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Abstract. We introduce the notion of symplectic microfolds and symplectic
micromorphisms between them. They form a monoidal category, which is
a version of the “category” of symplectic manifolds and canonical relations
obtained by localizing them around lagrangian submanifolds in the spirit of
Milnor’s microbundles.
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1. Introduction

There is a category Sympl whose objects are finite-dimensional symplectic
manifolds (M, ω) and whose morphisms are symplectomorphisms Ψ : (M, ωM) →
(N, ωN). In attempting to understand the quantization procedure of physicists
from a mathematical perspective, one may think of it as a functor from this
symplectic category, where classical mechanics takes place, into the category of
Hilbert spaces and unitary operators, which is the realm of quantum mechanics.

It is well known that the category Sympl is too large, since there are “no-go”
theorems that show that the group of all symplectomorphisms on (M, ω) does
not act in a physically meaningful way on a corresponding Hilbert space. One
standard remedy for this is to replace Sympl with a smaller category, replacing
the symplectomorphism groups with certain finite-dimensional subgroups. An-
other is to replace the Hilbert spaces and operators by objects depending on a
formal parameter.

But there is also a sense in which the category Sympl is too small, since it
does not contain morphisms corresponding to operators such as projectors and
the self-adjoint (or skew-adjoint) operators that play the role of observables in
quantum mechanics, nor can it encode the algebra structure itself on the space of
observables. (This collection of observables is not actually a Hilbert space, but
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certain sets of operators do carry a vector space structure, with the inner product
associated to the Hilbert-Schmidt norm.)

To enlarge the symplectic category, we look at the “dictionary” of quantization,
following, for example, [1]. In this dictionary, the cartesian product of symplectic
manifolds corresponds to the tensor product of Hilbert spaces, and replacing
a symplectic manifold (M, ω) with (M,−ω) (which we denote by M when we
omit the symplectic structure from the notation for a given symplectic manifold)
corresponds to replacing a Hilbert space H by its conjugate, or dual, space H∗.
Thus, if symplectic manifolds M1 and M2 correspond to Hilbert spaces H1 and
H2, the product M×N corresponds to H∗

1⊗H2, which, with a suitable definition
of the tensor product, is a space L(H1,H2) of linear operators from H1 to H2.

Another entry in the dictionary says that lagrangian submanifolds (perhaps
carrying half-densities) in symplectic manifolds correspond to vectors or lines in
Hilbert space. Combining this idea with the one in the previous paragraph, we
conclude that lagrangian submanifolds in M × N should correspond to linear
operators from H1 to H2.This suggests that, if the space of observables H for a
quantum system corresponds to a symplectic manifold M , then the algebra struc-
ture on H should be given by a lagrangian submanifold µ in M ×M ×M. The
algebra axioms of unitality and associativity should be encoded by monoidal prop-
erties of µ in an extended symplectic category, Symplext, where the morphisms
from M to N are the canonical relations; i.e., all the lagrangian submanifolds
of M × N (not just those which are the graphs of symplectomorphisms) and
where the morphism composition is the usual composition of relations. However,
a problem immediately occurs: the composition of canonical relations may yield
relations that are not submanifolds any more, and thus are not canonical rela-
tions! Symplext is then not a true category, as the morphisms cannot always be
composed. It is rather awkward to speak about a quantization functor in this
context.

There have already been several approaches to remedy this defect. One ap-
proach, developed by Guillemin and Sternberg in [5] (see [4] for a recent version),
is to consider only symplectic vector spaces and linear canonical relations. An-
other, suggested by Wehrheim and Woodward in [8], is to enlarge the category
still further by allowing arbitrary “formal” products of canonical relations and
equating them to actual products when the latter exist as manifolds.

In this paper, we take yet another approach. We construct a version of the
extended symplectic “category,” which is a true category, by localizing it around
lagrangian submanifolds. Its objects, called symplectic microfolds in the spirit of
Milnor’s microbundles ([7]), are equivalence classes [M, A] of pairs consisting of
a symplectic manifold M and a lagrangian submanifold A ⊂ M , called the core.
The equivalence reflects the fact that these objects really describe the geometry
of a neighborhood − or a “micro” neighborhood − of A in M .

In this “micro” setting, there is also a notion of canonical “micro” relations
between two symplectic microfolds: They are lagrangian submicrofolds [L, C] of
the symplectic microfold product [M, A]× [N, B]. Their composition is generally
as ill behaved as it is for regular canonical relations.

One of the main points of this paper is to identify a certain subset of canonical
“micro” relations satisfying a new transversality condition which ensures the com-
position is always well defined. We consider these transverse “micro” canonical
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relations as morphisms between symplectic microfolds; in this way, we obtain a
new symmetric monoidal category: the extended microsymplectic category.

