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Abstract

Convolution equations for time and space-time problems have many
important applications, e.g., for the modelling of wave or heat propa-
gation via ordinary and partial differential equations as well as for the
corresponding integral equation formulations.

For their discretization, the convolution quadrature (CQ) has been
developed since the late 1980’s and is now one of the most popular method
in this field.

However, the method and the theory are restricted to constant time
stepping and only recently the implicit Euler - generalized convolution
quadrature (gCQ) has been developed which allows for variable time step-
ping.

In this paper, we develop the gCQ for Runge-Kutta methods with
variable time stepping and present the corresponding stability and con-
vergence analysis. For this purpose, some new theoretical tools such as
tensorial divided differences, summation by parts with Runge-Kutta dif-
ferences and a calculus for Runge-Kutta discretizations of generalized con-
volution operators such as an associativity property will be developed in
this paper.

Numerical examples will illustrate the stable and efficient behavior of
the resulting discretization.
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Switzerland, e-mail: stas@math.uzh.ch

1



1 Introduction

Convolution operators play an important role in numerous applications which
are modelled by linear time-invariant nonhomogeneous evolution equations.
This includes problems in time and space-time wave and heat propagation prob-
lems which are formulated either by ordinary and partial differential equations
or by the corresponding integral equations.

The discretization will be based on the convolution quadrature (CQ) method
which has been developed originally by Lubich, see [12, 13, 16, 15] for parabolic
problems and [14] for hyperbolic ones. The idea is to express the convolution
kernel k as the inverse Laplace transform of some transfer operator K and to
formulate the problem as an integro-differential equation in the Laplace domain.

The discretization then consists of approximating the (time-depending) dif-
ferential equation in the Laplace domain by a time stepping method – besides
multisteps methods also Runge-Kutta methods have been proposed and ana-
lyzed for this purpose [12, 13, 15, 3, 1, 2, 5]. The transformation back to the
time domain results in a discrete convolution equation which then can be solved
numerically. This method is nowadays one of the most popular method in this
field.

However, the CQ method as well as its analysis relies strongly on the use
of constant time stepping. In [11, 10], the generalized convolution quadrature
(gCQ) has been introduced which allows for variable time stepping. The ap-
proach was limited to the first order implicit Euler scheme.

The goal of this paper is to introduce the Runge-Kutta generalized convolu-
tion quadrature which results in a method with much faster convergence rates as
well as an improved long time behavior of the approximation compared to the
implicit Euler method. The possibility to use variable time stepping allows to
resolve adaptively a non-smooth behavior of the temporal solution which often
occurs, e.g., in the short time range after an electric circuit is switched on and
before it has reached a periodic state.

The paper is structured as follows. In Section 2 we will briefly recall the
definition of one-sided convolution operators and define the class of convolution
kernels which we will consider in this paper. In Section 3 we will introduce
Runge-Kutta generalized convolution quadrature for the discretization of con-
volution operators. Its stability and convergence will be analyzed in Section 4
and the summation-by-parts formula for divided Runge-Kutta differences will
be derived for this purpose. Section 5 is devoted to the numerical solution of
convolution equations. We will present the discrete equations and derive an
associativity property for the composition of Runge-Kutta generalized convolu-
tion operators which allows to use the stability and error analysis as in Section
4 to derive corresponding estimates for the discrete solution. Finally, we will
report in Section 6 the results of numerical experiments to illustrate that, for
problems where the regularity of the solution is not uniformly distributed in the
time interval, our method converges with optimal convergence rates while other
CQ-type methods are converging suboptimally.
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2 The Class of Problems

We will consider the class of convolution operators as described in [14, Sec. 2.1]
and recall its definition. Let B and D denote some normed vector spaces and
let L (B,D) be the space of continuous, linear mappings. As a norm in L (B,D)
we take the usual operator norm

∥F∥D←B := sup
u∈B\{0}

∥Fu∥D
∥u∥B

.

For given ϕ : R≥0 → B, we consider the convolution∫ t

0

k (t− τ)ϕ (τ) dτ in D for all t ∈ [0, T ] . (1)

The kernel operator k is defined as the inverse Laplace transform of a given
transfer operator K. The class of problems under consideration is defined as
follows. For σ ∈ R we introduce

Cσ = {z ∈ C | Re z > σ}.

Assumption 1 For some σK ∈ R (describing the analyticity region) and some
µ ∈ R (describing the growth behavior), the class Aµ

σK
(B,D) of transfer opera-

tors consists of operator valued mappings K : CσK
→ L (B,D) which satisfy:

1. K : CσK
→ L (B,D) is analytic.

2. K satisfies the estimate

∥K (z)∥D←B ≤ Cop (1 + |z|)µ , ∀z ∈ CσK
, (2)

for a fixed constant Cop > 0.1

For j ∈ Z, we define
Kj (z) := z−jK (z) . (3)

For any
ν ∈ N0 such that ν > µ+ 1, (4)

the Laplace inversion formula

kν (t) :=
1

2π i

∫
γ

eztKν (z) dz, (5)

for a contour γ = σ + iR, with σ > σK , defines a continuous and exponentially
bounded operator kν (t), which by Cauchy’s integral theorem vanishes for t < 0.

1The generic constant C in the following estimates will depend on Cop but not explicitly
on σK . Hence, if Cop is independent of σK so is the constant C.
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Let

Cj
0 ([0, T ] , B) :=

{
ψ ∈ Cj ([0, T ] , B) | ∀0 ≤ r ≤ j − 1 : ψ(r) (0) = 0

}
.

As in [14] we denote the convolution k ∗ ϕ for ϕ ∈ Cν
0 ([0, T ] , B) and ν as in (4)

by

(K (∂t)ϕ) (t) :=

∫ t

0

kν (τ) ∂
ν
t ϕ (t− τ) dτ. (6)

Then

(K (∂t)ϕ) (t) =

∫ t

0

(
1

2π i

∫
γ

ezτ Kν(z)dz

)
∂νt ϕ (t− τ) dτ, (7)

where the integrals exist as Riemann integrals.

Remark 2 Equation (7) can be rewritten as the coupled system

(K (∂t)ϕ) (t) =
1

2π i

∫
γ

(Kν(z)uν (z, t) dz (8a)

with the solution uν of

∂tuν(z, t) = zuν(z, t) + ∂νt ϕ(t), uν(z, 0) = 0, (8b)

and γ a suitable contour in the complex plane: either a vertical contour running
from σ − i∞ to σ + i∞, for some ν which satisfies (4), or a suitable closed
contour clockwise oriented.

3 Runge-Kutta Generalized Convolution Quadra-
ture

3.1 Runge-Kutta Methods

The discretization of the convolution (6) will be based on a discretization of
the ordinary differential equation by a Runge-Kutta method with variable time
steps. In this section, we will introduce the class of Runge-Kutta methods which
we will consider and collect some basic properties – for proofs and further details
we refer to [8].

We consider Runge–Kutta method of s stages given by the Butcher table
A = (ai,j)

s
i,j=1, b = (bi)

s
i=1, c = (ci)

s
i=1. For the discretization we employ a

sequence of time points Θ := (tn)
N
n=0 with

0 = t0 < t1 < . . . < tN = T, ∆j = tj − tj−1, ∆ := max
1≤i≤n

∆j . (9)

The local quasi-uniformity of the mesh is defined as the constant

cΘ :=
1

2
max

2≤i≤N

(
∆i

∆i−1
+

∆i−1

∆i

)
. (10a)
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As a further (mild) assumption on the mesh width we impose the condition on
the maximal mesh width

∆ ≤ CΘ/N. (10b)

Notation 3 The internal time points are defined by tn,i = tn−1 + ci∆n, i =
1, . . . , s. For a function g which is defined in the time interval [0, T ], we intro-
duce

g(n) := (g (tn,i))
n
i=1 ∈ Cs.

The time step n is denoted as a superscript for vectors and matrices in order
not to confuse with their components. The m-th time derivative of function u
is denoted by ∂mt u and its evaluation at some time point tk is

∂mt u
(k) :=

dmu

dtm
(tk) .

Further, we introduce 1 = (1)
s
i=1 and, for vectors v,w ∈Cs, the bilinear (not

sesquilinear!) form

v ·w :=

s∑
j=1

vjwj .

We also recall here the Hadamard product of two vectors v,w ∈ Cs by

v ⊙w = (viwi)
s
i=1 and vm⊙ = v ⊙ . . .⊙ v︸ ︷︷ ︸

m-times

.

The application of the s-stage Runge-Kutta methods to the initial value
problem y′ = f (t, y), y (0) = y0 can be written as the following recursion

Y
(n)
i = y(n−1) +

s∑
j=1

ai,jf
(
tn−1 + cj∆n, Y

(n)
j

)
i = 1, . . . , s

y(n) = y(n−1) +

s∑
j=1

bjf
(
tn−1 + cj∆n, Y

(n)
j

)
.

The Runge-Kutta method has (classical) order p ≥ 1 and stage order q if
for sufficiently smooth right-hand side f

Y
(1)
i − y (ci∆1) = O

(
∆q+1

1

)
∀i = 1, . . . ,m and y(1) − y (t1) = O

(
∆p+1

1

)
,

as ∆1 → 0.
For the analysis of the Runge-Kutta method, the stability function

R (z) := 1 + zb · (I− zA)
−1

1 (11)

plays a central role; here, and in the following I denotes the identity matrix.
Throughout the paper we assume that the Runge-Kutta method satisfies the
following assumption.
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Assumption 4
The Runge-Kutta method is A-stable, this is

|R(z)| ≤ 1, for Re z ≤ 0, (12)

with classical order p ≥ 1 and stage order q ≤ p and it is stiffly accurate, this is

b = Aᵀe(s) with e(s) = (0, . . . , 0, 1)
ᵀ ∈ Rs. (13)

Remark 5 In what follows we will repeatedly use the following properties of
Runge–Kutta methods satisfying Assumption 4:

1. Condition (13) implies R (∞) = 0 and cs = 1 [8, Chap. IV, Prop. 3.8].

2. The assumption of A-stability implies that the coefficient matrix A is di-
agonalizable [8, Theorem 4.12] and all eigenvalues di, 1 ≤ i ≤ s, have
strictly positive real part. In particular A is invertible.

