
ON L∞-MORPHISMS OF CYCLIC CHAINS

ALBERTO S. CATTANEO, GIOVANNI FELDER, AND THOMAS WILLWACHER

Abstract. Recently the first two authors [1] constructed an L∞-morphism using the
S1-equivariant version of the Poisson Sigma Model (PSM). Its role in deformation quan-
tization was not entirely clear. We give here a “good” interpretation and show that the
resulting formality statement is equivalent to formality on cyclic chains as conjectured by
Tsygan and proved recently by several authors [5], [10].

1. Introduction and Structure

We begin by drawing the big picture; precise definitions will be given below.

1.1. Big picture on cochains. Let M be a smooth d-dimensional manifold and A =
C∞(M) (Ac = C∞c (M)) the commutative algebras of smooth (compactly supported) func-
tions. We denote by T • the dgla of multivector fields and by C•(A) the multidifferential
Hochschild complex. Kontsevich’s famous Formality Theorem asserts that there is an L∞-
quasi-isomorphism of dglas

UK : T • → C•(A).
Next, assume that M is orientable1 and pick a volume form Ω. This endows T • with an
additional differential divΩ, the divergence, that is compatible with the Schouten bracket on
T •. We will denote the dgla (T •[[u]], u divΩ, [·, ·]S) shortly by T •[[u]]. Here u is a formal
parameter of degree +2. There is a morphism of dglas

T •[[u]] u=0−→ T •.

We denote the composition of this morphism with UK also by UK for simplicity.

1.2. Big picture on chains. Let us turn to homology. Denote the negatively graded
Hochschild (chain) complex by C•(A) = C•(A, A). It is a mixed complex, with the Hochschild
differential b of degree +1 and with the Rinehart (or Connes) differential B of degree -1. The
cohomology H•(A) of C•(A) wrt. the differential b is the de Rham complex (Ω−•(M),d),
which we view as a bicomplex with vanishing first differential.

C•(A) also carries a compatible dgla module structure over the Hochschild cochains C•(A).
Pulling back this module structure along UK , we obtain an L∞-module structure over mul-
tivector fields T •. The Hochschild Formality Theorem on chains [7, 4, 8] states that there is
a quasi-isomorphism of L∞-modules over T •

V : C•(A) → Ω−•(M)

Actually, this morphism is compatible with the additional second differentials B and d on
both sides. Hence we obtain an L∞-quasi-isomorphism

V : (C•(A)[[u]], b + uB) → (Ω−•(M)[[u]], ud)

This last statement is known as the Cyclic Formality Theorem on chains [10, 5, 8].
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1.3. Dual picture. Recall that A = C∞(M). The following statement is a particularly
simple case of van den Bergh duality [9] (note the negative grading on the left)

H•(A, A) ∼= Hd+•(A,Ωd(M))

Concretely, the left hand side is Ω−•(M), and the right hand side is V T d+• := T d+•⊗Ωd(M).
The isomorphism from right to left is by contraction. Note that we can pull back the de
Rham differential along this isomorphism, obtaining a differential “div” on V T •. Note in
particular that this differential div does not depend on a choice of volume, in contrast to the
divΩ defined before.

The dualized Hochschild formality theorem on chains states that there is a quasi-isomor-
phism of L∞-modules

V∗ : V T • → C•(A,Ωd) .

The dualized cyclic formality theorem states that this morphism is compatible with the
additional differentials div on the left and the (adjoint of the) Connes differential B on the
right.

We will only consider such morphisms that are differential operators in each argument.
In this case there is a canonical way to obtain an adjoint morphism V∗ from the “direct”
one V and vice versa. Concretely, there is a pairing between C•(A,Ωd) and C•(Ac) given by

〈φ, a0 ⊗ · · ·⊗ an〉 =
∫

M
a0φ(a1, . . . , an)

and a pairing between V T • and Ω•(M) given by

〈γΩ, α〉 =
∫

M
(ιγα)Ω .

