COHOMOLOGICAL PATTERNS OF COHERENT SHEAVES
OVER PROJECTIVE SCHEMES

M. BRODMANN AND M. HELLUS

ABSTRACT. We study the sets P(X,F) = {(i,n) € Ny xZ | H/(X, F(n)) #
0}, where X is a projective scheme over a noetherian ring Ry and where F
is a coherent sheaf of Ox-modules. In particular we show that P(X,F) is
a so called tame combinatorial pattern if the base ring Ry is semilocal and
of dimension < 1. If X = ]P"}% is a projective space over such a base ring
Ry, the possible sets P(X,F) are shown to be precisely all tame combina-
torial patterns of width < d. We also discuss the “tameness problem” for
arbitrary noetherian base rings Ry and prove some stability results for the
Ro-associated primes of the Ro-modules H'(X, F(n)).

1. INTRODUCTION

Let R = ®,>0R, be a positively graded homogeneous noetherian ring and let
X = Proj(R).

1.1. Definition. Let F be a coherent sheaf of Ox-modules. We define the
cohomological pattern of F as the set
P(X,F):=P(F)={(i,n) e Ny x Z | H'(X, F(n)) #0}. .

The basic aim of this paper is to characterize those sets P C Ny x Z which
occur as cohomological patterns of coherent sheaves of Ox-modules. In order
to so, we introduce the following notion:

1.2. Definition. A) Let w € Ny. A set P C Ny x Z is called a combinatorial
pattern of width w, if it satisfies the following five conditions:

dm,n € Z: (0,m), (w,n) € P;

(i,n) € P=1i < w;

(ibn)eP=3j<i:(jyn+i—j+1)€ P,
(i,bn)eP=3k>i:(kyn+i—k—1)€ P;

7)) 1>0= (i,n) € P, Yn > 0.
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B) A combinatorial pattern P C Ny x Z is called tame if it satisfies the
additional condition

(i,n) € P, Yn < 0
(76) VieN: ¢ or
(i,n) ¢ P,Yn <0
[ ]

The basic aim of this paper is to establish the following results (s. (3.5), (4.3)
and (4.7) respectively).

(1.3) For each coherent sheaf F of Ox-modules, the cohomological pattern
P(F) is a combinatorial pattern.

(1.4) If Ry is semilocal and of dimension < 1, the pattern P(F) of (1.3) is
tame.

(1.5) If one of the special fibers of the natural morphism X — X, :=
Spec(Ry) is a projective space of dimension d, each tame combinatorial pat-
tern of width < d occurs as the cohomological pattern of a coherent sheaf of
Ox-modules.

As a consequence of (1.4) and (1.5) we get (cf. (4.8))

(1.6) If X is a projective d-space over a semilocal noetherian ring Ry of di-
mension < 1, the cohomological pattern of coherent sheaves of Ox-modules
are precisely the tame combinatorial patterns of width < d.

Our conjecture is, that the restriction on the dimension on Ry is not needed
to guarantee that the pattern P(F) of (1.3) is tame. We have not been able
to show this. In the last section of our paper we consider some aspects of this
tameness problem. We prove a partial result in the viewed direction, which
gives the requested tameness “along the lowest non left bounded line” of P(F).
More precisely, we prove (in terms of local cohomology modules) the following
result (cf. (5.6)):

(1.7) Let F be a coherent sheaf of Ox-modules and let i € Ny be such that
HI(X,F(n)) =0 for all j < i and all n < 0. Then, the sets

Assp,(H'(X,F(n))) are asymptotically stable for n — —oc.

Finally, we use an example of Singh [Si] to show that the asymptotic stability
mentioned in (1.7) need not be true for arbitrary values of i (cf. (5.7)).

Let us mention a few further problems which arise with the concept of coho-
mological patterns:
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(1.8) Let K be a field and let X = P%. Is there a purely combinatorial
characterization of those patterns, which may be realized as the pattern P (&)
of an indecomposable algebraic vector bundle £ over X, (cf. (4.9) B))?

(1.9) Let X be as in (1.8) and let P be a minimal combinatorial pattern of

width w. What is the minimal rank of an algebraic vector bundle £ over X
for which P(€) = P, (cf. (4.9) A))?

(1.10) Is there a purely combinatorial characterization of those patterns,
which occur as the pattern P(Ox) of the structure sheaf Ox of an irreducible
projective variety X 7 (A modification of the non-rigidity result [Ev-G, (4.13]).

For the unexplained terminology we refer to [E], [H] and [B-S].