The extended symplectic “category” has been used as a sort of heuristic guide-
line in an attempt to quantize Poisson manifolds (see [9]) in a geometric way.
These attempts have been only partially successful due in part to the existence
of nonintegrable Poisson manifolds (hence restricting the class of Poisson man-
ifold one can quantize), as well as to the ill-defined composition of canonical
relations (limiting thus the functorial properties of these geometric quantization
methods). The replacement of the extended symplectic “category” by its “micro”
version provides new ways of dealing with both issues.

This paper lays the foundation for a series of work that revolves around two
main themes: the categorification of Poisson geometry and its functorial quanti-
zation as explained below.

This suggests that, if the space of observables H for a quantum system cor-
responds to a symplectic manifold M , then the algebra structure on H should
be given by a lagrangian submanifold µ in M ×M ×M. The algebra axioms of
unitality and associativity should be encoded by monoidal properties of µ in an
extended symplectic category, Symplext, where the morphisms from M to N are
the canonical relations; i.e., all the lagrangian submanifolds of M ×N (not just
those which are the graphs of symplectomorphisms) and where the morphism
composition is the usual composition of relations. However, a problem immedi-
ately occurs: the composition of canonical relations may yield relations that are
not submanifolds any more, and thus are not canonical relations! Symplext is
then not a true category, as the morphisms cannot always be composed. It is
rather awkward to speak about a quantization functor in this context.

There have already been several approaches to remedy this defect. One ap-
proach, developed by Guillemin and Sternberg in [5] (see [4] for a recent version),
is to consider only symplectic vector spaces and linear canonical relations. An-
other, suggested by Wehrheim and Woodward in [8], is to enlarge the category
still further by allowing arbitrary “formal” products of canonical relations and
equating them to actual products when the latter exist as manifolds.

In this paper, we take yet another approach. We construct a version of the
extended symplectic “category,” which is a true category, by localizing it around
lagrangian submanifolds. Its objects, called symplectic microfolds in the spirit of
Milnor’s microbundles ([7]), are equivalence classes [M, A] of pairs consisting of
a symplectic manifold M and a lagrangian submanifold A ⊂ M , called the core.
The equivalence reflects the fact that these objects really describe the geometry
of a neighborhood − or a “micro” neighborhood − of A in M .

In this “micro” setting, there is also a notion of canonical “micro” relations
between two symplectic microfolds: They are lagrangian submicrofolds [L, C] of
the symplectic microfold product [M, A]× [N, B]. Their composition is generally
as ill behaved as it is for regular canonical relations.

One of the main points of this paper is to identify a certain subset of canonical
“micro” relations satisfying a new transversality condition which ensures the com-
position is always well defined. We consider these transverse “micro” canonical
relations as morphisms between symplectic microfolds; in this way, we obtain a
new symmetric monoidal category: the extended microsymplectic category.
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The extended symplectic “category” has been used as a sort of heuristic guide-
line in an attempt to quantize Poisson manifolds (see [9]) in a geometric way.
These attempts have been only partially successful due in part to the existence
of nonintegrable Poisson manifolds (hence restricting the class of Poisson man-
ifold one can quantize), as well as to the ill-defined composition of canonical
relations (limiting thus the functorial properties of these geometric quantization
methods). The replacement of the extended symplectic “category” by its “micro”
version provides new ways of dealing with both issues.

This paper lays the foundation for a series of work that revolves around two
main themes: the categorification of Poisson geometry and its functorial quanti-
zation as explained below.

Categorification. Since Symplext
mic is a monoidal category, it is natural to con-

sider its category of algebras Alg(Symplext
mic). The main statement we are aiming

at here is the equivalence between this latter category and the category of Poisson
manifolds and Poisson maps. Future research directions will include the study
of a weakened version of Alg(Symplext

mic) whose algebra maps are replaced by
bimodules. This should correspond to a “micro” Morita theory for Poisson man-
ifolds.

Quantization. Our second line of work will focus on constructing a monoidal
functor from the extended microsymplectic category (enhanced with half-density
germs on the morphisms) to the category of vector spaces. Since monoidal func-
tors between monoidal categories induce functors between their respective cate-
gories of monoid objects, we obtain in this way a “quantization” functor from the
category of Poisson manifolds to the category of algebras in Vect.
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eff and Chenchang Zhu. A.S.C. acknowledges partial support of SNF Grant
200020-121640/1, of the European Union through the FP6 Marie Curie RTN
ENIGMA (contract number MRTN-CT-2004-5652), and of the European Science
Foundation through the MISGAM program. B. D. acknowledges partial sup-
port of SNF Grant PA002-113136, the Netherlands Organisation for Scientific
Research (NWO), and thanks Wendy L. Taylor for proofreading the manuscript.
A.W. acknowledges partial support from NSF grant DMS-0707137.