Here the insertion ιγ is defined such that ιγ1∧γ2 = ιγ1ιγ2 . One can see that to any direct
multidifferential L∞ morphism V there is a unique morphism V∗ such that

〈γΩ,V(a0 ⊗ · · ·⊗ an)〉 = ± 〈V∗(γΩ), a0 ⊗ · · ·⊗ an〉 .

It follows that the direct and adjoint (multidifferential) formality statements are equivalent.

Remark 1 (on quantization). The cohomology H0(A,Ωd) is important because it classifies
smooth traces on Ac, i.e., top degree differential forms Ω such that the functional f '→

∫
M fΩ

is a trace on Ac. Of course, in the current commutative setting, these are just all top degree
differential forms. However, due to dual Hochschild formality we can quantize. Let A" be the
algebra C∞(M)[[!]] with the Kontsevich star product [6] associated to a Poisson structure
π. The relevant cohomology is then H0(A",Ωd

") ∼= {ω ∈ Ωd(M)[[!]] | divω π = 0}. The
quantized bimodule structure on Ωd

" = Ωd[[!]] is defined such that for all a, b ∈ Ac, ω ∈ Ωd
"∫

M
a · (Lbω) =

∫

M
(a ' b) · ω =

∫

M
b · (Raω) .

1.4. Other module structures. The cyclic chain formality morphisms above are quasi-iso-
morphisms of L∞-modules over (T •, 0, [·, ·]S). One may be tempted to replace this latter
dgla by its “cyclic” counterpart (T •[[u]], u divΩ, [·, ·]S), and ask whether the above formality
statements remain true. Of course, if we use the module structures obtained via pulling back
along the dgla morphism

T •[[u]] u=0→ T •

the new formality statements will be equivalent to the original ones. However, one may try
to change the module structures. We will only consider changing the module structure on
the classical (differential forms) side.2 We show in section 2.3 that there is a whole family of
dgla actions L(t) reducing to the original Lie derivative action for t = 0. However, all these
module structures will be shown to be L∞-quasi-isomorphic in Proposition 2.

2One can also “naturally” change the action on the Hochschild side. but we don’t discuss it here.
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1.5. Meaning of the PSM morphism. Using the S1-equivariant version of the Poisson
Sigma Model the first two authors [1] recently constructed an L∞-morphism VPSM,orig,
the “PSM morphism”. This paper is devoted to clarifying the meaning of this morphism,
which was not entirely clear. To do this, we will reinterpret VPSM,orig slightly, yielding a
morphism V∗PSM . Concretely, we introduce a new complex E• which is quasi-isomorphic (as
bicomplex and C•(A)-module) to C•(A,Ωd). The morphism V∗PSM can then be understood
as an adjoint cyclic chain formality morphism on

V∗PSM : T •[[u]] ∼= V T •[[u]] → E•[[u]] .

Here the action of T •[[u]] on the very left is the adjoint action, on the middle it is the (dual
of the) action L(1), and on the right it is the action defined through pullback via UK . The
isomorphism on the left is defined by choosing a volume form.

1.6. Organisation of the paper. The remainder of the paper is divided into two parts:
(1) In the first part we introduce the structures involved, i.e., the Hochschild and cyclic

chain and cochain complexes. Here there are two novel aspects: (i) We introduce
the natural “extended” complex E• mentioned above that allows us to give a nice
interpretation of the PSM morphism and (ii) we introduce the aforementioned family
L(t) of T •[[u]]-actions on differential forms that was (to our knowledge) not studied
before.

(2) In the second part we define V∗PSM and prove the formality statement made above.

2. Part I: The objects of study

In this section we define the different complexes that will be related to each other through
formality morphisms. Each complex can either constitute a differential graded Lie algebra
(dgla) or serve as a module over one of the dglas. We will indicate the roles in the titles of
each subsection. Of course, every dgla is also a module over itself.

2.1. Multivector fields T • (dgla). The algebra of multivector fields on M , T •, is the al-
gebra of smooth sections of ∧•TM . There is a Lie bracket [·, ·]S on T •+1(M), the Schouten
bracket, extending the Lie derivative and making T • a Gerstenhaber algebra. More con-
cretely,

[v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wn]S =

=
n∑

i=0

n∑

j=0

(−1)i+j [vi, wj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ ŵj ∧ · · · ∧ wn .

