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Abstract

These notes, based on the mini-course given at the PQR2003 Euroschool held in Brussels
in 2003, aim to review Kontsevich’s formality theorem together with his formula for the star
product on a given Poisson manifold. A brief introduction to the employed mathematical tools
and physical motivations is also given.
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1 Introduction
This work is based on the course given during the international Euroschool on Poisson Ge-

ometry, Deformation Quantisation and Group Representations held in Brussels in 2003.
The main goal is to describe Kontsevich’s proof of the formality of the (differential graded)

Lie algebra of multidifferential operators on
� d and its relationship to the existence and clas-

sification of star products on a given Poisson manifold. We start with a survey of the physical
background which gave origin to such a problem and a historical review of the subsequent steps
which led to the final solution.

Physical motivation
In this Section we give a brief overview of physical motivations that led to the genesis of

the deformation quantization problem, referring to the next Sections and to the literature cited
throughout the paper for a precise definition of the mathematical structures we introduce.

In the hamiltonian formalism of classical mechanics, a physical system is described by an
even-dimensional manifold M — the phase space — endowed with a symplectic (or more gen-
erally a Poisson) structure together with a smooth function H — the hamiltonian function — on
it. A physical state of the system is represented by a point in M while the physical observables
(energy, momentum and so on) correspond to (real) smooth functions on M . The time evolution
of an observableO is governed by an equation of the form

dO

d t
= {H , O }

where { , } is the Poisson bracket on C∞(M). This bracket is completely determined by its
action on the coordinate functions

{ pi , qj } = δij

(together with { pi , pj } = { qi , qj } = 0) where (q1, . . . , qn, p1, . . . , pn) are local coordinates
on the 2n-dimensional manifoldM .

On the other hand, a quantum system is described by a complex Hilbert spaceH together with
an operator Ĥ. A physical state of the system is represented by a vector1 inH while the physical
observables are now self-adjoint operators in L(H). The time evolution of such an operator in
the Heisenberg picture is given by

d Ô

d t
=
i� [ Ĥ , Ô

]

where [ , ] is the usual commutator which endows L(H) with a Lie algebra structure. The cor-
respondence with classical mechanics is completed by the introduction of the position q̂i and
momentum p̂j operators, which satisfy the canonical commutation relations:

[ p̂i , q̂j ] =
i� δij .

1Actually, due to the linearity of the dynamical equations, there is a non-physical multiplicity which can be avoided
rephrasing the quantum formalism on a projective Hilbert space, thus identifying a physical state with a ray inH
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This correspondence is by no means a mere analogy, since quantum mechanic was born to
replace the hamiltonian formalism in such a way that the classical picture could still be recovered
as a “particular case”. This is a general principle in the development of a new physical theory:
whenever experimental phenomena contradict an accepted theory, a new one is sought which can
account for the new data, but still reduces to the previous formalism when the new parameters
introduced go to zero. In this sense, classical mechanics can be regained from the quantum theory
in the limit where

�
goes to zero.

The following question naturally arises: is there a precise mathematical formulation of this
quantization procedure in the form of a well-defined map between classical objects and their
quantum counterpart?

Starting from the canonical quantization method for
� 2n , in which the central role is played

by the canonical commutation relation, a first approach was given by geometric quantization:
the basic idea underlying this theory was to set a relation between the phase space

� 2n and the
corresponding Hilbert spaceL(

� n ) on which the Schrödinger equation is defined. The first works
on geometric quantization are due to Souriau [So], Kostant [Kos] and Segal [Se], although many
of their ideas were based on previous works by Kirillov [Kir]. We will not discuss further this
approach, referring the reader to the cited works.

On the other hand, one can focus attention on the observables instead of the physical states,
looking for a procedure to get the non-commutative structure of the algebra of operators from
the commutative one on C∞

( � 2n
)
. However, one of the first result achieved was the “no go”

theorem by Groenwold [Gro] which states the impossibility of quantizing the Poisson algebra
C∞
( � 2n

)
in such a way that the Poisson bracket of any two functions is sent onto the Lie bracket

of the two corresponding operators. Nevertheless, instead of mapping functions to operators,
one can “deform” the pointwise product on functions into a non-commutative one, realizing, in
an autonomous manner, quantum mechanics directly on C∞

( � 2n
)
: this is the content of the

deformation quantization program promoted by Flato in collaboration with Bayen, Fronsdal,
Lichnerowicz and Sternheimer,

Historical review of deformation quantization
The origins of the deformation quantization approach can be traced back to works of Weyl’s

[We], who gave an explicit formula for the operator Ω(f) on L(
� n ) associated to a smooth

function f on the phase space
� 2n :

Ω(f) :=

∫ �
2n

f̌(ξ, η) e
i� (P ·ξ+Q·η)dnξ dnη,

where f̌ is the inverse Fourier transform of f , Pi and Qj are operators satisfying the canonical
commutation relations and the integral is taken in the weak sense. The arising problem of finding
an inverse formula was solved shortly afterwards by Wigner [Wi], who gave a way to recover
the classical observable from the quantum one taking the symbol of the operator. It was then
Moyal [Mo] who interpreted the symbol of the commutator of two operators corresponding to the
functions f and g as what is now called a Moyal bracketM:

M(f, g) =
sinh(ε P )

ε
(f, g) =

∞∑

k=0

ε2k

(2k + 1)!
P 2k+1(f, g),
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where ε = i �
2 and P k is the k-th power of the Poisson bracket on C∞

(
R2n

)
. A similar formula

for the symbol of a product Ω(f)Ω(g) had already been found by Groenewold [Gro] and can now
be interpreted as the first appearance of the Moyal star product ?, in terms of which the above
bracket can be rewritten as

M(f, g) =
1

2ε
(f ? g − g ? f).

However, it was not until Flato gave birth to his program for deformation quantization that this
star product was recognized as a non commutative deformation of the (commutative) pointwise
product on the algebra of functions. This led to the first paper [FLS1] in which the problem was
posed of giving a general recipe to deform the product in C∞(M) in such a way that 1

2ε(f ?
g − g ? f) would still be a deformation of the given Poisson structure on M . Shortly afterward
Vey [Ve] extended the first approach, which considered only 1-differentiable deformation, to more
general differentiable deformations, rediscovering in an independent way the Moyal bracket. This
opened the way to subsequent works ([FLS2] and [BFFLS]) in which quantum mechanics was
formulated as a deformation (in the sense of Gerstenhaber theory) of classical mechanics and the
first significant applications were found.

The first proof of the existence of star products on a generic symplectic manifold was given by
DeWilde and Lecomte [DL] and relies on the fact that locally any symplectic manifold of dimen-
sion 2n can be identified with

� 2n via a Darboux chart. A star product can thus be defined locally
by the Moyal formula and these local expressions can be glued together by using cohomological
arguments.

A few years later and independently of this previous result, Fedosov [Fed] gave an explicit
algorithm to construct star products on a given symplectic manifold: starting from a symplectic
connection on M , he defined a flat connection D on the Weyl bundle associated to the manifold,
to which the local Moyal expression for ? is extended; the algebra of (formal) functions on M
can then be identified with the subalgebra of horizontal sections w.r.t. D. We refer the reader to
Fedosov’s book for the details. This provided a new proof of existence which could be extended
to regular Poisson manifolds and opened the way to further developments.

Once the problem of existence was settled, it was natural to focus on the classification of
equivalent star products, where the equivalence of two star products has to be understood in the
sense that they give rise to the same algebra up to the action of formal automorphisms which
are deformations of the identity. Several authors came to the same classification result using
very different approaches, confirming what was already in the seminal paper [BFFLS] by Flato
et al. namely that the obstruction to equivalence lies in the second de Rham cohomology of the
manifold M . For a comprehensive enumeration of the different proofs we address the reader to
[DS].

The ultimate generalization to the case of a generic Poisson manifold relies on the formality
theorem Kontsevich announced in [Ko1] and subsequently proved in [Ko2]. In this last work
he derived an explicit formula for a star product on

� d , which can be used to define it locally
on any M . Finally, Cattaneo, Felder and Tomassini [CFT1] gave a globalization procedure to
realize explicitly what Kontsevich proposed, thus completing the program outlined some thirty
years before by Flato.

For a complete overview of the process which led from the origins of quantum mechanics to
this last result and over, we refer to the extensive review given by Dito and Sternheimer in [DS].

As a concluding remark, we would like to mention that the Kontsevich formula can also be
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expressed as the perturbative expression of the functional integral of a topological field theory —
the so-called Poisson sigma model ([Ik], [SS]) — as Cattaneo and Felder showed in [CF1]. The
diagrams Kontsevich introduced for his construction of the local expression of the star product
arise naturally in this context as Feynman diagrams corresponding to the perturbative evaluation
of a certain observable.

Plan of the work
In the first Section we introduce the basic definition and properties of the star product in the

most general setting and give the explicit expression of the Moyal product on
� 2d as an example.

The equivalence relation on star products is also discussed, leading to the formulation of the
classification problem.

In the subsequent Section we establish the relation between the existence of a star product on a
given manifoldM and the formality of the (differential graded) Lie algebraD of multidifferential
operators on M . We introduce the main tools used in Kontsevich’s construction and present the
fundamental result of Hochschild, Kostant and Rosenberg on which the formality approach is
based.

A brief digression follows, in which the formality condition is examined from a dual point
of view. The equation that the formality map from the (differential graded) Lie algebra V of
multivector fields to D must fulfill is rephrased in terms of an infinite family of equations on the
Taylor coefficients of the dual map.

In the third Section Kontsevich’s construction is worked out explicitly and the formality the-
orem for

� d is proved following the outline given in [Ko2]. Finally, the result is generalized to
any Poisson manifoldM with the help of the globalization procedure contained in [CFT1].

2 The star product
In this Section we will briefly give the definition and main properties of the star product.

Morally speaking, a star product is a formal non-commutative deformation of the usual pointwise
product of functions on a given manifold. To give a more general definition, one can start with
a commutative associative algebra A with unity over a base ring � and deform it to the algebra
A[[ε]] over the ring of formal power series � [[ε]]. Its elements are of the form

C =

∞∑

i=0

ci ε
i ci ∈ A

and the product is given by the Cauchy formula, multiplying the coefficients according to the
original product on A

( ∞∑

i=0

ai ε
i
)
•ε
( ∞∑

j=0

bj ε
j
)

=
∞∑

k=0

( k∑

l=0

ak−l · bl
)
εk

The star product is then a � [[ε]]-linear associative product ? on A[[ε]] which deforms this trivial
extension •ε : A[[ε]]⊗ � [[ε]] A[[ε]]→ A[[ε]] in the sense that for any two v, w ∈ A[[ε]]

v ? w = v •ε w mod ε.
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In the following we will restrict our attention to the case in which A is the Poisson algebra
C∞(M) of smooth functions on M endowed with the usual pointwise product

f · g(x) := f(x) g(x) ∀x ∈M

and � is
�

.
With these premises we can give the following

Definition 2.1. A star product on M is an
�

[[ε]]-bilinear map

C∞(M)[[ε]]× C∞(M)[[ε]] → C∞(M)[[ε]]

(f, g) 7→ f ? g

such that

i) f ? g = f · g +
∑∞

i=1Bi(f, g) εi,

ii) (f ? g) ? h = f ? (g ? h) ∀f, g, h ∈ C∞(M) (associativity),

iii) 1 ? f = f ? 1 = f ∀f ∈ C∞(M).

TheBi could in principle be just bilinear operators, but, in order to encode locality from a physical
point of view, one requires them to be bidifferential operators on C∞(M) of globally bounded
order, that is, bilinear operators which moreover are differential operators w.r.t. each argument;
writing the i-th term in local coordinates:

Bi(f, g) =
∑

K,L

βKLi ∂Kf ∂Lg

where the sum runs over all multi-indices K = (k1, . . . , km) and L = (l1, . . . , ln) of any length
m,n ∈ � and the usual notation for higher order derivatives is applied; the βKLi ’s are smooth
functions, which are non-zero only for finitely many choices of the multi-indices K and L.

Example 2.2. The Moyal star product
We have already introduced the Moyal star product as the first example of a deformed product

on the algebra of functions on
� 2d endowed with the canonical symplectic form. Choosing

Darboux coordinates (q, p) = (q1, . . . , qd, p1, . . . , pd) we can now give an explicit formula for
the product of two functions f, g ∈ C∞

( � 2d
)
:

f ? g (q, p) := f(q, p) exp

(
i

�
2

(←−
∂ q
−→
∂ p −

←−
∂ p
−→
∂ q

))
g(q, p),

where the
←−
∂ ’s operate on f and the

−→
∂ ’s on g; the parameter ε has been replaced by the expression

i �
2 that usually appears in the physical literature.

More generally, given a constant skew-symmetric tensor {αij} on
� d with i, j = 1, . . . , d,

we can define a star product by:

f ? g (x) = exp

(
i

�
2
αij

∂

∂xi
∂

∂yj

)
f(x) g(y)

∣∣∣
y=x

. (2.1)
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We can easily check that such a star product is associative for any choice of αij

((f ? g) ? h) (x) = e(i 	2 αij ∂

∂xi
∂

∂zj
)(f ? g)(x)h(z)

∣∣∣
x=z

=

= e



i 	2 αij ( ∂

∂xi
+ ∂

∂yi
) ∂

∂zj � e 

i 	2 αkl ∂

∂xk
∂

∂yl � f(x)g(y)h(z)
∣∣∣
x=y=z

=

= e



i 	2 αij ∂

∂xi
∂

∂zj
+αkl ∂

∂yk
∂

∂zl
+αmn ∂

∂xm
∂
∂yn � f(x)g(y)h(z)

∣∣∣
x=y=z

=

= e



i 	2 αij ∂

∂xi
( ∂

∂yj
+ ∂

∂zj
) � e 


i 	2 αkl ∂

∂yk
∂

∂zl � f(x)g(y)h(z)
∣∣∣
x=y=z

=

= (f ? (g ? h)) (x).

