L2 (Ω) | curlv ∈ L2 (Ω)

}
,

H(div,Ω) :=
{
v ∈ L2 (Ω) | divv ∈ L2 (Ω)

}
,

equipped with their graph norms

‖w‖curl,Ω =
(
‖w‖2Ω + ‖curlw‖2Ω

)1/2
∀w ∈H(curl,Ω),

‖v‖div,Ω =
(
‖v‖2Ω + ‖divv‖2Ω

)1/2
∀v ∈H(div,Ω).

We emphasize that our goal in this paper is to develop regularity estimates
which are explicit with respect to the complex frequency s — the dependence on
ε and µ will mostly be hidden in the constants. However, some of the estimates
become sharper if one uses the following indexed norm

‖v‖curl,Ω,s :=
√
‖√µεsv‖2

L2(Ω) + ‖curlv‖
2
L2(Ω), s ∈ Iσ0 .

Let D
(
Ω
)
=
{
φ|Ω | φ ∈ C∞

comp

(
R3
)}
. The closure of D3

(
Ω
)
with respect to

the ‖·‖curl,Ω-norm is

H0 (curl,Ω) := D
(
Ω
)‖·‖curl,Ω

.
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We will further require square integrable tangential fields

L2t (Γ) := {v ∈ L2(Γ)| 〈n,v〉 = 0 on Γ}

and the following trace operators Πτ and γτ mapping from D(Ω) to L2t (Γ)

Πτ : u �→ n× (u× n) |Γ and γτ : u �→ u|Γ × n.

Following [10], we define the Hilbert spaces

V :=H1/2(Γ), Vγ := γτ (H
1(Ω)), VΠ := Πτ (H

1(Ω))

with norms that assure the continuity of the trace operators

‖λ‖Vγ = inf
u∈V

{‖u‖V | γτu = λ}

and
‖λ‖VΠ = inf

u∈V
{‖u‖V | Πτu = λ}.

Further, we denote by V ′
Π and V ′

γ the respective dual spaces with L
2
t (Γ) as the

pivot space and their natural norms. We denote the surface divergence by divΓ
and the surface curl by curlΓ (cf., e.g., [27], [10]). We are now ready, see [10],
to introduce the following Hilbert spaces on Γ:

H−1/2(divΓ,Γ) := {v ∈ V ′
γ | divΓ v ∈ H−1/2(Γ)},

H−1/2(curlΓ,Γ) := {v ∈ V ′
Π | curlΓ v ∈ H−1/2(Γ)}

with norms defined as

‖v‖−1/2,curlΓ :=
{
‖v‖2V ′

γ
+ ‖curlΓ v‖2H−1/2(Γ)

}1/2
,

‖v‖−1/2,divΓ :=
{
‖v‖2V ′

Π
+ ‖divΓ v‖2H−1/2(Γ)

}1/2
.

(2)

The following theorem shows that H−1/2(divΓ,Γ) and H−1/2(curlΓ,Γ) are the
correct spaces for these densities.

Theorem 1 Let Ω ∈ {Ω−,Ω+}. The trace mappings

Πτ :H (curl,Ω)→H−1/2 (curlΓ,Γ) ,

γτ :H (curl,Ω)→H−1/2(divΓ,Γ)

are continuous and surjective. Moreover, there exist continuous liftings for these
trace operators in H(curl,Ω).

For a proof we refer to [11, 27].
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3 Electric Field Integral Equations

We have now collected all the ingredients to define the Laplace domain electric
field integral operator on the boundary V(s) : H−1/2(divΓ,Γ)→H−1/2(curlΓ,Γ)
for s ∈ Iσ0 by

(V(s)ϕ) (y) : = −µΠτ

∫

Γ

s2K(s,x− y)ϕ(x) dΓx

+
1

ε
∇Γ

∫

Γ

K(s,x− y) divΓϕ(x) dΓx y ∈ Γ.