Assume now that M is oriented, with volume form Ω. Contraction with Ω defines an
isomorphism T • → Ωd−•(M). The divergence operator divΩ on T • is defined as the pull-
back of the de Rham differential d on Ω•(M) under this isomorphism. Concretely

ιdivΩ γΩ = dιγΩ .

One can check that divΩ is a derivation with respect to the Schouten bracket, i.e.,3

divΩ [γ1, γ2]S = [divΩ γ1, γ2]S + (−1)k1−1 [γ1,divΩ γ2]S .

Introducing a new formal variable u of degree +2, the complex T •+1(M)[[u]] is a dgla with
differential u divΩ and bracket the u-linear extension of the Schouten bracket.

Hence we have two dglas, T •+1(M) and T •+1(M)[[u]], related by a dgla morphism

T •+1(M)[[u]] u=0−→ T •+1(M).

This morphism in particular allows us to view any T •+1(M)-module also as T •+1(M)[[u]]-
module.

3Actually divΩ is a BV operator generating [·, ·]S for any volume form Ω.
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2.2. Hochschild cochains C•(A) (dgla). The normalized multidifferential Hochschild
complex C•(A) is the complex of •-differential operators, which vanish upon insertion of
a constant function in any of its arguments. E.g., C1(M) are differential operators D such
that D1 = 0. C•+1(A) is a differential graded Lie algebra with the Gerstenhaber bracket

[φ, ψ]G(a1, . . . , ap+q−1) = φ(ψ(a1, . . . , aq), aq+1, . . . , ap+q−1)

+ (−1)q−1φ(a1, ψ(a2, . . . , aq+1), aq+2, . . . , ap+q−1)
± . . .

+ (−1)(p−1)(q−1)φ(a1, . . . ,ψ(ap, . . . , ap+q−1))

− (−1)(p−1)(q−1)(φ ↔ ψ)

for φ ∈ Cp(A), ψ ∈ Cq(A), and the Hochschild differential

bH = [m0, ·]G .

Here m0 ∈ C2(A) is the usual (commutative) multiplication of functions.

2.3. The differential forms Ω•(M) (module). Let Ω• = Ω•(M) be the graded algebra
of differential forms on M , with negative grading. Let d = ddR be the de Rham differential.
Denote the insertion operators by ιγ . They take a form and contract it with the multivector
field γ. The signs are such that

ι : T • → End(Ω•)
γ '→ ιγ

is a morphism of graded algebras. For example, for a function f , ιf is multiplication by
f , for a vector field ξ, ιξ is a derivation of the dga Ω• and for any multivector fields γ, ν,
ιγ∧ν = ιγιν . The Lie derivative L is:

Lγ := [d, ιγ ] .

It satisfies the following relation, which can alternatively be taken as the definition of the
Schouten bracket.

ι[γ,ν]S
= [ιγ , Lν ] = (−1)|γ| [Lγ , ιν ]

It follows that L forms a representation of the differential graded Lie algebra T •+1. Here
and everywhere in the paper the degrees |γ| are such that γ ∈ T |γ|+1.

Next consider module structures on (Ω•[[u]], ud) over the dgla (T •[[u]], [·, ·]S , u divΩ). Let
us introduce a family of actions L(t)

γ as follows. Let S(t) be the u-scaling operation on
multivector fields given by

S(t)γ = S(t)




∑

j≥0

ujγj



 =
∑

j≥0

(tu)jγj .

Let further
ι(t)γ = ιS(t)γ .

The family of dgla actions is then given by

L(t)
γ = (1/u)(

[
ud, ι(t)γ

]
+ ι(t)u divΩ γ) =

∑

j≥0

(ut)j(Lγj + tιdivΩ γj )

where γ =
∑

j≥0 ujγj ∈ T •[[u]].

Proposition 2. For any t ∈ , L(t)
γ defines a dgla module structure on Ω•[[u]]. Furthermore

all these module structures are L∞-isomorphic to each other.
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Proof. To show that the L(t)
γ are indeed dgla actions, compute

[
ud, L(t)

γ

]
=

∑

j≥0

(ut)jt
[
ud, ιdivΩ γj

]

=
∑

j≥0

(ut)j+1LdivΩ γj = Lu divΩ γ(t) .