Point i) and iii) in Definition (2.1) and the
�

[[ε]]-linearity can be checked as well directly from
the formula (2.1).

We would like to emphasize that condition iii) in the Definition 2.1 implies that the degree
0 term in the r.h.s. of i) has to be the usual product and it moreover ensures that the Bi’s are
bidifferential operators in the strict sense, i.e. they have no term of order 0

Bi(f, 1) = Bi(1, f) = 0 ∀i ∈ � 0 . (2.2)

As another consequence of the previous requirements on the Bi’s, it is straightforward to
prove that the skew-symmetric part B−1 of the first bidifferential operator, defined by

B
−
1 (f, g) :=

1

2

(
B1(f, g)−B1(g, f)

)

satisfies the following equations:

- B
−
1 (f, g) = −B−1 (g, f),

- B
−
1 (f, g · h) = g · B−1 (f, h) +B

−
1 (f, g) · h,

- B
−
1 (B

−
1 (f, g), h) +B

−
1 (B

−
1 (g, h), f) +B

−
1 (B

−
1 (h, f), g) = 0.

A bilinear operator on C∞(M) which satisfies these three identities is called a Poisson bracket.
A smooth manifold M endowed with a Poisson bracket on the algebra of smooth functions is
called a Poisson manifold (see also [BW] and references therein).

It is therefore natural to look at the inverse problem: given a Poisson manifoldM , can we de-
fine an associative, but possibly non commutative, product ? on the algebra of smooth functions,
which is a deformation of the pointwise product and such that

f ? g − g ? f
ε

mod ε = { f , g }

for any pair of functions f, g ∈ C∞(M)?
In order to reduce an irrelevant multiplicity of solutions, the problem can be brought down to

the study of equivalence classes of such products, where the equivalence is to be understood in
the sense of the following
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Definition 2.3. Two star products ? and ?′ on C∞(M) are said to be equivalent iff there exists a
linear operatorD : C∞(M)[[ε]]→ C∞(M)[[ε]] of the form

Df := f +

∞∑

i=1

Di(f) εi

such that
f ?′ g = D−1 (Df ?Dg) (2.3)

where D−1 has to be understood as the inverse in the sense of formal power series.

It follows from the very definition of star product that also the Di’s have to be differential
operators which vanish on constants, as was shown in [GR] (and without proof in [Ve]).

This notion of equivalence leads immediately to a generalization of the previously stated
problem, according to the following

Lemma 2.4. In any equivalence class of star products, there exists a representative whose first
term B1 in the ε expansion is skew-symmetric.

Proof. Given any star product

f ? g := f · g + ε B1(f, g) + ε2B2(f, g) + · · ·

we can define an equivalent star product as in (2.3) with the help of a formal differential operator

D = id +ε D1 + ε2D2 + · · · .

The condition for the first term of the new star product to be skew-symmetricB ′1(f, g)+B′1(g, f) =
0 gives rise to an equation for the first term of the differential operator

D1(f g) = D1f g + f D1g +
1

2

(
B1(f, g) +B1(g, f)

)
, (2.4)

which can be used to define D1 locally on polynomials and hence by completion on any smooth
function. By choosing a partition of unity, we may finally apply D1 to any smooth function on
M .

We can start by choosing D1 to vanish on linear functions. Then the equation (2.4) defines
uniquely the action of D1 on quadratic terms, given by the symmetric part B+

1 of the bilinear
operatorB1:

D1(xixj) = B+
1 (xi, xj) :=

1

2

(
B1(xi, xj) +B1(xj , xi)

)
.

where {xk} are local coordinates on the manifold M . The process extends to any monomial and
— as a consequence of the associativity of ? — gives rise to a well defined operator since it does
not depend on the way we group the factors. We check this on a cubic term:

D1((xixj)xk) = D1(xixj)xk + xixj D1(xk) +B+
1 (xixj , xk) =

= B+
1 (xi, xj)xk +B+

1 (xixj , xk) =

= B+
1 (xi, xjxk) + xi B+

1 (xj , xk) =

= xiD1(xjxk) +D1(xi)x
jxk +B+

1 (xi, xjxk) = D1(xi (xjxk)).
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The equality between the second and the third lines is a consequence of the associativity of the
star product: it is indeed the term of order ε in (xi ? xj) ? xk = xi ? (xj ? xk) once we restrict
the operators appearing on both sides to their symmetric part.

The above proof is actually a particular case of the Hochschild–Kostant–Rosenberg theorem.
Associativity implies in fact that B+

1 is a Hochschild cocycle, while in (2.4) we want to express it
as a Hochschild coboundary: the HKR theorem states exactly that this is always possible on

� d

and thus locally on any manifold.
From this point of view, the natural subsequent step is to look for the existence and unique-

ness of equivalence classes of star products which are deformations of a given Poisson structure
on the smooth manifoldM . As already mentioned in the introduction, the existence of such prod-
ucts was first proved by DeWilde and Lecomte [DL] in the symplectic case, where the Poisson
structure is defined via a symplectic form (a non degenerate closed 2-form). Independently of
this previous result, Fedosov [Fed] gave an explicit geometric construction: the star product is
obtained “glueing” together local expressions obtained via the Moyal formula.

As for the classification, the role played by the second de Rham cohomology of the manifold,
whose occurrence in connection with this problem can be traced back to [BFFLS], has been
clarified in subsequent works by different authors ([NT], [BCG], [Gth], [Xu], [Bon], [De]) until
it came out that equivalence classes of star products on a symplectic manifold are in one-to-one
correspondence with elements in H2

dR(M)[[ε]].
The general case was solved by Kontsevich in [Ko2], who gave an explicit recipe for the con-

struction of a star product starting from any Poisson structure on
� d . This formula can thus be

used to define locally a star product on any Poisson manifold; the local expressions can be once
again glued together to obtain a global star product, as explained in Section 6. As already men-
tioned, this result is a straightforward consequence of the formality theorem, which was already
announced as a conjecture in [Ko1] and subsequently proved in [Ko2]. In the following, we will
review this stronger result which relates two apparently very different mathematical objects —
multivector fields and multidifferential operators — and we will come to the explicit formula as
a consequence in the end.

As a concluding act, we anticipate the Kontsevich formula even though we will fully under-
stand its meaning only in the forthcoming Sections.

f ? g := f · g +
∞∑

n=1

εn
∑

Γ∈Gn,2
wΓ BΓ(f, g) (2.5)

The bidifferential operators as well as the weight coefficients are indexed by the elements Γ of a
suitable subset Gn,2 of the set of graphs on n+ 2 vertices, the so-called admissible graphs.

3 Rephrasing the main problem: the formality
In this Section we introduce the main tools that we will need to review Kontsevich’s construc-

tion of a star product on a Poisson manifold.
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The problem of classifying star products on a given Poisson manifold M is solved by prov-
ing that there is a one-to-one correspondence between equivalence classes of star products and
equivalence classes of formal Poisson structures.

While the former were defined in the previous Section, the equivalence relation on the set of
formal Poisson structures is defined as follows. First of all, to give a Poisson structure on M is
the same as to choose a Poisson bivector field, i.e. a section π of

∧2
TM with certain properties

that we will specify later, and define the Poisson bracket via the pairing between (exterior powers
of the) tangent and cotangent space:

{ f , g } :=
1

2
〈π , df ∧ dg 〉 ∀f, g ∈ C∞(M). (3.1)

The set of Poisson structures is acted on by the group of diffeomorphisms of M , the action
being given through the push-forward by

πφ := φ∗π. (3.2)

To extend this notion to formal power series, we can introduce a bracket on C∞(M)[[ε]] by:

{ f , g }ε :=

∞∑

m=0

εm
m∑

i,j,k=0

i+j+k=m

〈πi , dfj ∧ dgk 〉 (3.3)

where

f =

∞∑

j=0

εjfj and g =

∞∑

k=0

εkgk

One says that
πε := π0 + π1 ε+ π2 ε

2 + · · ·
is a formal Poisson structure if { , }ε is a Lie bracket on C∞(M)[[ε]].

The gauge group in this case is given by formal diffeomorphisms, i.e. formal power series
of the form

φε := exp(εX)

where X :=
∑∞

k=0 ε
kXk is a formal vector field, i.e. a formal power series whose coefficients

are vector fields. This set is given the structure of a group defining the product of two such
exponentials via the Baker–Campbell–Hausdorff formula:

exp(εX) · exp(εY) := exp(ε X + ε Y +
1

2
ε [ X , Y ] + · · · ). (3.4)

The action which generalizes (3.2) is then given via the Lie derivatives L on bivector fields by

exp (εX)∗ π :=

∞∑

m=0

εm
m∑

i,j,k=0

i+j+k=m

(LXi)
jπk (3.5)

Kontsevich’s main result in [Ko2] was to find an identification between the set of star products
modulo the action of the differential operators defined in (2.3) and the set of formal Poisson
structure modulo this gauge group. (For further details the reader is referred to [Arb] and [Ma])
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3.1 DGLA’s, L∞- algebras and deformation functors
In the classical approach to deformation theory, (see e.g [Art]) to each deformation is attached

a DGLA via the solutions to the Maurer–Cartan equation modulo the action of a gauge group.
The first tools we need to approach our problem are then contained in the following definitions.

Definition 3.1. A graded Lie algebra (briefly GLA) is a � -graded vector space  =
⊕

i∈ �  i
endowed with a bilinear operation

[ , ] :  ⊗  → 
satisfying the following conditions:

a) [ a , b ] ∈  α+β (homogeneity)

b) [ a , b ] = −(−)αβ[ b , a ] (skew-symmetry)

c) [ a , [ b , c ] ] = [ [ a , b ] , c ] + (−)αβ [ b , [ a , c ] ] (Jacobi identity)

for any a ∈  α, b ∈  β and c ∈  γ
As an example we can consider any Lie algebra as a GLA concentrated in degree 0. Con-

versely, for any GLA  , its degree zero part  0 (as well as the even part  even :=
⊕

i∈ �  2i) is a
Lie algebra in the usual sense.

Definition 3.2. A differential graded Lie algebra is a GLA  together with a differential,
d:  →  , i.e. a linear operator of degree 1 (d:  i →  i+1) which satisfies the Leibniz rule

d[ a , b ] = [ d a , b ] + (−)α[ a , d b ] a ∈  α, b ∈  β
and squares to zero (d ◦ d = 0).

Again we can make any Lie algebra into a DGLA concentrated in degree 0 with trivial dif-
ferential d = 0. More examples can be found for instance in [Ma]. In the next Section we will
introduce the two DGLA’s that play a role in deformation quantization.

The categories of graded and differential graded Lie algebras are completed with the natural
notions of morphisms as graded linear maps which moreover commute with the differentials and
the brackets 2. Since we have a differential, we can form a cohomology complex out of any
DGLA defining the cohomology of  as

Hi(  ) := Ker(d:  i →  i+1)
/

Im(d:  i−1 →  i).
The set H :=

⊕
iHi(  ) has a natural structure of graded vector space and, because of the

compatibility condition between the differential d and the bracket on  , it inherits the structure of
a GLA, defined unambiguously on equivalence classes |a|, |b| ∈ H by:

[ |a| , |b| ]H :=
∣∣∣[ a , b ] � ∣∣∣ .

Finally, the cohomology of a DGLA can itself be turned into a DGLA with zero differential.
2We recall that a graded linear map φ : � → � of degree k is a linear map such that φ( � i) ⊂ � i+k ∀i ∈ � . We remark

that, in the case of DGLA’s, a morphism has to be a degree 0 linear map in order to commute with the other structures.

12



It is evident that every morphism φ :  1 →  2 of DGLA’s induces a morphismH(φ) : H1 →
H2 between cohomologies. Among these, we are particularly interested in the so-called quasi-
isomorphisms, i.e. morphisms of DGLA’s inducing isomorphisms in cohomology. Such maps
generate an equivalence relation: two DGLA’s  1 and  2 are called quasi-isomorphic if they are
equivalent under this relation.3

Definition 3.3. A differential graded Lie algebra  is called formal if it is quasi-isomorphic to its
cohomology, regarded as a DGLA with zero differential and the induced bracket.

The main result of Kontsevich’s work — the formality theorem contained in [Ko2] – was to
show that the DGLA of multidifferential operators, which we are going to introduce in the next
Section, is formal.

In order to achieve this goal, however, one has to rephrase the problem in a broader category,
which we will define in this Section, though its structure will become clearer in Section 4, where
it will be analyzed from a dual point of view.

To introduce the notation that will be useful throughout, we start from the very basic defini-
tions.