(3)

Further denote by S(s) : H−1/2(divΓ,Γ)→H(curl,Ω) the operator

(
S(s)̂j

)
(y) :=− µ

∫

Γ

sK(s,x− y)̂j(x) dΓx

+
1

ε
∇
∫

Γ

1

s
K(s,x− y) divΓ ĵ(x) dΓx, y ∈ Ω.

(4)

Note that V(s) is the tangential trace of the domain operator S(s) scaled by s:

V(s) = sΠτS(s).

Our goal is to analyze the mapping properties of the inverse operator V−1 (s).
For ψ ∈H−1/2(curlΓ,Γ), we define

ϕ := V−1(s)ψ. (5)

We relate this equation to the following exterior and interior, time-harmonic
Maxwell problem. Let Ω ∈ {Ω−,Ω+}. Find (EΩ,HΩ) ∈H (curl,Ω)×H (curl,Ω)
such that

−sεEΩ + curl HΩ = 0 in Ω,
sµHΩ+curl EΩ = 0 in Ω,

γτEΩ = 1
sψ × n on Γ.

(6)

This problem admits a unique solution for all Re s > 0 as proved, e.g., in [31]
and [32, Lemma 3.3]:

‖EΩ‖curl,Ω,s ≤ C
1

σ0

(
1

σ0
+
√

µε

)
|s| ‖ψ‖−1/2,curlΓ . (7)

Next we will investigate the regularity of EΩ for smoother data ψ. Let the
boundary of Ω be in the class Ck,1 for some k ∈ N0 and let ψ ∈ Hk+1/2 (Γ).
Apply the vector product n× (·) to the last equation in (6) and observe that
n×γτE = ΠτE and, since ψ is a tangential field, n×(ψ×n) = ψ. Thus, under
these assumptions on ψ we deduce that the boundary condition

ΠτEΩ =
1

s
ψ
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is equivalent to the boundary condition in (6). After eliminating HΩ we get the
system

s2εµEΩ + curl curlEΩ = 0 in Ω,
ΠτEΩ = 1

sψ on Γ.
(8)

For any ϕ,
EΩ = S(s)ϕ

satisfies the first equation in (8) and the choice (5) ensures that also the bound-
ary condition is satisfied.

In the next step, we will employ an extension operator to transform (8) to a
problem with homogeneous boundary conditions. We recall (see [35, Satz 8.8])
that for domains with compact Ck,1 boundary, k ∈ N0, there exists, a linear
and continuous lifting operator Z : Hk+1/2 (Γ)→ Hk+1 (Ω) such that

(Zw)|Γ = w ∀w ∈ Hk+1/2 (Γ)

and
‖Zw‖Hk+1(Ω) ≤ Cext ‖w‖Hk+1/2(Γ) ∀w ∈ Hk+1/2 (Γ) , (9)

where the positive constant Cext depends on Γ and k. We define Z :Hk+1/2 (Γ)→
Hk+1 (Ω) by Zw = (Zw1, Zw2, Zw3)

⊺ and observe that ψ in (8) satisfies

ΠτZψ = ΠτZΠτEΩ = Π2τEΩ = ΠτEΩ = ψ.

By using the ansatz

EΩ = E0Ω +
1

s
Zψ (10)

we obtain that E0Ω satisfies

s2εµE0Ω + curl curlE0Ω = −sεµZψ − 1
s curl curlZψ in Ω,

ΠτE0Ω = 0 on Γ.
(11)

Moving
J := −s2εµE0Ω

to the right-hand side and applying the divergence operator to the first equation
of (11) results in

curl curlE0Ω = J− sεµZψ − 1
s curl curlZψ in Ω,

divE0Ω = −1
s divZψ in Ω,

ΠτE0Ω = 0 on Γ.
(12)

Recall that the existence, uniqueness, and well-posedness (cf. (7)) of the solution
EΩ of (6) is already stated which also implies the existence of E0Ω = EΩ− 1

sZψ.
We use (12) only for proving regularity estimates for EΩ.