Furthermore
[
L(t)

γ , L(t)
ν

]
=

∑

j,k≥0

(ut)j+k
[
Lγj + tιdivΩ γj , Lνk + tιdivΩ νk

]

=
∑

j,k≥0

(ut)j+k
(
L[γj ,νk] + t(−1)|γj |ι[γj ,divΩ νk] + tι[divΩ γj ,νk]

)

=
∑

j,k≥0

(ut)j+k
(
L[γj ,νk] + tιdivΩ[γj ,νk]

)

= L(t)
[γ,ν] .

Next we construct a family of L∞ isomorphisms H(t) relating L(t)
γ and L(0)

γ . These
isomorphisms will be solutions of a differential equation

Ḣ(t) = h(t)H(t)

for some family of infinitesimal morphisms (L∞-derivations) h(t). In fact, the h(t) will have
vanishing zeroth Taylor component and will all commute, so that one can explicitly write
down the solution

H(t) = exp
(∫ t

0
h(t)dt

)
.

The h(t) will have only a single non-vanishing Taylor coefficient of degree one, which we
denote (admittedly slightly confusing) by

h(t)
1 (γ;α) = −(−1)|γ|h(t)

γ α .

One finds that the L∞-derivation property is equivalent to the following two conditions for
h(t)

γ .

− d

dt
L(t)

γ =
[
ud, h(t)

γ

]
+ h(t)

u divΩ γ

h(t)
[γ,ν]S

=
[
h(t)

γ , L(t)
ν

]
+ (−1)|γ|

[
L(t)

γ , h(t)
ν

]

All higher L∞ relations are trivially satisfied.
We claim that

h(t)
γ = − 1

u

d

dt
ι(t)γ

satisfies these equations.4 Compute

d

dt
L(t)

γ = (1/u)
[
ud,

d

dt
ι(t)γ

]
+ (1/u)

d

dt
ι(t)u divΩ γ

= −
[
ud, h(t)

γ

]
− h(t)

u divΩ γ .

4Note that the expression on the right is well defined since d
dt ι

(t)
γ ∼ O(u).
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In second order
[
h(t)

γ , L(t)
ν

]
+ (−1)|γ|

[
L(t)

γ , h(t)
ν

]
= −

∑

j,k

(tu)j+k
(
(j/t)ι[γj ,νk] + (k/t)ι[γj ,νk]

)

= − d

dt

∑

j,k

(tu)j+kι[γj ,νk]

= h(t)
[γ,ν] .

!

In the special case t = 0 the action becomes

L(0)
γ α = Lγ0α

and in the case t = 1
L(1)

γ α = Lγα + ιdivΩ γα.

The quasi-isomorphism between these two structures is given by

H(1) = e
R 1
0 h(t)dt = e−ι+/u

where ι+γ = ι(1)γ − ι(0)γ =
∑

j≥1 ujιγj . Concretely, the n-th Taylor component reads

H(1)
n (γ1, . . . , γn) = ± 1

un
ι+γ1

· · · ι+γn
.

2.4. Multivector field valued top forms V T • (module). We define the multivector
field valued top forms

V T • := Ωd(M ;∧•TM) .

There is a natural non-degenerate pairing

〈·, ·〉 : V T • ⊗ Ω•
c(M) →

〈νΩ, α〉 =
∫

M
Ω(ινα) .

Its obvious u-bilinear extension allows for dualizing the dgla-module structures L and L(t)

on Ω•(M)[[u]] discussed above to dgla-module structures on V T •[[u]]. We denote these dual
module structures also by L(t) and hope that no confusion arises. Concretely, in our sign
conventions the differential, temporarily called δ, and action are defined such that

〈δ(νΩ), α〉 = −(−1)|ν| 〈νΩ, udα〉
〈
L(t)

γ (νΩ), α
〉

= −(−1)|ν||γ|
〈
νΩ, L(t)

γ α
〉

.