Definition 3.4. A graded coalgebra (briefly GCA in the following) on the base ring � is a� -graded vector space � =
⊕

i∈ � � i endowed with a comultiplication, i.e. a graded linear map

∆: � → � ⊗ �
such that

∆( � i) ⊂ ⊕

j+k=i

� j ⊗ � k
and which moreover satisfies the coassociativity condition

(∆⊗ id)∆(a) = (id⊗∆)∆(a)

for every a ∈ � . It is said to be with counit if there exists a morphism

ε : � → �
such that ε( � i) = 0 for any i > 0 and

(ε⊗ id)∆(a) = (id⊗ε)∆(a) = a

for every a ∈ � . It is said to be cocommutative if

T ◦∆ = ∆

where T : � ⊗ � → � ⊗ � is the twisting map, defined on a product x⊗y of homogeneous elements
of degree respectively |x| and |y| by

T(x⊗ y) := (−)|x||y| y ⊗ x

and extended by linearity.
3We want to stress the fact that the existence of a quasi-isomorphism φ : � 1 → � 2 does not imply the existence of a

“quasi-inverse” φ−1 : � 2 → � 1: therefore these maps do not define automatically an equivalence relation. This is the main
reason why we have to consider the broader category of L∞-algebras.
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Given a (graded) vector space V over � , we can define new graded vector spaces over the
same ground field by:

T (V ) :=
⊕∞

n=0 V
⊗n

T (V ) :=
⊕∞

n=1 V
⊗n

V ⊗n :=





V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

n ≥ 1

� n = 0
, (3.6)

and turn them into associative algebras w.r.t. the tensor product. T (V ) has also a unit given by
1 ∈ � . They are called respectively the tensor algebra and the reduced tensor algebra. As a
graded vector space, T (V ) can be endowed with a coalgebra structure defining the comultiplica-
tion ∆T on homogeneous elements by:

∆T (v1⊗ · · ·⊗vn) := 1⊗ (v1⊗ · · ·⊗vn)

+

j=n−1∑

j=1

(v1⊗ · · ·⊗vj)⊗ (vj+1⊗ · · ·⊗vn)

+ (v1⊗ · · ·⊗vn)⊗ 1

and the counit εT as the canonical projection εT : T (V ) → V ⊗0 = � . The projection T (V )
π→

T (V ) and the inclusion T (V )
i
↪→ T (V ) induce a comultiplication also on the reduced algebra,

which gives rise to a coalgebra without counit.
The tensor algebra gives rise to two other special algebras, the symmetric S(V ) and exterior

Λ(V ) algebras, defined as vector spaces as the quotients of T (V ) by the two-sided ideals —
respectively IS and IΛ — generated by homogeneous elements of the form v ⊗ w − T(v ⊗ w)
and v ⊗ w + T(v ⊗ w). These graded vector spaces inherit the structure of associative algebras
w.r.t. the tensor product. The reduced versions S(V ) and Λ(V ) are defined replacing T (V ) by
the reduced algebra T (V ).

Also in this case, the underlying vector spaces can be endowed with a comultiplication which
gives them the structure of coalgebras (without counit in the reduced cases). In particular on
S(V ) the comultiplication is given on homogeneous elements v ∈ V by

∆S(v) := 1⊗ v + v ⊗ 1,

and extended as an algebra homomorphism w.r.t. the tensor product.
All the usual additional structures that can be put on an algebra can be dualized to give a dual

version on coalgebras. Having in mind the structure of DGLA’s, we introduce the analog of a
differential by defining first coderivations.

Definition 3.5. A coderivation of degree k on a GCA � is a graded linear map δ : � i → � i+k
which satisfies the (co–)Leibniz identity:

∆δ(v) = (δ ⊗ id)∆(v) + ((−)k|v| id⊗δ)∆(v) ∀v ∈ � |v|
A differential Q on a coalgebra is a coderivation of degree one that squares to zero.

With these premises, we can give the definition of the main object we will deal with.
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Definition 3.6. An L∞-algebra is a graded vector space  on � endowed with a degree 1 coal-
gebra differential Q on the reduced symmetric space S(  [1]).4An L∞-morphism F : (  , Q) →
( ̃ , Q̃) is a morphism

F : S(  [1]) −→ S( ̃ [1])

of graded coalgebras (sometimes called pre-L∞-morphism), which moreover commutes with the
differentials (FQ = Q̃F ).

As in the dual case an algebra morphism f : S(A) → S(A) (resp. a derivation δ : S(A) →
S(A)) is uniquely determined by its restriction to an algebra A = S1(A) because of the ho-
momorphism condition f(ab) = f(a)f(b) (resp. the Leibniz rule), an L∞-morphism F and
a coderivation Q are uniquely determined by their projection onto the first component F 1 resp.
Q1. It is useful to generalize this notation introducing the symbol F ij (resp. Qij) for the projection
to the i-th component of the target vector space restricted to the j-th component of the domain
space.5 With this notation, we can express in a more explicit way the condition which F (resp.
Q) has to satisfy to be an L∞-morphism (resp. a differential). Since, with the above notation,
QQ, FQ and Q̃F are coderivations (as it can be checked by a straightforward computation), it is
sufficient to verify these conditions on their projection to the first component.

We deduce that a coderivationQ is a differential iff

n∑

i=1

Q1
iQ

i
n = 0 ∀n ∈ � 0 (3.7)

while a morphism F of graded coalgebras is an L∞-morphism iff

n∑

i=1

F 1
i Q

i
n =

n∑

i=1

Q̃1
iF

i
n ∀n ∈ � 0 . (3.8)

In particular, for n = 1 we have

Q1
1Q

1
1 = 0 and F 1

1Q
1
1 = Q̃1

1F
1
1 ;

therefore every coderivationQ induces the structure of a complex of vector spaces on  and every
L∞-morphism restricts to a morphism of complexes F 1

1 . We can thus generalize the definitions
given for a DGLA to this case, defining a quasi-isomorphism of L∞-algebras to be an L∞-mor-
phism F such that F 1

1 is a quasi-isomorphism of complexes. The notion of formality can be
extended in a similar way. We quote a result on L∞-quasi-isomorphisms we will need later,
which follows from a classification theorem on L∞-algebras.

4We recall that given any graded vector space � , we can obtain a new graded vector space � [k] by shifting each compo-
nent by k, i.e. � [k] = �

i∈ � � [k]i where � [k]i := � i+k.
5With the help of this decomposition, it can be showed that for any given j, only finitely many F ij (and analogously Qij)

are non trivial, namely F ij = 0 for i > j. For an explicit formula we refer the reader to [Gra] and [C].
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Lemma 3.7. Let F : (  , Q) → ( ̃ , Q̃) be an L∞-morphism. If F is a quasi-isomorphism it
admits a quasi-inverse, i.e. there exists an L∞-morphism G : ( ̃ , Q̃) → (  , Q) which induces
the inverse isomorphism in the corresponding cohomologies.

For a complete proof of this Lemma together with an explicit expression of the quasi-inverse
and a discussion of the above mentioned classification theorem we refer the reader to [C].

In particular, Lemma 3.7 implies that L∞-quasi-isomorphisms define equivalence relations,
i.e. two L∞-algebras are L∞-quasi-isomorphic iff there is an L∞-quasi-isomorphism between
them. This is considerably simpler then in the case of DGLA’s, where the equivalence relation is
only generated by the corresponding quasi-isomorphisms, and explains finally why L∞-algebras
are a preferred tool in the solution of the problem at hand.

Example 3.8. To clarify in what sense we previously introducedL∞-algebras as a generalization
of DGLA’s, we will show how to induce an L∞-algebra structure on any given DGLA  .

We have already a suitable candidate for Q1
1, since we know that it fulfills the same equation

as the differential d: we may then define Q1
1 to be a multiple of the differential. If we write down

explicitly (3.7) for n = 2, we get:

Q1
1Q

1
2 +Q1

2Q
2
2 = 0;

since every Qij can be expressed in term of a combination of products of some Q1
k, Q2

2 must be a
combination ofQ1

1 acting on the first or on the second argument of Q1
2 (for an explicit expression

of the general case see [Gra]). Identifying Q1
1 with d (up to a sign), the above equation has thus

the same form as the compatibility condition between the bracket [ , ] and the differential and
suggests that Q1

2 should be defined in terms of the Lie bracket. A simple computation points out
the right signs, so that the coderivation is completely determined by

Q1
1(a) := (−)αda a ∈  α,

Q1
2(b c) := (−)β(γ−1)[ b , c ] b ∈  β, c ∈  γ ,

Q1
n = 0 ∀n ≥ 3.

The only other equation involving non trivial terms follows from (3.7) when n = 3:

Q1
1Q

1
3 +Q1

2Q
2
3 +Q1

3Q
3
3 = 0.

Inserting the previous definition and expandingQ2
3 in terms of Q1

2 we get

(−)(α+β)(γ−1)
[

(−)α(β−1)[ a , b ] , c
]
+

(−)(α+γ)(β−1)(−)(γ−1)(β−1)
[

(−)α(γ−1)[ a , c ] , b
]
+

(−)(β+γ)(α−1)(−)(β+γ)(α−1)
[

(−)β(γ−1)[ b , c ] , a
]

= 0,

(3.9)

which, after a rearrangement of the signs, turns out to be the (graded) Jacobi identity.
According to the same philosophy, a DGLA morphism F :  → ̃ induces an L∞-morphism

F which is completely determined by its first component F
1

1 := F . In fact, the only two non
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trivial conditions on F coming from (3.8) with n = 0 resp. n = 1 are:

F
1

1Q
1
1(f) = Q̃1

1F
1

1(f)⇔ F (d f) = d̃ F (f)

F
1

1Q
1
2(fg) + F

2

1Q
2
2(fg) = Q̃1

1F
2

1(fg) + Q̃1
2F

2

2(fg)⇔ F
(

[ f , g ]
)

= [F (f) , F (g) ]

If we had chosenQ1
3 not to vanish, the identity (3.9) would have been fulfilled up to homotopy,

i.e. up to a term of the form

dρ(g, h, k)± ρ(dg, h, k)± ρ(g, dh, k)± ρ(g, h, dk),

where ρ : Λ3  →  [−1]; in this case  is said to have the structure of a homotopy Lie algebra.
This construction can be generalized, introducing the canonical isomorphism between the

symmetric and exterior algebra (usually called décalage isomorphism6) to define for each n a
multibracket of degree 2− n

[·, · · · , ·]n : Λn  →  [2− n]

starting from the correspondingQ1
n. Equation (3.7) gives rise to an infinite family of condition on

these multibracket. A graded vector space  together with such a family of operators is a strong
homotopy Lie algebra(SHLA).

To conclude this overview of the main tools we will need in the following — and to give
an account of the last term in the title of this Section — we introduce now the Maurer–Cartan
equation of a DGLA  :

d a+
1

2
[ a , a ] = 0 a ∈  1, (3.10)

which plays a central role in deformation theory, as will exemplified in next Section, in (3.12)
and (3.17).

It is a straightforward application of the definition 3.1 to show that the set of solutions to this
equation is preserved under the action of any morphism of DGLA’s and — as we will see in the
next Section — of any L∞-morphism between the correspondingL∞-algebras.

There is another group which preserve the solutions to the Maurer–Cartan equation, namely
the gauge group that can be defined canonically starting from the degree zero part of any formal
DGLA.

It is a basic result of Lie algebra theory that there exists a functor exp from the category of
nilpotent Lie algebras to the category of groups. For every such Lie algebra  , the set defined
formally as exp(  ) can be endowed with the structure of a group defining the product via the
Baker–Campbell–Hausdorff formula as in (3.4); the definition is well-posed since the nilpotency
ensures that the infinite sum reduces to a finite one.

6More precisely, the décalage isomorphism is given on the n-symmetric power of � shifted by one by

decn : Sn(� [1])→ Λn( � )[n]

x1 · · ·xn 7→ (−1) � n
i=1(n−i)(|xi|−1)x1 ∧ . . . ∧ xn,

where the sign is chosen precisely to compensate for the graded antisymmetry of the wedge product.
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In the case at hand, generalizing what was somehow anticipated in (3.4), we can introduce
the formal counterpart  [[ε]] of any DGLA  defined as a vector space by  [[ε]] :=  ⊗ � [[ε]] and
show that it has the natural structure of a DGLA. It is clear that the degree zero part  0[[ε]] is a Lie
algebra, although non–nilpotent. Nevertheless, we can define the gauge group formally as the set
G := exp(ε  0[[ε]]) and introduce a well–defined product taking the Baker–Campbell–Hausdorff
formula as the definition of a formal power series. Finally, the action of the group on ε  1[[ε]] can
be defined generalizing the adjoint action in (3.4).

Namely:

exp(ε g)a :=

∞∑

n=0

(ad g)n

n!
(a)−

∞∑

n=0

(ad g)n

(n+ 1)!
(dg)

= a + ε [ g , a ]− ε dg + o(ε2)

for any g ∈  0[[ε]] and a ∈  1[[ε]].
It is a straightforward computation to show that this action preserves the subset MC(  ) ⊂

ε  1[[ε]] of solutions to the (formal) Maurer–Cartan equation.

3.2 Multivector fields and multidifferential operators
As we already mentioned, a Poisson structure is completely defined by the choice of a bivec-

tor field satisfying certain properties; on the other hand a star product is specified by a family of
bidifferential operators. In order to work out the correspondence between these two objects, we
are finally going to introduce the two DGLA’s they belong to: multivector fields V and multidif-
ferential operatorsD.

3.2.1 The DGLA V
A k-multivector field X is a Section of the k-th exterior power

∧k
TM of the tangent space

TM ; choosing local coordinates {xi}
i=1,...,dimM

and denoting by {∂i}i=1,...,dimM
the correspond-

ing basis of the tangent space:

X =

dimM∑

i1,...,ik=1

X i1···ik (x) ∂i1 ∧ · · · ∧ ∂ik .