2. COMBINATORIAL PATTERNS

2.1. Notation, Definition and Remark. A) By P we denote the set of all
combinatorial patterns. If P € P is of width w, we write w(P) = w. By P’ we
denote the set of tame combinatorial patterns. The following facts are easily
verified.

PQeP = PUQEeP, wPUQR)=max{w(P), w(Q)};

PQeP = PUQETP;

{0} x Z € P';

PeP, (0,n)e P= (0,n+1) € P

PeP, (w(P),n) € P= (w(P),n—1) € P;

w(P)=0+= P={0}xZ, (PeP)

B) For P € P and t € Z, we define the t-th shift of P by
P(t):={(i,n+1t)]| (i,n) € P} € P.

Obviously we have

PeP, teZ = P(t) e P, w(P(t)) =
PQeP, tcZ—=— (PUQ)(t)= P(t)
PeP = P(0)=P, P(t+s)=P(t)(s
PeP' teZ—= P(t)eP.

C) Next, we consider the diagonal projection

w(P);
uQ();
) (Vs, t € Z);

p:NoXZ—17Z; (i,n)—i+n.
In view of the axioms (m), (m3) and (m4) we have

If PeP, then p: P — Z 1is surjective.
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D) Let P € P and (i,n) € P. By (m3) and (m4) we then may define the
following non-negative integers
gp(i,n) :=max{j <i|(jyn+i—j+1)€ P};
kp(i,n) : =min{k >i| (k,n+i—k—1) € P}.
Observe that
jp(i,n) <i<kp(i,n) forall (i,n)eP. .

2.2. Definition and Remark. A) A minimal combinatorial pattern is a com-
binatorial pattern P such that there is no combinatorial pattern () with Q) C P.
The set of minimal combinatorial pattern is denoted by Puin.

B) The following statements are obvious from the definition
{0} X Z € Pwin; P € Puin, 1 € Z = P(n) € Prin .

Moreover, as p : P — Z is surjective for each P € P (s. (2.1) C)), we can
say
p: P —7Z Dbijective = P € P, (P €P).

C) Now, fix w € Ny and let M, be the set of all monotonously decreasing
functions pu : Z — {0,...,w} for which 0,w € u(Z). For any function
i€ M, we define the “skew graph” of yu, e.g. the set

Plu]:= {(u(n), n—p(n)) |neZy.
It is easy to verify (on use of the last observation of part B)), that
Plu] € Puin,  w(Plp]) =w, (VpeM,). .
2.3. Lemma. Let P € P and let (i,n) € P. Then, there is an integer w €
{0,...,w(P)} and a function p € M, such that (i,n) € Plu] C P.
Proof Tt is easy to verify (by ascending and descending induction beginning
with m = n + ) that there is a function u : Z — Ny such that
(u(m), m —u(m)) € P forall meZ
and such that
i, if m = n+i;
p(m) = ¢ jp(p(m —1),m—1—p(m—1)), if m>n+i
kp(p(m+1),m+14+pu(m+1)), if m<n-+i
In view of the inequalities given in 2.1 (D), we see that p is monotonously
decreasing. Moreover, w := max{u(Z)} exists and satisfies w < w(P). As P

satisfies the axiom (m5), we have p(m) = 0, Vm > 0. Therefore, y € M,,.
Altogether we now have (i,n) € P[u] C P. O
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2.4. Remark. A) Let w € Ny. Then, as an easy consequence of (2.3), we get
a bijection
M, —+{P € Puin | w(P) = w}, (s Ply).

B) It is obvious, that each combinatorial pattern P[u] with p € M, is tame.
So, in view of A) we have

Pmin g 73,. L]
2.5. Proposition. For a set P C Ny x Z the following statements are equiva-
lent:
(i): P is a tame combinatorial pattern.
(ii): P is the union of finitely many minimal combinatorial patterns.

Proof “(ii))== (i)”: Clear from the fact that minimal combinatorial patterns
are tame (cf. (2.4) B)) and that unions of finitely many tame combinatorial
pattern are again tame combinatorial patterns, (cf. (2.1) A)).

“(i) = (ii)”: Let P € P’ and let w = w(P). Let
I:={ieNy |#{n|(i,n) € P} =o0}.

Clearly, I C {0,...,w}. As P is tame (and in view of the last but third
observation made in (2.1) A)), there is some r € Z such that

(i,n) € P foralln <r—iandalliel;
(j,n)¢ P foralln<r—jandall j£I.
Now, fix 7 € I. Then, by (2.3) there is some w; € {0, ..., w} and some p; € M,

such that (i,r —i) € Plu;] C P. As p;(r) = i, we have i < w;. Next, define a
function 1, : Z — Ny by

f;(m) = {Z(m>7 for m > r;

1, for m < r.