3. If the method has stage order q, it holds ([8, (15.5)])

Ac(m−1)⊙ =
1

m
cm⊙ ∀1 ≤ m ≤ q. (14)

4. If the method has order p, it follows (cf. [1, 16])

b ·Aℓc(k−1)⊙ = b ·Aℓ−1ck⊙/k, ∀k + ℓ ≤ p. (15)

3.2 Discretization of the Convolution Operator

The starting point of the discretization of the convolution operator is the rep-
resentation (8). We will add more flexibility in the discretization by replacing
the regularization parameter ν by a parameter ρ ∈ N0. The stability and con-
vergence analysis will show that ρ can be chosen in the range

ν − (q + 1) ≤ ρ ≤ p+ ν − (q + 1), (16)

where ν > µ + 1 is as in (7), p is the order of the Runge–Kutta method which
we will employ for the discretization and q is the stage order; some hints for the
choice of ρ will be given in Remarks 7 and 18.

The discretization will be based on an approximation of the ordinary differ-
ential equation (cf. (8b))

∂tuρ(z, t) = zuρ(z, t) + ∂ρt ϕ(t), uρ(z, 0) = 0.

Assumption 4 implies (13) so that the chosen Runge–Kutta method can be
written in the form

u(n)
ρ (z) =

(
1⊗ e(s)

)
u(n−1)
ρ (z) + ∆nA

(
zu(n)

ρ (z) + ∂ρt ϕ
(n)
)
. (17)
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We can write (17) as a recurrence for u
(n)
ρ

u(n)
ρ (z) = (I−∆nzA)−1

((
1⊗ e(s)

)
u(n−1)
ρ (z) + ∆nA∂

ρ
tϕ

(n)
)

(18)

=
(
R (∆nz)⊗ e(s)

)
u(n−1)
ρ (z) + ∆n (I− z∆nA)

−1
A∂ρt ϕ

(n)

with
R (z) := (I− zA)

−1
1. (19)

From the identity

(I− zA)
−1

A =
1

z
(I− zA)

−1 − 1

z
I (20)

which holds for all square matrices A with regular resolvent, we conclude that
that the last component e(s) ·R equals the stability function R (cf. (11)).

The last component in (18),
(
u
(n)
ρ

)
s
then defines the approximation of u (tn).

Definition 6 (Runge-Kutta Generalized Convolution Quadrature) Let
the transfer operator K satisfy (2) and let ν ∈ N0 be the smallest integer such
that ν > µ+ 1. Let ϕ ∈ Cν

0 ([0, T ] , B) and consider the convolution operation

K (∂t)ϕ (t) =

∫ t

0

(
1

2π i

∫
γ

ezτ Kν(z)dz

)
∂νt ϕ (t− τ) dτ ∀t ∈ [0, T ] . (21)

Let a Runge-Kutta method be given which satisfies Assumption 4. Then the
discretization of (21) by Runge-Kutta Generalized Convolution Quadrature is
given by(

Kρ

(
∂Θt
)
∂ρt ϕ

)(n)
:=

1

2π i

∫
γ

Kρ (z)u
(n)
ρ (z) dz, n = 1, 2, . . . (22)

with u
(0)
ρ = 0 and

u(n)
ρ (z) =

(
R (∆nz)⊗ e(s)

)
u(n−1)
ρ (z)+∆n (I− z∆nA)

−1
A∂ρt ϕ

(n), n = 1, 2, . . . .

The approximation of K (∂t)ϕ at time point tn is given by the last component

e(s) ·
(
Kρ

(
∂Θt
) (×N

k=1 ϕ
(k)
ρ

))(n)
. Here, ρ ∈ N0 is a regularization parameter

which can be chosen in the range

ν − (q + 1) ≤ ρ ≤ p+ ν − (q + 1) ,

where p is the classical order of the Runge–Kutta method and q denotes the stage
order.

Remark 7 It is important to mention that γ in (22), typically, is not chosen
as the vertical contour σ + iR but as a finite closed contour which encircles the

poles of u
(n)
ρ and is contour clockwise oriented. For the practical realization the

contour integral in (22) has to be approximated by numerical quadrature (see also
Remark 18); for the implicit Euler method this has been developed and analyzed
in [9, 10] while for Runge-Kutta method this is the topic of a forthcoming paper.
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4 Error Analysis of Runge-Kutta Generalized
Convolution Quadrature

The analysis of the Runge-Kutta gCQ consists of several steps: First, we will

resolve the recursion in (18) to express u
(n)
ρ as a sum over the history. This

allows to employ a summation-by-parts formula which allows to gain negative
powers of z (and hence a faster decay of the integrand for large z) on the expense
of increased smoothness requirements on the input function ϕ.

4.1 Summation-by-Parts

The recursion (18) can be resolved and we obtain

u(n)
ρ (z) = ∆n (I− z∆nA)

−1
A∂ρt ϕ

(n)+
n−1∑
k=1

∆k

(
n−1∏

ℓ=k+1

R (∆ℓz)

)(
e(s) · (I− z∆kA)

−1
A∂ρt ϕ

(k)
)
R (∆nz) .

For the last component e(s) · u(n)
ρ (z) this formula simplifies and we obtain

e(s) · u(n)
ρ (z) =

n∑
k=1

∆k

(
n∏

ℓ=k+1

R (∆ℓz)

)(
e(s) · (I− z∆kA)

−1
A∂ρt ϕ

(k)
)
. (23)

For the forthcoming analysis it is convenient to write this equation by using
Kronecker matrices and tensor calculus. Let us then define the tensors

ek⊗ :=

k⊗
ℓ=1

e(s), 1k⊗ :=

k⊗
ℓ=1

1 (24)

and the Kronecker matrix

A(k,n) (z) :=
n⊗

ℓ=k

(I− z∆ℓA)
−1
.

Recall that a Kronecker matrix
⊗d

j=1 B
(j) is applied to a tensor

⊗d
j=1 v

(j) of

vectors v(j) by means of d⊗
j=1

B(j)

 d⊗
j=1

v(j)

 =
d⊗

j=1

B(j)v(j).

The canonical extension of the bilinear form v ·w to tensors is d⊗
j=1

v(j)

 ·
 d⊗

j=1

w(j)

 =
d∏

j=1

v(j) ·w(j).
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Finally, the vectorization is given byd−1⊗
j=1

v(j)

⊗ •
 ·

 d⊗
j=1

w(j)

 :=

d−1⊗
j=1

v(j)

 ·
d−1⊗

j=1

w(j)

w(d)

=

d−1∏
j=1

v(j) ·w(j)

w(d).

Then, we have

u(n)
ρ (z) =

n∑
k=1

∆k

(
e(n−k)⊗ ⊗ •

)
·
(
A(k,n) (z)

(
A∂ρt ϕ

(k) ⊗ 1(n−k)⊗
))

. (25)

In the next step, we will introduce difference operators which are related
to the time steps tk and we will discuss their relation to Newton’s divided
differences later. Let again Θ := (tn)

N
n=1 denote the time grid with steps ∆j =

tj− tj−1. Formally we extend the time grid to the negative time axes by setting
t−j = −j∆1, j ∈ N.

Definition 8 (Divided Runge-Kutta Differences) Let a Runge-Kutta method
be given by the Butcher table A, b, c with non-singular A. For a subset I ⊂ Z
of consecutive integers, let ΘI := (xk)k∈I ⊂ R denote a sequence of strictly
increasing points with steps ∆k = xk − xk−1. We set

I ′ = {k ∈ Z | {k − 1, k} ⊂ I} .

For a function v which is defined in the points xk,r := xk−1+cr∆k, for all k ∈ I ′
and 1 ≤ r ≤ s, the Runge-Kutta differences [[. . .]]v are given by the recursion:

[[xk]]v := v(k) := (v (xk,r))
s
r=1 ∀k ∈ I ′ (26)

and for all i, k ∈ I ′ with i < k

[[xi, xi+1, . . . , xk]]v := (∆kA)
−1
(
[[xi+1, . . . , xk]]v −

(
1⊗ e(s)

)
[[xi, . . . , xk−1]]v

)
.

(27)
For m ∈ N0, the tuple of m-th order Runge-Kutta differences [[ΘI ]]

mw ∈
×k∈I Cs is given by

[[ΘI ]]
mv :=×

k∈I
[[xk−m, . . . , xk]]v. (28)

For a tuple V =×j∈I′ v
(j) of vectors v(j) =

(
v
(j)
m

)s
m=1

∈ Cs we set

[[xi, . . . , xk]]V := [[xi, . . . , xk]]v

for any continuous function v which interpolates V at the mesh points, i.e.,

v (xk,r) = v
(k)
r for all k ∈ I ′ and 1 ≤ r ≤ s.
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In particular we have (cf. (26))

[[xk−1, xk]]v = (∆kA)
−1
(
v(k) −

(
1⊗ e(s)

)
v(k−1)

)
. (29)

Proposition 9 (Summation by parts formula) Let a Runge-Kutta method
be given by the Butcher table A, b, c with non-singular matrix A. Let w :
R≥0 → C be a function which can be continuously extended to R<0 by zero.
The time mesh satisfies (9) and is extended by t−j = −j∆1 for j ∈ N. Set
w(j) = (w (tj,r))

s
r=1 ∈ Cs, j ∈ Z≤N and let er⊗, 1r⊗ be as in (24). Then, for

any m ∈ N0

n∑
k=0

∆k

(
e(n−k)⊗ ⊗ •

)
·
(
A(k,n) (z)

(
Aw(k) ⊗ 1(n−k)⊗

))
(30)

= −
m−1∑
ℓ=0

[[tn−ℓ, . . . , tn]]w

zℓ+1

+
1

zm

n∑
k=0

∆k

(
e(n−k)⊗ ⊗ •

)
·
(
A(k,n) (z)

(
A[[tk−m, . . . , tk]]w ⊗ 1(n−k)⊗

))
.