The direct sum of such vector spaces has thus the natural structure of a graded vector space

Ṽ :=

∞⊕

i=0

Ṽ i Ṽ i :=

{
C∞(M) i = 0

Γ(
∧i

TM) i ≥ 1
,

having added smooth functions in degree 0.
The most natural way to define a Lie structure on Ṽ is by extending the usual Lie bracket on

vector fields given in terms of the Lie derivative w.r.t. the first vector field:

[ X , Y ] := LXY.
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The same definition can be applied to the case when the second argument is a function, setting:

[ X , f ] := LX(f) =
dimM∑

i=1

X i ∂f

∂xi
.

where we have given also an explicit expression in local coordinates. Setting then the Lie bracket
of any two functions to vanish makes Ṽ0 ⊕ Ṽ1 into a GLA.

Then we define the bracket between a vector field X and a homogeneous element Y1 ∧ . . . ∧
Yk ∈ Ṽk with k > 1 by the following formula:

[ X , Y1 ∧ . . . ∧ Yk ] :=

k∑

i=1

(−)i+1[ X , Yi ] ∧ Y1 ∧ . . . ∧ Ŷi ∧ . . . ∧ Yk,

where the bracket on the r.h.s. is just the usual bracket on Ṽ1; we can then extend it to the case of
two generic multivector fields by requiring it to be linear, graded commutative and such that for
any X ∈ Ṽk, adX := [ X , · ] is a derivation of degree k − 1 w.r.t. the wedge product.

Finally, by iterated application of the Leibniz rule, we can find also an explicit expression for
the case of a function and a k-vector field:

[ X1 ∧ · · · ∧ Xk , f ] :=

k∑

i=1

(−)k−i LXi(f) X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xk

and two homogeneous multivector fields of degree greater than 1:

[ X1 ∧ · · · ∧ Xk , Y1 ∧ · · · ∧ Yl ] :=

k∑

i=1

l∑

j=1

(−)i+j [ Xi , Yj ] ∧ X1∧ · · · ∧ X̂i ∧ · · · ∧ Xk ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yl.

With the help of these formulae, we can finally check that the bracket defined so far satisfies
also the Jacobi identity.7

This inductive recipe to construct a Lie bracket out of its action on the components of lowest
degree of the GLA together with its defining properties completely determines the bracket on the
whole algebra, as the following proposition summarizes.

Proposition 3.9. There exists a unique extension of the Lie bracket on Ṽ0⊕Ṽ1 — called Schouten–
Nijenhuis bracket — onto the whole Ṽ

[ , ]
SN

: Ṽk ⊗ Ṽ l → Ṽk+l−1

for which the following identities hold:

i) [ X , Y ]
SN

= −(−)(x+1)(y+1) [ Y , X ]
SN

ii) [ X , Y ∧ Z ]
SN

= [ X , Y ]
SN
∧ Z + (−)(y+1)z Y ∧ [ X , Z ]

SN

7We give here a sketchy proof; to simplify the notation the wedge product has not been explicitly written, a small caret
V̂i represents the i-th component of the missing vector field V and θab is equal to 1 if a > b and zero otherwise.
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iii)
[

X , [ Y , Z ]
SN

]
SN

=
[

[ X , Y ]
SN
, Z
]

SN
+ (−)(x+1)(y+1)

[
Y , [ X , Z ]

SN

]
SN

for any triple X,Y and Z of degree resp. x, y and z.

The sign convention adopted thus far is the original one, as can be found for instance in the
seminal paper [BFFLS]. In order to recover the signs we introduced in 3.1, we have to shift the
degree of each element by one, defining the graded Lie algebra of multivector fields V as

V :=

∞⊕

i=−1

V i V i := Ṽ i+1 i = −1, 0, . . . , (3.11)

which in a shorthand notation is indicated byV := Ṽ [1], together with the above defined Schouten–
Nijenhuis bracket.

The GLAV is then turned into a differential graded Lie algebra setting the differential d: V →
V to be identically zero.

We now turn our attention to the particular class of multivector fields we are most interested
in: Poisson bivector fields. We recall that given a bivector field π ∈ V1, we can uniquely define a
bilinear bracket { , } as in (3.1), which is by construction skew-symmetric and satisfies Leibniz
rule. The last condition for { , } to be a Poisson bracket — the Jacobi identity — translates into
a quadratic equation on the bivector field, which in local coordinates is:

{ { f , g } , h }+ { { g , h } , f }+ { {h , f } , g } = 0
m

πij ∂jπ
kl ∂jf ∂kg ∂lh+ πij ∂jπ

kl ∂jg ∂kh ∂lf + πij ∂jπ
kl ∂jh ∂kf ∂lg = 0

m
πij ∂jπ

kl ∂i ∧ ∂k ∧ ∂l = 0

The last line is nothing but the expression in local coordinates of the vanishing of the Schouten–
Nijenhuis bracket of π with itself. If we finally recall that we defined V to be a DGLA with zero

Given any three multivector fields X, Y and Z of positive degree n, l and m respectively:

[ X , [ Y , Z ] ] =

l,m�
i,j

(−)i+j � X , [ Yi , Zj ] Ŷ
i

Ẑ
j � =

=

l,m,n�
i,j,k

(−)i+j+k+1[Xk, [Yi,Zj ]] X̂
k

Ŷ
i

Ẑ
j

+

l,m,n�
i,j,k,r 6=i

(−)i+j+k+r+θri [Xk,Yr][Yi,Zj ] X̂
k

Ŷ
i,r

Ẑ
j
+

+

l,m,n�
i,j,k,s6=j

(−)i+j+k+s+l−1+θsl [Xk,Zs][Yi,Zj ] X̂
k

Ŷ
i

Ẑ
j,s

=

=

l,m,n�
i,j,k

(−)i+j+k+1 � [[Xk ,Yi],Zj ] X̂
k

Ŷ
i

Ẑ
j

+ (−)(n+1)(l+1)[Yi, [Xk,Zj ]] Ŷ
i

X̂
k

Ẑ
j � + · · ·

= [ [ X , Y ] , Z ] + (−)(n+1)(l+1) [ Y , [ X , Z ] ]

Analogous computations show that the Jacobi identity is fulfilled also in the case when one or two of the multivector fields
is of degree 0, while in the case of three functions the identity becomes trivial.
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differential, we see that Poisson bivector fields are exactly the solutions to the Maurer–Cartan
equation (3.10) on V

dπ +
1

2
[π , π ]

SN
= 0, π ∈ V1. (3.12)

Finally, formal Poisson structures { , }ε are associated to a formal bivector π ∈ εV1[[ε]] as in
(3.3) and the action defined in (3.5) is exactly the gauge group action in the sense of Section 3.1,
since the formal diffeomorphisms acting on { , }ε are generated by elements of V0[[ε]].

3.2.2 The DGLA D
The second DGLA that plays a role in the formality theorem is a subalgebra of the Hochschild

DGLA, whose definition and main properties we are going to review in what follows.
To any associative algebra with unitA on a field � we can associate the complex of multilinear

maps from A to itself.

C :=

∞∑

i=−1

Ci Ci := Hom � (A⊗(i+1), A)

In analogy to what we have done for the case of multivector fields, we shifted the degree by one
in order to match our convention for the signs that will appear in the definition of the bracket.

Having the case of linear operators in mind, on which the Lie algebra structure arises from
the underlying associative structure given by the composition of operators, we try to extend this
notion to multilinear operators. Clearly, when composing an (m + 1)-linear operator φ with an
(n + 1)-linear operator ψ we have to specify an inclusion A ↪→ A⊗(m+1) to identify the target
space of ψ with one of the component of the domain of φ: loosely speaking we have to know
where to plug in the output of ψ into the inputs of φ. We therefore define a whole family of
compositions {◦i} such that for φ and ψ as above

(φ ◦i ψ)(f0, . . . , fm+n) := φ(f0, . . . , fi−1, ψ(fi, . . . , fi+n), fi+n+1, . . . , fm+n)

for any (m+ n+ 1)-tuple of elements of A; this operation can be better understood through the
pictorial representation in Fig. 1.

We can further sum up with signs all the possible partial compositions to find a product on C
— in fact a pre-Lie structure — given by

φ ◦ ψ :=

m∑

i=0

(−)niφ ◦i ψ

with the help of which we can give C the structure of a GLA.

Proposition 3.10. The graded vector space C together with the Gerstenhaber bracket [ , ]
G

: Cm⊗
Cn → Cm+n defined (on homogeneous elements) by

[φ , ψ ]
G

:= φ ◦ ψ − (−)mnψ ◦ φ (3.13)

is a graded Lie algebra, called the Hochschild GLA.
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Figure 1: The i- composition.

Proof. Since this bracket, introduced by Gerstenhaber in [Ger], is defined as a linear combination
of terms of the form φ ◦i ψ and ψ ◦i φ, it is clearly linear and homogeneous by construction. The
presence of the sign (−)mn ensures that it is also (graded) skew-symmetric, since clearly

[φ , ψ ]
G

= −(−)mn
(
ψ ◦ φ− (−)mnφ ◦ ψ

)
= −(−)mn[ψ , φ ]

G

for any φ ∈ Cm and ψ ∈ Cn.
As for the Jacobi identity, we have to prove that the following holds:

[
φ , [ψ , χ ]

G

]
G

=
[

[φ , ψ ]
G
, χ
]

G
+ (−)mn

[
ψ , [φ , χ ]

G

]
G

(3.14)

for any triple φ, ψ, χ of multilinear operator of degree resp. m, n and p. Expanding the first term
on r.h.s. of (3.14) we get

(
φ ◦ ψ − (−)mnψ ◦ φ

)
◦ χ− (−)(m+n)pχ ◦

(
φ ◦ ψ − (−)mnψ ◦ φ

)
=

=

m,m+n∑

i,k=0

(−)
ni+kp (φ ◦i ψ) ◦k χ−

n,m+n∑

j,k=0

(−)
m(j+n)+kp (ψ ◦j φ) ◦k χ+

−
m,p∑

i,k=0

(−)
(m+n)(k+p)+ni χ ◦k (φ ◦i ψ) +

n,p∑

j,k=0

(−)
(m+n)(k+p)+m(j+n) χ ◦k (ψ ◦j φ)

The first sum can be decomposed according to the following rule for iterated partial compositions

(φ ◦i ψ) ◦k χ =





(φ ◦k χ) ◦i ψ k < i
φ ◦i (ψ ◦k−i χ) i ≤ k ≤ i+ n
(φ ◦k−n χ) ◦i ψ i+ n < k
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in a term of the form

m∑

i
i≤k≤i+n

(−)
ni+kp φ ◦i (ψ ◦k−i χ) =

m,n∑

i,k=0

(−)
(n+p)i+kp φ ◦i (ψ ◦k χ),

whose sign matches the one of the corresponding term coming from (φ ◦ψ) ◦χ on the l.h.s, plus
those terms in which the i-th and k-th composition commute, which cancel with the correspond-
ing terms coming from the expansion of the second term of the r.h.s. of (3.14).

Upon application of the same procedure to the remaining terms, the claim follows.

For a different approach refer to [St], where, after having identified multilinear maps on A
with graded coderivations of the free cocommutative coalgebra cogenerated by A as a module,
the bracket is interpreted as the commutator w.r.t. the composition of coderivations.

Before introducing a differential on C, we have to pick out a particular class of degree one
linear operators. It is clear from the above definitions that associative multiplications are elements
of C1 which moreover satisfy the associativity condition. Writing this equation explicitly in terms
of such an element �

(f · g) · h = f · (g · h)⇔ � ( � (f, g), h)− � (f, � (g, h)) = 0 (3.15)

we realize immediately that this is — up to a multiplicative factor — the requirement that the
Gerstenhaber bracket of � with itself vanishes, since

[ � , � ]
G
(f, g, h) =

1∑

i=0

(−)i( � ◦i � )(f, g, h)− (−)1
1∑

i=0

(−)i( � ◦i � )(f, g, h)

= 2
(� ( � (f, g), h)− � (f, � (g, h))

)
,

(3.16)

as is shown in a pictorial way in Fig. 2

0

Figure 2: The associativity constraint

Now, for each element φ of degree k of a (DG) Lie algebra  , adφ := [φ , ] is a derivation
(of degree k), since the Jacobi identity can also be written as:

adφ [ψ , ξ ] = [ adφ ψ , ξ ] + (−)km[ψ , adφ ξ ]
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for any ψ ∈  m and ξ ∈  n. It is therefore natural to introduce the Hochschild differential

d � : Ci → Ci+1

ψ 7→ d � ψ := [ � , ψ ]
G
.

The only thing that we still have to check is that d � squares to zero, which follows immediately
from the Jacobi identity and the associativity constraint on � expressed in terms of the Gersten-
haber bracket as shown in (3.15) and (3.16):

(d � ◦ d � )ψ =
[ � , [ � , ψ ]

G

]
G

=
[

[ � , � ]
G
, ψ
]

G
−
[ � , [ � , ψ ]

G

]
G

=

= −
[ � , [ � , ψ ]

G

]
G

⇔ d2� = 0

So we have proved the following

Proposition 3.11. The GLA C together with the differential d � is a differential graded Lie alge-
bra.

We can also give an explicit expression of the action of the differential on an element ψ ∈ Cn:

(d � ψ)(f0, . . . , fn+1) =

n∑

i=0

(−)i+1ψ(f0, . . . , fi−1, fi · fi+1, . . . , fn+1)+

+ f0 · ψ(f1, . . . , fn+1) + (−)(n+1)ψ(f0, . . . , fn) · fn+1.