Let
X := {v ∈H0 (curl,Ω) ∩H (div,Ω) | Πτv = 0} .
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A regularized variational formulation of (12) is given by: Find E0Ω ∈ X such
that

aregΩ
(
E0Ω,F

)
= R (F) ∀F ∈ X, (13)

with

aregΩ
(
E0Ω,F

)
:=
(
curlE0Ω, curlF

)
Ω
+
(
divE0Ω,divF

)
Ω

and R (F) := (Q,F)Ω

and

Q := −s2εµE0Ω −
(

sεµ− 1

s
∆

)
Zψ = −s2εµEΩ +

1

s
∆Zψ. (14)

Here (·, ·)Ω denotes the standard L2 (Ω)-scalar product if the arguments are
vector fields and the standard L2 (Ω)-scalar product if the arguments are scalar
functions. That (13) is a correct variational formulation for (12) follows from
the calculation

(
divE0Ω,divF

)
Ω
= −

(
graddivE0Ω,F

)
Ω

= ( 1s graddivZψ,F)Ω

= ( 1s∆Zψ + 1
s curl curlZψ,F)Ω.

Theorem 2 We have

aregΩ (E,E) ≥ c ‖E‖2curl,Ω, ∀E ∈ X

and
|aregΩ (E,F)| ≤ ‖E‖curl,Ω ‖F‖curl,Ω ∀E,F ∈ X.

Proof. From [15, Chap 1, Corollary 2.10] we conclude that for any subset
Ω ⊂ R3

H0 (curl,Ω) ∩H (div,Ω) ⊂ H1
loc (Ω) .

Hence, the operators γτ and Πτ are mappings from H (curl,Ω)∩H (div,Ω) into
H1/2 (Γ). For any E ∈H (curl,Ω) ∩H (div,Ω) the following implications hold

γτE = 0 =⇒ ΠτE = n× γτE = 0

ΠτE = 0 =⇒ γτE = E× n− 〈n,E〉 (n× n) = (E− 〈n,E〉n)× n = (ΠτE)× n = 0.
(15)

As in [13, Notation 3.4.3] we introduce for s > 1/2 the space

Hs
N (Ω) := {E ∈Hs (Ω) | ΠτE = 0} . (16)

From this the first equality in

X = {v ∈H (curl,Ω) ∩H (div,Ω) | γτv = 0} [13, p. 158]= H1
N (Ω) (17)

follows. From [13, p. 158] we conclude that

aregΩ (E,E) ≥ cell ‖E‖2H1(Ω) ∀E ∈ H1
N (Ω)

(17)
= X (18)

holds.
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4 Frequency Explicit Regularity Estimates

To derive frequency explicit regularity results we first define a trace lifting which
is adjusted to a frequency dependent norm on the boundary for r ∈ N≥1 which
is defined by

‖ψ‖2r−1/2,s,Γ := |s| ‖ψ‖2L2(Γ) +
r∑

ℓ=1

|s|2−2ℓ |ψ|2Hℓ−1/2(Γ) .

Since Γ is compact there exists some R > 0 such that the open ball BR about
the origin satisfies Γ ⊂ BR. We define an extension operator ZR : H1/2 (Γ) →
H1 (Ω ∩BR) as the solution of: For given ϕ ∈ H1/2 (Γ) find uϕ ∈ H1 (Ω ∩BR)
with uϕ|Γ = ϕ and uϕ|Ω∩∂BR = 0 such that

−∆uϕ + |s|2 uϕ = 0 in Ω. (19)

We set ZRϕ := uϕ. The following lemma follows from [26, Lemma 4.22] via a
bootstrapping argument. Let

r+ := max {2, r} . (20)

Lemma 3 Let Γ be of class Cr+ for some r ≥ 1. If ϕ ∈ Hr−1/2 (Γ), then
ZRϕ ∈ Hr (Ω) and the following regularity estimate holds