Clearly 1, € M;. Moreover, by our choice of r
({i} x Z<,—3) € P[] C P

As P satisfies the axiom (75), there is some s > r such that p ' (Z>,) NP =
{0} x Z<, € P[] for all i € I. So, the set Q := P\ |J,; P[fi;] is contained in
Ujsold} x{r—j+1,r—3j+2,...,5 —j— 1} and hence is finite.
Now, for each ¢ € @ there is some P, € Py, with ¢ € P, C P, (s. (2.3)). So,
we see that indeed

p=Jrmlul]r. O

i€l qeQ
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2.6. Remark. A) For each w € Ny and each u € M, the projection p :
P[p] — Z is bijective. So, in view of (2.3) and the last observation of (2.2)
B) we can say

p: P —Z Dbijective <= P € Pun, (P €P).

B) Let P € P'. If we define r, s as in the proof of (2.5) it follows from that
proof and from the previous observation:

To cover P, at least max{#p '(n) N P | n € Z} =: t minimal combinatorial
patterns are needed. Moreover, P can be written as the union of t+(s—r—1)w
minimal combinatorial patterns. °

For later use, we want to give another description of minimal combinatorial
patterns.

2.7. Notation and Remark. A) For u,v € ZU {—o00, 00} we write Ju, v[:=
{ne€Z|u<n<wv}. Now, fix some w € N and set

Sw ={(r1,...,10) EZY |11 <reg < -+ <Ty}.

Choose r = (r1,...,7y) € Sy. We set 1y := —00, 7,41 := 00 and define the
following set

w

P(ri,...,r0) == P(r) == J ({i}x] v — 1, -1 — 1[) CNy xZ.

i=0
B) Observe that Z = (Jy<;,)] — 7i41 — 1+ 4,7 — 1 +i[. So we may define a
function p, : Z — Ny by
pr(n) =1, ifne€l—rig—14+i,—r;—1+1[.
It is easy to verify, that
pr € My, Plp,] = P(r).

In particular, P(r) is a minimal combinatorial pattern of width w:
Vr € Sy P(r) € Puin, w(P(r))=w.

C) Finally, if p € M, with w € N, we set ry := —oo and define integers
ry < rg < ---<ry recursively by
ri1+ 1, if 1 =1 ¢ p(Z);
Ty = . . . e
—min{n | pu(n+i—1)=i—-1}, ifi—1€ p(Z).

Writing r(u) =r = (rq,...,7,) we then have in the notation of part B)
1= pyy, (Y€ My);  r(p) =1, (Vo € Sy) .

So, we get a bijection
Sw—My, (1 pr);
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and hence a bijection (see (2.4) A).
Sw — {P € Puin | w(P) =w}, (r— P(r)). °

3. COHOMOLOGICAL PATTERNS

We keep all notations and hypotheses of the introduction and give some further
notation.

3.1. Notation and Remark. A) Let x5 € X := Spec(Ry) correspond to the
prime ideal py C Ry of our base ring Ry. We write k() for the function field
(Ro/po)p, of Xo at xy. By X(xy) we denote the fibre of z, under the canonical
morphism X — Xy, thus X(zg) := Proj(k(xg) @g, R). If F is a sheaf of
Ox-modules, we denote by F () the sheaf of Ox(,,)-modules induced by F,
thus F (o) := r(x) @oy, F. So, if M is a graded R-module and if @ is used
to denote induced sheaves, we may write

M (o) = (k(w0) @Ry M)

B) If the sheaf F is coherent, then F(zy) is a coherent sheaf of Oy ,,)-modules
for each zy € Xy. Therefore, for any coherent sheaf F of Ox-modules we may
introduce the invariant

d(F) := sup{dimy (40)(F(@0)) | w0 € Xo} ,

where the supremum is formed in Z U {£oo} and where dim,(G) denotes the
dimension of the support of the coherent sheaf G of Oy-modules over the
noetherian scheme Y. (We use the convention that the Krull dimension of the
empty set is —oo.) In these notations we clearly have

d(F) < d(Ox) < p < o0,
where p1 denotes the minimal number of generators of the Ry-module R;.