As we already mentioned, in the case A = C∞(M), what we are actually interested in is
not the whole Hochschild DGLA, but rather a subalgebra of C: the DGLA of multidifferential
operators D̃. It is defined as a (graded) vector space as the collection D̃ :=

⊕ D̃i of the subspaces
D̃i ⊂ Ci consisting of differential operators acting on smooth functions on M . It is an easy
exercise to verify that D̃ is closed under Gerstenhaber bracket and the action of d � and thus is a
DGL subalgebra.

We stress the fact that D̃ also includes operators of order 0, i.e. loosely speaking operators
which “do not differentiate”: this way also the associative product � is still an element of D̃1.

Having in mind the defining properties of the star product given in Section 2 and in particular
the requirement that Bi(1, f) = 0 ∀i ∈ � , f ∈ C∞(M), which ensures that the unity is pre-
served through deformation, we restrict our choice further, considering only differential operators
which vanish on constant functions; they build a new DGL subalgebraD ⊂ D̃. We remark, how-
ever, that d � is no longer an inner derivation when restricted toD, since clearly the multiplication
does not vanish on constants.

Finally, we want to work out also for this DGLA the role played by the Maurer–Cartan equa-
tion: we will show that in this case this equation encodes the associativity of the product.

Given an element B ∈ D1, we can interpret � + B as a deformation of the original product.
As shown in (3.15) and (3.16), the associativity constraint on � + B translates into

[ � + B , � + B ]
G

= 0

which in turn, since � is already associative and [ � , B ]
G

= [ B , � ]
G

= d � B gives exactly the
desired Maurer–Cartan equation (3.10)

d � B +
1

2
[ B , B ]

G
= 0. (3.17)
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Introducing the formal counterpart of D, it is clear that the deformed product turns out to
be nothing but a star product as in Definition 2.1, since now B ∈ εD1[[ε]] is a formal sum of
bidifferential operators. Analogously, the gauge group is given exactly by formal differential
operators and the action on the star product is the one given in (2.3), since the adjoint action, due
to the definition of the Gerstenhaber bracket, is nothing but the composition of Di with Bj .

3.3 The first term: U1

In this last Section we will give an account for the structures we had to introduce and for the
two particular cases of DGLA we defined above.

As we already mentioned, our main goal is to prove the formality of the DGLA D of multi-
differential operators. This approach relies on the existence of a previous result by Hochschild,
Kostant and Rosenberg [HKR] which, for any given smooth manifold M , establishes an isomor-
phism between the cohomology of the algebra of multidifferential operators and the algebra of
multivector fields which, according to our previous definition, coincides with its cohomology.

HKR: H(D̃)
∼−→Ṽ = H(Ṽ)

Actually the original result concerned smooth affine algebraic varieties, but it can be extended to
smooth manifolds, as is shown for instance in [Ko2]. This isomorphism is induced by the natural
map

U
(0)
1 : Ṽ −→ D̃

which extends the usual identification between vector fields and first order differential operators,
mapping a homogeneous element of the form ξ0∧· · ·∧ξn to the multidifferential operator whose
action on functions f0, . . . , fn is given by

1

(n+ 1)!

∑

σ∈Sn+1

sgn(σ) ξσ(0)(f0) · · · ξσ(n)(fn),

where we made use of the above mentioned identification for each ξi; the definition is extended to
0-th order vector fields as the identity map. Unfortunately this map, which can be easily checked
to be a chain map, fails to preserve the Lie structure, as can be easily verified already at order
2. Given two homogeneous bivector fields χ1 ∧ χ2 and ξ1 ∧ ξ2, we can verify explicitly that in
general

U
(0)
1 ([χ1 ∧ χ2 , ξ1 ∧ ξ2 ]) 6=

[
U

(0)
1 (χ1 ∧ χ2) , U

(0)
1 (ξ1 ∧ ξ2)

]
.

Omitting the subscripts SN and G and the wedge products to ease the notation, the l.h.s. applied
to a triple of functions gives

U
(0)
1 ([χ1 , ξ1 ]χ2 ξ2 − [χ1 , ξ2 ]χ2ξ1 − [χ2 , ξ1 ]χ1ξ2 + [χ2 , ξ2 ]χ1ξ1) (f⊗g⊗h) =

=
1

6

(
χ1ξ1f χ2g ξ2h− ξ1χ1f χ2g ξ2h− χ1ξ2f χ2g ξ1h+ ξ2χ1f χ2g ξ1h+

− χ2ξ1f χ1g ξ2h+ ξ1χ2f χ1g ξ2h+ χ2ξ2f χ1g ξ1h+ ξ2χ2f χ1g ξ1h
)

+ perm.
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while the r.h.s. is
[

1

2
(χ1 · χ2 − χ2 · χ1) ,

1

2
(ξ1 · ξ2 − ξ2 · ξ1)

]
(f⊗g⊗h) =

=
1

4

(
χ1(ξ1f ξ2g)χ2h+ · · ·

)
.

However the difference between the two terms is the image of a closed term in the cohomology of
D. We have therefore a way to control the defect of this map in being a Lie algebra morphism and
we can hope to find a way to extend it somehow to a morphism whose first order approximation
is this isomorphism of complexes. This is exactly the role played by the L∞-morphism U we
will define in the next Sections: in order to give a geometric interpretation of this approximation
we will look at the same problem from a dual perspective.

4 Digression: what happens in the dual
The whole machinery of the Kontsevich’s construction can be better understood by looking

at the mathematical objects and structures we previously introduced from a dual point of view.
Given a vector space V , polynomials on V can be naturally identified with symmetric func-

tions on the dual space V ∗ defining

f(v) :=
∑ 1

k!
fk(v · · · v) ∀v ∈ V

where the coefficients fk are elements of Sk(V ∗).
To extend this construction to the case when V is a graded vector space we have to consider

the exterior algebra instead. If we introduce the completion Λ(V ∗) of this algebra8, we can
define in a similar way a function in a formal neighborhood of 0 to be given by the formal Taylor
expansion in the parameter ε

f(εv) :=
∑ εk

k!
fk(v · · · v) ∀v ∈ V.

Following this recipe, a vector field X on V can be identified with a derivation on Λ(V ∗) and
Leibniz rule ensures that X is completely determined by its restriction on V ∗. In an analogous
way an algebra homomorphism

φ : Λ(W ∗)→ Λ(V ∗),

determines a map f = φ∗ : Λ(V )→ Λ(W ) whose components fk are completely determined by
their projection on W as the φk are determined by their restriction on W ∗.

In the following we will need the pointed version of these objects, namely we will consider
the pair (V, 0) as a pointed manifold and define a (formal) pointed map to be an algebra homo-
morphism between the reduced symmetric algebras (as introduced in 3.6)

φ : Λ(W ∗)>0 → Λ(V ∗)>0,

8To be more precise, we should specify the topology w.r.t. which we define this completion. This can be done in a natural
way considering S(V ∗) (resp. Λ(V ∗)) as the injective limit of the Sk(V ∗) (resp. Λk(V ∗)) with the induced topology, as
in the case of formal power series.
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where the subscript “ > 0” indicates that we are considering the two coalgebras as the (completion
of the) quotients of T (W ∗) (resp. T (V ∗)). Analogously, a pointed vector field X is a vector
field which has zero as a fixed point, i.e. such that

X(f)(0) = 0 ∀f
or equivalently such that (Xf)0 = 0 for every map f .

We will further call a pointed vector field cohomological — or Q-field — iff it commutes
with itself, i.e. iff X2 = 1

2 [X,X] = 0 and pointed Q-manifold a (formal) pointed manifold
together with a cohomological vector field.

We turn now our attention to the non commutative case, taking a Lie algebra  . The bracket
[ , ] : Λ2  →  gives rise to a linear map

[ , ]
∗

:  ∗ → Λ2(  )
∗
.

We can extend it to whole exterior algebra to

δ : Λ•(  )∗ → Λ•+1(  )
∗

requiring that δ| � ∗ ≡ [ , ]
∗ and imposing the Leibniz rule to get a derivation.

The exterior algebra can now be interpreted as some odd analog of a manifold, on which
δ plays the role of a (pointed) vector field. Since the Jacobi identity on [ , ] translates to the
equation δ2 = 0, δ is a cohomological pointed vector field.

If we now consider two Lie algebras  and � and endow their exterior algebras with differen-
tials δ � and δ � , a Lie algebra homomorphism φ :  → � will correspond in this case to a chain
map φ∗ � ∗ →  ∗, since

φ
(

[ · , · ] � ) = [φ(·) , φ(·) ] � ⇐⇒ δ � ◦ φ∗ = φ∗ ◦ δ �
This is the first glimpse of the correspondence between L∞-algebras and pointed Q-man-

ifolds: a Lie algebra is a particular case of DGLA, which in turn can be endowed with an
L∞-structure; from this point of view the map φ satisfies the same equation of the first com-
ponent of an L∞-morphism as given in (3.8) for n = 1.

To get the full picture, we have to extend the previous construction to the case of a graded
vector space Z which has odd and even parts. Functions on such a space can be identified with
elements in the tensor product S(Z∗) := S(V ∗) ⊗ Λ(W ∗), where Z = V ⊕ ΠW is the natural
decomposition of the graded space in even and odd subspaces.9

The conditions for a vector field δ : S•(Z∗) → S•+1(Z∗) to be cohomological can now be
expressed in terms of its coefficients

δk : Sk(Z∗)→ Sk+1(Z∗)

expanding the equation δ2 = 0. This gives rise to an infinite family of equations:




δ0 δ0 = 0

δ1 δ0 + δ0 δ1 = 0

δ2 δ0 + δ1δ1 + δ0δ2 = 0

· · ·
9In the following we will denote by ΠW the (odd) space defined by a parity reversal on the vector space W , which can

be also written as W [1], using the notation introduced in Section 3.1.
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If we now define the dual coefficients mk := (δk|Z∗)∗ and introduce the natural pairing
〈 , 〉 : Z∗ ⊗ Z → � , we can express the same condition in terms of the maps

mk : Sk+1(Z)→ Z,

paying attention to the signs we have to introduce for δ to be a (graded) derivation.
The first equation ( m0m0 = 0 ) tells us that m0 is a differential on Z and defines therefore

a cohomologyHm0(Z).
For k = 1, with an obvious notation, we get

〈 δ1 δ0 f , xy 〉 = 〈 δ0 f , m1(xy) 〉 = 〈 f , m0(m1(xy)) 〉
and

〈 δ0 δ1 f , xy 〉 = 〈 δ1 f , m0(x) y 〉+ (−)|x| 〈 δ1 f , xm0(y) 〉 =

= 〈 f , m1(m0(x) y) 〉+ (−)|x| 〈 f , m1(xm0(y)) 〉 ,
i.e. m0 is a derivation w.r.t. the multiplication defined by m1.

If we now write Z as  [1] and identify the symmetric and exterior algebras with the décalage
isomorphism Sn(  [1])

∼−→Λn(V [n]), m1 can be interpreted as a bilinear skew-symmetric opera-
tor on  .

The next equation, which involvesm1 composed with itself, tells us exactly that this operator
is indeed a Lie bracket for which the Jacobi identity is satisfied up to terms containingm0, i.e. —
since m0 is a differential — up to homotopy.

Putting the equations together, this gives rise to a strong homotopy Lie algebra structure on  ,
thus establishing a one-to-one correspondence between pointedQ-manifolds and SHLA’s, which
in turn are equivalent to L∞-algebras, as we already observed in Section 3.1.

Finally, to complete this equivalence and to express the formality condition (3.8) more ex-
plicitly, we spell out the equations for the coefficients of a Q-map, i.e. a (formal) pointed map
between two Q-manifolds Z and Z̃ which commutes with the Q-fields; namely:

φ : S
(
Z̃∗>0

)
−→ S(Z∗>0)

s. t.
φ ◦ δ̃ = δ ◦ φ.

(4.1)

As for the case of the vector field δ, we consider only the restriction of this map to the original
space Z̃ and define the coefficients of the dual map as

Uk :=
(
φk|  Z∗)∗ : Sk(Z)→ Z̃.

With the same notation as above, we can express the condition (4.1) on the dual coefficients
with the help of the natural pairing. The first equation reads:

〈
φ δ̃ f , x

〉
= 〈 δ φ f , x 〉
⇓〈

δ̃0 f , U1(x)
〉

= 〈φ f , m0(x) 〉
⇓

〈 f , m̃0(U1(x)) 〉 = 〈 f , U1(m0(x)) 〉 .
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As we could have guessed from the discussion in Section 3.1, the first coefficientU1 is a chain
map w.r.t. the differential defined by the first coefficient of the Q-structures.

[U1] : Hm0(Z)→ H  m0
(Z̃).

An analogous computation gives the equation for the next coefficient:

m̃1(U1(x)U1(y)) + m̃1(U2(x y)) = U2(m0(x) y) + (−)|x|U2(xm0(y)) + U1(m1(x y)),

which shows that U1 preserves the Lie structure induced by m1 and m̃1 up to terms containing
m0 and m̃0, i.e. up to homotopy.

This is exactly what we were looking for: as the map U (0)
1 defined in Section 3.3 is a chain

map which fails to be a DGLA morphism, aQ-mapU (or equivalently anL∞-morphism) induces
a map U1 which shares the same property.

We restrict thus our attention to DGLA’s, considering now a pair of pointed Q-manifolds Z
and Z̃ such that mk = m̃k = 0 for k > 1. Equivalently, we consider two L∞-algebras as in
Example 3.8, whose coderivation have only two non-vanishing components.

