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Abstract

We consider linear elliptic problems with variable coefficients, which may sharply change
values and have a complex behavior in the domain. For these problems, a new combined
discretization-modeling strategy is suggested and studied. It uses a sequence of simplified
models, which approximate coefficients with increasing accuracy. Boundary value prob-
lems generated by these simplified models are solved numerically, and the corresponding
approximation errors are estimated by a posteriori estimates of the functional type. Mod-
elling errors are also explicitly evaluated. An efficient numerical strategy is based upon
balancing modelling and discretization errors, which provides an economical way of getting
an approximate solution with an a priori given accuracy. Numerical tests demonstrate the
reliability and efficiency of this adaptive numerical technology.

1 Introduction

We consider elliptic boundary value problems with rather complex behavior of the coefficients
that form the corresponding differential operator. From the physical point of view, they can be
regarded as models of a stationary diffusion with discontinuous, possibly, very rough diffusion
coefficients. Certainly, there is a straightforward way of setting the corresponding approxi-
mate solutions, which consists of solving a problem on a sufficiently fine mesh that enables one
to reproduce all the details of the diffusion coefficient and eliminate quadrature errors in the
stiffness matrix coefficients. However, this is usually an expensive way. If solely a numerical
solution with a certain guaranteed accuracy is required, then another strategy might be more
efficient. It consists of two basic steps. First, the distribution of coefficients must be replaced
by a simpler one. Then, the simplified model on a much coarser mesh should be solved. The
control that the corresponding discretization error is below some given tolerance level can be
obtained by applying guaranteed a posteriori estimates of the functional type. A guaranteed
upper bound of the total error is determined as the sum of approximation and modelling errors
and is computable, since the modelling error, which arises due to the replacement of the origi-
nal problem by a simplified one, is also explicitly estimated. If the bound exceeds the desired
tolerance, either the mesh should be refined (if the discretization error is essential) or the co-
efficient behavior must be modelled in more detail (if the modelling error is much larger than
the discretization error). Hence, a combined modelling-discretization error estimation strategy
is developed, in which the modelling Emod and the discretization Edisc errors are properly
balanced in accordance with the nature of the problem considered and the accuracy required.

Historically, the subject of a posteriori error estimation was mainly focused on the indica-
tion of discretization errors (e.g., see [3], [25], and references therein). In these cases, the error
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is measured by the quantity ‖u − uh‖, where u is the exact solution, uh is the Galerkin ap-
proximation, and ‖ · ‖ is a certain norm associated with the problem. Most of the numerous
publications, which are devoted to methods of estimating this quantity, can be combined into
two main groups by the so-called residual method (see, e.g., [2], [3], [4], [5], [8], [11], [24], [25])
and the gradient averaging method (see, e.g., [6]).

In [13] - [22], a different approach to the a posteriori error control was suggested. In the
framework of this approach, a posteriori estimates are derived by purely functional meth-
ods without attracting specific information on the approximating subspace and the numerical
method used. As a result, the estimates contain no mesh dependent constants and are valid for
any conforming approximation from the respective energy class. In the papers [21, 22], these
properties have been used for analysis of modelling errors. Explicit and computable estimates
of modelling errors related to dimension reduction models of diffusion type problems have been
derived in [19, 20]. For more complicated plate models in the theory of linear elasticity, such
type estimates have been recently derived in [16]. The problem of hierarchical modelling and
dimension reduction has also been investigated in [7], [24], and [27]. The present paper is
concerned with modelling errors of a different nature, which are not associated with the dimen-
sional reduction but are stipulated by simplification of the coefficients.

The structure of the paper is as follows. In Section 2, we develop a combined modelling-
discretization error estimation strategy for a class of elliptic boundary-value problems with
variable coefficients. It is based upon guaranteed upper bounds of discretization and modelling
errors, generated by simplified elliptic problems. Section 3 is devoted to a detailed descrip-
tion of control parameters, which is based upon combined modelling-discretization estimation.
In Section 4, results of numerical tests are presented and discussed. Finally, conclusions are
contained in Section 5.