2. Symplectic microfolds

A local manifold pair (M, A) consists of a manifold M and a submanifold
A ⊂ M , called the core. Two manifold pairs (M, A) and (N, B) are said to be
equivalent if A = B and if there is a third manifold pair (U,A) such that U is an
open subset in both M and N simultaneously. A map between local pairs is a
smooth map from M to N that sends A to B. Note that we require equality of
neighborhoods and not merely diffeomorphism.

Definition 2.1. A microfold is an equivalence class of a local pairs (M, A). We
denote these equivalence classes either by [M, A] or by ([M ], A). Sometimes, [M ]
will be referred to as a manifold germ around A.

We define an equivalence relation on the maps of local pairs that send a rep-
resentative of [M, A] to a representative of [N, B] by declaring two such maps
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equivalent if there is a common neighborhood of A where they coincide. The
equivalence classes, written as

[Ψ] : [M, A] −→ [N, B],

are the maps between microfolds. We say that [Ψ] is a germ above φ : A → B if,
for Ψ ∈ [Ψ], we have that Ψ|A = φ.

A submicrofold of a microfold [M, A] is a microfold [N, B] such that N ⊂ M
and B ⊂ A. We define the graph of a microfold map [Ψ] as the submicrofold

gr[Ψ] :=
(
[gr Ψ], gr Ψ|A

)

of the product microfold

[M, A]× [N, B] := [M ×N, A×B].

Microfolds and microfold maps form a category. Fibered products of microfolds
are defined in the obvious way.

There are micro counterparts of symplectic manifolds.

Definition 2.2. A symplectic microfold is a microfold [M, L] where M is a
symplectic manifold and L ⊂ M a lagrangian submanifold. We call cotangent
microbundles the symplectic microfolds of the form [T ∗M, M ].

Note. We will write ZE to denote the zero section of a vector bundle E → M .
In the previous definition, we abused notation by writing [T ∗M, M ] instead of
[T ∗M, ZT ∗M ].

A symplectomorphism between symplectic microfolds is a microfold map for
which there is a representative that is a symplectomorphism.

Note. To avoid an explosion in the use of the prefix “micro”, we will keep the usual
“manifold terminology” when available and assume that we are talking about the
“micro” version when microfolds are around and no confusion is possible. For
examples, we choose to use “symplectomorphism” instead of “microsymplecto-
morphism”, and so on.

(1) Symplectic microfolds and their symplectomorphisms form a category,
which we denote by Symplmic.

Many special submanifolds of symplectic geometry have their corresponding “mi-
cro” versions.

Definition 2.3. A microsubmanifold [S,X] of a symplectic microfold [M, L] will
be called isotropic, lagrangian, or coisotropic if there are representatives of
[S] and [M ] which are isotropic, lagrangian or coisotropic, respectively.

The language of microfolds is useful to express local geometric properties; that
is, properties that are true for all neighborhoods of some submanifold. For in-
stance, the lagrangian embedding theorem can be phrased as follows.

Lagrangian Embedding Theorem. For any symplectic microfold [M, L], there
exists a symplectomorphism

[ΨM,L] : [M, L] −→ [T ∗L, L],(2.1)

above the identity.
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Actually, this theorem was first stated and proved using the language of local
manifold pairs and their equivalences (see [10]).

An important notion in symplectic geometry is that of a canonical relation;
i.e., a lagrangian submanifold V ⊂ M × N , where (M, ωM) and (N, ωN) are
symplectic manifolds and M is the symplectic manifold (M,−ωM). Canonical
relations are usually thought of as “generalized symplectomorphisms” and written
as V : M → N instead of V ⊂ M ×N . The rationale behind this is twofold: the
graph of a symplectomorphism is a canonical relation, and it is formally possible
to extend the composition of symplectomorphisms to canonical relations. Namely,
the composition of V ⊂ M ×N and W ⊂ N × P is the subset of M × P defined
by

W ◦ V = Red
((

V ×W
)
∩

(
M ×∆N × P

))

= Red
(
V ×N W

)
,

where Red is the “reduction” map that projects (m, n, n, p) to (m, p). The major
issue here is that composition of canonical relations is generally ill defined: W ◦V
may fail to be a submanifold, although, when it is, it is a lagrangian one1. There
is a well known criterion which limits the wildness of the composition and which
we will need later.
Theorem 2.4. The composition W ◦ V of the canonical relations V and W as
above is an immersed lagrangian submanifold of M×P if the submanifolds V ×W
and M ×∆N × P intersect cleanly.

Nevertheless, it is standard to think of symplectic manifolds and canonical
relations as a category. It is called the extended symplectic “category”2 and
will be denoted by Symplext. Many constructions in Sympl extend to Symplext.
For instance, we define the image of a point x ∈ M by a canonical relation
V ⊂ M ×N as the subset of N given by

V (x) := πN

(
V ∩

(
{x}×N

))
,(2.2)

where πN is the projection on the second factor of M ×N . The tangent relation
TV : TM → TN to a canonical relation V : M → N as the subset TV of
TM × TN given by the set of tangent vectors to V .