‖ZRϕ‖Hr(Ω∩BR)
≤ Cr |s|r−1 ‖ϕ‖r−1/2,s,Γ ∀s ∈ Iσ0 , (21)

where Cr depends on r and on σ0 > 0 (cf (1)).
For r ≥ 2, it holds

‖∆ZRϕ‖Hr−2(Ω∩BR)
≤ Cr |s|r−1

{ ‖ϕ‖1/2,s,Γ r = 2,

‖ϕ‖r−5/2,s,Γ r ≥ 3.
(22)

Proof. For r = 1, the estimate (21) follows from (9) via

‖ZRϕ‖H1(Ω∩BR)
≤ Cext ‖ϕ‖H1/2(Γ) ≤ C1 ‖ϕ‖1/2,s,Γ

with C1 := Cext
(
1 + σ−10

)
. For the following we assume r ≥ 2.

Elliptic regularity theory applied to the inhomogeneous Dirichlet problem
(19) implies the following statement. Let Γ be of class Cr for some r ≥ 2. If
ϕ ∈ Hr−1/2 (Γ) then ZRϕ ∈ Hr (Ω) and

‖ZRϕ‖Hr(Ω∩BR)
≤ Cr

(
|s|2 ‖ZRϕ‖Hr−2(Ω∩BR)

+ ‖ϕ‖Hr−1/2(Γ)

)
. (23)

We set
wr := ‖ZRϕ‖Hr(Ω∩BR)

and vr := Cr ‖ϕ‖Hr−1/2(Γ)

and obtain from (23) the recursion

wr ≤ Cr |s|2wr−2 + vr.
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This recursion can be resolved and, for any 1 ≤ m ≤ ⌊r/2⌋, it holds

wr ≤ C̃r,m |s|2mwr−2m +
m−1∑

ℓ=0

C̃r,ℓ |s|2ℓ vr−2ℓ with C̃r,q :=

q−1∏

ℓ=0

Cr−2ℓ. (24)

We consider the cases r even/odd separately to estimate the first term in the
right-hand side in (24).

• r is even. We choose m = r/2 and use

|s|r w0 = |s|r ‖ZRϕ‖L2(Ω∩BR)
[26, (4.34)]

≤ C |s|r−1 ‖ϕ‖1/2,s,Γ .

• r is odd. We choose m = r−1
2 and use

|s|r−1w1 = |s|r−1 ‖ZRϕ‖H1(Ω∩BR)
≤ C |s|r−1 ‖ϕ‖1/2,s,Γ ,

where the constant C in addition depends on σ0.

Hence,

wr ≤ CC̃r,⌊r/2⌋ |s|r−1 ‖ϕ‖1/2,s,Γ +

⌊r/2⌋−1∑

ℓ=0

C̃r,ℓ |s|2ℓ vr−2ℓ

so that
‖ZRϕ‖Hr(Ω∩BR)

≤ Cr |s|r−1 ‖ϕ‖r−1/2,s,Γ ,

where Cr depend on r and on σ0.
For r ≥ 3, estimate (22) is a simple consequence of the first statement: We

have

‖∆ZRϕ‖Hr−2(Ω∩BR)
= |s|2 ‖ZRϕ‖Hr−2(Ω∩BR)

≤ Cr−2 |s|r−1 ‖ϕ‖r−5/2,s,Γ ,

while, for r = 2, the estimate follows from

‖∆ZRϕ‖L2(Ω∩BR) = |s|
2 ‖ZRϕ‖L2(Ω∩BR)

[26, (4.34)]

≤ C |s| ‖ϕ‖1/2,s,Γ .

The frequency-explicit higher order regularity estimate is based on Theorem
3.4.5 in [13] which we recall for convenience.