2 A posteriori error estimation for the modelling and discretiza-

tion error

2.1 Problem statement and notation

We consider the following elliptic problem

−div (A∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in Rd (d = 2, 3) with Lipschitz boundary ∂Ω, A(x) belongs to
the set Rd×d of d× d matrices with real coefficients, and I is the identity matrix. We assume
that A is symmetric,

A(x) ∈ L∞(Ω, Rd×d) , f ∈ L2(Ω),

and

c2
1 |ζ|

2 ≤ A(x) ζ · ζ ≤ c2
2 |ζ|

2 for all x ∈ Ω and ζ ∈ Rd. (2)

Henceforth, the norm in L2(Ω) is denoted by ‖u‖Ω and · means the scalar product of vectors.
The notation L2 (Ω, Rd) is used for vector-valued functions with components in L2(Ω) and
σ(M) denotes the spectrum of M ∈ Rd×d. If the coefficients of M depend on x, then ρ(M)
denotes the maximum of the spectral radius, i.e., ρ(M) := sup

x∈Ω
max σ(M(x)).
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By H(Ω, div) we denote the subspace of L2(Ω, Rd) that contains vector-valued functions
with square-integrable divergence, i.e.,

H (Ω,div) := {q ∈ L2 (Ω, Rd) |div q ∈ L2 (Ω)}.

It is a Hilbert space endowed with the scalar product

(p, q)div :=

∫

Ω

(p · q + div p div q)

and the norm

‖q‖div := (‖q‖2
Ω + ‖div q‖2

Ω)1/2.

For the functions in L2 (Ω, Rd) , we also use the norms

‖q‖A :=




∫

Ω

Aq · q




1/2

(3)

and

‖q‖A−1 :=




∫

Ω

A−1 q · q




1/2

. (4)

The subspace of H1(Ω) that consists of functions vanishing on ∂Ω is denoted by V0.

We define a generalized solution of (1) as a function u ∈ V0 that satisfies the integral identity

b (u, v) =

∫

Ω

f v, ∀v ∈ V0, (5)

where b (u, v) :=
∫
Ω

A∇u · ∇v is the bilinear form generated by A. It is well known that the

generalized solution u defined by (5) exists and is unique.

We consider a special class of such boundary value problems, which often arises in applica-
tions (e.g., in environmental modelling). Assume that the coefficients aij(x) of the diffusion
matrix A depend on x in a very complicated way. Then, the original problem becomes so
complicated that solving it by standard methods may lead to an extremely high numerical cost.
However, if only a certain (practically sufficient) accuracy is required, then solving the original
(fully detailed) problem may be not the optimal strategy. If the modelling errors due to the
simplification of data can be explicitly evaluated, then various simplified models can be used
instead of the original one. In this paper, we show that the latter way is indeed efficient and
in many cases it is possible to obtain a solution with a practically acceptable accuracy with
the help of a simplified boundary value problem. For this purpose, we derive an a posteriori
error estimate of the total error (which includes both discretization and modelling errors) and
develop a solution strategy, based on the interplay between the choice of the model and the
approximation subspace.
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Model
Discre-
tisation

Pε1 Pε2 Pε3
... P

uε1, h1 uε2, h1 uε3, h1Vh1
uh1

uε1, h2 uε2, h2 uε3, h2Vh2
uh2

uε1, h3 uε2, h3 uε3, h3Vh3
uh3

uε1, h4 uε2, h4 uε3, h4Vh4
uh4

...
. . .

V0 u

Figure 1: Combined adaptive modelling-discretization strategy

2.2 Combined modelling-discretization error estimation

The idea of the combined modelling-discretization error estimation (MDE) strategy can be
explained with the help of a diagram exposed in Figure 1. Assume that the original problem
(1) must be solved with some guaranteed accuracy δ. This can be achieved not only by com-
puting the solution of the “given” problem, but also by employing some simplified problems
Pε1 , Pε2 , ..., Pεk

, using a dense sequence of finite dimensional subspaces Vh1 ⊂ Vh2 ... ⊂ Vhk
.

The last column of the table in Figure 1 reflects the classical mesh adaptation procedure,
in which finite dimensional subspaces are refined until the corresponding approximate solution
becomes sufficiently accurate (all functions whose deviations from u are less than δ belong to
the zone lying below the bold line). In the last column, the first approximate solution having
the desired accuracy is uh3 . However, a procedure based purely on numerical discretization
may be suboptimal by several reasons. For example, if the coefficients of a differential equation
have a complicated structure, then well known difficulties with exact quadratures may arise.
Moreover, the resolution of zones with jumping coefficients may lead to geometrical difficulties
and require a large number of additional nodes (elements, degrees of freedoms). This way of
doing may generate very large systems of linear equations (in particular, for 3D problems).
However, if we need a solution with a moderate accuracy that belongs to the shaded zone
(which is a typical engineering situation), then more economical ways exist. In particular, we
can use the simplified model Pε3 (whose solution in the space Vh3 possesses the same order
of accuracy) or a simpler model Pε2. These observations suggest the idea that the optimal
strategy should be based on the combined modelling-discretization strategy MDE:

In the MDE strategy, we start with the coarsest model Pε1, which is solved on Vh1. By
the combined modelling-discretization error majorant (see Theorem 2.1), the total error asso-
ciated with uε1, h1 is estimated by the sum of the corresponding modelling error (denoted by

Eε1
mod) and the discretization error (E

ε1,− log2 h1

disc ). Assume that the tolerance level has not been

achieved (i.e., the overall error exceeds the given tolerance δ ) and Eε1
mod < α E

ε1,− log2 h1

disc ,
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where α is a positive real number that balances values of approximation and modelling errors
(in the numerical tests, we set α = 0.4 ). Then, the subspace Vh1 should be refined, and we

pass to Vh2. If Eε1
mod ≥ α E

ε1,− log2 h1

disc , then an improved model should be chosen (we pass to
Pε2). With this strategy, an economical way to find a desirable approximation, e.g., uε3, h3 , is
marked by arrows. It is worth mentioning that approximate solutions and their components
(e.g., fluxes) computed on some steps of the algorithm can further be used on subsequent steps
as good initial guesses for iterative solvers.

2.3 Combined error majorant

Instead of the exact problem (5) we consider the following simplified one: Find uε ∈ V0 such
that

bε(uε, v) :=

∫

Ω

Aε ∇uε · ∇v =

∫

Ω

f v for all v ∈ V0, (6)

where Aε ∈ L∞(Ω, Rd×d) is a certain approximation of A. We assume that the parameter ε
characterizes the difference between A and Aε, so that Aε increasingly approximate A as ε
tends to zero. Also, we assume that for any ε, the matrix Aε is positive definite and

c2
1ε |ζ|

2 ≤ Aε(x) ζ · ζ ≤ c2
2ε |ζ|

2 for all x ∈ Ω and ζ ∈ Rd. (7)

Let Th be a simplicial mesh with mesh size h . We define the following spaces:

• Sh := {u ∈ C0(Ω)
∣∣ for any τ ∈ Th : u|τ is an affine function};

• Sh,0 := Sh ∩ V0;

• S2
h := Sh × Sh.

The problem (6) is solved numerically. We find the corresponding Galerkin solution uε,h ∈
Sh,0 that satisfies the relation

bε(uε,h, vh) :=

∫

Ω

Aε ∇uε,h · ∇vh =

∫

Ω

f vh for all vh ∈ Sh,0. (8)

In order to estimate the discretization error ‖∇(uε−uε,h)‖Aε , we use a posteriori error estimates
of the functional type (see [12] - [18], [21, 22] and the references therein), which in our case
takes the form

‖∇(uε − uε,h)‖2
Aε

≤ M2
Ω(uε,h, y, β) := (1 + β)‖Aε ∇uε, h − y‖2

A−1
ε

+

+

(
1 +

1

β

)
C2

Ω‖div y + f‖2
Ω. (9)

Here, MΩ(uε,h, y, β) is the a posteriori error majorant, y is an arbitrary vector-valued func-
tion from H(Ω,div), β is an arbitrary positive number, and CΩ := 1

c21ε

C2
FΩ, where CFΩ is

the Friedrichs’ constant for the domain Ω, defined by

CFΩ := sup
w∈V0\{0}

‖w‖Ω

‖∇w‖Ω
.

For the class of problems under consideration, a combined modelling-discretization a posteriori
estimate of the total error ‖∇(u − uε,h)‖A is presented below.
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Theorem 1 For the total error ‖∇(u − uε,h)‖A it holds

‖∇(u − uε,h)‖A ≤ Eε, h
disc + Eε

mod . (10)

In (10), Eε, h
disc and Eε

mod represent the discretization and modelling parts of the error, respec-
tively, which are defined and estimated as follows:

Eε, h
disc := ‖∇(uε − uε, h)‖A ≤ κ1 MΩ(uε,h, y, β), (11)

Eε
mod := ‖∇(u − uε)‖A ≤ κ2

(
M2

Ω(uε,h, y, β) + ‖∇uε,h‖
2
Aε

)1/2
(12)

where Λε := A
−1/2
ε AA

−1/2
ε , κ2

1 = 1 + ρ(Λε − I), and κ2
2 = ρ(Λε + Λ−1

ε − 2I).