For the corresponding generalized discrete convolution operator it holds

V
(
∂Θt
)
w = Vm

(
∂Θt
)
[[Θ]]mw. (31)
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Proof. We denote the left-hand side in (30) by lhs and obtain (cf. (20))

lhs =
n∑

k=0

∆k

(
e(n−k)⊗ ⊗ •

)
·

·
(
(I− z∆kA)

−1
A⊗ A(k+1,n) (z)

)(
w(k) ⊗ 1(n−k)⊗

)
(20)
=

1

z

n∑
k=0

(
e(n−k)⊗ ⊗ •

)
·

·
((

(I− z∆kA)
−1 − I

)
⊗ A(k+1,n) (z)

)(
w(k) ⊗ 1(n−k)⊗

)
=− w(n)

z
+

1

z
(I− z∆kA)

−1
w(n)

+
1

z

n−1∑
k=0

(
e(n−k)⊗ ⊗ •

)
·

·
(
(I− z∆kA)

−1 ⊗ A(k+1,n) (z)
)(

w(k) ⊗ 1(n−k)⊗
)

− 1

z

n−1∑
k=0

(
e(n−k)⊗ ⊗ •

)
·
(
I⊗ A(k+1,n) (z)

)(
w(k) ⊗ 1(n−k)⊗

)
=− w(n)

z
+

1

z

n∑
k=0

(
e(n−k)⊗ ⊗ •

)
· A(k,n) (z)

(
w(k) ⊗ 1(n−k)⊗

)
− 1

z

n∑
k=1

(
e(n−k)⊗ ⊗ •

)
· A(k,n) (z)

((
1⊗ e(s)

)
w(k−1) ⊗ 1(n−k)⊗

)
=− w(n)

z
+

1

z

n∑
k=0

∆k

(
e(n−k)⊗ ⊗ •

)
· A(k,n) (z)

(
A[[tk−1, tk]]w ⊗ 1(n−k)⊗

)
.

This one-fold summation by parts can be iterated and leads to the assertion.
The second relation (31) is a simple consequence of Cauchy’s integral theo-

rem.
The following proposition states the boundedness of the right-hand side in

(30) with respect to a decreasing step size in terms of the stage order of the
underlying Runge–Kutta method.

Definition 10 Let r ∈ N0, T > 0, and V be a normed vector space with norm
∥·∥V . For a vector-valued function v ∈ V s, we set

∥v∥V := max
1≤i≤s

∥vi∥V

if no confusion is possible.
For a function w ∈ Cr ([0, T ] , V ) and any interval τ ⊂ [0, T ], we set

|w|Cr(τ,V ) :=
1

r!
sup
t∈τ
∥∂rw (t)∥V and ∥w∥Cr(τ,V ) := max

0≤ℓ≤r
|v|Cℓ(τ,V ) .

11



Proposition 11 Let a Runge-Kutta method be given by the Butcher table A,
b, c with non-singular A. Let V be a normed vector space. If the method has
stage order q then for 0 ≤ ℓ ≤ q + 1 and any w ∈ Cq+1 ([tk−ℓ, tk] , V ) it holds

[[tk−ℓ, tk+1−ℓ, . . . , tk]]w = ∂ℓtw
(k) +T

(k)
q+1−ℓ,∥∥∥T(k)

q+1−ℓ

∥∥∥
V
≤ C |w|Cq+1([tk−ℓ,tk],V ) ∆

q+1−ℓ
k ,

where C depends on cΘ (cf. (10a)), q, and A.

Proof. The proof is by induction. For ℓ = 0 the result is obvious and we even

have equality: [[tk]]w = w(k) so that T
(k)
q+1 = 0.

Let us assume now that the result is true for ℓ− 1. Then for ℓ we have

[[tk−ℓ, tk−ℓ+1, . . . , tk]]w = ∆−1k A−1
(
[[tk−ℓ+1, . . . , tk]]w −

(
1⊗ e(s)

)
[[tk−ℓ, . . . , tk−1]]w

)
(32)

= ∆−1k A−1
(
∂ℓ−1t w(k) −

(
1⊗ e(s)

)
∂ℓ−1t w(k−1) + T̃

(k)
q+1−ℓ

)
= ∆−1k A−1

((∫ tk,m

tk−1

∂ℓtw

)s

m=1

+ T̃
(k)
q+1−ℓ

)
,

where
T̃

(k)
q+1−ℓ := T

(k)
q+2−ℓ −

(
1⊗ e(s)

)
T

(k−1)
q+2−ℓ.

Conditions (14) imply

∆jA∂
ℓ
tw

(j) =

(∫ tj,m

tj−1

∂ℓtw

)s

m=1

+ ξ(j),

with ∥∥∥ξ(j)∥∥∥
V
≤ Cq∆

r+1
j

∥∥∂ℓ+r
t w

∥∥
C0(τj ,V )

0 ≤ r ≤ q.

We apply this for r = q + 1− ℓ and obtain

∆−1j A−1

(∫ tj,m

tj−1

∂ℓtw

)s

m=1

= ∂ℓtw
(j) + ξ̃

(j)
(33)

with ∥∥∥∥ξ̃(j)∥∥∥∥
V

≤ CqCA |w|Cq+1([tj−1,tj ],V ) ∆
q+1−ℓ
j . (34)

The combination of (32) with the induction hypothesis, (33), and (34) yields

[[tk−ℓ, tk−ℓ+1, . . . , tk]]w = ∂ℓtw
(j) +T

(k)
q+1−ℓ

with ∥∥∥T(k)
q+1−ℓ

∥∥∥
V
≤ C |w|Cq+1([tj−1,tj ],V ) ∆

q+1−ℓ
j

and the result follows.
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4.2 Stability

The starting point of the error estimates for the Runge-Kutta gCQ is the sum-
mation formula with summation by parts (cf. (31)):

Kρ

(
∂Θt
)
∂ρt ϕ = Kρ+m

(
∂Θt
)
[[Θ]]m∂ρt ϕ. (35)

Note that the A-stability assumption in (12) implies in particular that all poles
of R have positive real part. These poles are given by z = 1/di with the
eigenvalues di of A. This property allows to derive the following estimates.

Lemma 12 Let the Runge-Kutta method be A-stable. Let di, i = 1, . . . , s, be
the eigenvalues of the coefficient matrix A. We set

r0 = min

{
Re di

|di|2
: 1 ≤ i ≤ s

}
> 0 and α0 = min {|di| : 1 ≤ i ≤ s} > 0.

(36)

(i) There exists a constant C depending on r0 and the Runge-Kutta coeffi-
cients such that

|R (z)| ≤ 1 + C (Re z)+ ∀z ∈ C with Re z ≤ r0
2

(37)

and (x)+ := max {0, x}.

(ii) Let A = V−1DV (cf. Remark 2). Then, it holds∥∥∥(I− zA)
−1
∥∥∥ ≤ β0 :=

2

α0r0

∥∥V−1∥∥ ∥V∥ ∀z ∈ C with Re z ≤ r0
2
.

(38)

Proof. (i) By using Re
(

1
ζ

)
= (Re ζ) / |ζ|2, we conclude that R is analytic for

all z ∈ C with Re z < r0. Then there exists CR > 0 such that |R (z)| ≤ CR

for all z ∈ C with Re z ≤ 3
4r0. We conclude from Cauchy’s integral theorem

that |R′ (z)| ≤ 4CR

r0
for all z ∈ C with Re z ≤ r0

2 . Taylor’s theorem gives us the
estimate

|R (x+ i y)| ≤ |R (i y)|+ 4CR

r0
x ∀0 ≤ x ≤ r0/2 and y ∈ R.

Since A-stability implies |R (i y)| ≤ 1 we conclude that

|R (z)| ≤ 1 + C Re z ∀z ∈ C with 0 ≤ Re z ≤ r0/2

holds. Estimate (37) is trivial for Re z ≤ 0 (cf. (12))
(ii) By Remark 2 we can estimate∥∥∥(I− zA)

−1
∥∥∥ ≤ ∥∥V−1∥∥ ∥V∥ max

1≤i≤s

{
1

|1− zdi|

}
.

13



Writing z = x+ i y and di = u+ i v, we obtain

|1− zdi|2 = (1− xu+ yv)
2
+ (yu+ xv)

2
=: κ (y) .

The quadratic function κ attains its minimum at y = − v
u2+v2 so that

κ (y) ≥
(
u− x

(
u2 + v2

))2
u2 + v2

.

Note that for 0 ≤ x ≤ u
2(u2+v2) , it holds

κ (y) ≥
(
x
(
u2 + v2

)
− u
)2

u2 + v2
≥ 1

4

u2

u2 + v2
.

This proves (38).

