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Abstract

The string bracket introduced by Chas and Sullivan is reinterpreted from the point of view
of topological field theories in the Batalin–Vilkovisky or BRST formalisms. Namely, topo-
logical action functionals for gauge fields (generalizing Chern–Simons and BF theories)
are considered together with generalized Wilson loops. The latter generate a (Poisson or
Gerstenhaber) algebra of functionals with values in the S1-equivariant cohomology of the
loop space of the manifold on which the theory is defined. It is proved that, in the case
of GL(n,

�
) with standard representation, the (Poisson or BV) bracket of two generalized

Wilson loops applied to two cycles is the same as the generalized Wilson loop applied to
the string bracket of the cycles. Generalizations to other groups are briefly described.
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1 Introduction

In this paper we study the “string homology” defined by Chas and Sullivan [1] (see also [2]) and
its algebraic structure from the cohomological point of view of topological field theory (TFT)
[3, 4]. String homology provides new topological invariants for general, oriented d-dimensional
manifolds without boundary. The topological field theory underlying our analysis is a genera-
lization of three-dimensional Chern-Simons theory, [5]. It can be defined over an arbitrary
differentiable, oriented, d-dimensional manifold, M , without boundary. Its formulation requires
the data of a Lie group G and a connection, A, on a principal G-bundle, P , over M .

In the main body of this paper we focus our attention on the example where G = GL(n, � ),
P is the trivial bundle, P = M × G, and where A is a flat connection on P . But, in the last
section of this paper, we sketch the necessary extensions of our arguments to cover more general
situations.

We shall study the classical version of our “topological field theory”; but a few remarks on
its quantization are contained in the last section.

Our topological field theory is constructed by making use of the Batalin-Vilkovisky forma-
lism or the BRST formalism, depending on whether d is odd or even; see e.g. [8]. For the
convenience of the reader we recall some key features of these formalisms.

The BV formalism has been invented as a tool to quantize field theories in the Lagrangian
formalism with a large (infinite) number of (infinitesimal) symmetries, for example gauge the-
ories. The space, C0, of classical field configurations of such a theory is first augmented by
introducing ghosts, and second by introducing antifields for fields and ghosts in equal num-
ber as the fields and the ghosts. The extended configuration space, C, thus obtained can be
viewed as an (odd-symplectic) supermanifold, the fields, ghosts and antifields for fields and
ghosts being local even or odd (Darboux) coordinates on it. The superfunctions on C form the
supercommutative algebra of “preobservables”, denoted by O. This algebra is equipped with a
natural � 2-grading, | · |, and is furnished by construction with a non-degenerate, odd bracket,
{·; ·},

{·; ·} : O ×O −→ O
( O1, O2 ) 7→ {O1;O2}

(1)

satisfying graded versions of antisymmetry, of the Leibnitz rule, and of the Jacobi identity.
This is equivalent to saying that (O, {·; ·}) is a Gerstenhaber algebra. Choosing local “Darboux
coordinates”, φa, φ†a, on C, for example interpreting the φa’s as “fields” (fields and ghosts) and
the φ†a’s as “antifields” (antifields for fields and ghosts),1 the bracket can be expressed as

{O1;O2} = O1

←

∂

∂φa

→

∂

∂φ†a
)2 −O1

←

∂

∂φ†a

→

∂

∂φa
O2 . (2)

In classical theory, one attempts to construct an action functional S of degree zero satisfying
the classical master equation

{S;S} = 0 . (3)

Such an action functional equips O with the structure of a differential algebra. The differential,
δ, is given by

δO = {S;O} (O ∈ O) . (4)
1φa and φ†

a
are assigned opposite Grassmann parity.
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Because the bracket is odd and |S| = 0,

|δO| = |O|+ 1 . (5)

The classical master equation for S and the graded Jacobi identity imply that δ is nilpotent,
i.e.,

δ2 = 0 . (6)

The cohomology of δ, H∗δ , is called the algebra of “observables” of the theory. Thanks to
the graded Leibnitz rule it is indeed an algebra. The master equation and the graded Jacobi
identity can be used to show that the bracket descends to cohomology, and H ∗δ thus has the
structure of a Gerstenhaber algebra.

The structure described above is well suited to formulate a topological field theory yielding
the cohomological version of the results of Chas and Sullivan, provided the dimension d of the
underlying manifold M is odd. When d is even we must actually follow the (Hamiltonian) BRST
formalism. The latter was developed to quantize theories with (first-class) constraints. The
classical phase space, C0, is augmented by introducing ghosts and antighosts in equal number.
The extended space, C, thus obtained can be considered as a supermanifold, the fields, ghosts
and antighosts being (even or odd) coordinates on it. The algebra, O, of preobservables is
defined to be the algebra of superfunctions on C. By construction, O is furnished with a non-
degenerate, even bracket. Thus the algebra O has the structure of a super-Poisson algebra. The
action S, now more appropriately called BRST generator, is odd (|S| = 1). The differential
δ on the algebra of preobservables is still defined by (4), it has degree 1 and is nilpotent.
The cohomology H∗δ of δ now has the structure of a super-Poisson algebra. (Observe that H 0

δ

describes the algebra of functions on the reduced phase space, but in general other cohomology
groups may be nontrivial, too.)

The Lagrangian BV formalism and Hamiltonian BRST (or BFV) formalism are related to
each other: after gauge fixing of the BV master action, which requires the elimination of the
antifields by expressing them as appropriate functions of the fields, one finds an action for
which the Legendre transformation to pass to the Hamiltonian formalism can be pursued; the
Hamiltonian so obtained has BRST symmetry, and the BRST generator can be constructed.
For more details we refer the reader to Appendix D, where the connection between the two
formalisms is illustrated for our topological field theory.

In this paper we start directly from an extended field space C and a master action (BRST
generator) S satisfying the classical master equation, see Section 2, without asking whether the
theory comes from a classical Lagrangian (or Hamiltonian) theory.

Field configurations of our theory are differential forms, C, on M with values in the tensor
product of a supercommutative algebra, E , with the metric 2 Lie algebra � of the Lie group G.
For simplicity, we suppose that the metric on � is given by the trace in a representation ρ0.
The forms C have total degree |C| = 1, where the mod 2 grading | · | takes account of both
the form degree and the E-degree. The space of field configurations, C, can be considered as a
supermanifold with a natural odd (even) bracket; this gives the space of (E-valued) superfunc-
tions, O, the structure of a Gerstenhaber (super-Poisson) algebra. The action functional, S, is

2A Lie algebra endowed with a non-degenerate, Ad-invariant inner product is called metric. In particular,
semi-simple Lie algebras with the Killing form are metric. But so are abelian Lie algebras with any non-
degenerate inner product.
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chosen to be the “Chern-Simons” action

S[C] =

∫

M

trρ0

[
1

2
CdAC +

1

3
C3

]
, (7)

where dA is the covariant exterior derivative (w.r.t. the flat connection A) over M . Of course,
in the integrand of (7) only the part of total form degree d contributes. It is not hard to show
that the action is even (odd), |S| = 0, (|S| = 1), and that it satisfies the master equation,
{S;S} = 0.