Proof: By the triangle inequality, we obtain

‖∇(u − uε, h)‖A ≤ ‖∇(uε − uε, h)‖A + ‖∇(u − uε)‖A = Eε, h
disc + Eε

mod. (13)

We estimate the term Eε, h
disc = ‖∇(uε − uε, h)‖A, as follows:

(
Eε, h

disc

)2
= ‖∇(uε − uε, h)‖2

Aε
+

∫

Ω

(A − Aε)∇(uε − uε, h) · ∇(uε − uε, h)

= ‖∇(uε − uε, h)‖2
Aε

+

∫

Ω

(Λε − I)A1/2
ε ∇(uε − uε, h) · A1/2

ε ∇(uε − uε, h)

≤
(
1 + ρ(Λε − I)

)
‖∇(uε − uε, h)‖2

Aε
.

Since the last norm is estimated by (9), we arrive at (11). To estimate the term Eε
mod , we note

that

0 = b (u − uε, v) + (b − bε) (uε, v), ∀ v ∈ V0,

and choose v = u − uε . Then,

(Eε
mod)

2 = ‖∇(u − uε)‖
2
A = b (u − uε, u − uε) = (bε − b)(uε, u − uε)

=

∫

Ω

(Aε − A)∇uε · ∇(u − uε).

By the Hölder inequality, we find that

‖∇(u − uε)‖
2
A ≤




∫

Ω

(Aε − A)A−1(Aε − A)∇uε · ∇uε




1/2

‖∇(u − uε)‖A.

Hence,

‖∇(u − uε)‖
2
A ≤

∫

Ω

(Aε − A)A−1(Aε − A)∇uε · ∇uε

=

∫

Ω

(Λε + Λ−1
ε − 2I)A1/2

ε ∇uε · A
1/2
ε ∇uε ≤ ρ (Λε + Λ−1

ε − 2I) ‖∇uε‖
2
Aε

.
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Note that

∫

Ω

Aε∇uε, h · ∇uε, h +

∫

Ω

Aε∇(uε − uε, h) · ∇(uε − uε, h) =

=

∫

Ω

Aε∇uε · ∇uε − 2

∫

Ω

Aε∇uε, h · ∇(uε − uε, h) = ‖∇uε‖
2
Aε

and, therefore,

‖∇(u − uε)‖
2
A ≤ ρ (Λε + Λ−1

ε − 2I)
(
‖∇uε −∇uε,h‖

2
Aε

+ ‖∇uε,h‖
2
Aε

)
. (14)

Finally, we estimate the first term of (14) by the error majorant and get

‖∇(u − uε)‖A ≤ ρ1/2(Λε + Λ−1
ε − 2I)

(
M2

Ω(uε,h, y, β) + ‖∇uε,h‖
2
Aε

)1/2
, (15)

which yields (12).�

Remark 1 We note that the error ‖∇(u − uε,h)‖A can be directly estimated by the error ma-
jorant analogously to (9), in which the first term is generated by the original matrix A (instead
of A−1

ε ). However, this way has two essential drawbacks. First, computations related to the
majorant with A may require complicated integration procedures (especially if the problem con-
tains fine structures). For this reason, it is much simpler to find a suitable y and evaluate the
majorant if Aε instead of A. Another point is that the estimate (10) includes two meaningful
quantities (discretization and modelling errors). They are explicitly estimated by (11) and (12)
what allows us to balance these errors with the help of an adaptive method described in Section
2.2.

Remark 2 From (10) it follows that

‖∇(u − uε,h)‖A ≤ (κ1 + κ2)MΩ(uε,h, y, β) + κ2‖∇uε,h‖Aε . (16)

It is easy to see that if A = Aε, then Λε = Λ−1
ε = I, and κ1 = 1, κ2 = 0. In this case, the term

related to the modelling error vanishes and the right hand side of (10) is completely determined
by the discretization error.

If A and Aε are diagonal matrices, then Λε = {λε
ij} is also diagonal and λε

ii = aii

aε
ii
. In

this case,

κ2
1 ≤ 1 + |Λε − I| = 1 + sup

x∈Ω
max

i=1,..., d

|aii (x) − aε
ii (x) |

aε
ii (x)

, (17)

κ2
2 ≤ |Λε + Λ−1

ε − 2I| = sup
x∈Ω

max
i=1,..., d

(aii (x) − aε
ii (x))2

aii (x) aε
ii (x)

. (18)

Suppose the error |aii −aε
ii|L∞(ω̃) ≤ εω̃ on local subregions ω̃ is known in an a priori way. Such

a situation arises if the coefficients involve uncertainties generated by, e.g., experimental data
or errors of numerical integration. We see that κ2 (more precisely: local versions thereof) is
proportional to ε, and it is not difficult to compute this constant. Since Eε

mod is bounded from
below by the quantity κ2‖∇uε,h‖Aε (which is easily computable if uε,h is known), we obtain a
bound for the overall accuracy. Assume that the tolerance level δ is significantly smaller than
this quantity. In this situation, we conclude that the corresponding model (with uncertain data)
cannot provide a solution within the desired accuracy and the analysis of the approximation

7



error is superfluous. In the discretiztion-modeling adaptive method, the value of κ2‖∇uε,h‖Aε

is also important. Since the evaluation of this value is much cheaper than the minimization
of MΩ(uε,h, y, β) w.r.t. y, it is recommended to first compute the term κ2‖∇uε,h‖Aε . If it
exceeds δ, then we see that it is necessary to consider a finer model avoiding computations
related to MΩ(uε,h, y, β).