A straightforward computation which follows the same steps as above for k = 1, 2, leads in
this case to the following condition on the n-th coefficient of U :

m̃0 (Un(x1 · · ·xn)) +
1

2

∑

ItJ={1,...n}
I,J 6=∅

εx(I, J) m̃1

(
U|I|(xI ) · U|J|(xJ )

)
=

=

n∑

k=1

εkx Un (m0(xk) · x1 · · · x̂k · · ·xn) +

+
1

2

∑

k 6=l
εklx Un−1 (m1(xk · xl) · x1 · · · x̂k · · · x̂l · · ·xn)

(4.2)

To avoid a cumbersome expression involving lots of signs, we introduced a shorthand notation
εx(I, J) for the Koszul sign associated to the (|I |, |J |)-shuffle permutation associated to the par-
tition I t J = {1, . . . , n}10and εkx (resp. εklx ) for the particular case I = {k} (resp. I = {k, l});
we further simplified the expression adopting the multiindex notation xI :=

∏
i∈I xi.

This expression will be specialized in next Section to the case of the L∞-morphism intro-
duced by Kontsevich to give a formula for the star product on

� d : we will choose as Z the
DGLA V of multivector fields and as Z̃ the DGLA V of multidifferential operators and derive the
equation that the coefficients Un must satisfy to determine the required formality map.

As a concluding act of this digression, we will establish once and for all the relation between
the formality ofD and the solution of the problem of classifying all possible star products on

� d .
10Whenever a vector space V is endowed with a graded commutative product, the Koszul sign ε(σ) of a permutation σ

is the sign defined by
x1 · · ·xn = ε(σ) xσ(1) · · ·xσ(n) xi ∈ V.

An (l, n − l)-shuffle permutation is a permutation σ of (1, . . . , n) such that σ(1) < · · · < σ(l) and σ(l + 1) < · · ·σ(n).
The shuffle permutation associated to a partition I1 t · · · t Ik = {1, . . . , n} is the permutation that takes first all the
elements indexed by the subset I1 in the given order, then those indexed by I2 and so on.
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As we already worked out in Section 3.1, the associativity of the star product as well as the
Jacobi identity for a bivector field are encoded in the Maurer–Cartan equations 3.17 resp. 3.12.
In order to translate these equations in the language of pointed Q-manifolds, we have first to
introduce the generalized Maurer–Cartan equation on an (formal) L∞-algebra (  [[ε]], Q):

Q(exp ε x) = 0 x ∈  1[[ε]],

where the exponential function exp maps an element of degree 1 to a formal power series in
ε  [[ε]].

From a dual point of view, this amounts to the request that x is a fixed point of the cohomo-
logical vector field δ, i.e. that for every f in S(  ∗[[ε]][1])

δ f(ε x) = 0.

Since (δf)k = δk−1f , expanding the previous equation in a formal Taylor series and using the
pairing as above to get 〈 δk−1f , x · · ·x 〉 = 〈 f , mk−1(x · · ·x) 〉, the generalized Maurer–Cartan
equation can be written in the form

∞∑

k=1

εk

k!
mk−1(x · · ·x) = ε m0(x) +

ε2

2
m1(xx) + o(ε3) = 0. (4.3)

It is evident that (the formal counterpart of) equation 3.10 is recovered as a particular case
when mk = 0 for k > 1.

Finally, as a morphism of DGLA’s preserves the solutions of the Maurer–Cartan equation,
since it commutes both with the differential and with the Lie bracket, anL∞-morphismφ : S(( � ∗[[ε]][1]))→
S((  ∗[[ε]][1])), according to (4.1), preserves the solutions of the above generalization; with the
usual notation, if x is a solution to (4.3) on  [[ε]],

U(ε x) =
∑

k=1

εk

k!
Uk(x · · · x)

is a solution of the same equation on � .
The action of the gauge group on the set MC(  ) can analogously be generalized to the case

of L∞-algebras and a similar computation shows that, if x and x′ are equivalent modulo this
generalized action, their images under U are still equivalent solutions.

In conclusion, reducing the previous discussion to the specific case we are interested in,
namely when  = V and � = D, given an L∞-morphism U we have a formula to construct
out of any (formal) Poisson bivector field π an associative star product given by

U(π) =
∑

k=0

εk

k!
Uk(π · · ·π) (4.4)

where we reinserted the coefficient of order 0 corresponding to the original non deformed product.
If moreover U is a quasi-isomorphism, the correspondence between (formal) Poisson structures
onM and formal deformations of the pointwise product on C∞(M) is one-to-one: in other terms
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once we give a formality map, we have solved the problem of existence and classification of star
products on M .

This is exactly the procedure followed by Kontsevich to give his formula for the star product
on

� d .

5 The Kontsevich formula
In this Section we will finally give an explicit expression of Kontsevich’s formality map from

V toD which induces the one-to-one map from (formal) Poisson structures on
� d to star products

on C∞
( � d).

The main idea is to introduce a pictorial way to describe how a multivector field can be
interpreted as a multidifferential operator and to rewrite the equations introduced in 4.1 in terms
of graphs.

As a toy model we can consider the Moyal star product introduced in Section 2 and give a
pictorial version of formula (2.1) as follows:

...

f g f f fg g g

f * g := + + + +

Figure 3: A pictorial representation of the first terms of the Moyal star product.

To the n-th term of the series we associate a graph with n “unfilled” vertices – which represent
the n copies of the Poisson tensor π – and two “filled” vertices – which stand for the two functions
that are to be differentiated; the left (resp. right) arrow emerging from the vertex corresponding
to πij represent ∂i (resp. ∂j) acting on f (resp. g) and the sum over all indices involved is
understood.

This setting can be generalized introducing vertices of higher order, i.e. with more outgoing
arrows, to represent multivector fields and letting arrows point also to “unfilled” vertices, to rep-
resent the composition of differential operators: in the Moyal case, since the Poisson tensor is
constant such graphs do not appear.

The main intuition behind the Kontsevich formula for the star product is that one can intro-
duce an appropriate set of graphs and assign to each graph Γ a multidifferential operator BΓ and
a weight wΓ in such a way that the map that sends an n-tuple of multivector fields to the cor-
responding weighted sum over all possible graphs in this set of multidifferential operators is an
L∞-morphism.

This procedure will become more explicit in the next Section, where we will go into the
details of Kontsevich’s construction.
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5.1 Admissible graphs, weights and BΓ’s
First of all, we have to introduce the above mentioned set of graphs we will deal with in the

following.

Definition 5.1. The set Gn,n̄ of admissible graphs consists of all connected graphs Γ which
satisfy the following properties:

- the set of vertices V (Γ) is decomposed in two ordered subsets V1(Γ) and V2(Γ) isomorphic
to {1, . . . , n} resp. {1̄, . . . , n̄} whose elements are called vertices of the first resp. second
type;

- the following inequalities involving the number of vertices of the two types are fulfilled:
n ≥ 0, n̄ ≥ 0 and 2n+ n̄− 2 ≥ 0;

- the set of edges E(Γ) is finite and does not contain small loops, i.e. edges starting and
ending at the same vertex;

- all edges in E(Γ) are oriented and start from a vertex of the first type;

- the set of edges starting at a given vertex v ∈ V1(Γ), which will be denoted in the following
by Star(v), is ordered.

Example 5.2. Admissible graphs
Graphs i) and ii) in Fig. 4 are admissible, while graphs iii) and iv) are not.

21

2

1

21

21 21212 31

3

2

1

i) ii) iii) iv)

Figure 4: Some examples of admissible and non-admissible graphs.

We now introduce the procedure to associate to each pair (Γ, ξ1 ⊗ · · · ⊗ ξn) consisting of a
graph Γ ∈ Gn,n̄ with 2n +m − 2 edges and of a tensor product of n multivector fields on ! d a
multidifferential operatorBΓ ∈ Dn̄−1.

• We associate to each vertex v of the first type with k outgoing arrows the skew-symmetric
tensor ξj1,...,jki corresponding to a given ξi via the natural identification.

• We place a function at each vertex of the second type.

• We associate to the l-th arrow in Star(v) a partial derivative w.r.t. the coordinate labeled by
the l-th index of ξi acting on the function or the tensor appearing at its endpoint.

• We multiply such elements in the order prescribed by the labeling of the graph.
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As an example, the multidifferential operator corresponding to the first graph in Fig.4 and to
the triple (α, β, γ) of bivector fields is given by

UΓ1(α, β, γ)(f, g) := βb1b2 ∂b1α
a1a2 ∂b2γ

c1c2 ∂a1∂c1f ∂a2∂c2g,

while the operator corresponding to the second graph and the pair (π, ρ)is

UΓ1(π, ρ)(f, g, h) := πp1p2∂p1ρ
r1r2r3∂r1f∂r2g∂r3∂p2h

This construction gives rise for each Γ to a linear map UΓ : Tn(V)→ D which is equivariant
w.r.t. the action of the symmetric group, i.e. permuting the order in which we choose the edges
we get a sign equal to the signature of the permutation. The main point in Kontsevich’s formality
theorem was to show that there exist a choice of weights wΓ such that the linear combination

U :=
∑

Γ

wΓBΓ

defines an L∞-morphism, where the sum runs over all admissible graphs.
These weights are given by the product of a combinatorial coefficient times the integral of a

differential form ωΓ over the configuration space Cn,n̄ defined in the following. The expression
of the weight wΓ associated to Γ ∈ Gn,n̄ is then:

wΓ :=

n∏

k=1

1

(# Star(k))!

1

(2π)2n+n̄−2

∫

C̄+
n,n̄

ωΓ (5.1)

if Γ has exactly 2n+ n̄− 2 edges, while the weight is set to vanish otherwise. The definition of
ωΓ and of the configuration space can be better understood if we imagine embedding the graph Γ
in the upper half plane H := {z ∈ � | =(z) ≥ 0} binding the vertices of the second type to the
real line.

We can now introduce the open configuration space of the n+ n̄ distinct vertices of Γ as the
smooth manifold:

Confn,n̄ :=
{

(z1, . . . , zn, z1̄, . . . , zn̄) ∈ � n+n̄
∣∣∣ zi ∈ H+, zī ∈

�
,

zi 6= zj for i 6= j, zī 6= zj̄ for ī 6= j̄
}
.

In order to get the right configuration space we have to quotient Confn,n̄ by the action of the
2-dimensional Lie group G consisting of translations in the horizontal direction and rescaling,
whose action on a given point z ∈ H is given by:

z 7→ az + b a ∈ � + , b ∈ �
.

In virtue of the condition imposed on the number of vertices in (5.1), the action of G is free;
therefore the quotient space, which will be denoted byCn,n̄, is again a smooth manifold, of (real)
dimension 2n+ n̄− 2.

Particular care has to be devoted to the case when the graph has no vertices of the second type.
In this situation, having no points on the real line, the open configuration space can be defined
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as a subset of � n instead of Hn and we can introduce a more general Lie group G′, acting by
rescaling and translation in any direction; the quotient space Cn := Confn,0 /G′ for n ≥ 2 is
again a smooth manifold, of dimension 2n− 3.

In order to get a connected manifold, we restrict further our attention to the component C+
n,n̄

in which the vertices of the second type are ordered along the real line in ascending order, namely:

C+
n,n̄ :=

{
(z1, . . . , zn, z1̄, . . . , zn̄) ∈ Cn,n̄

∣∣∣ zī < zj̄ for ī < j̄
}
.

On these spaces we can finally introduce the differential form ωΓ. We first define an angle
map

φ : C2,0 −→ S1

which associates to each pair of distinct points z1, z2 in the upper half plane the angle between
the geodesics w.r.t. the Poincaré metric connecting z1 to + i∞ and to z2, measured in the coun-
terclockwise direction (cfr. Fig. 5).

H

φ
2z

1z

Figure 5: The angle map φ

The differential of this function is now a well-defined 1-form on C2,0 which we can pull-back
to the configuration space corresponding to the whole graph with the help of the natural projection
πe associated to each edge e = (zi, zj) of Γ

πe : Cn,n̄ −→ C2,0

(z1, . . . , zn̄) 7→ (zi, zj)

to obtain dφe := π∗e dφ ∈ Ω1(Cn,n̄). The form that appears in the definition of the weight wΓ

can now be defined as
ωΓ :=

∧

e∈Γ

dφe

where the ordering of the 1-forms in the product is the one induced on the set of all edges by the
ordering on the (first) vertices and the ordering on the set Star(v) of edges emerging from the
vertex v. We want to remark hereby that, as long as we consider graphs with 2n+ n̄−2 edges, the
degree of the form matches exactly the dimension of the space over which it has to be integrated,
which gives us a real valued weight.

This geometric construction has a more natural interpretation if one derives the Kontsevich
formula for the star product from a path integral approach, as it was done for the first time in
[CF1].
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For the weights to be well-defined, we also have to require that the integrals involved con-
verge. However, as the geometric construction of φ suggests, as soon as two points approach each
other, the differential form dφ is not defined. The solution to this problem has already been given
implicitly in (5.1): the differential form is not integrated over the open configuration space, but
on a suitable compact space whose definition and properties are contained in the following

Lemma 5.3. For any configuration space Cn,n̄ (resp. Cn) there exists a compact space C̄n,n̄
(resp. C̄n) whose interior is the open configuration space and such that the projections πe, the
angle map φ and thus the differential form ωΓ extend smoothly to the corresponding compactifi-
cations.