Observables of these theories can be constructed as follows. Let LM denote the space of
marked, parametrized loops in M . It carries an obvious circle action. String space, SM , is
defined as the quotient of LM by this circle action; see Section 3. From the connection A and
the forms C one can construct, using Chen’s iterated integrals (“Dyson series”), generalized

holonomies, holA(C), in a fairly obvious way explained in Section 4. The trace, hρ;A(C) =
trρholA(C), also called generalized Wilson loop, then defines a (generalized) preobservable with
values in E ⊗ Ω∗(SM), i.e., a differential form on SM whose components take values in a
supercommutative algebra E . If a represents a cycle in string homology, H∗M , as described in
[1], then one can pair a with hρ;A(C) by integration,

∫

a

hρ;A(C) . (8)

We shall see in Section 4 that
∫
a
hρ;A(C) is an observable of the theory, i.e., δ

∫
a
hρ;A(C) = 0,

for arbitrary [a] ∈ H∗M .
The main result of this paper, proven in Section 7, is the following theorem.

Theorem. Let G = GL(n, � ), n = 1, 2, 3, . . ., and let ρ denote its standard representation (as
matrices on � n). Let A be a flat connection on M ×G. Then

{∫

a

h;

∫

ā

h

}
=

∫

{a;ā}

h , (9)

where {a; ā} is the Chas-Sullivan bracket, see [1], defined on string homology, and h is a
shorthand notation for hρ;A(C). �

The definition of the Chas-Sullivan bracket on string homology and some of its properties are
explained in Section 5. The special role played by the groups GL(n, � ) is explained in Section
6. As sketched in Section 8, more general Lie groups can be accommodated by replacing the
string space by a “space of chord diagrams” on the manifold M . Section 8 also contains a
sketch of various other generalizations (e.g. to nontrivial principal G-bundles).
Acknowledgments.

B. P. thanks Carletto Rossi for useful discussions about generalized holonomies.
A. S. C. acknowledges a three-month invitation at Harvard University during the Fall Term

2001, and thanks Raoul Bott and David Kazhdan for stimulating discussions.
A. S. C. thanks partial support by SNF Grant No. 20-63821.00 .

2 A TFT with generalized gauge fields

In this section, we introduce the topological field theories described in the Introduction in a
mathematically precise fashion. We first describe the space of field configurations, then we
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introduce algebras of preobservables and define the bracket between two preobservables, and,
finally, we define an “action functional“ satisfying the classical master equation.

2.1 Field configurations

The field theory is defined over a differentiable, oriented, d-dimensional manifold M .
Let P = M ×G be a (for simplicity trivial) principal bundle over M with structure group

G. Denote by � the Lie algebra of G, by U � the corresponding universal enveloping algebra,
and by κ(·, ·) an invariant bilinear form on � , which, for notational simplicity, we suppose to
be given by the trace in some representation ρ0: κ(·, ·) = trρ0 [· ·].

Let A be a flat connection on P , i.e., A ∈ Ω1(M, � ) with dA+ 1
2
[A,A] = 0.

We require the following mathematical objects and concepts. A superalgebra X (over � ) is
an algebra furnished with a mod 2 grading | · |, such that, as a vector space, it has the structure
X = X0 ⊕X1, with |xi| = i for xi ∈ Xi, and such that |x1x2| = |x1| + |x2|. A superalgebra is
supercommutative if x1x2 = x2x1(−1)|x1||x2|.

Next, let E be a supercommutative algebra (e.g. the algebra of supernumbers [11]). A
superalgebraX is an E-bimodule if E acts onX from the left and the right, with εx = xε(−1)|x||ε|

and |εx| = |ε|+ |x|, for arbitrary ε ∈ E and x ∈ X. E is clearly an E-bimodule.
Any superalgebra X can be turned into an E-bimodule by considering XE = E ⊗ � X and

defining the grading |ε⊗ x| = |ε|+ |x|, the left action ε1(ε2 ⊗ x) = (ε1ε2)⊗ x, the right action
(ε2 ⊗ x)ε1 = (ε1ε2) ⊗ x(−1)|x||ε2|, and the product (ε1 ⊗ x1)(ε2 ⊗ x2) = ε1ε2 ⊗ x1x2(−1)|x1||ε2|.
For notational simplicity, one writes ε ≡ ε⊗ 1, x ≡ 1⊗ x and εx ≡ ε⊗ x.

Given two superalgebras X1 and X2 which are E-bimodules, one may define a tensor product
bimodule X1 · X2 = X1 ⊗E X2, which becomes a superalgebra by defining the grading as
|x1 ⊗ x2| = |x1| + |x2| and the product as (x1 ⊗ x2)(y1 ⊗ y2) = x1y1 ⊗ x2y2(−1)|x2||y1|. For
notational simplicity one writes x1 ≡ x1 ⊗ 1, x2 ≡ 1⊗ x2 and x1x2 ≡ x1 ⊗ x2. Clearly one has
that E ·X = X.

Let CG = Ω∗(M)E · � E . The space of field configurations is defined as

CG1 = {C ∈ CG||C| = 1} . (10)

We note that the components, Ca
µ1...µk

(x) ∈ E , of a field configuration C ∈ CG1 , are bosonic for
odd k and fermionic for even k; (a labels a basis in � ).

2.2 Preobservables

A generalized preobservable is a functional on the space of field configurations with values in a
superalgebra X which is also an E-bimodule; i.e., it is an element of

OG(X) ≡ Ω0(CG1 , X) (11)

OG(X) is clearly an E-bimodule, the grading being given by the grading on X. We shall not
indicate the group G if not necessary. The space of (ordinary) preobservables is O ≡ O(E).
Though not strictly necessary, the concept of generalized preobservables turns out to be very
convenient in the following.
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The (tensor) product of two preobservables is defined as a map from O(X1) × O(X2) to
O(X1 ·X2) in the obvious way.