Theorem 13 Let a Runge-Kutta method be given by the Butcher table A, b, c,
has stage order q, and satisfy Assumption 4. Fix σ0 ≥ σK and let the maximal
step ∆ satisfy

r0
2
−∆σ0 ≥ 0. (39)

Let ρ̃ ∈ N0 be such that ν − (q + 1) ≤ ρ̃ ≤ ν holds. Assume that ϕ ∈
C ρ̃

0 ([0, T ] , D). Then, for any m̃ ∈ N0 with

µ− ρ̃+ 1 < m̃ ≤ q + 1, (40)

the stability estimate∥∥∥∥(Kρ̃

(
∂Θt
)
∂ρ̃t ϕ

)(n)∥∥∥∥
D

≤ C
n∑

k=0

∆k e
Cσ0(tn−tk)

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃t ϕ∥∥∥
B

(41)

holds. If ϕ ∈ C ρ̃+m̃ ([0, T ] , D) then∥∥∥Kρ̃

(
∂Θt
)
∂ρ̃t ϕ

∥∥∥
D
≤ C eCσ0T

∥∥∥∂ρ̃+m̃
t ϕ

∥∥∥
C0([0,T ],B)

. (42)

Proof. By Proposition 11 the m̃-th order divided Runge-Kutta difference of
∂ρ̃t ϕ are bounded and we apply m̃-times summation by parts, i.e., consider (35)
for m̃ as in (40). The assumption (40) ensures that the contour in the definition
of the generalized convolution Kρ̃+m̃

(
∂Θt
)
can be chosen as the vertical axes

γ = σ + iR. Note that (35) equals(
Kρ̃

(
∂Θt
)
∂ρ̃t ϕ

)(n)
=

∆n

2π i

∫
γ

Kρ̃+m̃ (z)
(
z∆nI−A−1

)−1
dz
(
[[tn−m̃, . . . , tn]]∂

ρ̃
t ϕ
)

(43)

+

n−1∑
k=0

∆k

2π i

∫
γ

Kρ̃+m̃ (z)
(
I− z∆nA

−1)−1 1
·
(
e(s) ·

(
z∆kI−A−1

)−1
[[tk−m̃, . . . , tk]]∂

ρ̃
t ϕ
) n−1∏

ℓ=k+1

(
e(s) · (I− z∆ℓA)

−1
1
)
dz.
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Assumption (13) implies that

R (z) = e(s) · (I− zA)
−1

1

and then by Lemma 12 we can bound∣∣∣∣∣
n−1∏

ℓ=k+1

(
e(s) · (I− z∆ℓA)

−1
1
)∣∣∣∣∣ ≤

n−1∏
ℓ=k+1

(1 + Cσ0∆ℓ) ≤ eCσ0(tn−1−tk) .

Furthermore, we have∥∥∥e(s) · (z∆kI−A−1
)−1

[[tk−m̃, . . . , tk]]∂
ρ̃
t ϕ
∥∥∥
B
≤ β0 ∥A∥

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃t ϕ∥∥∥
B

and∥∥∥(z∆nI−A.−1)−1 ([[tk−m̃, . . . , tk]]∂ρ̃t ϕ)∥∥∥
B
≤ β0 ∥A∥

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃t ϕ∥∥∥
B
.

Hence,∥∥∥∥(Kρ̃

(
∂Θt
)
∂ρ̃t ϕ

)(n)∥∥∥∥
D

(44)

≤
√
s
(β0 ∥A∥)2

2π

n∑
k=0

∆k e
Cσ0(tn−tk)

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃t ϕ∥∥∥
D

∫
γ

|z|µ−ρ̃−m̃ dz

with an adjusted value of β0. The choice of ρ̃ as stated in the lemma implies∥∥∥∥(Kρ̃

(
∂Θt
)
∂ρ̃t ϕ

)(n)∥∥∥∥
D

≤ C
n∑

k=0

∆k e
Cσ0(tn−tk)

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃t ϕ∥∥∥
B

(45)

with C :=
√
s (β0∥A∥)2

2π

∫
γ
|z|µ−ρ̃−m̃ dz, which is (41). The combination with

Proposition 11 gives (42).

4.3 Convergence

Theorem 14 Let K ∈ Aµ
σK

(B,D) be a transfer operator and let ν ∈ N0 denote
the smallest integer with ν > µ + 1. Let an A-stable Runge-Kutta method be
given by the Butcher table A, b, c, have stage order q ≥ 1, order p ≥ q+1 and
satisfy Assumption 4. Fix σ ≥ σK and let the maximal step ∆ (cf. (9))satisfy

r0
2
−∆σ ≥ 0, (46)

with r0 in (36).
For any ρ ∈ N≥0 in (22) with ρ ≥ ν − (q + 1) and ϕ ∈ Cν

0 ([0, T ] , B) let

w := K (∂t)ϕ and w(n)
ρ := e(s) ·

(
Kρ

(
∂Θt
)
∂ρt ϕ

)(n)
.
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Then, the error estimate

∥∥∥w (tn)− w(n)
ρ

∥∥∥
D
≤ C


∥ϕ∥Cρ+p+1([0,T ],B) cµ−ρ+p−q−1 (∆)∆min{p,ρ+q−µ} µ− ρ < −1,

∥ϕ∥Cν+p+1([0,T ],B) ∆
min{p,ρ+q+1−ν} µ− ρ ≥ −1

(47)
holds with

cν (∆) :=

{
1 ν ̸= −1,

log 1
∆ ν = −1

provided that ϕ(r)(0) = 0 for all r = 0, . . . , ρ+ q and ϕ ∈ Cν+p+1 ([0, T ] , B).

Note that estimate (47) implies that the choice ρ = p+ν− (q + 1) (cf. (16))
leads to a convergence order O (∆p) for sufficiently smooth and compatible data;
for a further discussion see Remarks 7 and 18.
Proof. We assume in more generality that

ϕ(r)(0) = 0 ∀r = 0, . . . , ρ+m− 1

and choose m ≤ q + 1 later in an appropriate way.
Further we introduce the solution of the Runge-Kutta gCQ with right-hand

side [[Θ]]m∂ρt ϕ, given by (see (28) and (25))

u(n)
ρ,m (z) =

n∑
k=1

∆k

(
e(n−k)⊗ ⊗ •

)
·
(
A(k,n) (z)

(
A[[tk−m, . . . , tk]]∂

ρ
t ϕ⊗ 1(n−k)⊗

))
.

(48)

As usual, the last component is denoted by u
(n)
ρ,m := e(s) · u(n)

ρ,m (z).

Case 1: µ− ρ < −1 .
In this case (8a) and (22) hold for any ρ ≥ 0 and we have

δw(n) := w(tn)− w(n)
ρ =

1

2π i

∫
γ

Kρ (z)
(
uρ (z, tn)− u(n)ρ (z)

)
dz. (49)

We choose the contour γ = σ + iR and split it into

γnear := {ζ ∈ γ : |ζ∆| < Csplit} and γfar := γ\γnear (50)

with some 0 < Csplit = O (1) which will be fixed later. This induces the splitting

δw(n)
near :=

1

2π i

∫
γnear

Kρ (z)
(
uρ (z, tn)− u(n)ρ (z)

)
dz and δw

(n)
far := δw(n)−δw(n)

near.

Far Field
For the farfield estimates, we restrict to m ≤ q+1. In order to estimate the

component of (49) which is related to the farfield we will estimate the difference
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uρ (z, tn) − u
(n)
ρ (z) for z ∈ γfar. On the one side we observe that the exact

solution of the ODE is given by

uρ (z, t) =

∫ t

0

ez(t−τ) ∂ρt ϕ (τ) dτ. (51)

Since ∂ρ+ℓ
t ϕ (0) = 0 for 0 ≤ ℓ ≤ m − 1 ≤ q and ϕ ∈ Cρ+m ([0, T ]), we get via

partial integration

uρ (z, t) = −
m−1∑
ℓ=0

∂ρ+ℓ
t ϕ (t)

zℓ+1
+
uρ+m (z, t)

zm
. (52)

On the other side, we recall that the numerical approximation by the Runge–
Kutta method can be written by using tensor notation as in (25), this is

u(n)
ρ (z) =

n∑
k=1

∆k

(
e(n−k)⊗ ⊗ •

)
·
(
A(k,n) (z)

(
A∂ρt ϕ

(k) ⊗ 1(n−k)⊗
))

.

Summation by parts (Proposition 9) yields

u(n)
ρ (z) = −

m−1∑
ℓ=0

[[tn−ℓ, . . . , tn]]∂
ρ
t ϕ

zℓ+1
+

u
(n)
ρ,m (z)

zm
, (53)

with u
(n)
ρ,m as in (48). Since u

(n)
ρ = e(s) · u(n)

ρ the error can be written in the
form

δw
(n)
far =

m−1∑
ℓ=0

δw
(n)
far,ℓ + w

(n)
far,ρ,m − wfar,m (tn) (54)

with

δw
(n)
far,ℓ :=

1

2π i

∫
γfar

Kρ (z)

zℓ+1

(
e(s) · [[tn−ℓ, . . . , tn]]∂ρt ϕ− ∂

ρ+ℓ
t ϕ (tn)

)
dz,

w
(n)
far,m :=

1

2π i

∫
γfar

Kρ (z)

zm
u(n)ρ,m (z) dz,

wfar,m (tn) :=
1

2π i

∫
γfar

Kρ (z)

zm
uρ+m (z, tn) dz.

Proposition 11 implies∥∥∥e(s) · [[tn−ℓ, . . . , tn]]∂ρt ϕ− ∂ρ+ℓ
t ϕ (tn)

∥∥∥
B
≤ C |ϕ|Cρ+m([tn−ℓ,tn],B) ∆

m−ℓ
n ∀0 ≤ ℓ ≤ m,

so that the combination with (2) yields∥∥∥∥∥
m−1∑
ℓ=0

δwfar
n,ℓ

∥∥∥∥∥
D

≤ C
m−1∑
ℓ=0

|ϕ|Cρ+m([tn−ℓ,tn],B) ∆
m−ℓ
n

∫
γfar

|z|µ−ρ−ℓ−1 dz (55)

≤ C |ϕ|Cρ+m([tn−m+1,tn],B) ∆
m+ρ−µ.
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To estimate w
(n)
far,m, we substitute γ by γfar in the right-hand side of (43), multi-

ply by e(s)· from the left, and observe that “
(
Kρ

(
∂Θt
)
(∂ρt ϕ)

)(n)
” in (43) then has

to be substituted by “w
(n)
far,ρ,m”. From Proposition 11 and the proof of Theorem

13 we then deduce (cf. (44))∥∥∥w(n)
far,m

∥∥∥
D
≤
√
s
(β0 ∥A∥)2

2π

n∑
k=0

∆k e
Cσ0(tn−tk) ∥[[tk−m, . . . , tk]]∂ρt ϕ∥B

∫
γfar

|z|µ−ρ−m dz

≤ C ecσT ∆m+ρ−µ−1 ∥ϕ∥Cm+ρ([0,T ],B) .