The compactified configuration spaces are (compact) smooth manifolds with corners. We
recall that a smooth manifold with corner of dimension m is a topological Hausdorff space M
which is locally homeomorphic to

� m−n × � n
+ with n = 0, . . . ,m. The points x ∈ M whose

local expression in some (and thus any) chart has the form x1, . . . , xm−n, 0, . . . , 0) are said to be
of type n and form submanifolds of M called strata of codimension n.

The general idea behind such a compactification is that the naive approach of considering the
closure of the open space in the cartesian product would not take into account the different speeds
with which two or more points “collapse” together on the boundary of the configuration space.

For a more detailed description of the compactification we refer the reader to [FMP] for an
algebraic approach and to [AS] and [BT] for an explicit description in local coordinates. More
recently Sinha [S] gave a simplified construction in the spirit of Kontsevich’s original ideas. In
[AMM] the orientation of such spaces and of their codimension one strata – whose relevance will
be clarified in the following – is discussed.

Finally, the integral in (5.1) is well-defined and yields a weight wΓ ∈
�

for any admissible
graph Γ, since we defined wΓ to be non zero only when Γ has exactly 2n + m − 2 edges, i.e.
when the degree of ωΓ matches the dimension of the corresponding configuration space.

5.2 The proof: Lemmas, Stokes’ theorem, Vanishing theorems
Having defined all the tools we will need, we can now give a sketch of the proof.
In order to verify that U defines the requiredL∞-morphism we have to check that the follow-

ing conditions hold:

I The first component of the restriction of U to V is – up to a shift in the degrees of the two
DGLAs – the natural map introduced in Section (3.3).

II U is a graded linear map of degree 0.

III U satisfies the equations for an L∞-morphism defined in Section (4).

Lemma 5.4. I The map
U1 : V −→ D

is the natural map that identifies each multivector field with the corresponding multiderivation.

Proof. The set G1,n̄ consist of only one element, namely the graph Γn̄ with one vertex of the
first type with 2 · 1 + n̄ − 2 = n̄ arrows with an equal number of vertices of the second type as
endpoints.
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n1 32

Figure 6: The admissible graph Γn̄

To each k-vector field ξ we associate thus the multidifferential operator given by

UΓn̄(ξ)(f1̄, . . . , fn̄) := wΓn̄ ξ
i1̄,...,in̄ ∂i1̄f1̄ · · ·∂in̄fn̄.

An easy computation shows that the integral of ωΓn̄ over C̄1,n̄ cancels the power of 1
2π and leaves

us with the right weight

wΓn̄ =
1

n̄!

we expect for U1 to be the natural map that induces the HKR isomorphism.

Lemma 5.5. II The n-th component

Un :=
∞∑

n̄=1

∑

Γ∈Gn,n̄
wΓBΓ

has the right degree for U to be an L∞-morphism.

Proof. To each vertex vi with # Star(vi) outgoing arrows corresponds an element of Vri =

Ṽri+1 where ri = # Star(vi). On the other side, each graph with n̄ vertices of the second
type together with an n-tuple of multivector fields gives rise to a differential operator of degree
s = n̄−1. Since we consider only graphs with 2n+ n̄−2 edges and this is equal by construction
to

n∑

i=1

# Star(vi),

the degree of Un(ξ1, . . . , ξn) can be written as

s = (2n+ n̄− 2) + 1− n =
n∑

i=1

ri + 1− n

which is exactly the prescribed degree for the n-th component of an L∞-morphism.
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Although the construction we gave in the previous section involves a tensor product of multi-
vector fields, the signs and weights in Un are chosen in such a way that, upon symmetrization, it
descends to the symmetric algebra.

We come now to the main part of Kontsevich’s construction: the geometric proof of the
formality.

First of all we have to extend our morphism U to include also a 0-th component which rep-
resents the usual multiplication between smooth functions — the associative product we want to
deform via the higher order corrections. We can now specialize the L∞ condition (4.2) to the
case at hand, where m0 m̃0 can be expressed in terms of of the Taylor coefficients Un as:

n∑

l=0

m∑

k=−1

m−k∑

i=0

εkim
∑

σ∈Sl,n−l
εξ(σ) Ul

(
ξσ(1), . . . , ξσ(l)

)

(
f0⊗ · · ·⊗fi−1⊗Un−l(ξσ(l + 1), . . . , ξσ(n))(fi⊗ · · ·⊗fi+k)⊗fi+k+1⊗ · · ·⊗fm

)

=
n∑

i6=j=1

εijξ Un−1(ξi ◦ ξj , ξ1, . . . , ξ̂i, . . . , ξ̂j , . . . , ξn)(f0⊗ · · ·⊗fn),

(5.2)

where

- {ξj}j=1,...,n are multivector fields;

- f0, . . . , fm are the smooth functions on which the multidifferential operator is acting;

- Sl,n−l is the subset of Sn consisting of (l, n− l)-shuffles

- the product ξi ◦ ξj is defined in such a way that the Schouten–Nijenhuis bracket can be
expressed in terms of this composition by a formula similar to the one relating the Gersten-
haber bracket to the analogous composition ◦ on D given in 3.2.2;

- the signs involved are defined as follows: εkim := (−1)k(m+i), εξ(σ) is the Koszul sign
associated to the permutation σ and εijξ is defined as in (4.2).

This equation encodes the formality condition since the l.h.s. corresponds to the Gerstenhaber
bracket between multidifferential operators while the r.h.s. contains “one half” of the Schouten–
Nijenhuis bracket; the differentials do not appear explicitly since on V we defined d to be identi-
cally zero, while onD it is expressed in terms of the bracket with the multiplication � , which we
included in the equation as U0.

For a detailed explanation of the signs involved we refer once more to [AMM].

We can now rewrite equation (5.2) in a form that involves again admissible graphs and weights
to show that it actually holds. It should be clear from the previous construction of the coefficients
Uk that the difference between the l.h.s. and the r.h.s. of equation (5.2) can be written as a linear
combination of the form

∑

Γ∈Gn,n̄
cΓUΓ(ξ1, . . . , ξn)(f0⊗ · · ·⊗fn) (5.3)
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where the the sum runs in this case over the set of admissible graphs with 2n + n̄ − 3 edges.
Equation (5.2) is thus fulfilled for every n if these coefficients cΓ vanish for every such graph.

The main tool to prove the vanishing of these coefficients is the Stokes Theorem for manifolds
with corners, which ensures that also in this case the integral of an exact form dΩ on a manifold
M can be expressed as the integral of Ω on the boundary ∂M . In the case at hand, this implies
that if we choose as Ω the differential form ωγ corresponding to an admissible graph, since each
dφe is obviously closed and the manifolds C̄+

n,n̄ are compact by construction, the following holds:
∫

∂C̄+
n,n̄

ωΓ =

∫

C̄+
n,n̄

dωΓ = 0. (5.4)

We will now expand the l.h.s. of (5.4) to show that it gives exactly the coefficient cΓ occurring
in (5.3) for the corresponding admissible graph.

First of all, we want to give an explicit description of the manifold ∂C̄+
n,n̄ on which the

integration is performed. Since the weights wΓ involved in (5.2) are set to vanish identically
if the degree of the differential form does not match the dimension of the space on which we
integrate, we can restrict our attention to codimension 1 strata of ∂C̄+

n,n̄, which have the required
dimension 2n+ n̄− 3 equal to the number of edges and thus of the 1-forms dφe.

In an intuitive description of the configuration space C̄n,n̄, the boundary represents the de-
generate configurations in which some of the n+ n̄ points “collapse together”. The codimension
1 strata of the boundary can thus be classified as follows:

• strata of type S1, in which i ≥ 2 points in the upper half plane H+ collapse together to a
point still lying above the real line. Points in such a stratum can be locally described by the
product

Ci × Cn−i+1,n̄. (5.5)

where the first term stand for the relative position of the collapsing points as viewed “through
a magnifying glass” and the second is the space of the remaining points plus a single point
toward which the first i collapse.

• strata of type S2, in which i > 0 points in H+ and j > 0 points in
�

with 2i + j ≥ 2
collapse to a single point on the real line. The limit configuration is given in this case by

Ci,j × Cn−i,n̄−j+1. (5.6)

These strata have a pictorial representation in Figure 7. In both cases the integral of ωΓ over
the stratum can be split into a product of two integrals of the form (5.1): the product of those
dφe for which the edge e connects two collapsing points is integrated over the first component
in the decomposition of the stratum given by (5.5) resp. (5.6), while the remaining 1-forms are
integrated over the second.

According to this description, we can split the integral in the l.h.s. of (5.4) into a sum over
different terms coming from strata of type S1 and S2. Now we are going to list all the possible
configurations leading to such strata to show that most of these terms vanish and that the only
remaining terms are exactly those required to give rise to (5.2). We will not check directly that
the signs we get by the integration match with those in (5.2), since we did not give explicitly
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Figure 7: Looking at codimension 1 strata “through a magnifying glass”.

the orientation of the configuration spaces and of their boundaries, but we refer once again the
reader to the only paper completely devoted to the careful computation of all signs involved in
Kontsevich’s construction [AMM].

Among the strata of type S1, we distinguish two subcases, according to the number i of
vertices collapsing. Since the integrals are set to vanish if the degree of the form does not match
the dimension of the domain, a simple dimensional argument shows that the only contributions
come from those graphs Γ whose subgraph Γ1 spanned by the collapsing vertices contains exactly
2i− 3 edges.

If i = 2 there is only an edge e involved and in the first integral coming from the decomposi-
tion (5.5) the differential of the angle function is integrated overC2

∼= S1 and we get (up to a sign)
a factor 2π which cancels the coefficient in (5.1). The remaining integral represents the weight
of the corresponding quotient graph Γ2 obtained from the original graph after the contraction of
e: to the vertex j of type I resulting from this contraction is now associated the j-composition of
the two multivector fields that were associated to the endpoints of e. Therefore, summing over all
graphs and all strata of this subtype we get the r.h.s. of the desired equation (5.2).

If i ≥ 3, the integral corresponding to this stratum involves the product of 2i− 3 angle forms
overCi and vanishes according to the following Lemma, which contains the most technical result
among Kontsevich’s “vanishing theorems”.

The two possible situations are exemplified in Figure 8.

Lemma 5.6. The integral over the configuration space Cn of n ≥ 3 points in the upper half
plane of any 2n− 3 (= dimCn) angle forms dφei with i = 1, . . . n vanishes for n ≥ 3

Proof. The first step consists in restricting the integration to an even number of angle forms.
This is achieved by identifying the configuration space Cn with the subset of Hn where one of
the endpoints of e1 is set to be the origin and the second is bounded to lie on the unit circle
(this particular configuration can always be achieved with the help of the action of the Lie group
G′). The integral decomposes then into a product of dφe1 integrated over S1 and the remaining
2n−4 =: 2N forms integrated over the resulting complex manifoldU given by the isomorphism

39



H H

1 n.   .   .   .   .1 n.   .   .   .   .

Figure 8: Example of a non vanishing and of a vanishing term.

Cn ∼= S1 × U . The claim is then a consequence of the following chain of equalities:

∫

U

2N∧

j=1

d arg(fj) =

∫

U

2N∧

j=1

d log |fj | =
∫

U

I
(
d
(

log |f1|
2N∧

j=2

d log |zj |
))

=

=

∫

U

dI
((

log |f1|
2N∧

j=2

d log |zj |
))

= 0

(5.7)

where we gave an expression for the angle function φej in terms of the argument of the (holo-
morphic) function fj (which is nothing but the difference of the coordinates of the endpoints of
ej).

The first equality is what Kontsevich calls a “trick using logarithms” and follows from the
decompositions

d arg(fj) =
1

2i

(
d log(fj)− d log(f j)

)

and
d log |fj | =

1

2

(
d log(fj) + d log(f j)

)
.

The product of 2N such expressions is thus a linear combination of products of k holomorphic
and 2N − k anti-holomorphic forms. A basic result in complex analysis ensures that, upon
integration over the complex manifoldU , the only terms that do not vanish are those with k = N .
It is a straightforward computation to check that the non vanishing terms coming from the first
decomposition match with those coming from the second.

In the second equality the integral of the differential form is replaced by the integration of a
suitable 1-form with values in the space of distributions over the compactificationU of U . A final
Lemma in [Ko2] shows that this map I from standard to distributional 1-forms commutes with
the differential, thus proving the last step in (5.7). In [Kho], Khovanskii gave a more elegant proof
of this result in the category of complete complex algebraic varieties, deriving the first equality
rigorously on the set of non singular points of X and resolving the singularities with the help of
a local representation in polar coordinates.
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Finally, turning our attention to the strata of type S2, the same dimensional argument intro-
duced for the previous case restricts the possible non vanishing terms to the condition that the
subgraph Γ1 spanned by the i + j collapsing vertices (resp. of the first and of the second type)
contains exactly 2i+ j − 2 edges.

With the same definition as before for the quotient graph Γ2 obtained by contracting Γ1, we
claim that the only non vanishing contributions come from those graphs for which both graphs
obtained from a given Γ are admissible. In this case the weight wΓ will decompose into the
product wΓ1 · wΓ2 which in general, by the conditions on the number of edges of Γ and Γ1, does
not vanish.

Since all other properties required by Definition 5.1 are inherited from Γ, we have only to
check that we do not get “bad edges” by contraction. The only such possibility is depicted in
the graph on the right in Figure 9 and occurs when Γ2 contains an edge which starts from a
vertex of the second type: in this case the corresponding integral vanishes because it contains the
differential of an angle function evaluated on the pair (z1, z2), where the first point is constrained
to lie on the real line and such a function vanishes for every z2 because the angle is measured
w.r.t. the Poincaré metric (as it can be inferred intuitively from Figure 5).