The notion of canonical relation between symplectic manifolds can be trans-
ported to symplectic microfolds.
Definition 2.5. A canonical relation ([V ], K) between the symplectic micro-
folds [M, A] and [N, B] is a lagrangian submicrofold ([V ], K) of [M ×N, A× B]
.
Note. We will often prefer the notation ([V ], K) for canonical relations and reserve
the notation [M, A] for symplectic microfolds in order to distinguish between
objects and morphisms. We will also use the arrow notation

(
[V ], K

)
: [M, A] −→ [N, B]

1This is a special instance of symplectic reduction. Namely, the submanifolds M ×∆N × P
and V ×W are respectively coisotropic and lagrangian in M ×N ×N × P . The composition
W ◦ V is exactly the quotient of V ×W by the characteristic foliation of M ×∆N × P . This
ensures that W ◦ V is a lagrangian submanifold whenever it is a submanifold.

2The quotes are there as a reminder that it is not really a category.
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to represent canonical relations between symplectic microfolds. We interpret the
core K as a submanifold of B × A and not as a submanifold of A× B. In other
words, we decide to regard the core as a generalized morphism from B to A. The
reason for this contraintuitive interpretation will become apparent later on.

The composition of canonical relations in the microworld

[M, A]
([V ],K)−→ [N, B]

([W ],L)−→ [P, C]

is given by the binary relation composition of their “components”

([W ], L) ◦ ([V ], K) := ([W ◦ V ], K ◦ L).(2.3)

At this point, we still have the same kind of ill defined composition for canonical
relations between symplectic microfolds as we had for symplectic manifolds. How-
ever, we may consider a special type of canonical relations between symplectic
microfolds that always compose well. This is what we do next.

3. Symplectic micromorphisms

3.1. Definitions. Our starting point is the cotangent lift T ∗φ of a diffeomor-
phism φ:

T ∗A
T ∗φ! T ∗B

A

πA

"
#

φ
B

πB

"

It induces a canonical relation of the form
(
[gr T ∗φ], gr φ

)
: [T ∗A, A] −→ [T ∗B, B].

The fact that the canonical relation
(
[gr T ∗φ], gr φ

)
comes from a map implies the

identities3

(
gr T ∗φ

)
(x) = φ−1(x),(3.1)

(
T gr T ∗φ

)
(v) =

(
Tφ

)−1
(v),(3.2)

for all x in the zero section of T ∗A and all tangent vectors v to the zero section of
T ∗A. Obviously, canonical relations coming from cotangent lifts compose well. It
turns out that the identities (3.1) and (3.2) are the key to this nice composability.
We therefore make the following definition.

Definition 3.1. A symplectic micromorphism is a canonical relation of the
form

(
[V ], gr φ

)
: [M, A] −→ [N, B],

3Note that, in general, the graph of a map f : X → Y , seen as a generalized morphism from
Y to X, satisfies

(
gr f

)
(y) = f−1(y), for y ∈ Y .
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where φ is a smooth map from B to A and such that there exists a representative
V ∈ [V ] for which

V (a) = φ−1(a), for all a ∈ A,(3.3)
TV (v) =

(
Tφ

)−1
(v), for all v ∈ TaA.(3.4)

where V (a) is the image of a under the relation V as defined by (2.2) and TV (v)
is the image of v under the tangent relation TV . We will usually write

(
[V ], φ

)

instead of
(
[V ], gr φ

)
.

The next Proposition gives various characterizations of symplectic micromor-
phisms. Recall that a submanifold X of a manifold M is transverse to a subbundle
λ → Y of TM → M along a submanifold Z ⊂ X ∩ Y if

TzX + λz = TzM, z ∈ Z.

In this case we write X !Z λ. In particular, a submanifold X is transverse to a
submanifold Y along Z ⊂ X ∩ Y if X is transverse to TY along Z; we write this
X !Z Y . A splitting of a symplectic microfold [M, A] is a lagrangian subbundle
K of the tangent bundle TM

∣∣
A

of M restricted to A such that, for all x ∈ A, we
have4 TxM = TxA⊕Kx (i.e. A is transverse to K along A).

Definition 3.2. A canonical relation of the form
(
[V ], φ

)
: [M, A] −→ [N, B]

is said to be transverse to a splitting K of [N, B] if there is a V ∈ [V ] such
that

V ∩ (A×N) = gr φ and V !gr φ

((
TA⊕ 0

)
×

(
0⊕K

))
.

In this case, we will abuse notation slightly and write

[V ] !gr φ

(
TA×K

)
.

If ([V ], φ) is transverse to all splittings, we will say that it is strongly transverse.

The following proposition offers alternative descriptions of symplectic micro-
morphisms in terms of transverse intersections as pictured below:

morph.{ps,eps} not found (or no BBox)

Proposition 3.3. Consider a canonical relation of the form
(
[V ], φ

)
: [M, A] −→ [N, B].