2.3 Bracket between preobservables

We begin by defining the two operators

←

δ

δC
,

→

δ

δC
: O(X) −→ O(X · Ω∗(M)E · � E) (12)

as follows:

d

dt

∣∣∣∣
t=0

O(C + tη) =

∫

M

trρ0

[
η

→

δ

δC
O

]
= (−1)d(d+|O|)

∫

M

trρ0

[
O

←

δ

δC
η

]
, (13)

for O ∈ O(X) and arbitrary η ∈ C1. The signs are chosen in such a way that these two operators
act from the left/right as operators of degree d+ 1, i.e., such that the Leibnitz rules

→

δ

δC
(O1O2) = (

→

δ

δC
O1)O2 + (−1)|O1|(d+1)O1(

→

δ

δC
O2) , (14)

(O1O2)

←

δ

δC
= (−1)|O2|(d+1)(O1

←

δ

δC
)O2 +O1(O2

←

δ

δC
) (15)

hold. Moreover, one has
→

δ

δC
O = (−1)(d+1)|O|+1O

←

δ

δC
. (16)

Next, we define the bracket, {·; ·}, by

{·; ·} : O(X1)×O(X2) −→ O(X1 ·X2)

( O1, O2 ) 7→ {O1;O2} = (−1)|O1|d
∫
M

trρ0

[
O1

←

δ
δC

→

δ
δC
O2

] . (17)

The signs are chosen in such a way that, for d even, {·; ·} is an even bracket, while for d odd it
is an odd bracket. In fact, {·; ·} has the following properties:

(1) Antisymmetry,
{O1;O2} = −(−1)(|O1|+d)(|O2|+d){)2;O1} , (18)

a consequence of (16);

(2) Leibnitz rule

{O1;O2O3} = {O1;O2}O3 + (−1)|O2|(|O1|+d)O2{O1;O3} , (19)

a consequence of (14);

(3) Jacobi identity

{O1; {O2;O3}} = {{O1;O2};O3}+ (−1)(|O1|+d)(|O2|+d){O2; {O1;O3}} , (20)

which can be checked by using (16), (14) and the definition (17) .
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We observe that, for a manifold A, for multivector fields vi ∈ Ω∗(A) and for generalized
preobservables Oi ∈ O(Ω∗(A)E) the contraction (≡ infinitesimal integration of chains with given
orientation) can be understood as an operator, ιv acting from the left and of degree |v|, namely

ιv1{O1;O2} = {ιv1O1;O2} , ιv2{O1;O2} = (−1)|v2|(d+|O1|){O1; ιv2O2} . (21)

An explicit calculation on O reveals that

{Ca
µ1...µk

(x);Cb
µk+1...µd

(y)} = (−1)kδ(d)(x− y)κabεµ1...µkµk+1...µd
. (22)

2.4 BRST/BV generator and observables

We define an “action” functional, S, by

S[C] =

∫

M

trρ0

[
1

2
CdAC +

1

3
C3

]
∈ O . (23)

This functional has total degree d+1 and is constructed so as to satisfy the BV/BRST master
equation,

{S;S} = 0 . (24)

It is thus to be thought of as a classical master action in the Lagrangian formalism, for d odd,
or as a classical BRST generator in the Hamiltonian formalism, for d even. Being independent
of the choice of a metric on M , the field theoretical model is called topological 3. One can check
that, in a situation where M [d+1] = M [d]× � , d even, S [d] is the BRST generator corresponding
to S [d+1] after gauge fixing; (see Appendix D).

S defines an odd differential, δ, on the algebra of preobservables by

δ : O(X) −→ O(X)
O 7→ {S;O}

. (25)

We wish to mention another important property of S: The bracket between S and a field
component C is given by

{S;C} = (−1)d(dAC + C2) , (26)

or, more explicitly,
{S;Ca

µ1...µk
(x)} = (−1)d+k(dAC + C2)aµ1...µk

(x) (27)

This is a key equation for proving the fundamental identity (39), below.
The cohomology of δ, H∗δ , defines the algebra of generalized observables of the topological

field theory. Because of (19) and (20), respectively, product and bracket descend to cohomo-
logy; the generalized observables thus have the structure of

�
a super-Poisson algebra (even bracket), for d even,

�
a Gerstenhaber algebra (odd bracket), for d odd.

3There is a sigma-model construction of S and {·; ·}, obtained by considering the fields C as maps ΠTM −→
Π � (see [9]), where Π reverses the parity of the fiber in a vector bundle
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3 The String Space of a manifold

In this section we define the loop space of a manifold, and, subsequently, the string space as the
quotient of the former by a circle action. Moreover, we describe how to define local coordinates
on loop- and string space.

One may define the loop space of a manifold M as

LM = {γ(·) : S1 −→M, γ piecewise differentiable} . (28)

Observe that S1 has a marked point, 0, if we interpret S1 as � / � . Therefore a loop can be
thought of as a parametrized closed curve in M with a marked point and a tangent vector in
almost every point, the parameter t ranging from 0 to 1.

Let (xµ)µ=1...d be local coordinates on a coordinate patch U ⊂ M . Then (γµ(t))µ=1...d,t∈S1

are corresponding local coordinates on the patch LU ⊂ LM . (For loops which extend over
different patches, there is a similar construction of local coordinates; but it is not needed for
the purposes of this paper).

Loop space carries an obvious circle action

S1 × LM −→ LM
(s, γ(·)) 7−→ γ(·+ s)

. (29)

The string space, SM is defined as the quotient of LM by this action 4

S1 ↪→ LM
↓ πS1

SM
. (30)

A string can thus be thought of as a closed curve in M with a tangent vector in almost every
point.

Local coordinates on SM can be constructed by choosing a local section SM −→ LM
and then using local coordinates on LM ; see Figure 1. More precisely, let σ̃ ∈ SU ⊂ SM be a
nonconstant string and p a point on it such that ˙̃σ(p) 6= 0. Let ψ be a function on M defined in a
neighborhood of p such that ψ(p) = 0 and 〈 ˙̃σ(p); dψ(p)〉 6= 0. A local section sψ,p : SM −→ LM
in a neighborhood of σ̃ is uniquely defined by the requirement that ψ(sψ,p(σ̄)(t = 0)) = 0, for
any string σ̄ that is a sufficiently small deformation of σ̃. The functions (σµ(t))µ=1...d,t∈S1 ,
defined as σµ(t) = γµ(t) ◦ sψ,p, are then local coordinates on SM in a neighborhood of σ̃.

We denote by H∗M the string homology, properly defined as the S1-equivariant loop space
homology. We denote by d− the differential on both loop- and string space.

4 Generalized holonomies and Wilson loops

In this section we define generalized Wilson loops as generalized observables with values in string
cohomology. As such, they can be paired with cycles in string homology, yielding observables
of the topological field theory.

4The string space is a singular manifold, with singularities arising at the constant loops/strings, which are
fixed points of the circle action.
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sψ,p

σ̃

S1-action sψ,p(SM)

LM

SM
σ̄

γ̄

γ̃

M

M

γ̃

ψ ≡ 0

ψ ≡ 0

˙̃σ(p)

γ̄

σ̄

σ̃

p

Figure 1: Constructing local coordinates on SM .