Theorem 4 Let the boundary of Ω be of class Ck for some k ≥ 2 and assume
that Q ∈ Hk−2 (Ω). Then E0Ω belongs to Hk (Ω) and satisfies

∥∥E0Ω
∥∥
Ht(Ω)

≤ Cer
(
‖Q‖Ht−2(Ω) +

∥∥E0Ω
∥∥
H1(Ω)

)
∀t ∈ (3/2, 2] . (25)

We come now to the frequency-explicit regularity estimate of the electric
field.
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Theorem 5 Let the boundary of Ω be of class Ck+ for some k ≥ 1 and assume
that ψ ∈ Hk−1/2 (Γ) ∩H−1/2 (curl,Γ). Then, the solution of (6) is in Hk (Ω)
and satisfies the estimate

‖EΩ‖Hk(Ω) ≤ C
(
|s|k−2 ‖ψ‖k−1/2,s,Γ + |s|

k−1 ‖ψ‖1/2,s,Γ + |s|k+1 ‖ψ‖−1/2,curlΓ
)

,

where C depends on σ0, ε, µ, and k.

Proof. For r ∈ N≥1, let

wr := ‖EΩ‖Hr(Ω) and vr := Cr ‖ψ‖r−1/2,s,Γ ,

where Cr is the constant in
1 (cf. Lemma 3)

‖ZRψ‖Hr(Ω) ≤ Cr |s|r−1 ‖ψ‖r−1/2,s,Γ .

We first prove the case k = 1. The coercivity estimate (18) implies for Q ∈
L2 (Ω) the estimate ∥∥E0Ω

∥∥
H1(Ω)

≤ c−1ell ‖Q‖L2(Ω) .

From (10) we deduce

‖EΩ‖H1(Ω) ≤ c−1ell ‖Q‖L2(Ω) +
1

|s| ‖ZRψ‖H1(Ω) ≤ c−1ell ‖Q‖L2(Ω) +
1

|s|v1.

For r ≥ 0, the norm of Q can be estimated by using (14) and (22):

‖Q‖Hr(Ω) ≤ |s|
2 εµ ‖EΩ‖Hr(Ω)+

1

|s| ‖∆ZRψ‖Hr(Ω) ≤ |s|
2 εµ ‖EΩ‖Hr(Ω)+|s|

r×
{

v1 r = 0,
vr r ≥ 1.

Hence ,

‖EΩ‖H1(Ω) ≤ c−1ell

(
|s| ‖EΩ‖curl,Ω,s + v1

)
+

1

|s|v1 (26)

(7)

≤ C
(
|s|2 ‖ψ‖−1/2,curlΓ + v1

)
,

where C depends on ε and σ0.
Next, we consider the case k ≥ 2. Note that

‖EΩ‖Hk(Ω) ≤
∥∥E0Ω

∥∥
Hk(Ω)

+
1

|s| ‖ZRψ‖Hk(Ω)

Thm. 4
≤ C1

(
|s|2 εµ ‖EΩ‖Hk−2(Ω) + |s|

k−2 vk +
∥∥E0Ω

∥∥
H1(Ω)

)
with C1 = Cer + 1.

Thus,

wk ≤ C1
(
|s|2 εµwk−2 + |s|k−2 vk + κ0

)
with κ0 :=

∥∥E0Ω
∥∥
H1(Ω)

.

1
ZRψ is the defined as the application of the operator ZR as in Lemma 3 to each component

of ψ.
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This recursion can resolved and we obtain for 1 ≤m ≤ ⌊k/2⌋

wk ≤
(
C1 |s|2 εµ

)m
wk−2m+C1 |s|k−2

m−1∑

ℓ=0

(C1εµ)
ℓ vk−2ℓ+C1κ0

m−1∑

ℓ=0

(
C1 |s|2 εµ

)ℓ
.

(27)
To estimate the first term, we distinguish again between even an odd k.

1. Let k be even. Choose m = k/2 to obtain

(C1εµ)
k/2 |s|k w0 ≤ (C1εµ)

k/2 |s|k ‖EΩ‖L2(Ω)
(7)

≤ (C1εµ)
k/2 |s|k ‖ψ‖−1/2,curlΓ .