The last term in (54), wfar,m (tn), can be estimated by using (51):

∥uρ+m (z, tn)∥B ≤ ∥ϕ∥Cρ+m([0,T ],B)

∫ tn

0

ez(tn−τ) dτ ≤ eσT

|z|
∥ϕ∥Cρ+m([0,T ],B)

and, in turn,

∥wfar,m (tn)∥D ≤ C eσT ∥ϕ∥Cρ+m([0,T ],B) ∆
m+ρ−µ.

The estimate of the farfield follows by choosing m = q + 1.

Near Field
Estimate of ∂kt u (z, ·) in the nearfield.
It holds

uρ (z, t) =

∫ t

0

ezτ ∂ρt ϕ (t− τ) dτ.

By differentiating this relation k times for some k ≤ p+ 1 we get

∂kt uρ (z, t) =

∫ t

0

ez(t−τ) ∂ρ+k
t ϕ (τ) dτ + ezt

k−1∑
ℓ=0

zk−1−ℓ∂ρ+ℓ
t ϕ (0) .

Hence, we obtain from the assumption of the theorem

∥∥∂kt uρ (z, t)∥∥B ≤ eσT

|z|−1 |ϕ|Cρ+k([0,T ],B) +


0 k ≤ m
k−1∑
ℓ=m

|z|k−1−ℓ ∂ρ+ℓ
t ϕ (0) m+ 1 ≤ k ≤ p+ 1


(56)

≤ eσT |z|−1−min{0,m−k} ∥ϕ∥Cρ+k([0,T ],B) .

Solving the error recursion.
In order to estimate

1

2π i

∫
γnear

(Kρ(z)
(
uρ(z, tn)− u(n)ρ (z)

)
dz, (57)
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we analyze the error

en(z) := uρ(z, tn)− u(n)ρ (z), z ∈ γnear. (58)

Following [16, proof of Theorem 3.3], we set

d
(n)
i (z) = uρ(z, tn−1 + ci∆n)− uρ(z, tn−1)−∆n

s∑
j=1

aiju
′
ρ(z, tn−1 + cj∆n),

d(n)(z) = uρ (z, tn)− uρ(z, tn−1)−∆n

s∑
j=1

bju
′
ρ(z, tn−1 + cj∆n) = d(n)s .

We set D(n) = (d
(n)
i )si=1 and

δ(k) :=
(
δ
(k)
i

)s
i=1

:=
1

(k − 1)!

(
Ac(k−1)⊙ − 1

k
ck⊙

)
.

By inserting the exact solution into the Runge–Kutta scheme and performing
Taylor expansion around tn we obtain

D(n) (z) =
∑p

k=q+1 ∆
k
n∂

k
t uρ (z, tn) δ

(k) +∆p
nQ

(n) (z) ,

d(n) (z) = ∆p
n

∫ tn
tn−1

κ
(

t−tn−1

∆n

)
∂p+1
t uρ(z, t) dt,

(59)

where

Q(n) (z) :=

∫ tn

tn−1

κ

(
t− tn−1

∆n

)
∂p+1
t uρ(z, t) dt

and κ = (κi)
s
i=1, κ are bounded Peano kernels. Note that this implies∥∥∥Q(n) (z) dz
∥∥∥
B
≤ C∆n |uρ (z, ·)|Cp+1([tn−1,tn],B)

(56)

≤ C eσT ∆n |z|p−m ∥ϕ∥Cρ+p+1([0,T ],B) ,

∥dn (z)∥D ≤ C∆
p+1
n |uρ (z, ·)|Cp+1([tn−1,tn],B) ≤ C eσT ∆p+1

n |z|p−m ∥ϕ∥Cρ+p+1([0,T ],B) .

Thus, the error satisfies the recursion

en(z) = R(∆nz)en−1(z)−∆nzb · (I−∆nzA)−1D(n)(z) + d(n)(z),

for the stability function R of the Runge–Kutta method (11). Solving the re-
cursion and using that e0 = 0 we obtain

en(z) =

n∑
j=1

 n∏
ℓ=j+1

R(∆ℓz)

(∆jzb · (I−∆jzA)−1D(j)(z) + d(j)(z)
)
.

By Lemma 12 for ∆ small enough we can estimate

|R(∆nz)| ≤ eC∆nσ, ∀z ∈ γ, n ≥ 1, (60)
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so that

∥en (z) ∥B ≤ C eσT
n∑

j=1

(∥∥∥∆jzb · (I−∆jzA)−1D(j) (z)
∥∥∥
B
+
∥∥∥d(j)(z)∥∥∥

B

)
.

(61)
The combination of the order condition (15) with (59) allows to bound the first
norm in the right-hand side of (61) by∥∥∥∆jzb · (I−∆jzA)−1D(j) (z)

∥∥∥
B
≤

p∑
k=q+1

∆k
j

∥∥∂kt uρ (z, tj)∥∥B ∥∥∥∆jzb · (I−∆jzA)−1δ(k)
∥∥∥

(62)

+ ∆p
j

∥∥∥∆jzb · (I−∆jzA)−1Q(j)
∥∥∥
B
.

For sufficiently small 0 < Csplit = O (1) in (50) we have ∥∆jzA∥ < 1 for all
z ∈ γnear so that a Neumann series argument gives us∥∥∥∆jzb · (I−∆jzA)

−1
δ(k)

∥∥∥ ≤ (C∆j |z|)p−k+2

(k − 1)!

where C depends on A,b, c. Recall that m ≤ q + 1. Thus, for all z ∈ γnear it
holds (cf. (56))

p∑
k=q+1

∆k
j

∥∥∂kt uρ (z, tj)∥∥B ∥∥∥∆jzb · (I−∆jzA)−1δ(k)
∥∥∥
B

≤ C
p∑

k=q+1

∆k
j

∥∥∂kt uρ (z, tj)∥∥B (C∆j |z|)p−k+2

(k − 1)!

≤ Cp e
σT ∆p+2

j |z|p+1−m ∥ϕ∥Cρ+p([0,T ],B) .

For the second term in the right-hand side of (62) we get in a similar fashion

∆p
j

∥∥∥∆jzb · (I−∆jzA)−1Q(j)
∥∥∥
B
≤ C∆p

j

∥∥∥Q(j)
∥∥∥
B
≤ C eσT ∆p+1

j |z|p−m ∥ϕ∥Cρ+p+1([0,T ],B) ,

so that

∥en (z) ∥B ≤ C e2σT
(
∆p+1

j |z|p+1−m ∥ϕ∥Cρ+p([0,T ],B) +∆p |z|p−m ∥ϕ∥Cρ+p+1([0,T ],B)

)
.

This estimate allows to bound the nearfield error by using (2)

∥δϕnearn ∥B ≤ C
∫
γnear

|z|µ−ρ ∥en (z)∥D dz

≤ C e2σT ∥ϕ∥Cρ+p+1([0,T ],D)

∫
γnear

(
∆p+1

j |z|µ−ρ+p+1−m
+∆p |z|µ−ρ+p−m

)
dz

≤ C e2σT ∥ϕ∥Cρ+p+1([0,T ],D)

 ∆p µ− ρ+ p−m < −1,
∆p log 1

∆ µ− ρ+ p−m = −1,
∆m+ρ−1−µ µ− ρ+ p−m > −1.
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The combination with the farfield estimates leads to the assertion for µ−ρ < −1.

Case 2: µ− ρ ≥ −1.
Let ν ∈ N0 be the smallest integer such that ν > µ + 1 holds. Then the

contour integral in

w =
1

2π i

∫
γ

(Kν(z)uν(z, t) dz

is well defined for all ϕ ∈ Cν
0 ([0, T ] , D). Since ν is large enough we may choose

γ as any suitable contour in the complex plane: either a vertical contour γ⊥
running from σ − i∞ to σ + i∞ or a suitable closed contour γ� clockwise
oriented.

The representation of the discrete solution

w(n)
ρ =

1

2π i

∫
γ�

(
K−1

)
ρ
(z)u(n)ρ (z) dz =

1

2π i

∫
γ�

(
K−1

)
ν
(z) zν−ρu(n)ρ (z) dz

is well defined by Theorem 13, (42) if we choose a closed contour γ� which

encircles the spectra
N∪

k=1

σ
(
∆−1k A−1

)
. The error at time step tn is given by

w (tn)− w(n)
ρ =

1

2π i

∫
γ�

(K−1)ν(z)
(
uν(z, tn)− zν−ρu(n)ρ (z)

)
dz. (63)

By adding and subtracting u
(n)
ν we can split the error into two terms

T
(n)
1 =

1

2π i

∫
γ⊥

(K−1)ν (z) (uν(z, tn)− un,ν(z)) dz,

T
(n)
2 =

1

2π i

∫
γ�

(K−1)ν (z)
(
u(n)ν (z)− zν−ρu(n)ρ (z)

)
dz.

The term T1 can be estimated by using Case 1 with the substitution ρ ← ν
therein and we get

∥Tn,1∥B ≤ C ∥ϕ∥Cν+p+1([0,T ],D) cµ−ν+p−m (∆)∆min{p,ν+m−1−µ}. (64)

Note that T
(n)
2 is the s-th component of

T
(n)
2 =

((
K−1

)
ν

(
∂Θt
) (
∂νt ϕ− [[Θ]]ν−ρ∂ρt ϕ

))(n)
.