H

i .   .   .   .   .

H

.   .   .   .   . i .   .   .   .   ..   .   .   .   .

bad edge

+i 1 i+1

Figure 9: Example of a collapse leading to an admissible quotient graph and of a collapse correspon-
didng to a vanishing term because of a bad edge.

The only non vanishing terms thus correspond to the case when we plug the differential oper-
ator corresponding to the subgraph Γ1 as k-th argument of the one corresponding to Γ2, where k
is the vertex of the second type emerging from the collapse. Summing over all such possibilities
and having checked (up to a sign as usual) that we get the right weights, it should be clear that
the contribution due to the strata of type S2 accounts for the l.h.s. of (5.2).

In conclusion, we have proved that the morphism U is an L∞-morphism and since its first
coefficient U1 coincides with the map U (0)

1 given in Section 3.3 it is also a quasi-isomorphism
and thus determines uniquely a star product given by (4.4) for any given bivector field π on

� d .

6 From local to global deformation quantization
The content of this last section is based mainly on the work of Cattaneo, Felder and Tomassini

[CFT1] (see also [CFT2] and [CF2]), who gave a direct construction of the quantization of a
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general Poisson manifold.
The Kontsevich formula, in fact, gives a quantization only for the case M =

� d for any
Poisson bivector field π and can thus be adopted in the general case to give only a local expression
of the star product.

The globalization Kontsevich sketched in [Ko2] was carried through in [Ko3] by abstract
arguments, extending the formality theorem to the general case.

The works of Cattaneo, Felder and Tomassini instead give an explicit recipe to define the star
product globally, in a similar way to what Fedosov has done in the symplectic category [Fed].
Also in their approach, the main tool is a flat connection D on a vector bundle over M such that
the algebra of the horizontal sections w.r.t. to D is a quantization of the Poisson algebra of the
manifold.

We give now an outline of the construction, addressing the reader to [CFT1] for details and
proofs.

In the first step, we introduce the vector bundleE0 →M of infinite jets of functions together
with the canonical flat connection D0. The fiber Ex0 over x ∈ M is naturally a commutative
algebra and inherits the Poisson structure induced fiberwise by the Poisson structure on C∞(M).
The canonical map which associates to any globally defined function its infinite jet at each point
x is a Poisson isomorphism onto the Poisson algebra of horizontal sections of E0 w.r.t. D0.

As the star product yields a deformation of the pointwise product on C∞(M), we need also a
“quantum version” of the vector bundle and of the flat connection in order to find an analogous
isomorphism. The vector bundle E →M is defined in terms of a section φaff of the fiber bundle
Maff →M , where Maff is the quotient of the manifoldM coor of jets of coordinates systems on
M by the action of the group GL(d,

�
) of linear diffeomorphisms, namelyE := (φaff )∗Ẽ where

Ẽ is the bundle of
�

[[ε]]-modules

Mcoor ×GL(d,
�

)

�
[[y1 , . . . , yd]][[ε]]→Maff .

Since the section φaff can be realized explicitly by a collection of infinite jets at 0 of maps
φx :

� d → M such that φx(0) = x for every x ∈ M (defined modulo the action of GL(d,
�

)),
we can suppose for simplicity that we have fixed a representative φx of the equivalence class
for each open set of a given covering, thus realizing a trivialization of the bundle E. Therefore,
from now on we will identify E with the trivial bundle with fiber

�
[[y1 , . . . , Y d]][[ε]]; in this

way E realizes the desired quantization, since it is isomorphic (as a bundle of
�

[[ε]]-modules)
to the bundle E0[[ε]] whose elements are formal power series with infinite jets of functions as
coefficients.

In order to define the star product and the connection on E, we have first to introduce some
new objects whose existence and properties are byproducts of the formality theorem. Given a
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Poisson bivector field π and two vector fields ξ and η on
� d , we define:

P (π) :=
∞∑

k=0

εk

k!
Uk(π, . . . , π),

A(ξ, π) :=

∞∑

k=0

εk

k!
Uk+1(ξ, π, . . . , π),

F (ξ, η, π) :=
∞∑

k=0

εk

k!
Uk+2(ξ, η, π, . . . , π).

(6.1)

A straightforward computation of the degree of the multidifferential operators on the r.h.s.
of (6.1) shows that P (π) is a (formal) bidifferential operator, A(ξ, π) a differential operator and
F (ξ, η, π) a function. Indeed P (π) is nothing but the star product associated to π as introduced
at the end of Section 4.

More precisely, P , A and F are elements of degree resp. 0, 1 and 2 of the Lie algebra
cohomology complex of (formal) vector fields with values in the space of local polynomial maps,
i.e. multidifferential operators depending polynomially on π: an element of degree k of this
complex is a map that sends ξ1∧· · ·∧ξk to a multidifferential operatorS(ξ1, . . . , ξk, π) (we refer
the reader to [CFT1] for details). The differential δ on this complex is then defined by

δ S(ξ1, . . . , ξk+1, π) :=
k+1∑

i=1

(−)i
d

dt

∣∣∣
t=0

S(ξ1, . . . , ξ̂i, . . . , ξk+1, (Φ
t
ξ)∗ π) +

+
∑

i<j

(−)i+j S([ ξi , ξj ], ξ1, . . . , ξ̂i, . . . , ξ̂j , x . . . , ξk+1, π)

(6.2)

where a caret denotes as usual the omission of the corresponding argument and Φt
ξ is the flow of

the vector field ξ.
As the associativity condition on the star product, which can now be written in the form

P ◦ (P ⊗ id− id⊗P ) = 0, follows from the formality theorem, the following equations are a
corollary of the same result and can be proved with analogous computations:

• P (π) ◦ (A(ξ, π) ⊗ id + id⊗A(ξ, π)) = A(ξ, π) ◦ P (π) + δP (ξ, π)

• P (π) ◦ (F (ξ, η, π) ⊗ id− id⊗F (ξ, η, π)) =

= A(ξ, π) ◦A(η, π)−A(η, π) ◦A(ξ, π) + δA(ξ, η, π)

• −A(ξ, π) ◦ F (η, ζ, π) −A(η, π) ◦ F (ζ, ξ, π)−A(ζ, π) ◦ F (ξ, η, π) = δF (ξ, η, ζ, π)

(6.3)

The first of these equations describes the fact that under the coordinate transformation induced
by ξ the star product P (π) is changed to an equivalent one up to higher order terms. The last two
equations will be used in the construction of the connection and its curvature, since they represent
an analogous of the defining relations between a connection 1-form A and its curvature FA.

Upon explicit computation of the configuration space integrals involved in the definition of
the Taylor coefficients Uk, we can also give the lowest order terms in the expansion of P , A and
F and their action on functions:
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(i) P (π)(f ⊗ g) = f g + ε π(df, dg) +O(ε2);

(ii) A(ξ, π) = ξ+O(ε), where we identify ξ with a first order differential operator on the r.h.s.;

(iii) A(ξ, π) = ξ, if ξ is a linear vector field;

(iv) F (ξ, η, α) = O(ε);

(v) P (π)(1⊗ f) = P (π)(f ⊗ 1) = f ;

(vi) A(ξ, π)1 = 0.

Equations i) and v) where already introduced in Definition 2.1 as two of the defining con-
ditions of a star product, while the ones involving A are used to construct a connection D on
sections of E.

A section f ∈ Γ(E) is given locally by a map x → fx where for every y, fx(y) is a formal
power series whose coefficients are infinite jets. On the space of such sections we can introduce
a deformed product ? which will give us the desired star product on C∞(M) once we identify
horizontal sections with ordinary functions. Denoting analogously by πx the push-forward by
φ−1
x of the Poisson bivector π on

� d , we can define the deformed product through the formal
bidifferential operator P (πx) in the same way as P (π) represents the usual star product:

(f ? g)x(y) := fx(y) gx(y) + ε πijx (y)
∂fx(y)

∂yi
∂gx(y)

∂yj
+O(ε2).

We can define the connectionD on Γ(E) by

(Df)x = dxf +AMx f

where dxf is the de Rham differential of f regarded as a function with values in
�

[[y1 , . . . , yd]][[ε]]
and the formal connection 1-form is specified by its action on a tangent vector ξ by

AMx (ξ) = A(ξ̂x, πx)

where A is the operator defined in (6.1) evaluated on the multivector fields ξ and π expressed in
the local coordinates system given by φx.

The important point is that since the coefficients Uk of the formality map that appear in the
definition of P andA are polynomial in the derivatives of the coordinate of the arguments ξ and π,
all results holding for P (π) and A(ξ, π) are inherited by their formal counterparts. In particular
equalities i) and v) above (together with the formality theorem from which they are derived)
ensure that ? is an associative deformation of the pointwise product on sections and equalities
ii) and iii) can be used to prove that D is indeed independent of the choice of φ and therefore
induces a global connection on E.

We can finally extend D and ? by the (graded) Leibniz rule to the whole complex of formal
differential forms Ω•(E) = ΩM ⊗C∞(M) Γ(E) and use (6.3) to verify the following

Lemma 6.1. LetFM be theE-valued 2-form given by x→ FMx whereFMx (ξ, η) = F (ξ̂x, η̂x, πx)
for any pair of vector fields ξ, η. Then FM represent the curvature of D and the two are related
to each other and to the star product by the usual identities:

a) D(f ? g) = D(f) ? g + f ? D(g);
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b) D2(·) =
[
FM ?, ·

]
;

c) DFM = 0

Proof. The identities follow directly from the relations (6.3), in which the star commutator
[ f ?, g ] = f ? g − g ? f is already implicitly defined, once we identify the complex of formal
multivector fields endowed with the differential δ with the complex of formal multidifferential
operators with the de Rham differential. The map that realizes this isomorphism is explicitly
defined in [CFT1].

A connectionD satisfying the above relations on a bundleE of associative algebras is called a
Fedosov connection with Weyl curvature F : it is the kind of connection Fedosov introduced to
give a global construction in the symplectic case. Following Fedosov, the last step to the required
globalization is to deform D into a new connection D which enjoys the same properties and
moreover has zero Weyl curvature, so that we can define the complexHk(E,D) and in particular
the (sub)algebra of horizontal sections H0(E,D).

The construction of D relies on the following Lemmata.

Lemma 6.2. Let D be a Fedosov connection on E with Weyl curvature F and γ an E-valued
1-form, then

D := D + [ γ ?, · ]
is also a Fedosov connection whose Weyl curvature is F = F +Dγ + γ ? γ.

Proof. For any given section f , a direct computation shows

D
2
f = [F ?, f ] +D[ γ ?, f ] + [ γ ?, Df ] + [ γ ?, [ γ ?, f ] ] =

= [F ?, f ] + [Dγ ?, f ] + [ γ ?, [ γ ?, f ] ] =

[
F +Dγ +

1

2
[ γ ?, γ ] ?, f

]

where the last equality follows from the Jacobi identity for the star commutator, since every
associative product induces a Lie bracket given by the commutator.

ApplyingD on the new curvature, we can check explicitly that

D
(
F +Dγ +

1

2
[ γ ?, γ ]

)
= D2γ +

1

2
[Dγ ?, γ ]− 1

2
[ γ ?, Dγ ] + [ γ ?, F +Dγ ] =

= [F ?, γ ] + [ γ ?, F ] = 0

where we made use again of the (graded) Jacobi identity and of the (graded) skew-symmetry of
[ ?, ].

Lemma 6.3. Let D be a Fedosov connection on a bundle E = E0[[ε]] and F its Weyl curvature
and let

D = D0 + εD1 + · · · and F = F0 + εF1 + · · ·
be their expansions as formal power series. If F0 = 0 and the second cohomology of E0 w.r.t.
D0 is trivial, there exist a 1-form γ such that D has zero Weyl curvature.
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Proof. By the previous Lemma, the claim is equivalent to the existence of a solution to the equa-
tion

F = F +Dγ +
1

2
[ γ ?, γ ] = 0.

A solution can be explicitly constructed by induction on the order in ε, starting from γ0 = 0

and assuming that γ(k) is a solution mod εk+1. We can thus add to F
k

= F + Dγ(k) +
1
2

[
γ(k) ?, γ(k)

]
the next term εk+1D0 γk+1 to get F

(k+1)
modulo higher terms. From DF

(k)
+[

γ(k) ?, F
(k)
]

= 0 and the induction hypothesis F
(k)

= 0 mod εk+1 we get D0 F
(k)

= 0.

Since now H2(E0, D0) = 0, we can invert D0 to define γk+1 in terms of the lower order terms
F

(k)
in such a way that F

(k+1)
= 0 is satisfied mod εk+2, thus completing the induction

step.

Since in our case D is a deformation of the natural flat connection D0 on sections of the
bundle of infinite jets, the hypothesis of the previous Lemma are satisfied and we can actually
find a flat connectionD which is still a good deformation of D0.

A last technical Lemma gives us an isomorphism between the algebra of the horizontal sec-
tions H0(E,D) and its non-deformed counterpart H0(E0, D0), which in turn is isomorphic to
the Poisson algebra C∞(M): this concludes the globalization procedure.

Only recently, Dolgushev [Do] gave a new proof of Kontsevich’s formality theorem for a
general manifold. The main difference in this approach is that it is based on the use of covariant
tensors unlike Kontsevich’s original proof, which is based on∞-jets of multidifferential operators
and multivector fields and is therefore intrinsically local. In particular, he gave a solution of the
deformation quantization problem for an arbitrary Poisson orbifold.
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