3 Evaluation of the error estimator

3.1 Sequence of simplified models

Henceforth, we assume that the diffusion coefficient A is piecewise constant, Ω is decomposed
into connected disjoint subsets ωi, 0 ≤ i ≤ q (called “inclusions”). By H and γ we denote
the sets of all inclusions and their interfaces, respectively, i.e.,

H := {ωi : 0 ≤ i ≤ q} and γ :=
⋃

ω∈H

∂ω.

A sequence of resolutions H̃j, j = 0, 1, . . . , J , for the inclusions from H (illustrated in Figure
2) will be constructed subject to the following conditions:

1. H̃0 = {Ω}.

2. H̃j =
{
ω̃j

k : 0 ≤ k ≤ q̃j

}
is a disjoint partitioning of Ω, i.e.,

(a) all ω̃j ∈ H̃j are open subsets of Ω ,

(b) Ω =
⋃

eω∈ eHj

ω̃,

3. The final level H̃J equals H or is a refinement of H , i.e.,

∀ ω̃J ∈ H̃J ∃ω ∈ H : ω̃J ⊂ ω .

ω2

ω1

ω3

ω0

(a) eH0 = {Ω}

ω̃1
1

ω̃1
2

ω̃1
3

(b) eH1

ω̃2
1

ω̃2
2

ω̃2
3

ω̃2
4

ω̃2
0

(c) eH2

Figure 2: Example of the first three refinements in the sequence of resolutions of the inclusions

Further we define simplified coefficients Aε, which are constant on every ω̃l ∈ H̃l, as a suitable
average of A. We use

H̃
eωl := {ω ∈ H : |ω ∩ ω̃l| > 0}
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for the “influence region” of some ω̃l and denote by #H̃
eωl the cardinality of H̃

eωl . Basic
averaging strategies are then given by

1) Aε|eωl := 1
# eH

eωl

# eH
eωl∑

i=0
A|wi

, i.e., the arithmetic mean for H̃l ;

2) Aε|eωl :=


 1

# eH
eωl

# eH
eωl∑

i=0
(A|wi

)−1




−1

, i.e., the harmonic mean for H̃l ;

3) Aε|eωl := 1
|eωl|

∫
eωl A, i.e., the arithmetic integral mean for H̃l ;

4) Aε|eωl :=
(

1
|eωl|

∫
eωl A−1

)−1
, i.e., the harmonic integral mean for H̃l .

From the literature (cf. [9], Chapter 8) it is known that for fine periodic structures the best
averaging strategy is the harmonic integral mean.

3.2 Computation of the majorant

To estimate the errors Eε, h
disc and Eε

mod, we need to evaluate the term M2
Ω(uε,h, y, β) (cf.

Theorem 1) for a proper flux approximation y and a parameter β. The questions, how to
choose β and how to compute the flux approximation y from the discrete solution uεl, h, have
already been discussed in the literature (e.g., see [12, 13, 14, 17, 18, 23, 26]). Below we briefly
discuss the application of these methods to our case. We emphasize that Theorem 1 implies
that any choice (β, y) ⊂ R×H (Ω,div) in the error majorant results in an upper bound of the
error. However, sharp estimates require a proper choice of these quantities and a reasonable
strategy, which we will introduce in the following, has to balance the extra computational cost
with the benefit of sharper estimates.