Theorem 13 for the choices m̃← 0 and ρ̃← ν can be applied since

µ− ρ̃+ 1 < m̃ < q + 1

so that∥∥∥T(n)
2

∥∥∥
B
≤ C

n∑
k=0

∆k e
Cσ0(tn−tk)

∥∥∥∂ν−ρt (∂ρt ϕ)
(k) − [[tk−(ν−ρ), . . . , tk]]∂

ρ
t ϕ
∥∥∥
D
.
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Proposition 11 leads to∥∥∥T(n)
2

∥∥∥
B
≤ C

n∑
k=0

∆k e
Cσ0(tn−tk) |∂ρt ϕ|Cq+1([tk−(ν−ρ),tk],D) ∆

q+ρ+1−ν
k (65)

≤ C eσT |∂ρt ϕ|Cq+1([0,T ],D) ∆
q+1−(ν−ρ).

We choose m = q + 1 in (64) and, since in this Case 2 we have

ρ ≤ µ+ 1 < ν,

the ∆-exponents in (64) and (65) satisfy

ν +m− 1− µ = q + ν − µ > q + 1 ≥ q + 1− (ν − ρ) .

This leads to the final error estimate∥∥∥w (tn)− w(n)
ρ

∥∥∥
D
≤ C eσT ∥ϕ∥Cν+p+1([0,T ],B) ∆

min{p,q+1+ρ−ν}.

5 Runge-Kutta Generalized Convolution Quadra-
ture for Solving Convolution Equations

5.1 Discretization

In this section we will consider the solution of one-sided convolution equations:
For given g, find ϕ

K (∂t)ϕ = g. (66)

We assume that the transfer operator K satisfies

K ∈ Aθ
σ+

(B,D) for some σ+, θ ∈ R (67a)

and, in analogy to (4), we choose m ∈ N0 as the smallest integer such that
m > θ+1. In view of (6) we are seeking the solution ϕ of (66) in Cm

0 ([0, T ] , B).
To ensure existence of a solution of (66) we assume

K−1 : Cσ− → L (D,B) exists and K−1 ∈ Aµ
σ−

(D,B) for some σ−, µ ∈ R.
(67b)

We define ν according to (4) but emphasize that µ, this time, denotes the
growth exponent of the inverse operator K−1.

Proposition 15 Let (67) be satisfied. If g ∈ Cν
0 ([0, T ] , D), then

ϕ (t) :=
(
K−1 (∂t) g

)
(t) =

1

2π i

∫
γ

(
K−1

)
ν
(z)

(∫ t

0

ezτ ∂νt g (t− τ) dτ
)
dz (68)

for a contour γ = σ + iR and σ > σ− is well defined.
If g ∈ Cν+m

0 ([0, T ] , D), it holds ϕ ∈ Cm
0 ([0, T ] , B) so that K (∂t)ϕ is well

defined and ϕ as in (68) satisfies (66).
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Proof. The choice of ν and the smoothness assumption on g imply that ϕ in (68)
is well defined (cf. (7)). By differentiating (68) and using g ∈ Cν+m

0 ([0, T ] , D),
we obtain ϕ(r) = 0 for 0 ≤ r ≤ m − 1. Thus, the associativity for one-sided
convolutions (see [14, (2.3), (2.22)])

V (∂t)W (∂t) = (VW ) (∂t) (69)

yields K (∂t)
(
K−1 (∂t)ϕ

)
= g.

The inversion formula (68) allows us to discretize the convolution equation
(66) by the same method as developed for the forward equation (cf. Section 3):

N×
n=1

ϕ(n)
ρ :=

(
K−1

)
ρ

(
∂Θt
)
∂ρt g for some ρ as in (16) (70a)

and the approximation of ϕ at time point tn is given by the last component

ϕ (tn) ≈ ϕ(n)ρ := e(s) · ϕ(n)
ρ . (70b)

Remark 16 The representation of the generalized convolution quadrature in the
form (70) is well suited for theoretical investigations but not for the practical
implementation: For important applications such as, e.g., for the solution of
the space-time wave equation, the operator K−1 (s) is infinite dimensional and
not available explicitly so that its discretization would be prohibitive expensive.
Instead, we will prove that the associativity of continuous convolutions (69) is
inherited by the Runge-Kutta gCQ: Under assumptions which will be detailed
in Theorem 26 it holds

V
(
∂Θt
)
◦W

(
∂Θt
)
= (VW )

(
∂Θt
)

(71)

so that (70a) can be written in the form (cf. Remark 20, Corollary 27)

K−ρ
(
∂Θt
)( N×

n=1

ϕ(n)
ρ

)
=

N×
n=1

(∂ρt g)
(n)

.

Definition 17 (Runge-Kutta gCQ for Solving Convolution Equations)
Let the transfer operator K satisfy (67) and let ν,m ∈ N0 be the smallest inte-
gers such that ν > µ+1 and m > θ+1. Let g ∈ Cν+m

0 ([0, T ] , D). We consider
the problem: Find ϕ ∈ Cm

0 ([0, T ] , B) such that

K (∂t)ϕ = g. (72)

Let a Runge-Kutta method be given which satisfies Assumption 4. Then the
discretization of (72) by Runge-Kutta generalized Convolution Quadrature is
given by

K−ρ
(
∂Θt
)( N×

n=1

ϕ(n)
ρ

)
=

N×
n=1

(∂ρt g)
(n)

(73)
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and the approximation of ϕ at time tn by the last component ϕ
(n)
ρ := e(s) ·ϕ(n)

ρ .
Here, ρ ∈ N0 is a regularization parameter which can be chosen in the range

ν − (q + 1) ≤ ρ ≤ p+ ν − (q + 1) , (74)

where p denotes de order and q the stage order of the Runge-Kutta method.

Remark 18 For the algorithmic realization of the Runge-Kutta gCQ (cf. (73))
one has to approximate the contour integrals in

1

2π i

∫
γ

zρK (z)u(n)
ρ (z) dz (75)

by numerical quadrature. For the implicit Euler gCQ, such a quadrature scheme
has been proposed and analyzed in [9, 10].

On one hand, Theorem 14 indicates that the upper bound in (74) for the
choice of ρ improves the convergence rates up to the optimal order O (∆p)
for sufficiently smooth and compatible data, while smaller choices of ρ lead to
a milder growth behavior of the integrand in (75) and simplify the numerical
quadrature. This also shows the importance of the summation-by-parts repre-
sentation which allows to achieve a faster decay of the integrand in the error
estimates without increasing the numerical parameter ρ furthermore.

5.2 Associativity

The stability and convergence analysis of the approximation ϕ
(n)
ρ as in Definition

17 follows directly from Theorem 13 and 14 if we prove the inversion formula

N×
n=1

ϕ(n)
ρ =

(
K−1

)
ρ

(
∂Θt
)( N×

n=1

(∂ρt g)
(n)

)
.

In more generality, we will prove (71). This requires to reformulate the con-
tour integrals via tensorial divided differences which we will introduce and the
proof of a Leibniz rule for tensorial divided differences to derive the associativity
property for the composition of discrete generalized convolution operators. We
refer to [7] and [6] for an introduction to tensor calculus and advanced topics.

For i, j, i′, j′ ∈ {1, . . . , N}, we consider sequences B(k) ∈ Cs×s, k ∈ {i, . . . , j}
and C(k) ∈ Cs×s, k ∈ {i′, . . . , j′}, of matrices. In Section 4.1 we introduced the
Kronecker products of matrices and their application to tensors of vectors. The
composition of Kronecker matrices is defined as the tensor of the “matching”
matrix products by(

j⊗
k=i

B(k)

)
◦

 j′⊗
k=i′

C(k)

 =

max{j,j′}∏
k=min{i,i′}

B(k)C(k),

where we set B(k) = I for k /∈ {i, . . . , j} and C(k) = I for k /∈ {i′, . . . , j′}.
For i = i′ and j = j′ we suppress the composition sign “◦” as is usual for
matrix-matrix multiplication.
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Finally we define the resolvent matrix for C ∈ Cs×s by

Rz (C) ∈ Cs×s with Rz (C) := (zI−C)
−1
.

Definition 19 For a set of matrices C(k) ∈ Cs×s, 1 ≤ k ≤ n, and a function

f which is analytic in a complex neighborhood U of

n∪
k=1

σ
(
C(k)

)
, the tensorial

divided difference
[×n

k=1 C
(k)
]
f is a Kronecker matrix given by2[

n×
k=1

C(k)

]
f :=

1

2π i

∫
Γ

f (z)

(
n⊗

k=1

Rz

(
C(k)

))
dz, (76)

for a counterclockwise oriented closed contour Γ in U which encircles

n∪
k=1

σ
(
C(k)

)
.

Tensorial divided differences
[
×j

k=i C
(k)
]
f are generalizations of standard

divided differences for 1× 1 matrices C(k) = (xk) with nodal points xk: In the
latter case, divided differences allow for a contour integral representation (cf.
Remark 21) which is generalized by (76) for the case of matricesC(k). In Section
23 we will derive an alternative representation of tensorial divided differences
which mimics the recurrence relation for classical divided differences.

These tensorial divided differences allow to express the generalized discrete
convolution (22), (25) via

ϕ(n)
ρ =

((
K−1

)
ρ

(
∂Θt
)
∂ρt g
)(n)

=
n∑

k=1

ωn,k (0)
(
e(n−k)⊗ ⊗ •

)
·

([
n×

ℓ=k

A−1

∆ℓ

] (
K−1

)
ρ

(
∂ρt g

(k) ⊗
(
A−11

)(n−k)⊗))
,

(77)

for 1 ≤ n ≤ N . The result is an N -tuple of vectors in Cs.
The function ωn,j is given by

ωn,j (z) :=
n∏

ℓ=j+1

(
z −∆−1ℓ

)
. (78)

Remark 20 This representation shows that the generalized discrete convolution
depends only on the discrete values ∂ρt g

(k) and thus can be applied also to tuples

×N
ℓ=1 (∂

ρ
t g)

(k)
of stage vectors; thus, the composition of generalized discrete

convolutions is well defined.