We introduce standard simplices ∆n|
tf
ti

= {(t1, . . . , tn) ∈ � n |ti ≤ t1 ≤ . . . ≤ tn ≤ tf}, ∆n =

∆n|
1
0, and define the evaluation maps

evn,k : ∆n × LM −→ M
(t1, . . . , tn; γ) 7−→ γ(tk) 1 ≤ k ≤ n

(31)

The n-th order generalized parallel transporter is given by

holnA(C)|
tf
ti

=

∫

∆n|
tf
ti

(
holA|

t1
ti

ev∗n,1C holA|
t2
t1
. . . holA|

tn
tn−1

ev∗n,nC holA|
tf
tn

)
. (32)

In this definition the parallel transporter, holA|
tk+1

tk
= P exp

∫ tk+1

tk
ιγ̇(t)A, of the flat connection

A is a function ∆n × LM −→ U � E ; (P denotes path ordering). For an expression in local
coordinates, see Appendix C.

Thus,holnA|
tf
ti

is an element of O(Ω∗(LM)E ·U � E). We define generalized parallel transporters,

holA|
tf
ti

, by

holA(C)|
tf
ti

=

∞∑

n=0

holnA(C)|
tf
ti

, (33)

and generalized holonomies by
holA(C) = holA(C)|10 . (34)
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Furthermore, generalized “Wilson loops” in a representation ρ are defined by

hρ;A(C) = trρholA(C) . (35)

It is worth remarking that the degree of generalized parallel transporters and generalized Wilson
loops is zero, i.e.,

|holA| = |hρ;A| = 0 . (36)

Under a gauge transformation, g : M −→ G, one finds that

holA(C) = g−1holg(A+d)g−1(gCg−1)g , hρ;A(C) = hρ;g(A+d)g−1(gCg−1) . (37)

The tangent vectors, γ̇, that generate the circle action on LM define a section of TLM . The
contraction ιγ̇hρ;A clearly vanishes. Moreover, one finds [6] that

d−hρ;A =

∫ 1

0

dτ trρ
[
holA(C)|τ0 ιγ̇ev

∗
τ (dAC + C2) holA(C)|1τ

]
, (38)

where evτ : LM −→ M, γ 7−→ γ(τ). This implies that the Lie derivative Lγ̇hρ;A = ιγ̇d
−hρ;A

vanishes, too. The form hρ;A is thus horizontal and invariant with respect to the circle action,
and thus defines a form on string space.

Comparing (38) and (26), we find the fundamental identity [6][7]

((−1)dδ + d−)hρ;A = 0 , (39)

which implies that the trace of the generalized holonomy is an observable with values in string
cohomology 5,

hρ;A ∈ H
∗
δO(H∗M) , (40)

and, for a cycle a ∈ H∗M in string homology, the pairing

〈a, hρ;A〉 :=

∫

a

hρ;A ∈ H
∗
δO (41)

defines an observable.

5 The String Bracket

In this section we recall how to define a bracket

{·; ·} : H∗M ×H∗M −→ H∗M (42)

on string homology. This definition is taken from the article of Chas and Sullivan [1], but we
give a slightly simplified exposition.

Define SM× ⊂ SM × SM as the space of pairs of strings which intersect transversally at
at least one point. This space is a cycle of codimension d− 2, with n− 1-fold self intersections

5There are no problems connected with the singularities of string space, since the form vanishes at constant
strings.
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when the two strings intersect n times. We propose to construct the current corresponding to
SM×. The d-form

ω× = δ(x1 − x̄1) . . . δ(xd − x̄d)(dx1 − dx̄1) . . . (dxd − dx̄d) ∈ Ωd(M ×M) (43)

is the current for the diagonal in M ×M . We define

C× =

∫

S1×S̄1

(ev∗1,1 × ēv∗1,1)ω
× , (44)

which is a (d − 2)-current on LM × LM . It is closed, since ω× is closed, and the integration
domain, S1 × S̄1, in the above formula has no boundaries. In local coordinates, it reads

C× =
d−1∑

k=1

(−1)d+1

(k − 1)!(d− k − 1)!

∫ s=1

s=0

ds

∫ s̄=1

s̄=0

ds̄ δ(d)(γ(s)− γ̄(s̄)) εν1ν2...νkν̄k+1ν̄k+2...ν̄d

γ̇ν1(s)d−γν2(s) . . . d−γνk(s) ˙̄γ
ν̄k+1(s̄)d−γ̄ν̄k+2(s̄) . . . d−γ̄ν̄d(s̄) . (45)

From this expression it is easy to see that it is horizontal, and thus also invariant with respect
to the two circle actions on the two factors of LM × LM . Hence, C× defines a closed (d− 2)-
current on SM ×SM . Let (σ, σ̄) be a point in SM×, with p the (single) intersection point. In
suitable coordinates on M σ̇(p) = ∂1(p) and ˙̄σ(p) = ∂d(p). We define local coordinates on SM
using ψ(·) = x1(·) − x1(p) and ψ̄(·) = xd(·) − xd(p), as explained in Section 3. At (σ, σ̄), we
then find the local expression

C×(σ,σ̄) =
∑d−1

k=1
(−1)k

(k−1)!(d−k−1)!
ε1ν2...νkν̄k+1...ν̄d−1d

d−σν2(0) . . . d−σνk(0)d−σ̄ν̄k+1(0) . . . d−σ̄ν̄d−1(0)
δ(σ2(0)− σ̄2(0)) . . . δ(σd−1(0)− σ̄d−1(0)) .

(46)

We must check that this is the current corresponding to SM×; (see Appendix A).

(a) C× is localized on SM×, since, as one can see from (45), it vanishes when the two strings
do not intersect.

(b) A tangent vector, v + v̄, at (σ, σ̄) is parallel to SM× iff there exist real numbers α and ᾱ
such that

v(0) + ασ̇(0) = v̄(0) + ᾱ ˙̄σ(0) . (47)

A simple calculation shows that C× is transverse to SM×, i.e., for all vectors π = v + v̄
fulfilling (47), one has

ιπC
×
(σ,σ̄) = 0 . (48)

(c) Comparing (46) to equation (99) in Appendix A, we see that the regular part of C× at
(σ, σ̄) is given by

�

C×(σ,σ̄) =
∑d−1

k=1
(−1)k

(k−1)!(d−k−1)!
ε1ν2...νkν̄k+1...ν̄d−1d

d−σν2(0) . . . d−σνk(0)d−σ̄ν̄k+1(0̄) . . . d−σ̄ν̄d−1(0) ,
(49)
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and the localization functions are given by

f1 = σ2(0)− σ̄2(0) . . . fd−2 = σd−1(0)− σ̄d−1(0) . (50)

It is easy to see that at (σ, σ̄)

∣∣∣〈 · ;
�

C×(σ,σ̄)〉
∣∣∣ =

∣∣〈 · ; d−(σ2(0)− σ̄2(0)) . . . d−(σd−1(0)− σ̄d−1(0))〉
∣∣ . (51)

Let
Φ : SM× −→ SM (52)

be the map that associates to two intersecting strings their concatenation, with an appropriate
scaling of the velocity vectors, as shown in Figure 2. This map is nearly everywhere well-defined,
namely on pairs of strings with one self-intersection, but n-valued when the two strings intersect
n times.