Lemma 3. The dgla module structure L(t) on V T •[[u]] is given explicitly by the following
data: The differential is δ = u div with

div(νΩ) := (divΩ ν)Ω.

The action is

L(t)
γ (νΩ) =

∑

j≥0

(tu)j
(
[γ, ν]S Ω + (−1)|γj |(1− t)(divΩ γ ∧ ν)Ω

)

where γ =
∑

j≥0 ujγj.

Proof. Note first that ∫

M
(ιγα)Ω =

∫

M
α ∧ ιγΩ .
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It follows that

〈δ(νΩ), α〉 = −(−1)|ν|u
∫

M
(ινdα)Ω = −(−1)|ν|u

∫

M
(dα)ινΩ

= (−1)|ν|+|α|u

∫

M
αdινΩ = u

∫

M
αιdivΩ νΩ

= u

∫

M
(ιdivΩ να)Ω = 〈u div(νΩ), α〉 .

In the fourth line we used that everything is zero unless |α| = |γ|. Furthermore, note that
by a small computation ∫

M
(Lγα)Ω = −

∫

M
(ιdivΩ γα)Ω .

Hence we obtain
〈
L(t)

ujγj
(νΩ), α

〉
= −(−1)|ν||γj |uj

∫

M
ιν

(
tjLγj α + tj+1ιdivΩ γj α

)
Ω

= −(−1)|ν||γj |(tu)j

∫

M

(
ι[ν,γj ]S

+ (−1)(|ν|+1)|γj |Lγj ινα

+(−1)(|ν|+1)|γj |tιdivΩ γj∧να
)

Ω

= −(−1)|ν||γj |(tu)j

∫

M

(
ι[ν,γj ]S

+ (−1)(|ν|+1)|γj |ιdivΩ γj∧να

+(−1)(|ν|+1)|γj |tιdivΩ γj∧να
)

Ω

= −(−1)|ν||γj |(tu)j

∫

M

(
−(−1)|ν||γj |ι[γj ,ν]S

− (−1)(|ν|+1)|γj |ιdivΩ γj∧να

+(−1)(|ν|+1)|γj |tιdivΩ γj∧να
)

Ω

=
〈
(tu)j([γ, ν]S + (−1)|γj |(1− t) divΩ γj ∧ ν)Ω, α

〉
.

!

In view of the PSM morphism, the most interesting case is t = 1. Here the action is the
pushforward of the adjoint action along the isomorphism

T •[[u]] → V T •[[u]]
γ '→ γ ⊗ Ω .

2.5. The Hochschild chains (module). The (normalized) Hochschild chain complex of
the algebra A is the complex

C−•(A) = A⊗ Ā⊗•

where Ā = A/ · 1. It is equipped with differential bH

bH(a0 ⊗ · · ·⊗ an) = a0a1 ⊗ a2 ⊗ · · ·⊗ an ± · · · + (−1)nana0 ⊗ a1 ⊗ · · ·⊗ an−1.

The normalized Hochschild cochain complex acts on the normalized chain complex through
the (dgla) action

(1) LD(a0 ⊗ · · ·⊗ an) =
n∑

j=n−d+1

(−1)n(j+1)D(aj+1, . . . , a0, . . . )⊗ ad+j−n ⊗ · · ·⊗ aj+

+
n−d∑

i=0

(−1)(d−1)(i+1)a0 ⊗ · · ·⊗ ai ⊗D(ai+1, . . . , ai+d)⊗ · · ·⊗ an.

In particular bH = Lm0 .
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2.6. The cyclic chains (module). The normalized Hochschild chain complex is equipped
with an additional differential B of degree -1 discovered by Rinehart and rediscovered by
Connes.

B(a0 ⊗ · · ·⊗ an) =
n∑

j=0

(−1)jn1⊗ aj ⊗ · · ·⊗ an ⊗ a0 ⊗ · · ·⊗ aj−1

One can check that this differential (graded) commutes with the action (1) above, and hence
anticommutes with bH . Introducing an additional formal variable u of degree +2, one defines
the negative cyclic chain complex as

(C•(A)[[u]], bH + uB).