2We prefer the notation
[×n

k=1 C
(k)

]
f instead of

[
C(1),C(2), . . . ,C(n)

]
f because of

brevity.
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The representation (78) extends the definition of generalized discrete convo-
lutions for the implicit Euler method (cf. [10]) to Runge-Kutta methods as can
be seen from the following remark.

Remark 21 In [11, First formula in the proof of Lemma 4.1.], it was shown
that the gCQ based on the implicit Euler method with variable step size can be
written in the form

ϕ(n)ρ =

n∑
j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

] (
K−1

)
ρ

)
∂ρt g

(j), (79)

where ωn,k is as in (78). Note that the divided differences of an analytic function
f have the following contour integral representation

[x1, x2, . . . , xN ] f =
1

2π i

∫
C

f (z)
N∏
i=1

(z − xi)

dz,

for a counterclockwise oriented contour C enclosing the arguments xi, i =
1, . . . , N . Hence, taking into account the clockwise orientation of the contour γ,
(79) can be expressed in terms of contour integrals as

ϕ(n)ρ =
n∑

j=1

∆j
1

2π i

∫
γ

 n∏
ℓ=j

1

1− z∆ℓ

(K−1)
ρ
(z) ∂ρt g

(j)dz. (80)

Alternatively, we consider equation (77) for the implicit Euler method. In this
case we have A = (1) ∈ R1×1 and, in turn,

ϕ(n)ρ

(77)
=

n∑
k=1

ωn,k (0)

[
n×

ℓ=k

∆−1ℓ

] (
K−1

)
ρ
∂ρt g

(k)

(76)
=

n∑
k=1

∆k
1

2π i

∫
γ

(
n∏

ℓ=k

1

1− z∆ℓ

)(
K−1

)
ρ
(z) ∂ρt g

(k)dz.

This is the same expression as (80) and we see that (77) defines an extension of
the divided difference representation of scalar generalized convolution operators
for the implicit Euler method to Runge-Kutta methods.

The key role for writing (70a) as a forward equation will be played by an
elegant inversion formula (which is well known for Runge-Kutta Convolution
Quadrature with constant time steps).

In order to prove the associativity property of our discretization we develop
a tensorial Leibniz formula and a composition rule for tensorial divided differ-
ences.

By Cauchy’s integral theorem it is easy to see that [C] f is the value of the
function f applied to the matrix C which is the analogue to standard zero-th
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order divided differences. For higher order divided differences we first introduce
the tensorial difference ⊖(k,j) (A,B) as the Kronecker matrix defined by

⊖(k,j) (A,B) =

(
k−1⊗
ℓ=1

I

)
⊗A⊗

n⊗
ℓ=k+1

I−

(
j−1⊗
ℓ=1

I

)
⊗B⊗

n⊗
ℓ=j+1

I,

If A and B are simultaneously diagonalizable, this is, A = V−1D(1)V and
B = V−1D(2)V, for some V and diagonal matrices D(1), D(2), we have3(

n⊗
i=1

v(i)

)
·

(
⊖(k,j) (A,B)

n⊗
i=1

w(i)

)
=

(
n⊗

i=1

V−ᵀv(i)

)
·

(
⊖(k,j)

(
D(1),D(2)

) n⊗
i=1

Vw(i)

)
.

Remark 22 The eigenvalues of ⊖(k,j) (A,B) are given by λ
(1)
i1
−λ(2)i2

, where λ
(1)
i1

are the eigenvalues of A and λ
(2)
i2

those of B. Hence, ⊖(k,j) (A,B) is regular if

and only if σ (A) ∩ σ (B) = ∅. In this case,
(
⊖(k,j) (A,B)

)−1
exists, i.e.,

(
⊖(k,j) (A,B)

)−1
⊖(k,j) (A,B) = ⊖(k,j) (A,B)

(
⊖(k,j) (A,B)

)−1
=

n⊗
i=1

I

but, in general, is not a Kronecker matrix. Further note that(
n⊗

i=1

v(i)

)
·

((
⊖(k,j) (A,B)

)−1 n⊗
i=1

w(i)

)

=

(
n⊗

i=1

V−ᵀv(i)

)
·

((
⊖(k,j)

(
D(1),D(2)

))−1 n⊗
i=1

Vw(i)

)
.

Lemma 23 For a set of matrices C(k) ∈ Cs×s, 1 ≤ k ≤ n, which are simulta-
neously diagonalizable, i.e.,

C(k) = V−1D(k)V, (81)

it holds [
n×

k=1

C(k)

]
f =

(
n⊗

k=1

V−1

)([
n×

k=1

D(k)

]
f

)(
n⊗

k=1

V

)
. (82)

Furthermore, if the intersection of the spectra of any pair C(k),C(j), k ̸= j, is
empty, the following recursion for tensorial divided differences holds true[
C(1), . . . ,C(k)

]
f (83)

=
((

I⊗
[
C(2), . . . ,C(k)

]
f
)
−
([

C(1), . . . ,C(k−1)
]
f ⊗ I

))(
⊖(k,1)

(
C(k),C(1)

))−1
.

3By Vᵀ we denote the transposed of the matrix V (without complex conjugation) and by
V−ᵀ =

(
V−1

)ᵀ
.
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Proof. Statement (82) is trivial.
Since the matrices C(k) are simultaneously diagonalizable it is sufficient to

prove the statement for diagonal matricesC(k) = D(k) and the statement follows
from the corresponding property for standard divided differences.

Lemma 24 (Leibniz Rule for Tensorial Divided Differences) Let C(j), 1 ≤
j ≤ n, and f be as in Definition 19. For mappings f, g analytic in a neighbor-

hood of
n∪

k=1

σ(C(k)) the tensorial Leibniz’ rule for divided differences holds

[
n×

k=1

C(k)

]
(fg) =

n∑
j=1

([
n×

k=j

C(k)

]
f

)
◦

([
j

×
k=1

C(k)

]
g

)
. (84)

Proof. Since the matricesC(k) are assumed to be simultaneously diagonalizable
it is sufficient to prove the statement for diagonal matrices C(k) = D(k), 1 ≤ k ≤
n. Furthermore, continuity of divided differences with respect to the arguments
C(k), 1 ≤ k ≤ n, implies that it is enough to prove (84) for matrices with
pairwise disjoint spectra, cf. [4].

The statement is trivial for n = 1 and we assume next that the assertion
holds for all m < n and derive it for n.

From Lemma 23, we deduce4[
D(1), . . . ,D(n)

]
(fg)

=
((

I⊗
[
D(2), . . . ,D(n)

]
(fg)

)
−
([

D(1), . . . ,D(n−1)
]
(fg)⊗ I

))(
⊖(n,1)

(
D(n),D(1)

))−1
ind. assump.

=

I⊗
n∑

j=2

([
D(j), . . . ,D(n)

]
f
)
◦
([

D(2), . . . ,D(j)
]
g
)

−

n−1∑
j=1

[
D(j), . . . ,D(n−1)

]
f ◦
[
D(1), . . . ,D(j)

]
g

⊗ I

(⊖(n,1)
(
D(n),D(1)

))−1

=

 n∑
j=2

([
D(j), . . . ,D(n)

]
f ◦
[
D(1), . . . ,D(j)

]
g
)
⊖(j,1)

(
D(j),D(1)

)

+
n−1∑
j=1

([
D(j), . . . ,D(n)

]
f ◦
[
D(1), . . . ,D(j)

]
g
)
⊖(n,j)

(
D(n),D(j)

) 1

⊖(n,1)

(
D(n),D(1)

)
.

4To derive the third equality, we have inserted

0 = −
n∑

j=2

[
D(j), . . . ,D(n)

]
f◦

([
D(1), . . . ,D(j−1)

]
g ⊗ I

)
+

n−1∑
j=1

(
I⊗

[
D(j+1), . . . ,D(n)

]
f
)
◦
[
D(1), . . . ,D(j)

]
g

and used (83).
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Since ⊖(1,1)
(
D(1),D(1)

)
= ⊖(n,n)

(
D(n),D(n)

)
= 0 the first sum can be ex-

tended to j = 1 and the second one to j = n without changing the values. Since
⊖(j,1)

(
D(j),D(1)

)
+⊖(n,j)

(
D(n),D(j)

)
= ⊖(n,1)

(
D(n),D(1)

)
, the result follows.

Finally, we will need a result for the composition of tensorized bilinear forms.

Lemma 25 For vectors v(j),w(j) ∈ Cs, let

q(k+1) := α(m+1,k)B(k+1)w(k+1) with α(m+1,k) :=

 k⊗
j=m+1

v(j)

·
 k⊗

j=m+1

B(j)

 k⊗
j=m+1

w(j).