2. Let k be odd. We choose m = k−1
2 and get

|s|k−1w1 ≤ |s|k−1 ‖EΩ‖H1(Ω)

(26)

≤ C |s|k−1
(
|s|2 ‖ψ‖−1/2,curlΓ + ‖ψ‖1/2,s,Γ

)
.

Since the bound for odd k grows faster in |s| we use this one for estimating
the first term in (27). We finally obtain

wk ≤ Ck
(
|s|k−2 ‖ψ‖k−1/2,s,Γ + |s|k−1 ‖ψ‖1/2,s,Γ + |s|

k+1 ‖ψ‖−1/2,curlΓ
)

.

Corollary 6 From the second equation in (6), the regularity estimates for EΩ
carry over to regularity estimates for HΩ. Let the boundary of Ω be of class
C1+k+ for some k ≥ 1 and assume that ψ ∈ Hk+1/2 (Γ) ∩ H−1/2 (curl,Γ).
Then, the solution HΩ of (6) is in Hk (Ω) and satisfies the estimate

‖HΩ‖Hk(Ω) ≤ C
(
|s|k−2 ‖ψ‖k+1/2,s,Γ + |s|

k−1 ‖ψ‖1/2,s,Γ + |s|k+1 ‖ψ‖−1/2,curlΓ
)

.

(28)

Let

Hk (curl,Ω) :=
{
v ∈Hk (Ω) | curlv ∈Hk (Ω)

}
,

Hk−1/2 (divΓ,Γ) :=
{
ψ ∈ Hk−1/2 (Γ) | divΓψ ∈ Hk−1/2 (Γ)

}

with norms

‖v‖k,curl :=
√
‖v‖2Hk(Ω) + ‖curlv‖

2
Hk(Ω),

‖ψ‖k−1/2,divΓ :=
√
‖ψ‖2Hk−1/2(Γ) + ‖divΓψ‖

2
Hk−1/2(Γ).

The next corollary states that we are able to obtain a slightly better estimate
for ‖HΩ‖k,curl than just simply bounding it by ‖HΩ‖Hk+1(Ω).
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Corollary 7 Under the same conditions as in Corollary 6 the following holds

‖HΩ‖k,curl ≤ C
(
|s|k−1 ‖ψ‖k−1/2,s,Γ + |s|k−2 ‖ψ‖k+1/2,s,Γ

+ |s|k ‖ψ‖1/2,s,Γ + |s|
k+2 ‖ψ‖−1/2,curlΓ

)
.

Proof. From the first equation in (6) we get

‖HΩ‖k,curl =
√
‖HΩ‖2Hk(Ω) + |sε|

2 ‖EΩ‖2Hk(Ω).

The combination of Theorem 5 with Corollary 6 leads to the assertion.
From the regularity estimate forHΩ it is easy to derive the mapping property

of the operator V−1 (s) by using the jump relation
ϕ = γΩ−τ HΩ− − γΩ+τ HΩ+ . (29)

Theorem 8 Let the boundary of Ω be of class C1+k+ for some k ≥ 1 and
assume that ψ ∈ Hk+1/2 (Γ)∩H−1/2 (curl,Γ). Then the function φ = V−1 (s)ψ
is in Hk−1/2 (divΓ,Γ) and satisfies the estimate

‖φ‖k−1/2,divΓ ≤ C
(
|s|k−1 ‖ψ‖k−1/2,s,Γ + |s|k−2 ‖ψ‖k+1/2,s,Γ

+ |s|k ‖ψ‖1/2,s,Γ + |s|
k+2 ‖ψ‖−1/2,curlΓ

)
.

Proof. From [11, Prop. 10], we conclude that γτ :Hk (curl,Ω)→Hk−1/2 (divΓ,Γ)
is continuous. Then, the estimate follows by combining the result of Corollary 7
with the jump relation (29).