Then, the following statements are equivalent:
1. ([V ], φ) is a symplectic micromorphism,
2. ([V ], φ) is strongly transverse,
3. there is a V ∈ [V ] such that V ∩ (A×N) = gr φ is transverse.

4Note that we will sometimes abuse notation slightly by writing TxL instead of TxL⊕ 0 and
Lx instead of 0⊕ Lx.
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Proof. First step : 1 ⇒ 2. In general, we have that

V ∩ (A×N) =
⋃

a∈A

{a}× V (a),

which yields V ∩ (A×N) = gr φ, because of (3.3). Similarly, one obtains

TV ∩ (TA× TN) = gr Tφ

from (3.4). Now, for any splitting K of [N, B], we have that

TA×K ⊂ TA× TN,

and, therefore, that

TV ∩ (TA×K) =
(
TV ∩ (TA× TN)

)
∩ (TA×K)

= T gr φ ∩ (TA×K),

along gr φ. Since T gr φ ⊂ TA× TB and since TB ∩K = 0, we have that

(v, w) ∈ T gr φ ∩ (TA×K)

if and only if w = 0. By definition, we have that

T(φ(b),b) gr φ =
{
(Tbφ(w), w) : w ∈ TbB

}
,

and, therefore, we can conclude that

TV ∩ (TA×K) = 0

along gr φ. A dimension count yields

dim T(φ(b),b)V + dim(Tφ(b)A×Kb) = dim T(φ(b),b)(M ×N),

which completes the proof that TV intersects TA×K transversally along gr φ.
Second step : 2 ⇒ 3. First, note that the condition V ∩ (A×N) = gr φ is part

of both statements. Let K be a splitting of [N, B]. By hypothesis, we have that

TV + (TA×K) = T (M ×N)

along gr φ, which implies in particular that

TV + (TA× TN) = T (M ×N),

meaning that A ∩ (A×N) = gr φ is a transverse intersection.
Third step : 3 ⇒ 1. The fact that there exists V ∈ [V ] such that

V ∩ (A×N) = gr φ

implies (3.3). Namely, this gives immediately that

V ∩
(
{a}×N

)
= {a}× φ−1(a),

and, by definition of V (a) (see (2.2)), we obtain that V (a) = φ−1(a). Since the
intersection of V with A×N is transverse, it is also clean, i.e., we have that

TV ∩ (TA× TN) = gr Tφ.

Using this equation and the same argument as above, one obtains (3.4). "



SYMPLECTIC MICROGEOMETRY I: MICROMORPHISMS 10

In Step 1 of the proof of Proposition 3.3, we showed that if a canonical relation
([V ], φ) is a symplectic micromorphism then there exists V ∈ [V ], such that V
intersects A×N cleanly in gr φ:

V ∩ (A×N) = gr φ(3.5)
TV ∩ (TA× TN) = gr Tφ.(3.6)

In turn, we proved that that conditions (3.5) and (3.6) imply that ([V ], φ) is
strongly transverse. This makes conditions (3.5) and (3.6) equivalent to ([V ], φ)
being a symplectic micromorphism. Therefore, if we compare this with Statement
3 of Proposition 3.3, we see that clean intersection is enough. In Step 2, we see
that it is enough to have a single splitting K of [N, B] transverse to ([V ], φ)
to show that it is a symplectic micromorphism. We obtain thus the following,
apparently weaker, version of Proposition 3.3.

Corollary 3.4. Consider a canonical relation of the form
(
[V ], φ

)
: [M, A] −→ [N, B].

Then, the following statements are equivalent:
1. ([V ], φ) is a symplectic micromorphism,
2. ([V ], φ) is transverse to a splitting of [N, B].
3. there is a V ∈ [V ] such that V ∩ (A×N) = gr φ is clean.

3.2. Examples.

The unit symplectic microfold E. Let us denote by E the cotangent bundle of the
one point manifold5 {%}, which we regard as a symplectic microfold; i.e.,

E :=
[
T ∗{%},

{
(0, %)

}]
.

For any microsymplectic manifold [M, L], there is a unique symplectic micromor-
phism

e[M,L] : E −→ [M, L]

given by

e[M,L] : =
([
{(0, %)}× L

]
, prL

)
,

where prL is the unique map from L to {%}. On the other hand, symplectic
micromorphisms

ν : [M, L] −→ E

are in bijection with lagrangian submanifold germs [Vx] around a given point
x ∈ L that are transverse to L at x. Namely, the core map

core(ν) : {%} −→ L

is specified by the image x ∈ M of the unique point %; hence

ν =
(
[Vx], {x}

)
.

Conditions (3.3) and (3.4) read V ∩ L = {x} and TxV ∩ TxL = 0; i.e., such that
Vx and L are transverse.