The string bracket is defined on string homology by 6 (see also Figure 3)

{·; ·} : HiM ×HīM −→ Hi+ī+2−dM

(a, ā) 7−→ {a; ā} = (−1)ī(d+i)Φ ((a× ā) ∩C× SM
×)

. (53)

The rôle of C× is to orient the cycle obtained by intersecting an appropriately transversal
representative a × ā with SM×; see Appendix A. The sign factor appearing in (53) is chosen
in such a way that the bracket is even, for even d, and odd, for odd d; in fact, it then satisfies:

(1) Antisymmetry

{a; ā} = −(−1)(|a|+d)(|ā|+d){ā; a} , (54)

as can be checked by exchanging the factors in (53), and using Ex∗C× = (−1)1+dC×, with
Ex the map that permutes the factors in SM × SM .

6Our definition differs from that described by Chas and Sullivan by a sign given by {a; ā} = {ā; a}Chas−Sullivan.

12



Φ

SM× SM × SM
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Φ((a× ā) ∩ SM×)

a× ā

Figure 3: The definition of the string bracket.
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(2) Jacobi identity

{a; {b; c}} = {{a; b}; c}+ (−1)(|a|+d)(|b|+d){b; {a; c}} , (55)

(see Appendix B for a proof).

Here the degree | · | of a cycle is its dimension.
Consider the symmetric algebra S(H∗M) over H∗M , with the grading given by | · |. Ex-

tending the bracket as a superderivation, namely in such a way that the

(3) Leibnitz rule

{a, bc} = {a, b}c+ (−1)|b|(|a|+d)b{a, c} (56)

is fulfilled, one finds that S(H∗M) is
�

a super-Poisson algebra (even bracket), for d even,
�

a Gerstenhaber algebra (odd bracket), for d odd.

6 A peculiarity of GL(n,
�

)

In this section we highlight a property of GL(n, � ) which will be needed in Section 7.

Let G = GL(n, � ), and let ρ denote its standard representation. We define an invariant bilinear
form κ as the trace in this representation:

κab = κ(Ta, Tb) = tr [ρ(Ta)ρ(Tb)] . (57)

It then follows that (
κabρ(Ta)⊗ ρ(Tb)

)
v ⊗ w = w ⊗ v , (58)

where v and w are vectors in the representation space of ρ. In components with respect to a
basis in this space the above identity reads

(
κabρ(Ta)

r
p ⊗ ρ(Tb)

s
q

)
= δrqδ

p
s . (59)

To prove this identity, we define a basis {Eij|i, j = 1..n} of ��� (n, � ) by setting ρ(Eij)
r
s = δri δjs.

For this basis, one finds that κ(Eij, Ekl) = δilδjk. Equation (59) then follows immediately.
In the following, expressions of the form

trρ [A1TaA2] κ
abtrρ [B1TbB2] (60)

will appear, where ρ is a representation of G, {Ta} is a basis of � , and A., B. are elements of
U � . For G = GL(n, � ) and ρ the standard representation, such expressions can be simplified
using (59), as pictorially represented in Figure 4:

trρ [A1TaA2] κ
abtrρ [B1TbB2] = trρ [A1B2B1A2] . (61)
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7 An algebra homomorphism from S(H∗M) to H∗δO

In this section we show that the map

Sh : S(H∗M) 7−→ H∗δO
a1 . . . ak 7−→ 〈a1, hρ;A〉 . . . 〈ak, hρ;A〉

, (62)

which associates to a cycle in string homology the corresponding observable of the topolog-
ical field theory, based on the group GL(n, � ) in the standard representation, is a super-
Poisson/Gerstenhaber algebra homomorphism. This is accomplished by establishing the fol-
lowing properties:

i) |a| = |〈a, hρ;A〉| , (63)

ii) 〈{a; ā}, hρ;A〉 = {〈a, hρ;A〉; 〈ā, hρ;A〉} . (64)

Property i) follows from (36). Property ii), is proven in several steps:
Step 1
Applying (21), one finds that

{〈a, h〉; 〈ā, h̄〉} = (−1)|ā|(d+|a|)〈a× ā, {h; h̄}〉 . (65)

Step 2
We derive a local expression for {h, h̄} on LU × LU . First one verifies that

d
dt

∣∣
t=0

h(C + tη) =

=
∑d

k=0

∫ s=1

s=0
tr

[
hol(C)|s0

1
(k−1)!

γ̇µ1(s)dsd−γµ2(s) . . . d−γµk(s)ηµ1µ2...µk
(γ(s)) hol(C)|1s

]
.

(66)

Using (13), one finds the local expressions for
→

δ
δC

h, h
←

δ
δC
∈ O(Ω∗(LM)E ·ME · U � E), namely

→

δ

δC
h =

d∑

k=1

(−1)(k+1)(d+1)

(k − 1)!(d− k)!

∫ s=1

s=0

ds δ(d)(γ(s)− x)εν1ν2...νkµk+1...µd

dxµk+1 . . . dxµd γ̇ν1(s)d−γν2(s) . . . d−γνk(s)

tr
[
hol(C)|s0 Ta hol(C)|1s

]
⊗ κabTb , (67)
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and

h

←

δ

δC
=

d−1∑

k=0

(−1)

(k)!(d− k − 1)!

∫ s=1

s=0

ds δ(d)(γ(s)− x)εµ1...µkνk+1νk+2...νd

dxµ1 . . . dxµk γ̇νk+1(s)d−γνk+2(s) . . . d−γνd(s)

tr
[
hol(C)|s0 Ta hol(C)|1s

]
⊗ κabTb . (68)

Equation (17) yields the local expression for {h; h̄} ∈ O(Ω∗(LM × LM)E)

{h; h̄} =

d−1∑

k=1

(−1)d+1

(k − 1)!(d− k − 1)!

∫ s=1

s=0

ds

∫ s̄=1

s̄=0

ds̄ δ(d)(γ(s)− γ̄(s̄)) εν1ν2...νkν̄k+1ν̄k+2...ν̄d

γ̇ν1(s)d−γν2(s) . . . d−γνk(s) ˙̄γ
ν̄k+1(s̄)d−γ̄ν̄k+2(s̄) . . . d−γ̄ν̄d(s̄)

tr
[
hol|s0 Ta hol|1s

]
κabtr

[
h̄ol

∣∣s̄
0
Tb h̄ol

∣∣1
s̄

]
. (69)

We see that the latter can be written using the current C×, i.e.