If A, Aε, f, and CΩ are known, then the squared majorant M2
Ω(uε,h, y, β) is a quadratic

functional. Our goal is to find some yh ∈ S2
h and β ∈ R such that M2

Ω(uε,h, yh, β) is close to
the minimum over y ∈ H (Ω,div) and β ∈ R. For the corresponding iterative algorithm (mini-
mization with respect to β is a simple algebraic problem), we introduce the following notation:

For every vertex ξ of Th, denote by Pξ := {τ ∈ Th : ξ ∈ τ } the neighboring elements,

by ωξ :=
⋃

τ∈Pξ

τ the patch of this vertex and define y
(0)
h ∈ S2

h implicitly from the patchwise

flux averaging by the nodal condition

y
(0)
h (ξ) :=

1

|ωξ|

∫

ωξ

Aε ∇uε, h. (19)

For all vertices ξj, 1 ≤ j ≤ N, let Sj := span{(bj , 0), (0, bj)} ⊂ Sh denote the usual nodal
basis for Sh and let M2

Ω,ωξj
(uε,h, yh, β) be the contribution of the patch ωξj

to the majorant

M2
Ω (uε,h, yh, β).
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Algorithm 1 (global minimization of the error majorant):

Set y
(0)
h (ξ) = 1

|ωξ|

∫
ωξ

Aε ∇uε, h and β(0) =
CΩ ‖div y

(0)
h

+fh‖Ω

‖Aε∇uε, h−y
(0)
h

‖
A
−1
ε

Choose νmax

For ν = 1 to νmax do begin

y
(ν)
h = argmin

v∈S2
h

M2
Ω(uε,h, v, β(ν−1)) (20)

β(ν) =
CΩ ‖div y

(ν)
h + fh‖Ω

‖Aε∇uε, h − y
(ν)
h ‖A−1

ε

end

Calculate M2
Ω(uε,h, y

(νmax)
h , β(νmax))

We note that the global minimization requires the generation and solution of a linear system of
dimension 2N. On the one hand, we expect that the computational cost are of the same order
as the cost for computing uε,h. On the other hand, one could save memory (at the expense of
less sharp estimates) if (20) is replaced by a few steps of a Gauss-Seidel type iteration (21):

Algorithm 2 (local minimization of the error majorant):

Set y
(0)
h (ξ) = 1

|ωξ|

∫
ωξ

Aε ∇uε, h and β(0) =
CΩ ‖div y

(0)
h

+fh‖Ω

‖Aε∇uε, h−y
(0)
h

‖
A
−1
ε

Choose νmax and ιmax

For ν = 1 to νmax do begin

Set γ
(0)
N = y

(ν−1)
h

For i = 1 to ιmax do begin

γ
(i)
0 = γ

(i−1)
N

For j = 1 to N do begin

vj = argmin
v∈S2

j

M2
Ω,ωξj

(uε,h, γ
(i)
j−1 + v, β(ν−1))

γ
(i)
j = γ

(i)
j−1 + vj

end

(21)

end

Set y
(ν)
h = γ

(ιmax)
N and β(ν) =

CΩ ‖div y
(ν)
h

+fh‖Ω

‖Aε∇uε, h−y
(ν)
h

‖
A
−1
ε

end

Calculate M2
Ω(uε,h, y

(νmax)
h , β(νmax))
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4 Numerical results

In this section, we demonstrate the performance of the combined MDE strategy for the case of
a linear diffusion problem with a discontinuous, piecewise constant diffusion coefficient, which
has rather complex interfaces separating its discontinuities.

In the following experiments, we consider the domain Ω = (0, 1)2 with an inclusion ω1 (c.f.
Figure 3). We choose

A|ω1 = 2 I and A|ω0 = I (22)

and note that the exact structure of A can be resolved on the uniform mesh with h = 1/32.

ω0

ω1

Figure 3: Unit square with the inclusion ω1

The right-hand side of the diffusion equation is given by

f(x, y) = 2x (1 − x) + 2y (1 − y). (23)

Remark 3 If one solves this diffusion problem with standard P1 finite elements on some coarse
mesh which does not resolve the discontinuities in A, the quadrature for setting up the stiffness
matrix either becomes very expensive (depending on the “roughness” of the interface) or pro-
hibitive inaccurate. Note that our numerical example has mainly the purpose to illustrate the
behavior and sharpness of our modelling-discretization error estimator as well as the proper
selection of the control parameters and not its application to three-dimensional problems with
very many rough interfaces – this will be the topic of further research.

We construct a series of Models 1-4, in which Model 1 is the coarsest model and Model 4 is the
finest one. The corresponding diffusion matrices are denoted by Aε1 and Aε4 , respectively.
They are defined on the corresponding resolution levels H̃1 to H̃4 (cf. Figure 4) by using the
harmonic averaging

Aεi
|
eωi

j
:=




1

|ω̃i
j|

∫

eωi
j

A−1




−1

, ω̃i
j ∈ H̃i, i = 1, ..., 4, j = 0, ..., 4. (24)

We note that the exact structure of Aε1 can be resolved on the very coarse mesh with h = 2−1,
in the case of Aε2 it can be exactly resolved with h = 2−3 and in the case of Aε3 and Aε4 -
with h = 2−4 and h = 2−5 correspondingly. Instead of the exact problem (1), we numerically
solve its simplified counterparts associated with different resolution levels and estimate the
approximation errors by the a posteriori error majorants (see Theorem 1).
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ω̃1
0

ω̃1
1

(a) eH1

ω̃2
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ω̃2
3

ω̃2
1

(b) eH2

ω̃3
0

ω̃3
2

ω̃3
4

ω̃3
3ω̃3

1

(c) eH3

ω̃4
0

ω̃4
2

ω̃4
3

ω̃4
1

(d) eH4

Figure 4: Hierarchy of simplified nodels.