C) For i € Z let R'Dp, denote the i-th right derived functor of the ideal
transform functor

D, = Dg, () = lim Homz((R,)". o)
over R with respect to the irrelevant ideal R, := ®,-¢R, of R. Then, if M is
a graded R-module, the modules R'Dpg, (M) are naturally graded and there
are natural isomorphisms of Ry-modules

(X, 3(n)) = R'Dp, (M),, (Yi,n € L),
where T,, denotes the n-th homogeneous part of a graded R-module T (cf.
[B-S, (20.4.4)]). °

Next, we shall give some observations concerning the case in which the base
ring Ry is local.
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3.2. Remark. A) Assume that the base ring (Ry,mg) is local. Let M be a
finitely generated and graded R-module. Then dimg(M/moM) < 0 if and only
it M,,/moM,, = 0 for all n > 0 hence, by Nakayama, if and only if M, = 0
for all n > 0. If we use I'g, to denote R, -torsion, we thus have for a finitely
generated graded R-module M:

As I'g, (M) is concentrated in finitely many degrees, the modules
M/moM and (M/Tr, (M))/mg (M/Tg, (M))

differ only in finitely many degrees so that

dimp((M/Tr, (M))/mo(M/Tr, (M))) = dimp(M/mo M),
provided dimg(M /moM) > 0.
B) Keep the hypothesis that (Rg, mg) is local and let (Rj, m{) be a faithfully
flat noetherian local Ry-algebra. Then R' := Rj @p, R = $©n>oR) @g, Ry
is a positively graded homogeneous ring, faithfully flat as an R-algebra and
with R, = R{R'. Let M be a finitely generated and graded R-module. Then
M =R @r M = R @r, M = ®peczR) @ g, M, is a finitely generated graded

R'-module. Moreover, for each n € Z we have an isomorphism of Rj/m{-vector
spaces

(M /mo M) = (Ro /) ©rojmo (M/mo M)y .
This shows that the graded R/mgR-module M/myM has the same Hilbert
function as the graded R'/myR'-module M'/m{M’. In particular, we have

dlmR(M/mgM) = d1mR/(M'/m6M') .

C) Keep the hypotheses and notations of part B). Then, by the graded flat
base change property of ideal transforms and their right derived functors, we
get isomorphisms of Rj-modules (s. [B-S, (15.2.2) (vi)])

R'Dp, (M), ©r Ry = R' D, (M"),,;  (Vi,n € Z).
So, as Ry is faithfully flat over Ry, we can say
R'Dp (M), #0 <= R'Dp, (M'), #0; (i,n€Z),
D) We shall apply what is said in parts B) and C) in the special case where x is
an indeterminate and where Ry is the faithfully flat local Ro-algebra Ro[X]|m, r[x]
with maximal ideal m{ = mgRj. As Rj/m{ = (Ry/my)(x) is an infinite field

we shall do this in order to be able to assume that Ry/my is infinite — just by
replacing R and M respectively by R’ and M’ if necessary. °
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Next we prove two auxiliary results concerning the case where the base ring Ry
is local. Observe that in view of the natural isomorphisms of 3.1 C), statement
b) of Lemma 3.3 is nothing else than a module theoretic version of a result of
Mumford (cf [Mu, pg 99]).

3.3. Lemma. Assume that the base ring Ry is local and let M be a finitely
generated and graded R-module. Let 1 € Ny, n € Z.

a) If R?"Dp, (M)n—; = 0 for all j < i, then R?Dg, (M )y—; =0 for all j <
and all m < n.

b) If RkDRJr(]\éf)n,;C =0 for all k > 1, then RkDRJr(M)m,k =0 forall k > 1
and all m > n.

Proof Let my be the maximal ideal of Ry. In view of (3.2) D) we may assume
that Ry/myg is infinite. Now, we prove both statements by induction on d :=
dimg (M/moM). If d < 0, we have M = I'g, (M) (see (3.2) A)) and hence
R'Dp, (M) =0for all | € Z (cf. [B-S, (2.2.8) (i), (2.2.4) (ii), (2.1.7) (i)]). So,
both statements are clear in this case.

So, let d > 0. By (3.2) A) and in view of the natural isomorphisms R'Dp, (M)
i>RlDR+(]\4/FR+(M)) (see [B-S, (2.2.8) (ii), (2.2.4) (ii), (2.1.7) (iii)]) we may
replace M by M/T'r, (M) and hence assume that Assgp(M) N Var(Ry) = 0.
As d > 0, no minimal prime divisor of the annihilator (mgM : M) of M /mqM
belongs to Var(R;). As R is homogeneous and as Ry/my is infinite, we thus
find some = € Ry which avoids all members of Assg(M) and all minimal primes
of mgMp : M. Hence, x is M-regular and dim((M/xM)/mo(M/xM)) = d—1.
In particular, we get exact sequences

R™'Dg, (M), — R"™'Dg, (M)11 — R'"'Dg, (M/2M); 4,

1
@ — R'Dp, (M); — R'Dp, (M), foralll,t €Z.