Its homology is called the negative cyclic homology. Other cyclic homology theories can be
obtained from the negative cyclic complex by tensoring with an appropriate [u]-module
and will not receive specialized treatment in this paper.

2.7. Hochschild complex – sheaf version E• (module). Consider the sheaf D•(M) of
•-differential operators. E.g., D1(M) is the sheaf of differential operators. It is a complex
with the Hochschild differential5

(bΦ)(a0, . . . , an) = ± (Φ(a0a1, a2, . . . , an)− Φ(a0, a1a2, . . . , an) ± . . .

−(−1)nΦ(a0, a1, . . . , an−1an) + (−1)nΦ(ana0, a1, . . . , an−1)) .

Also, note that there is an action of the cyclic group(oid) on D•(M) generated by

(σΦ)(a0, . . . , an) = (−1)nΦ(a1, a2, . . . , an, a0).

There is a canonical flat connection ∇ on D•(M), compatible with the differential and
the cyclic action. It is given by the de Rham differential:

(∇Φ)(a0, . . . , an) = d(Φ(a0, . . . , an)).

Definition 4. The extended Hochschild cochain complex is the total complex

E• = ⊕p+q−d=•(Γ(Dp+1(M)⊗C∞(M) Ωq(M)), b +∇) .

The normalized extended Hochschild complex E•
norm is the subcomplex of multidifferential

operators Φ such that
Φ(a0, . . . , aj−1, 1, aj+1, . . . , an) = 0

for all a0, . . . an and all j = 1, .., n.

There is an action on E• of the multidifferential operators, now considered as a sheaf of
dg Lie algebras with differential dH , by the formula dual to (1), i.e.,

(LDΦ)(a0, . . . , an) =

= −(−1)|D||Φ|




n∑

j=n−d+1

(−1)n(j+1)Φ(D(aj+1, . . . , a0, . . . ), ad+j−n, . . . , aj)+

+
n−d∑

i=0

(−1)(d−1)(i+1)Φ(a0, . . . , ai, D(ai+1, . . . , ai+d), . . . , an)

)
.

In terms of this action, the differential can be written as b = Lm where m is the multiplication
cochain.

The complex E• is just another complex computing Hochschild cohomology with values
in Ωd(M), as the following proposition shows.

5Note that this is not the bH from above, there is no a0Φ(a1, a2, . . . , an)-term.
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Proposition 5. The embedding C•(A,Ωd(M)) → E• given by

Φ '→ ((a0, . . . , an) '→ a0Φ(a1, ..., an))

is a quasi-isomorphism.

We will benefit from the following elementary result.

Lemma 6. Let (Kp,q)0≤p≤n,q∈ be a double complex with differential d1 + d2, where

d1 : Kp,q → Kp+1,q d2 : Kp,q → Kp,q+1.

Then the following holds:
(1) If the d1-cohomology is concentrated in bottom degree p = 0, then the inclusion of

the d1-closed, p-degree 0 elements

{k ∈ K0,• | d1k = 0} ↪→ K•,•

is a quasi-isomorphism.
(2) If the d1-cohomology is concentrated in top degree p = n, then the projection onto

the top p degree elements modulo exact elements

K•,• " Kn,•/d1K
n−1,•

is a quasi-isomorphism.

Proof. At least the first statement is probably familiar to the reader. The proof of the second
statement is essentially dual to the proof of the first. !

Proof of Proposition 5. It is more or less obvious that the above map is a map of complexes.
It remains to be shown that it is a quasi-isomorphism.

Let us compute the cohomology of E• wrt. ∇, i.e., the first term in the spectral sequence
associated E•. We claim that it is concentrated in the top form-degree d = dim M , and
every class has exactly one representative in the image of the above quasi-isomorphism. To
show this, consider the spectral sequence associated to the following filtration:

FpE = {Γ(Φ ∈ D•(M)⊗C∞(M) Ωk(M)) | k = 0, 1, . . . and ord0Φ ≤ p + k}
where ord0Φ is the order of Φ as a differential operator in the first “slot” (i.e., the slot in
which a0 is inserted). One can check that ∇FpE ⊂ FpE. The first term in the spectral series
is the associated graded, i.e., multidifferential operators with values in ∧•T ∗M⊗S•TM . The
differential d0 is, in local coordinates, the operator d0 =