First we present results of computer simulation that demonstrate the efficiency of the min-
imization strategies (19)-(21).

Test 1.1 We select Model 1, set h = 2−5, use a GMRES-Solver to find an approximate solution,
and estimate the total error by the combined modelling-discretization error majorant M

verified in Section 3.2 and defined here by

M := Eε, h
disc +

(
Ẽε

mod

2
+ Êε

mod

2)1/2

, (25)

where
Ẽε

mod := κ
1/2
2 MΩ(uε,h, y, β) and Êε

mod := κ
1/2
2 ‖∇uε, h‖Aε

(cf. (12)), by using the approximative (local) and global minimization strategy (see Sec-
tion 3.2).

The parameters of the local minimization algorithm are ιmax and νmax. In our first
test we set νmax = 1 and vary ιmax from 0 − 9. The first line of Table 1 corresponds
to the case in which y is constructed by simple flux averaging (19). Table 1 shows that
ιmax = 3 is enough for getting accurate values of M and further iterations ( ιmax = 6
to ιmax = 9 ) do not significantly improve it. Similar tests with the other models show
the same results.

ιmax β
1

Edisc Ẽmod Êmod M t, [sec]

0 1.924 0.0299 0.0032 0.0148 0.0450 1.6
3 0.568 0.0146 0.0022 0.0148 0.0296 6.85
6 0.517 0.0139 0.0022 0.0148 0.0289 15.41
9 0.504 0.0137 0.0022 0.0148 0.0287 20.75

Table 1: The total error majorant and CPU time in seconds required for optimization of the
flux function in the case of Model 1 for νmax = 1.

Test 1.2: In this series of numerical experiments we set ιmax = 3 and increase the parameter νmax.
The corresponding results are presented in Table 2. They demonstrate that increasing of
νmax does not significantly improve the majorant. For this reason by using the approxi-
mative (local) minimization strategy from Algorithm 2, it is sufficient to choose ιmax = 3
and νmax = 1.

Test 1.3: Now we demonstrate the efficiency of the global minimization strategy. We solve the four
selected approximate models on the meshes with h = 2−5, 2−6, 2−7 and evaluate the
total error majorant by using of the local (with ιmax = 3 and νmax = 1) and global

12



νmax βνmax

Edisc Ẽmod Êmod M t, [sec]

1 0.568 0.0146 0.0022 0.0148 0.0296 6.85
2 0.511 0.0139 0.0022 0.0148 0.0289 14.45
3 0.498 0.0138 0.0022 0.0148 0.0287 22.57

Table 2: The total error majorant and CPU time in seconds required for optimization of the
flux function in the case of Model 1 for ιmax = 3.

(with νmax = 1) minimization strategy. We denote these error majorants by M loc and
M glob correspondingly. Table 3 presents the results. As expected the global strategy
provides the exacter majorants and should be preferred if the technical ability allows the
treatment of large systems of equations. That is why for our subsequent tests, we choose
the global minimization strategy and solve the linear systems with a PARDISO-solver
from http://www.pardiso-project.org/download/academic.cgi.

− log2 h Model 1 Model 2 Model 3 Model 4
M loc M glob M loc M glob M loc M glob M loc M glob

5 0.0296 0.0282 0.0259 0.0243 0.0246 0.0230 0.0240 0.0224
6 0.0240 0.0226 0.0209 0.0192 0.0195 0.0175 0.0182 0.0171
7 0.0214 0.0203 0.0185 0.0168 0.0172 0.0151 0.0158 0.0147

Table 3: Comparison of the total error majorant calculated by using of different minimization
strategies.

Now we present tests that demonstrate the performance of the MDE strategy.

Test 2.1: To quantify the efficiency of the calculation of the error majorant, we should compare
the majorant M from (25) with the exact error e := ‖∇(u−uε, h)‖A on various meshes.
However in these examples the exact solutions are unknown, for this reason we replace
it by the so-called “reference” solutions, denoted by uref and specially computed on a
mesh much finer than those used in error estimation tests.