{h; h̄} = C× · tr
[
hol|s0 Ta hol|1s

]
κabtr

[
h̄ol

∣∣s̄
0
Tb h̄ol

∣∣1
s̄

]
, (70)

which, for G = GL(n, � ) in the standard representation, is equal to

{h; h̄} = C× · H , (71)

where
H = tr

[
hol|s0 h̄ol

∣∣1
s̄

h̄ol
∣∣s̄
0

hol|1s

]
; (72)

see (61).
Step 3
{h; h̄} defines a form on SM × SM . From (71) and (103) one finds that

〈a× ā, {h; h̄}〉 = 〈a× ā, C× · H〉 = 〈(a× ā) ∩C× SM
×,H〉 . (73)

Moreover, one has that

〈{a; ā}, h〉 = (−1)|ā|(d+|a|)〈Φ
(
(a× ā) ∩C× SM

×
)
, h〉 . (74)

Thus, to prove (64), we simply have to show that

〈(a× ā) ∩C× SM
×,H〉 = 〈Φ

(
(a× ā) ∩C× SM

×
)
, h〉 , (75)

which holds, as described in (104), if

〈Π, tr
[
hol|s0 h̄ol

∣∣1
s̄

h̄ol
∣∣s̄
0

hol|1s

]
〉(σ,σ̄) = 〈Φ∗Π, h〉Φ(σ,σ̄) (76)

for any (σ, σ̄) ∈ SM× and any parallel multivector Π ∈ Λ∗T(σ,σ̄)SM
×. The validity of the latter

follows immediately from the reparametrization invariance of hol. The theorem is thus proven.
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8 Outlook

In this section we outline various extensions and generalizations of the results proven in this
paper.

8.1 Generalizations to other groups

We start by describing some ideas about how to generalize the results of this article by replacing
GL(n, � ) with an arbitrary Lie group. Inspiration is taken from [10].

A chord diagram (see Figure 5) is a union of disjoint oriented S1-circles and disjoint arcs,
with the endpoints of the arcs on the circles. A chord diagram on a manifold M (see Figure
5) is a (continuous) map from a chord diagram to M such that each arc is mapped to a single
point in M (that is, each arc is mapped to an intersection of strings in M), modulo the obvious
action of S1 on any circle. Let ch(M) be the space of chord diagrams on M . It can be viewed
as a “manifold” with singularities when a circle is mapped to a single point (just like for SM),
and boundaries when two different crossings between circles approach one another along one of
the circles (see Figure 6).
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Figure 5: A chord diagram on M .

r r-

Figure 6: Approaching a boundary on ch(M) .
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Figure 7: 4T -relations.

One then defines a boundary operator, ∂ch(M) on cells in ch(M) in such a way that the so
called 4T -relation, represented in Figure 7, is respected.

The chord homology Hch
∗ M is the homology of ch(M) with respect to ∂ch(M).

In analogy to SM× ⊂ SM×SM one defines ch(M)× ⊂ ch(M)×ch(M) as the space of pairs
of chord diagrams on M whose strings intersect at least once. Similarly to Φ : SM× −→ SM
one defines the (generally multivalued) map

Φch : ch(M)× −→ ch(M) , (77)

which associates to a pair of chord diagrams on M with one intersection point the union of the
two chord diagrams with a new arc corresponding to the intersection (and in an analogous way
for multiple intersection points).

As in equation (53), one defines a bracket

{·; ·} : Hch
i M ×H

ch
ī
M −→ Hch

i+ī+2−dM

(a, ā) 7−→ (−1)ī(i+d)Φch((a× ā) ∩C× ch(M)×)
, (78)

which is a bracket/antibracket for d even/odd; the current C× on ch(M)× can be constructed
in a similar way as in section 5.

Similarly to S(H∗M), it is possible to define a super-Poisson/Gerstenhaber algebra S(Hch
∗ M).

In analogy to (62), we define a map

S(hch,G) : S(Hch
∗ M

G) 7−→ H∗δO
G

a1 . . . ak 7−→ 〈a1, h
ch〉 . . . 〈ak, h

ch〉
, (79)

where Hch
∗ M

G denotes the homology of chord diagrams with circles labeled by representations
of G. The form hch is defined as explained in Figure 8.

The map (79) is a super-Poisson-/Gerstenhaber algebra homomorphism. This can be proved
by the same reasoning as that in Section 7 and in [10].

The content of [10] concerns the special case of the above construction for manifolds M of
dimension d = 2 and for Hch

0 M ⊂ H
ch
∗ M .

The symmetric algebra on string homology, S(H∗M), is obtained by taking the quotient of
S(Hch

∗ M) by the ideal I generated by the diagrams of Figure 9.
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Figure 9: The “GL(n, � )”-ideal I.

One then sees that the following diagram is commutative:

S(Hch
∗ M)

S(H∗M)
?

πI

-

���������*

S(hch,GL(n,
�
))

H∗δO
GL(n,

�
)

8.2 Generalization to nontrivial principal bundles

In this subsection we explain how to extend methods and results of this paper to the situation
where P is a non-trivial bundle with base space M and thus not necessarily admits a flat
connection.
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A principal bundle is determined by its “transition functions”

tij : Ui ∩ Uj −→ G (80)

defined on intersections of two coordinate patches of M , and with the property that

tijtjk = tik on Ui ∩ Uj ∩ Uk . (81)

Two sets of transition functions t, t̃ describe the same bundle iff there exist “gauge transforma-
tions”

gi : Ui −→ G (82)

such that
tij = git̃ijg

−1
j , on Ui ∩ Uj . (83)

A connection on P associates to every patch a � -valued one-form

Ai ∈ Ω1(Ui)⊗ � , (84)

such that
Ai = tijAjt

−1
ij + tijdt

−1
ij on Ui ∩ Uj . (85)

The curvature, F , of the connection A is given, on every patch, by a � -valued two-form

Fi = dAi +
1

2
[Ai, Ai] ∈ Ω2(Ui)⊗ � , (86)

such that
Fi = tijFjt

−1
ij , on Ui ∩ Uj . (87)

The forms C are � E -valued forms. On every coordinate patch, C is given by

Ci ∈ Ω∗(Ui)⊗ � E , (88)

with the property that
Ci = tijCjt

−1
ij , on Ui ∩ Uj . (89)

A principal bundle is trivial iff one can choose trivial transition functions: tij = 1, for all Ui, Uj,
with Ui ∩ Uj 6= ∅. The connection, the curvature and the forms C are then globally defined on
M .