5 An Application: The Electric Field Integral

Equation with a Functional as the Right-Hand

Side

Let ψ ∈ H−1/2 (curl,Γ) and ζ = V−1 (s)ψ. Then, the corresponding elec-
tromagnetic potential in the Laplace domain at a field point y ∈ Ω+ is given
by

ℓi (ζ) := δySi (s) (ζ) = −µ

∫

Γ

sK (s,x− y) ζi (x) dΓx

+
1

ε

∂

∂yi

∫

Γ

1

s
K (s,x− y) divΓ ζ (x) dΓx

=

∫

Γ

〈
Ktot
i (s,x− y), ζ (x)

〉
dΓx,

where

Ktot
i (s,x− y) = −µsK (s,x− y) ei −

1

sε

∂

∂yi
∇xK (s,x− y)

and ei ∈ R3 is the i-th canonical unit vector.
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Theorem 9 Let the boundary of Ω be of class C1+k+ for some k ≥ 1 and
assume that ψ ∈ Hk+1/2 (Γ) ∩H−1/2 (curl,Γ). Consider the electric field inte-
gral equation with the field point evaluation in y ∈ Ω+ as the right-hand side
functional:

find wi ∈H−1/2 (div,Γ) s.t. (wi,V (s) ζ)Γ = ℓi (ζ) ∀ζ ∈H−1/2 (div,Γ) .
(30)

Then, the solution wi is in Hk−1/2 (div,Γ) and satisfies the estimate

‖wi‖k−1/2,divΓ ≤ C e−dist(y,Γ)Re s |s|k+2 .

Proof. Since ζ is a tangential field, Πτζ = ζ holds and we conclude that
∫

Γ

〈
Ktot
i (s,x− y), ζ (x)

〉
dΓx =

∫

Γ

〈
Ktot
i (s,x− y),Πτζ (x)

〉
dΓx

=

∫

Γ

〈
ΠτKtot

i (s,x− y), ζ (x)
〉

dΓx

=
(
ΠτKtot

i (s, · − y), ζ
)

Γ
,

where (·, ·)Γ denotes the continuous extension of the L2t (Γ)-scalar product to a
sesqui-linear duality pairing (again the complex conjugation in (·, ·)Γ is on the
first argument)

(·, ·)Γ :H−1/2 (divΓ,Γ)×H−1/2 (curl,Γ)→ C.

Hence,

ℓi (ζ) =
(
ΠτKtot

i (s, · − y), ζ
)

Γ
. (31)

By taking into account (31) the solution of (30) is given by

wi = V−1 (s)ψi with ψi := ΠτK
tot
i (s, · − y) .

In order to obtain the final result, it suffices to bound higher order norms of ψi.
Recall

K(s,x− y) = e−s|x−y|

4π|x− y| .

In the following, let d := dist (y,Γ) > 0. First note that the standard trace
inequality results in

‖ψi‖k−1/2,Γ ≤ C

∥∥∥∥µsK(s, · − y)ei +
1

εs
∂yi∇xK(s, · − y)

∥∥∥∥
k,Ω−

≤ C(d) e−dRe s |s|k+1

so that

‖ψi‖k−1/2,s,Γ =

√√√√|s| ‖ψi‖2L2(Γ) +
r∑

ℓ=1

|s|2−2ℓ |ψi|2Hℓ−1/2(Γ)

≤ e−dRe s
√

C1|s|4 ≤ C e−dRe s |s|2.

13



Theorem 1 gives us

‖ψi‖−1/2,curlΓ ≤ C
∥∥Ktot

i (s, · − y)
∥∥
H(curl,Ω)

≤ C e−dRe s |s|2 .

The combination with Theorem 8 then leads to the assertion.

Remark 10 The above result is, e.g., needed in an Aubin-Nitsche duality ar-
gument used in [4, Theorem 4.10 (b)].
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