5We may define {!} as the manifold containing only the singleton ! = {∅}.
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Cotangent lifts. Recall the standard identification

T ∗M × T ∗N , T ∗(M ×N)

via the “Schwartz transform” (see [1])

S
(
(p1, x1), (p2, x2)

)
=

(
(−p1, p2), (x1, x2)

)
.

For any smooth map φ : N → M , the transform of the conormal bundle

N∗(gr φ) ⊂ T ∗(M ×N)

is a symplectic micromorphism from [T ∗M, M ] to [T ∗N, N ] given by

T ∗φ :=
([
S−1

(
N∗(gr φ)

)]
, φ

)
.

We call it the cotangent lift of φ and denote it again by T ∗φ. Note that,
whenever φ is a diffeomorphism, we slightly abuse notation since in this case

T ∗φ =
([

gr T ∗φ], φ
)
.

Symplectomorphism germs. As in the macroworld, the graph

gr[Ψ] =
(
[gr Ψ], Ψ−1

|B
)

of symplectomorphism germ [Ψ] : [M, A] → [N, B] is a symplectic micromor-
phism: obviously, we have that

(gr Ψ) ∩ (A×N) = gr Ψ−1
B ,

(gr TΨ) ∩ (TA× TN) = gr TΨ−1
B .

The following proposition tells us that every symplectic micromorphisms whose
core map is a diffeomorphism is the graph of a symplectomorphism germ.

Proposition 3.5. If the core φ of a symplectic micromorphism

([V ], φ) : [M, A] → [N, B]

is a diffeomorphism, then there exists a symplectomorphism germ

[Ψ] : [M, A] → [N, B]

such that gr[Ψ] = ([V ], φ).

Proof. For each a ∈ A, we have that the intersection

V ∩
(
{a}×N

)
=

(
a, φ−1(a)

)

is transverse. We see this by counting the dimensions and by remarking that
tangent space intersection

T(a,φ−1(a))V ∩
(
{0}× Tφ−1(a)N

)

is contained in gr Tφ−1, which implies that this intersection must be zero since
(
{0}× Tφ−1(a)N

)
∩ gr Tφ−1 = {0}.

This transverse intersection guarantees that, for each a ∈ A, there is a neighbor-
hood Ka of

(
a, φ−1(a)

)
in M × N and a neighborhood Ua of a in M such that

the restriction of the first factor projection,

M ×N ⊃ V ∩Ka −→ Ua ⊂ M,
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is a diffeomorphism. Let us denote by ρa its inverse and set Ψa := πN ◦ ρa. By
construction, we have that

gr Ψa = V ∩Ka.

Since, for two overlapping neighborhoods Ua and Ua′ as above, the corresponding
maps Ψa and Ψa′ coincide on Ua ∩ Ua′ , we obtain a germ

[Ψ] : [M, A] −→ [N, B]

such that gr[Ψ] = ([V ], φ). Because [V ] is a lagrangian submanifold germ, [Ψ] is
a symplectomorphism germ. "

3.3. Composition. We now prove that the composition of symplectic micromor-
phisms

[M, A]

(
[V ], φ

)
! [N, B]

(
[W ], ψ

)
! [P, C].

is always well defined and that
(
[W ◦ V ], φ ◦ ψ

)
: [M, A] −→ [P, C]

is again a symplectic micromorphism. We first prove a cleanness result in order
to apply Theorem 2.4 to our micro setting.

Lemma 3.6. Let
(
[V ], φ

)
and

(
[W ], ψ

)
be symplectic micromorphisms as above.

For all V ∈ [V ] and W ∈ [W ], V ×W intersects M×∆N ×N transversally along
gr φ×B gr ψ.

Proof. We need to show that

T (V ×W ) + T (M ×∆M × P ) = T (M ×N ×N × P )

at all points

K(p) :=
(
φ ◦ ψ(p), ψ(p), ψ(p), p

)

in gr φ×B gr ψ. In the symplectic vector space

Tφ◦ψ(p)M × Tψ(p)N × Tψ(p)N × TpP

we have that

TK(p)(V ×W )⊥ = TK(p)(V ×W )

(Tφ◦ψ(p)M × T(ψ(p),ψ(p))∆N × TpP )⊥ = {0}× T(ψ(p),ψ(p))∆N × {0}.

Using the relation (A + B)⊥ = A⊥ ∩B⊥, which holds for any subspaces A and B
of a symplectic vector space, one sees that the transversality equation

TK(p)(V ×W ) + TK(p)(M ×∆M × P ) = TK(p)(M ×N ×N × P )

becomes equivalent to

TK(p)(V ×W ) ∩
(
{0}× T(ψ(p),ψ(p))∆N × {0}

)

︸ ︷︷ ︸
U

= {(0, 0, 0, 0)}.