We now turn our attention to the master action and the bracket of the topological field
theory. The forms on the patches

si = trρ

[
Ci(Fi +

1

2
dAi

Ci +
1

3
C2
i )

]
∈ Ω∗(Ui)E (90)

satisfy si = sj on Ui ∩ Uj, and thus yield a globally defined form s on M . We may therefore
define a master action, S, by

S =

∫

M

s =

∫

M

trρ

[
C(F +

1

2
dAC +

1

3
C2)

]
∈ Ω∗(M)E . (91)
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The bracket is well defined, since one has

{Ci;Ci} = {Cj;Cj} , (92)

a consequence of the invariance of the bilinear form κ under the adjoint action of G on � . The
master action still satisfies the master equation {S;S} = 0. Furthermore,

{S;Ci} = δCi = (−1)d(Fi + dAi
Ci + C2

i ) . (93)

We now address the task of defining generalized parallel transporters and generalized Wilson
loops. They can be defined as elements of Λ∗TγLM , for each loop γ ∈ LM . Let 0 = t0 < t1 <
. . . < tk−1 < tk = 1, and let U1, . . . , Uk = U1 be patches on M such that γ(t) ∈ Ui, for
t ∈ [ti−1, ti]. One then defines the trace the generalized Wilson loop as

hρ;A(C) = trρ

[
holA1(C1)|

t1
0 t12 holA2(C2)|

t2
t1
. . . holAk−1

(Ck−1)
∣∣tk−1

tk−2
tk−1,k holAk

(Ck)|
1
tk−1

]
. (94)

The factors holAi
(Ci)|

ti
ti−1

are defined as in (33). It is easy to see that this definition does not
depend on the choice of the charts and is invariant under gauge transformations. One then
shows that

d−hρ;A =

∫ 1

0

dτ trρ
[
holA(C)|τ0 ιγ̇ev

∗
τ (F + dAC + C2) holA(C)|1τ

]
, (95)

where the τ -integral has to be split, as in (94), if the loop crosses different patches. Comparing
(94) and (93), one finds that the fundamental identity (39) is fulfilled:

((−1)dδ + d−)hρ;A = 0 . (96)

8.3 Remarks on quantization

The construction we have described in this paper yields, in the case of an even-dimensional
manifold M , a Poisson algebra of observables (related to the string topology of M if we choose
GL(n) as our Lie group). It is then natural to ask if and how this Poisson algebra may be
quantized. We sketch in this Section a few approaches that might help understanding this
problem.

8.3.1 Path-integral quantization

If d = dimM is even, our approach describes the BRST formalism for a field theory in the
Hamiltonian formalism with the functional S [d] as the BRST generator. If we want to quantize
this theory using path-integrals, we must first move to the Lagrangian formalism. As explained
in Appendix D, the corresponding action functional on N = M × I is S [d+1].

In the case d = 2, this is the BV action for Chern–Simons theory, and this is in accordance
with the fact that Chern–Simons theory provides a quantization of the Goldman [12] bracket
(the 2-dimensional version of the string bracket), see [13]. In higher dimensions, S [d+1] defines
new topological quantum field theories (TQFT), among which we have the so-called BF theories
[3, 4] which can be obtained by particular choices of the metric Lie algebra.
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Our observables for strings on M have then to be lifted to the corresponding observables on
N = M × I (or, more generally, on a (d+ 1)-dimensional manifold N). The formulae we have
given in odd dimensions describe this algebra of observables. Notice however that, in order
to avoid singularities in the computation of expectation values, one has to restrict oneself to
imbedded strings in N (and possibly also to introduce a framing). In the particular case of BF
theories, the expectation values of these observables correspond to the cohomology classes of
imbedded strings considered in [14], as shown in [6, 7]. As a consequence, the quantization of
the string topology of M must be related to the homology of the space of imbedded strings in
M × I. This space must then be endowed with the structure of associative algebra in such a
way that its commutator yields, in the classical limit, the Poisson bracket of the projections of
the strings to M .

8.3.2 Deformation quantization

For d = 2 and M non-compact, the ideas described above have an explicit realization in terms of
deformation quantization (i.e., working with formal power series in

�
), as described in [13]. The

construction is based on the Kontsevich integral for link invariants [15] which is the perturbative
formulation of Chern–Simons theory in the holomorphic gauge studied in [16].

The higher-dimensional generalization of this approach should be obtained by considering
perturbative expansions, in a suitable gauge, of the corresponding TQFTs.

8.3.3 Geometric quantization

In some cases (e.g., BF theories), the Poisson subalgebra of functionals commuting with S [d]

is the algebra of a reduced phase space of generalized gauge fields on M . This space inherits
a symplectic structure and one may try to quantize it using deformation quantization and
produce a TQFT in Atiyah’s sense. In the 2-dimensional case, when the reduced phase space
turns out to be the space of flat connections on M modulo gauge transformations, this program
works (at least for compact groups). One may regard quantum groups as one of its outcomes.
It would be very interesting to understand if the higher-dimensional case produces interesting
generalizations thereof.

A Intersection of cycles and currents

In this section we explain some concepts and manipulations used in the proof of eq. (64) in
Section 7.

Let A be a manifold and A× an oriented immersion of codimension n, which defines an
element of the homology, H∗A, of A. Let C× be the current that localizes on this immersion,
i.e., a singular n-form on A with the following properties:

(a) The form localizes on A×, i.e. for any point p not in A× one has

C×p = 0 . (97)
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(b) The form is transverse, i.e., for every point p on A× and an arbitrary parallel tangent
vector P (p) ∈ TpA

× one has
ιP (p)C

×
p = 0 . (98)

(c) Let A× be defined, locally, as the zero-set of functions f1, . . . , fn, with df1 . . . dfn 6= 0.
Then the current C× is given by

C× = Ĉ×δ(f1) . . . δ(fn) , (99)

where Ĉ× is a regular form, and for every point p in A× and every multivector V ∈ TpA,

∣∣∣〈V, Ĉ×〉
∣∣∣ = |〈V, df1 . . . dfn〉| . (100)

In particular, C× defines an orientation on the normal bundle, N(A×), of A× in A. Given an
i-cycle a ∈ Hi(A), one can define a new cycle by considering the intersection

a ∩C× A
× ∈ Hi−n(A) . (101)

As a set, it is obtained by intersecting an appropriate representative of a with A×. The
orientation is defined as follows: Let p be a point in this intersection, P ∈ Λi−nTp(a ∩ A

×) the
multivector that is the infinitesimal version at p of a ∩ A×, T ∈ ΛnTpa the multivector in the
normal bundle to A× such that T ∧ P is the infinitesimal version of a at p. Then one defines

ora∩
C×

A×(P ) = ora(T ∧ P ) · orN(A×)(T ) , (102)

where orN(A×) is given by the current C×.
For any closed form H on A, one has that

〈a, C×H〉 = 〈a ∩C× A
×, H〉 . (103)

Next, let Φ be a map from A× into some other manifold B, and h a closed form on B. If for
an arbitrary point p in A× and any parallel multivector P ∈ Λ∗TpA

×, one has that

〈P,H〉p = 〈Φ∗P, h〉Φ(p) , (104)

then
〈a ∩C× A

×, H〉 = 〈Φ(a ∩C× A
×), h〉 . (105)

B The Jacobi identity for the string bracket

In this appendix we show how to prove the Jacobi identity for the string bracket of section 5.
We first rewrite the Jacobi identity as

(−1)η(abc){{a; b}; c}+ cycl.(abc) = 0 , (106)
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where the sign factor is η(abc) = (|a|+ d)(|c|+ d). We can define the first term as

(−1)η(abc){{a; b}; c} =

= (−1)η(abc)+σ(abc)
[
Φ(1,23)

((
a(1) × b(2) × c(3)

)
∩C×(12)∧C×(13)

(
SM×(12) ∩ SM×(13)

))
+

+Φ(2,13)
(
(a1 × b2 × c3) ∩C×(12)∧C×(23)

(
SM×(12) ∩ SM×(23)

))]
.