Then(
n⊗

ℓ=k+1

v(ℓ) ⊗ •

)
·

(
n+1⊗

ℓ=k+1

C(ℓ)

)(
q(k+1) ⊗

n+1⊗
ℓ=k+2

w(j)

)
(85)

=

(
n⊗

ℓ=m+1

v(ℓ) ⊗ •

)
·

(
n+1⊗

ℓ=k+1

C(ℓ)

)
◦

(
k+1⊗

ℓ=m+1

B(ℓ)

)
n+1⊗

ℓ=k+1

w(j)

Proof. We denote the left-hand side in (85) by lhs. Then,

lhs = α(m+1,k)

(
n⊗

ℓ=k+1

v(ℓ) ⊗ •

)
·

(
n+1⊗

ℓ=k+1

C(ℓ)

)(
B(k+1)w(k+1) ⊗

n+1⊗
ℓ=k+2

w(j)

)

= α(m+1,k)
(
v(k+1) ·C(k+1)B(k+1)w(k+1)

)( n⊗
ℓ=k+2

v(ℓ) ⊗ •

)
·

(
n+1⊗

ℓ=k+2

C(ℓ)

)
n+1⊗

ℓ=k+2

w(j)

=

 k⊗
j=m+1

v(j)

 ·
 k⊗

j=m+1

B(j)

 k⊗
j=m+1

w(j)

×
×
(
v(k+1) ·C(k+1)B(k+1)w(k+1)

)
×

×

(
n⊗

ℓ=k+2

v(ℓ) ⊗ •

)
·

(
n+1⊗

ℓ=k+2

C(ℓ)

)
n+1⊗

ℓ=k+2

w(j)

and this is the assertion.

Theorem 26 (Associativity) Let a Runge-Kutta method be given by the Butcher
table A, b, c with non-singular A. Let W (s) ∈ L (B,D) and V (s) ∈ L (D,E)
denote transfer operators which are analytic in some complex neighborhood U of
N∪

k=1

σ
(
M(k)

)
. It holds

V
(
∂Θt
)
◦W

(
∂Θt
)
= (VW )

(
∂Θt
)
. (86)
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Proof. We set

q(k+1) :=
(
e(k−m)⊗ ⊗ •

)([ k×
ℓ=m

A−1

∆ℓ

]
W

)(
w(m) ×

(
A−11

)(k−m)×
)
.

The left-hand side in (86) can be written in the form(
V
(
∂Θt
) (
W
(
∂Θt
)
w
))(n)

=
n∑

k=0

k∑
m=0

ωn,k (0)ωk,m (0)
(
e(n−k)⊗ ⊗ •

)
·

[
n×

ℓ=k

A−1

∆ℓ

]
V
(
q(k+1) ⊗

(
A−11

)(n−k)⊗)
Lem. 25

=

n∑
m=0

ωn,m (0)

n∑
k=m

(
e(n−m)⊗ ⊗ •

)
·

·

([
n×

ℓ=k

A−1

∆ℓ

]
V

)
◦

([
k×

ℓ=m

A−1

∆ℓ

]
W

)(
w(m) ⊗

(
A−11

)(n−m)⊗
)
.

Next we apply the tensorial Leibniz rule for divided differences (cf. Lemma 24)
to obtain(
V
(
∂Θt
) (
W
(
∂Θt
)
w
))(n)

=
n∑

m=0

ωn,m (0)
(
e(n−m)⊗ ⊗ •

)
·

([
n×

ℓ=m

A−1

∆ℓ

]
(VW )

)(
w(m) ⊗

(
A−11

)(n−m)⊗
)

=
(
(VW )

(
∂Θt
)
w
)(n)

.

Corollary 27 (Inversion Formula) Let a Runge-Kutta method be given by
the Butcher table A, b, c with non-singular A. Equation (70a) has an explicit
inversion formula. It holds

K−ρ
(
∂Θt
)( N×

n=1

ϕ(n)

)
=

N×
n=1

∂ρt g
(n). (87)

Proof. We employ Theorem 26 with V := K−ρ and W :=
(
K−1

)
ρ
to obtain

(
K−ρ

(
∂Θt
) ((

K−1
)
ρ

(
∂Θt
)
w
))(n)

=

n∑
m=0

ωn,m (0)
(
e(n−m)⊗ ⊗ •

)
·

[
n×

ℓ=m

A−1

∆ℓ

]
(Id)

(
w(m) ⊗

(
A−11

)(n−m)⊗
)

with the identity mapping Id. Hence, only the summand with m = n is different
from zero and the assertion follows.
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6 Implementation and experiment

Our implementation of the Runge–Kutta gCQ is based on quadrature applied
to definition (22). If a suitable quadrature with nodes zℓ and weights wℓ, ℓ =
1, . . . , NQ, is available it is clear how to approximate action of the (forward)
convolution K(∂Θt )ϕ by a Runge-Kutta time stepping method applied to

∂tuρ(z, t) = zℓuρ(z, t) + ∂ρt ϕ; uρ(zℓ, 0) = 0, ℓ = 1, . . . , NQ.

The solution of the convolution equation K(∂Θt )ϕ = g, for given g, avoids the
evaluation of the inverse convolution ϕ = K−1(∂Θt )g by employing the following
algorithm which is based on K and not on its inverse. We compute approxima-

tions ϕ̃
(n)
≈ ϕ(n) from

K−ρ
(
(∆nA)−1

)
ϕ̃

(n)
= g(n)−

NQ∑
ℓ=1

wℓK−ρ(zℓ)
(
e(s) · u(n−1)(zℓ)

)
(I−∆nzℓA)−11

in the following way.

Algorithm 28 (Runge-Kutta gCQ with contour quadrature)

• Initialization. Generate K−ρ (zℓ) for all contour quadrature nodes zℓ,

ℓ = 1, 2, . . . , NQ. Compute ϕ̃
(1)

from

K−ρ
(
(∆1A)−1

)
ϕ̃

(1)
= ∂ρt g

(1). (88)

• For n = 2, . . . , N

1. Runge–Kutta step. Perform a step of the Runge–Kutta method
applied to (8b) and compute

u(n−1)(zℓ) = (I−∆n−1zℓA)−1
(
(1⊗ es)u

(n−2)(zℓ) + ∆n−1Aϕ̃
(n−1)

)
for all contour quadrature nodes: z = zℓ, ℓ = 1, . . . , NQ.

2. Generate linear system. If ∆n is a new time step, then generate
K−ρ

(
(∆nA)−1

)
. Otherwise this operator was already generated in a

previous step. Update the right-hand side

r(n) = r(n)
(
u(n−1)

)
:= ∂ρt g

(n)−
NQ∑
ℓ=1

wℓK−ρ(zℓ)
(
e(s) · u(n−1)(zℓ)

)
(I−∆nzℓA)

−1
1.

3. Linear Solve. Solve the linear system

K−ρ
(
(∆nA)

−1
)
ϕ̃

(n)
= r(n).
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Figure 1: Poles of the integrand in (22), integration contour and curve
|R(∆minz)| = 1 for 20 steps quadratically graded towards the origin. Left:
For implicit Euler method. Right: For RadauIIA5

For gCQ based on the implicit Euler method the quadrature problem has
been fully solved in [9] and several experiments are reported in [10]. The contour
of choice in this case is the circle centered at ∆−1min with radius ∆−1min, which
coincides with the boundary of the region |R(∆minz)| = 1. The parameterization
of this circle uses Jacobi elliptic functions in order to optimally exploit the
analyticity domain of the integrand in (22), whose poles are located in the real
segment [∆−1,∆−1min].

For higher order Runge–Kutta methods the poles of the integrand in (22)
are typically located in a sector around the positive real axis and the boundary
of the stability region |R(∆minz)| = 1 is more complicated than a circle. In
Figure 1 we show the location of the poles, the curve |R(∆minz)| = 1 and our
contour of choice for the grid

tj =

(
j

20

)2

, j = 1, . . . , 20,

both for implicit Euler and RadauIIA5. In both cases we choose a circle as
the integration contour but in the case of RadauIIA5 the radius is much larger,
namely M = 5max(|λ|)/∆min for λ ∈ σ(A). This implies that the boundary
of the contour becomes more vertical at z = 0 and thus avoids invading too
much into the region |R(∆minz)| > 1 close to the origin. For this contour the
number of quadrature nodes needed to produce the error plot in Figure 2 was
NQ = 3N log2(N). The optimization of the integration contour and a rigorous
error and complexity analysis are the subject of ongoing research.

In order to illustrate the performance of high order Runge–Kutta gCQ in
comparison with the original CQ, with uniform steps, we consider the following
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one-dimensional example: Find ϕ such that K(∂t)ϕ = g with

K(z) =
1− e−2z

2z
and g(t) = t5/2e−t. (89)

The exact solution to this problem is computed in [17] and is given by

ϕ(t) = 2

⌊t/2⌋∑
k=0

g′(t− 2k). (90)

We approximate ϕ(t) for t ∈ [0, 1] by applying Algorithm 28 for with RadauIIA5
and ρ = 0. Then we have µ = 1 in Assumption 1, p = 5 and q = 3. The right-
hand side g satisfies g(ℓ)(0) = 0 for ℓ = 0, 1, 2 and is not three times differentiable
at t = 0. This lack of regularity suggests to use a time grid which is algebraically
graded towards the origin. We heuristically choose a quadratically graded mesh
with points

Θ = (tj)
N
j=1 with tj =

(
j

N

)α

and α = 2. In this case it is ∆ = N−1 and ∆min = N−2. For a comparison
with uniform steps we set α = 1. Figure 2 shows that the convergence rate is
O(∆3) for the graded mesh and about O(∆1.6) for the uniform mesh. For this
example, we have µ = 1 and thus the minimal integer ν > µ + 1 is ν = 3. For
ρ = 0, with µ− ρ = 1 > −1, Theorem 14 then predicts a convergence rate like
O(∆3+1−3) = O(∆). The theoretical estimate provided by this Theorem is of
order 3 or higher only for ρ ≥ 2. More precisely it is O

(
∆3
)
for ρ = 2 and O(∆5)

for ρ = 3. We believe this is due to a limitation of our theory which does not
allow in principle to choose a fractional value of ν. In the limit (not allowed)
case ν = 2, the theoretical estimate yields actually an estimate like O(∆2).
However our numerical result for ρ = 0 is better and actually coincides with the
theory for uniform steps developed in [1]. It is an open problem whether there
exist examples where a bigger value of ρ is necessary for variable steps than for
uniform steps or whether our theory yields a suboptimal estimate in terms of
this parameter.
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