We shall now prove that this last equation holds. By assumption, we have that
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T(φ◦ψ(p),ψ(p))V ∩
(
Tφ◦ψ(p)A× Tψ(p)N

)
= T(φ◦ψ(p),ψ(p)) gr φ(3.7)

T(ψ(p),p)W ∩
(
Tψ(p)B × TpP

)
= T(ψ(p),p) gr ψ.(3.8)

Moreover, we may rewrite U as

U =

(
T(φ◦ψ(p),ψ(p))V ∩

(
{0}× Tψ(p)N

))

︸ ︷︷ ︸
J

×Tψ(p)N

×Tψ(p)N

(
T(ψ(p),p)W ∩

(
Tψ(p)N × {0}

))

︸ ︷︷ ︸
L

Equation (3.7) tells us that J ⊂ Tφ◦ψ(p)A×Tψ(p)B. Using this and Equation (3.8),
we can then write

U =

(
T(φ◦ψ(p),ψ(p)) gr φ ∩

(
{0}× Tψ(p)B

))
×Tψ(p)N

×Tψ(p)N

(
T(ψ(p),p) gr ψ ∩

(
Tψ(p)B × {0}

))
.

Since

T(ψ(p),p) gr ψ =
{

(Tpψ(v), v) : v ∈ TpC
}

we see that

T(ψ(p),p) gr ψ ∩
(
Tψ(p)B × {0}

)
= {(0, 0)}

and finally, that U = {(0, 0, 0, 0)}, as desired. "
Proposition 3.7. The composition of two symplectic micromorphisms ([V ], φ)
and ([W ], ψ) via (2.3) is well defined and yields a symplectic micromorphism
again.

Proof. Lemma 3.6 together with a continuity argument yield that there is a neigh-
borhood U of gr φ×B gr ψ where V ×W and M ×∆N ×P still intersect transver-
sally. Therefore, the map

Red : (V ×N W ) ∩ U −→ M × P,

restricted to this neighborhood, is a immersion according to Theorem 2.4. At
this point, recall that a proper immersion i : X → Y that is injective on a closed
submanifold A ⊂ X is a embedding on a neighborhood of A. Since the maps φ
and ψ are smooth, gr φ×B gr ψ is closed. Moreover, on this submanifold, we have
that

Red

(((
φ ◦ ψ

)
(p), ψ(p), ψ(p), p

))
=

((
φ ◦ ψ

)
(p), p

)
,

meaning that Red maps gr φ ×B gr ψ diffeomorphically to gr(φ ◦ ψ). Therefore,
there is a neighborhood U of gr φ ×B gr ψ such that Red(U) is a lagrangian
submanifold containing gr(φ ◦ ψ). This proves that the lagrangian submanifold



SYMPLECTIC MICROGEOMETRY I: MICROMORPHISMS 14

germ ([W ◦ V ], φ ◦ ψ) is well defined. We need to show that it is a symplectic
micromorphism; i.e. conditions (3.5) and (3.6) hold. To begin with, notice that

W ◦ V ∩ (A× P ) = Red
((

V ∩ (A×N)
)
×N W

)
.

Now, since, by assumption, V ∩ (A×N) = gr φ ⊂ A×B, we see that

(
V ∩ (A×N)

)
×N W =

(
V ∩ (A×N)

)
×N

(
W ∩ (B × P )

)

= (gr φ)×B (gr ψ).

Therefore, we obtain (3.5) for W ◦ V , namely

W ◦ V ∩ (A× P ) = Red
(
(gr φ)×N (gr ψ)

)

= gr(φ ◦ ψ).

Set K(p) =
(
φ ◦ ψ(p), ψ(p), ψ(p), p

)
with p ∈ P . Realizing that

T(
φ◦ψ(p),p

)(W ◦ V ) = TK(p) Red

((
T(

φ◦ψ(p),ψ(p)
)V

)
×Tψ(p)N

(
T(

ψ(p),p
)W

))
,

a similar computation on the tangent space level yields (3.6) for W ◦ V . "

4. Symplectic categories

In this section, we reinterpret the results obtained so far in the language of
monoidal categories. We refer the reader to [6] for an exposition on monoidal
categories.

Notation. We will sometimes write C0 for the objects and C1 for the morphisms of
a category C. Accordingly, given a functor F : C → D, we denote by F0 : C0 → D0

the object component of F and by F1 : C1 → D1 its morphism component.

So far, we have seen that “symplectic categories” come in four flavors. In the
macroworld of symplectic manifolds we have:

• Sympl, the usual symplectic category of symplectic manifolds and sym-
plectomorphisms,

• Symplext, the extended symplectic “category”, where symplectomorphisms
are replaced by canonical relations, and which is not a category.

In the microworld of symplectic microfolds, we have:
• Symplmic, the microsymplectic category; i.e. the category of sym-

plectic microfolds and symplectomorphism germs,
• Symplext

mic, the extended microsymplectic category; i.e., the category
of symplectic microfolds and symplectic micromorphisms.