We have computed the values of majorants M , reference errors eref in the energy norm
‖ · ‖A as h → 0, and the corresponding efficiency indices ieff defined by the relations

eref := ‖∇uref −∇uε, h‖A, ieff :=
M

eref
. (26)

It turns out that for all approximate models the efficiency indices are moderately small
(cf. Tables 4 and 5).

− log
2
h tsol, [sec] tmaj , [sec] Model 1 Model 2

M eref ieff M eref ieff

3 0.251 0.333 0.0605 0.0313 1.93 0.0556 0.0294 1.89
4 0.346 0.392 0.0394 0.0196 2.01 0.0352 0.0161 2.19
5 0.938 1.031 0.0282 0.0153 1.84 0.0243 0.0103 2.36
6 2.221 3.982 0.0226 0.0138 1.64 0.0192 0.0079 2.43
7 8.930 15.612 0.0203 0.0136 1.49 0.0168 0.0073 2.30

Table 4: CPU time for the solution of the diffusion equation and approximation of the flux
function in seconds and convergence of errors and majorants for Models 1 and 2.
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− log2 h Model 3 Model 4 Exact Problem
M eref ieff M eref ieff M eref ieff

4 0.0334 0.0156 2.14 - - - - - -
5 0.0230 0.0093 2.47 0.0224 0.0090 2.49 0.0155 0.0082 1.89
6 0.0175 0.0062 2.82 0.0171 0.0059 2.90 0.0106 0.0049 2.16
7 0.0154 0.0054 2.85 0.0148 0.0049 3.02 0.0082 0.0028 2.93

Table 5: Convergence of errors and majorants for Models 3, 4 and the exact problem

We assume that the diffusion problem (1) with the parameters (22)-(23) should be solved
for some given accuracy δ. Table 3 shows that, e.g., for δ ≤ 0.035 we do not need to
solve the exact diffusion problem (1): Solving Model 3 for the mesh with h = 2−4, one
gets a total error majorant that is smaller than the accuracy δ, spending essentially less
CPU time.

One can find the shortest way to choose the optimal model in the previous test, applying
the MDE strategy from Section 2.2 presented in Figure 6: We choose, e.g., α = 0.4 and
start with Model 1 on the mesh, corresponding to h = 2−3. In this case we get M > δ
and Eε1,

mod < α Eε1, 3
disc (cf. Figure 5) and should refine the mesh. On the mesh with

h = 2−4 we obtain Eε1,
mod > α Eε1, 4

disc hence, we should pass to the more accurate Model
2, if the calculated total error majorant exceeds the target accuracy. For Model 2, we
have again Eε2

mod > α Eε2, 4
disc and pass to Model 3 etc.

Test 2.2: In the following numerical experiments, we investigate the dependence of M on the
model parameter ε, defined by

ε := sup
eω∈ eH

sup
x∈(∂eω∩Ω)

inf
y∈∂ω0

‖x − y‖.

For the approximate models, we have the following values of ε :

ε1 = 0.1822, ε2 = 0.0699, ε3 = 0.0442, ε4 = 0.0313.

We solve these models for the following three cases of the diffusion coefficients:

1. A|ω0 = I and A|ω1 = 2 I

2. A|ω0 = I and A|ω1 = 4 I

3. A|ω0 = I and A|ω1 = 10 I

From Figure 7 we conclude that M = O(k εν), where ν ∈ R is constant for the chosen

model hierarchy, and k ∈ R depends on h and the coefficient
A|ω1
A|ω0

. In our numerical

experiment we approximately get ν ≈ 2
15 .
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Figure 5: The absolute values of the total error majorants for the exact and the approximate models.
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Figure 6: Combined modelling − discretization error minimization strategy
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Figure 7: Logarithmic plot of the convergence rate for the total error majorant with respect to ε for

the mesh sizes h = 2−5, h = 2−6 and h = 2−7 and three different cases of diffusion coefficients

5 Conclusions

We have presented a modelling-discretization strategy for computing approximate solutions
of elliptic boundary value problems with complicated structure of the coefficients that form
the main part of the differential operator. This strategy is based on the explicit evaluation
of discretization and modelling errors. Numerical tests show that in many cases, approximate
solutions with a desirable (engineering) accuracy can be obtained by using of rather coarse
models, avoiding difficulties arising if the exact resolution of diffusion coefficients is used. Also,
the estimates allow us to estimate the errors caused by incomplete knowledge of the coefficients
that may arise due to uncertainties in the problem data or errors of numerical integration.
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