(107)

Let us first explain the objects that appear in the above definition. The sign factor is σ(abc) =
(|b|(d+ |a|) + |c|(|a|+ |b|), which follows from the definition of the string bracket, (53). a(1) ×
b(2) × c(3) is a cycle in SM (1) × SM (2) × SM (3). A point in SM×(ij) is a triple of strings,
(σ1, σ2, σ3) ∈ SM

(1) × SM (2) × SM (3), such that the i-th and the j-th intersect at least once.
C×(ij) is the corresponding current. Φ(i,jk) is the map

Φ(i,jk) : SM×(ij) ∩ SM×(ik) −→ SM× (108)

which opens the intersections between the i-th and the j-th and between the the i-th and the
k-th string, in the same way as the map Φ in (52) does.

Now consider the two terms appearing in (106) corresponding to the cycle a intersecting
both the cycles b and c. The first term corresponds to the first term in (107). The second one
appears in (−1)η(cab){{c; a}; b} and reads

(−1)η(cab)+σ(cab)

Φ(2,13)
((
c(1) × a(2) × b(3)

)
∩C×(12)∧C×(23)

(
SM×(12) ∩ SM×(23)

)) . (109)

To prove that the Jacobi identity holds, we only have to prove that two such terms add up to
zero.

We first write the second term, rearranging the indices and bringing the cycles into a
convenient order, i.e.,

(−1)η(cab)+σ(cab)(−1)|c|(|a|+|b|)

Φ(1,32)
((
a(1) × b(2) × c(3)

)
∩C×(31)∧C×(12)

(
SM×(12) ∩ SM×(23)

))
;

(110)

then we bring the currents into a convenient form

(−1)η(cab)+σ(cab) + (−1)|c|(|a|+|b|)+1

Φ(1,23)
((
a(1) × b(2) × c(3)

)
∩C×(12)∧C×(13)

(
SM×(12) ∩ SM×(23)

))
,

(111)

using that |C×(ij)| = d and C×(ij) = (−1)d+1C×(ji). What remains to be shown is thus that

η(abc) + σ(abc) + η(cab) + σ(cab) + |c|(|a|+ |b|) + 1
!
= 1 , (112)

which is easily seen to hold.
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C Local expression for the generalized

parallel transporters

In local coordinates (γµ(t))t∈S1 the generalized holonomy reads

holnA(C)|
tf
ti

=
∑∞

n1,...,nn=1

∫
(t1 ,...,tn)∈∆n|

tf
ti

holA|
t1
ti
γ̇µ

1
1(t1)dt1d

−γµ
1
2(t1) . . . d

−γµ
1
n1 (t1)Cµ1

1µ
1
2...µ

1
n1

(γ(t1)) holA|
t2
t1

. . .

holA|
tn
tn−1

γ̇µ
n
1 (tn)dtnd

−γµ
n
2 (tn) . . . d

−γµ
n
nn (tn)Cµn

1 µ
n
2 ...µ

n
nn

(γ(tn)) holA|
tf
tn

,

(113)
where d− is the differential on LM .

D BV/BRST

In this Appendix we explain the relationship between S [d+1] and S [d], where d is an even number.
We follow [8]. For notational simplicity, we omit the Lie algebra part of the forms.

Let N 3 x be an oriented manifold with dimN = d even, and M = I ×N 3 (t,x) with the
product orientation. Let us write the fields on M as

C = dtCt +D =
d∑

k=0

dt
1

k!
dxi1 . . . dxikCti1...ik +

d∑

k=0

1

k!
dxi1 . . . dxikDi1...ik . (114)

From (22) it follows that, in the BV-formalism, one can choose as fields and corresponding
antifields, respectively,

Di1...ik ←→
1

(d− k)!
εi1...ikik+1...idCtik+1...id . (115)

After choosing a gauge in which the connection A has vanishing time component, At = 0, the
master action in the Lagrangian formalism reads

S [d+1][Ct, D] =

∫

I

dt

∫

N

(dAD +D2)Ct +
1

2
ḊD . (116)

A gauge-fixing functional Ψ[D] (|Ψ| = 1) defines a gauge-fixed action

S
[d+1]
Ψ [D] = S [d+1]

[
Ctik+1...id =

1

k!
εi1...ikik+1...id

→

δ

δDi1...ik

Ψ, D

]
. (117)

For a gauge-fixing functional adapted to the “space-time” split M = I ×N of the form

Ψ[D] = −

∫

I

dt K[D] , (118)
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where K is some functional of D, with D interpreted as a form on N , one finds that

S
[d+1]
Ψ [D] =

∫

I

dt

(
{S [d], K}N +

1

2

∫

N

ḊD

)
, (119)

with

S [d][D] =
1

2

∫

N

DdD +
2

3
D3 . (120)

We remark that the gauge fixed action (119) is already in Hamiltonian form, since it is of first
order in time derivatives. Since

{S [d+1];Di1...ik(t,x)}
∣∣
Ct=

→

δ
δD

Ψ
= (−1)k(dD +D2)i1...ik(t,x) (121)

and
{S [d];Di1...ik(x)} = (−1)k(dD +D2)i1...ik(x) , (122)

Sd can be interpreted as the BRST-generator in the Hamiltonian formalism, and (119) is the
gauge fixed action for a theory with vanishing Hamiltonian: the first term is the gauge-fixing
term, while the second term can be written as

1

2

∫

I

dt

∫

N

1

k!

(−1)k

(d− k)!
εi1...ikik+1...idḊik+1...id(t,x)

︸ ︷︷ ︸
Φ̇(t,x)

Di1...ik(t,x)︸ ︷︷ ︸
Π(t,x)

, (123)

which is exactly the desired expression (considering Φ and Π as conjugate variables), as can be
inferred from (22):

{Dj1...jk(x)︸ ︷︷ ︸
Π(x)

;
(−1)k

(d− k)!
εi1...ikik+1...idDik+1...id(y)

︸ ︷︷ ︸
Φ(y)

} = δ(d)(x− y)δj1i1 . . . δ
jk
ik

. (124)
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