A major improvement in the microworld is that, this time, symplectic micro-
morphisms always compose. Hence, Symplext

mic is a category, which enlarges the
category Symplmic in the following precise sense:

Definition 4.1. A category D is said to be an enlargement of a category C
if there is a functor F : C → D such that F0 is a bijection and such that F1 is
injective and bijective on the isomorphisms; i.e.

Iso(x, y) , Iso
(
F0(x), F0(y)

)
,
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for all objects x, y ∈ C0. In this case, we also call the functor an enlargement.

Intuitively, enlarging a category means keeping the same objects while adding
morphisms that are not isomorphisms.

Clearly, the functor

Gr : Symplmic −→ Symplext
mic

that is the identity on objects and that takes a symplectomorphism germ to its
graph is an enlargement of categories.

The extended microsymplectic category is a symmetric monoidal category. The
tensor product of symplectic microfolds is simply given by

[M, A]⊗ [N, B] := [M ×N, A×B].

Given two symplectic micromorphisms

([Vi], φi) : [Mi, Ai] −→ [Ni, Bi], i = 1, 2,

we define their tensor product as

([V1], φ1)⊗ ([V2], φ2) :=

([(
idM1 ×εN1,M2 × idN2

)
(V1 × V2)

]
, φ1 × φ2

)
,

where εX,Y (x, y) = (y, x) is the usual factor permutation. The unit object E is
the cotangent bundle of the one-point manifold {%}. As shown in Section 3.2, E
is initial. The symmetry isomorphisms are given by

σ[M,A],[N,B] :=
([

gr εM,N

]
, εB,A

)
.

Note that the opposite symplectic manifold (M, ω) = (M,−ω) has its natural
micro version [M, L] := [M, L]. It is straightforward, although cumbersome, to
verify the following:

Theorem 4.2. (Symplext
mic,⊗, E, σ) is a symmetric monoidal category with ini-

tial unit E.

We conclude this section by commenting on the relationship between the ex-
tended microsymplectic category and the lagrangian operads introduced in [2, 3].

Definition 4.3. An operad is a collection {A(n)}n≥0 of sets together with com-
position laws

A(n)× A(k1)× · · ·× A(kn) −→ A(k1 + · · ·+ kn)

(F, G1, . . . , Gn) .−→ F (G1, . . . , Gn)

for each n, k1, . . . , kn ∈ N, satisfying the associativity equations
(
F (G1, . . . , Gn)

)
(H11, . . . , H1k1 , . . . Hn1, . . . , Hnkn) =

F
(
G1(H11, . . . , H1k1), . . . , Gn(Hn1, . . . , Hnkn)

)
,

and unit I ∈ A(1) such that F (I, . . . , I) = F for all F ∈ A.

For any object X in a monoidal category (C,⊗,E), one defines the endomor-
phism operad END(X) of X to be the collection

END(X)(n) = hom(X⊗n, X)



SYMPLECTIC MICROGEOMETRY I: MICROMORPHISMS 16

with the usual convention that X⊗n = E for n = 0. The composition laws are
given by the tensor product and the usual composition in the category:

F (G1, · · · , Gn) := F ◦ (G1 ⊗ · · ·⊗Gn).

The unit is the identity morphism idX ∈ hom(X, X).
Since Symplext

mic is a monoidal category, it makes sense to consider the endo-
morphism operad END([M, A]) of a symplectic microfold [M, A]. There are two
special operads sitting inside of it. First, the cotangent lifts of the n-diagonal
maps ∆n : A → An, n ≥ 1, form an operad

L∆([M, A])(n) :=
{
T ∗∆n

}
, n ≥ 1,

L∆([M, A])(0) :=
{
e[M,A]

}
,

thanks to the properties
T ∗∆1 = id[M,A]

∆k1+···+kn = ∆n ◦ (∆k1 × · · ·×∆kn)

T ∗∆n−1 = T ∗∆n ◦ (id[M,A]⊗ · · ·⊗ e[M,A] ⊗ · · ·⊗ id[M,A]).

Now, L∆([M, A]) sits in the suboperad L([M, A]) of END([M, A]) defined as fol-
lows. For n ≥ 1, L([M, A])(n) is the set of symplectic micromorphisms [M, A]⊗n →
[M, A] whose core map is the n-diagonal ∆n. For n = 0, we set L([M, A])(0) =
{e[M,A]}. Note that the first degree of this suboperad is interesting: L([M, A])(1)
is the group of symplectorphism germs [ψ] : [M, A] → [M, A] fixing A.

In [3], L∆([T ∗Rn, Rn]) was called the cotangent lagrangian operad over T ∗Rn

and L([T ∗Rn, Rn]) the local lagrangian operad over T ∗Rn. They were introduced
ad hoc in terms of generating functions of lagrangian submanifold germs.
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