∑
i(dxi∧) ⊗ (∂i·), multiplying the

∧•T ∗M -part by dxi and the S•TM -part by ∂i. The cohomology is concentrated in form
degree d and operator degree 0. Probably the quickest way to see this is to note that the
complex ∧•T ∗M ⊗ S•TM with the above differential is isomorphic to the Koszul complex
of S•TM , the isomorphism being given by contracting the first factor with a section of
∧dTM . The spectral sequence degenerates at this point by (form-)degree reasons. This
means that any ∇-cohomology class has exactly one representative of form degree d and of
differential operator degree 0 in the first slot. This proves the above claim, and hence the
proposition. !

2.8. Cyclic Cochains – sheaf version (module).

Definition 7. The extended cyclic complex is the complex (E•)σ of invariants under the
cyclic action. The extended cyclic (b, B)-complex is the complex E•

norm[[u]] with differential
b + uB, where B is Connes’ B.

For an orientable manifold, this complex computes the cyclic cohomology.

Proposition 8. For M orientable, the cohomology of the extended cyclic complexes (E•)σ

and E•
norm[[u]] is the cyclic cohomology of C∞(M).
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Proof. Consider again the spectral sequence and compute the ∇-cohomology of the two
complexes. As in the last proof, the first term of the spectral sequence for E•

norm[[u]] is, as a
vector space, isomorphic to D•

norm[[u]], the isomorphism being given in the last proposition.
One can see more or less by the definitions that the differentials b, B are mapped to bH , B
under this isomorphism.

For the case of (E•)σ, note that ∇ commutes with the action of the cyclic group. It
follows that taking the ∇-cohomology commutes with taking cyclic invariants. The result
then follows as in the proof of the last proposition. !

3. Part II: The meaning of the PSM morphism

3.1. The original PSM morphism. Let M be orientable and choose a volume form Ω.
The original PSM morphism VPSM,orig is an L∞-morphism of modules over the dg Lie
algebra (T •[[u]], u divΩ, [·, ·]S), constructed by the first two authors in [1] using essentially
an equivariant version of the Poisson sigma model. The two modules it relates are the cyclic
chains and the multivector fields.

VPSM,orig : (C•(A, A)[[u]], b + uB) → (T •[[u]], u divΩ).

The module structure on the left is given by pulling back the C•(A)-action along UK . The
module structure on the right is the trivial module structure (!). We copy the following
proposition from [1]

Proposition 9. The morphism VPSM,orig is a morphism of L∞-modules (but not a quasi-iso-
morphism).

3.2. The (reinterpreted) PSM morphism V∗PSM . Here we give a new interpretation
of the above morphism The (reinterpreted) PSM morphism V∗PSM is a quasi-isomorphism
of L∞-modules over the dgla (T •[[u]], u divΩ, [·, ·]S). However, the two modules are the
multivector-field-valued top forms, which can be identified with T •[[u]] using the volume
form, and the extended cyclic complex E•

norm[[u]].

V∗PSM : (T •[[u]], u divΩ) ∼= (V T •[[u]], ud) → (E•
norm[[u]],∇+ b + uB).

The dgla module structure on the very left is the adjoint one, in contrast to the trivial one
above, and on the middle L(1). The L∞-module structure on the right is defined via pullback
of the dgla action of C•(A) via the (Kontsevich) L∞-morphism U (0).

The reinterpreted morphism is constructed from the original one as follows:

V∗PSM (γ1, .., γm)(γ)(a0, .., an) = ιVP SM,orig(γ1,..,γm,uγ;a0,..,an)Ω.

Theorem 10. The morphism V∗PSM is a quasi-isomorphism of L∞-modules.

Proof. The fact that it is an L∞-morphism is an easy consequence of Proposition 9 and the
previous observation that for any multivector field ν

ιdiv νΩ = dινΩ.

It remains to be shown that the zero-th Taylor component is an isomorphism on coho-
mology. In view of Lemma 6 it is sufficient to show that the composition with the projection
onto the top form degree part modulo the image of ∇ is a quasi-isomorphism. Explicit
computation yields that the 0-th Taylor component is

γ '→ ±((a0, .., ak) '→ a0γ(a1, .., ak)Ω) + (lower form degree).

The first part is the HKR morphism, known to be a quasi-isomorphism, and the remainder
does not matter due to the projection onto top form degree components. !
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The statement of Theorem 10 can be seen as a dualized version of B. Tsygan’s negative
cyclic formality conjecture. The more precise relation is as follows. Note that the complex
E• is bigger than the dual (in an appropriate sense) of C•(A). Concretely, it also contains
non-top-degree differential forms. These forms do not show up in cohomology, but are
needed to interpret the “white vertices”, see [1], occuring in the original PSM morphism.
The “true” dual of C•(A) occurs after projecting E• to top forms, modulo the image of
∇. This projection in particular kills all white vertices occuring in V∗PSM , but leaves it a
quasi-isomorphism due to the proof of Proposition 8. By the remarks in Section 1.3, one can
dualize this quasi-isomorphism again and obtain another solution of B. Tsygans formality
conjecture.

Appendix A. Our signs conventions

There are many signs involved in the discussions above. Since sign computations are typ-
ically lengthy and boring, we did not explain them all. However, we list here the underlying
conventions for the reader who believes 1 /= −1 and wants to check.

Let g• be a graded vector space. An L∞-algebra structure on g• is a degree 1 coderivation
Q on the cofree (graded) cocommutative coalgebra without counit cogenerated by g•+1, i.e.
S+g•+1, satisfying Q2 = 0. Any such coderivation is determined by its Taylor coefficients

Qn(x1, . . . , xn) = πQ(x1, . . . , xn)

where π is the projection on g•+1 ⊂ S+g•+1. If g carries the structure (d, [·, ·]) of a dgla, we
associate to it an L∞-structure by the following convention (others are possible)

Q1(x) = dx Q2(x1, x2) = −(−1)|x1| [x1, x2] .

An L∞-module structure on the graded vector space M• is a coderivation Q̃ lifting Q on
the cofree comodule Sg•+1 ⊗M•. Again, it is determined by its Taylor coefficients πM ◦ Q̃.
We identify (by convention) a dgla module (M•, δ, L) over the dgla g with the L∞-module

Q̃0(m) = δm Q̃1(x;m) = −(−1)|x1|Lxm .

Next let M̂• be another graded vector space and 〈·, ·〉 be a nondegenerate pairing between
M̂• and M•. This allows us to endow M̂• with an L∞-structure Q̃∗ defined by

〈
Q̃∗n(x1, . . . , xn; m̂), m

〉
= −(−1)|m̂|(n+1+

P
j |xj |)

〈
m̂, Q̃n(x1, . . . , xn;m)

〉
.

Let M•, N• be L∞-modules. A morphism φ between them is a degree zero morphism of
the comodules intertwining the coderivations. It is also determined by the Taylor coefficients
πNφ. Let N̂•, M̂• be L∞-modules, with the module structure determined by nondegenerate
pairings as above. Then one can define an adjoint morphism φ" from N̂ to M̂ by the formula

〈φ∗n(x1, . . . , xn; n̂), m〉 = (−1)|m̂|(n+
P

j |xj |) 〈n̂, φn(x1, . . . , xn;m)〉 .

Finally, let us describe the signs involved in section 3. Let Q be the coderivation deter-
mining the L∞-algebra structure on T •[[u]]. Then the (adjoint) L∞-module structure on
T •[[u]] is simply given by

Q̃n(x1, . . . , xn;x) = Qn+1(x1, . . . , xn, x).

Let P̃ determine the L∞ module structure on C•(A, A)[[u]]. Then the module structure on
E•

norm[[u]] is determined by the coderivation Õ, defined such that for a map λ : C•(A, A)[[u]] →
T •[[u]]:

Õn(x1, . . . , xn; ιλ(·)Ω) = −(−1)|λ|(n+1+
P

j |xj |)ιλ(P̃n(x1,...,xn;·))Ω + δn,0∇ιλ(·)Ω .
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