To prove a), we assume that R?Dg, (M),_; =0 for all j <i. If we apply (1)
with ¢ = n — [ for all I < i we see that R'"*Dp, (M/xM),_q_1) = 0 for all
[ <i. By induction we thus have Rl_lDR+(M/xM)m,(l,1) =0foralll <
and all m < n. Another use of (1) with t =m — [ for all m < n and all [ <
gives claim a).

To prove statement b), assume that RkDRJr(]\éf)n,;C = 0 for all £ > 7. Then,
apply (1) with ¢ = n—I for all ] > i in order to see that R'"'Dp, (M /xM), ;1)
= 0 for all { > . By induction we thus have R""'Dp, (M/xM),,_ 1) for all
[ > i and all m > n. Another use of (1) with t =m — [ for all m > n and all
[ > 1 now gives our claim. O

3.4. Lemma. Assume that the base ring Rq is local with mazimal ideal my.
Let M be a finitely generated graded R-module with M # I'g, (M). Then
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a) DR.:,.(M) 7& 07'

b) dimg(M/moM) = max{i+1 | R'Dg, (M) # 0}.

Proof Statement a) is obvious from the natural exact sequence 0 — I'g, (M) —
M — Dg, (M). We now set d := dimg(M/moM) and show first that
R'Dg, (M) =0 for all i > d. By (3.2) A), we have d > 0. As in the proof of
(3.3) we may again assume that Ry/my is infinite and I'g, (M) = 0. So, again
we may choose an M-regular element x € R; such that dim((M/xM)/my
(M/xM)) = d — 1 and consider the sequences (1) of the previous proof.
If d =1, (3.2) A) tells us that M/xM is R,-torsion and hence again that
R 'Dp, (M/xM) = 0 for all i > d. If d > 1 this same equality holds by
induction. As R'Dg, (M), = Hif'(M), = 0 for all t > 0 (s. [B-S, (12.4.5)
(iii), (15.1.5) (ii)]) we may apply the sequences (1) of the previous proof to
conclude that R'Dg, (M) =0 for all i > d.

It remains to show that R4 *Dg, (M) # 0. If d = 1, this follows from state-
ment a). So, let d > 1. The graded short exact sequence 0 — mqgM —
M — M/myM — 0 gives rise to an exact sequence

R™'Dgp, (M) — R 'Dg, (M/myM) — RDg, (moM).

As dimg(mgM/my(mgM)) < dimgz(M/m2M) = d our previously shown van-
ishing statement gives R?Dg, (mgM) = 0. As R* ' D, (M/moM) = Hf, (M/
moM) =2 H(”lR/mOR)+(M/mOM) # 0 (see [B-S, (12.4.5) (iii), (13.1.8), (17.1.10)]),
we get our result. O
Now, we are ready to prove the main result of this section.

3.5. Proposition. Let F # 0 be a coherent sheaf of Ox-modules. Then, the
cohomological pattern P(F) of F is a combinatorial pattern with w(P(F)) =
d(F).

Proof There is a finitely generated and graded R-module M such that F = M.
We may assume that I'p, (M) = 0. Let py C Ry be a prime ideal. Then
Ry, = ®n>0(Ry)p, is a positively graded homogeneous noetherian ring with

local base ring (Rp)p,, and My, = @pez(M,)p, is a finitely generated and
graded Rp,-module with I, ), (My,) = L'r, (M), = 0.

Moreover, in view of the natural isomorphisms mentioned in (3.1) C) and in
view of the base change isomorphisms of [B-S, (12.4.5) (iii), (15.2.2) (v) and
(vi) ], we get isomorphisms of (Ry)p,-modules

2) (X, F(n))yy = R Dinyy, (Myy)ue (Visn € 7).

Moreover, if My, # 0 we have M, # T'(g, ), (M,,) and so the first equiva-
lence of (3.2) A) gives dimp, (Mp,/poMy,) > 0. So, if 7y € Xy = Spec(Ry)
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corresponds to Py, the last observation made in (3.1) A) allows to say
(3) My, 7 0 = dimx(uo) (F (0)) = dimp, (My,/poMp,) — 1.

As F # 0, there is some essential graded prime p C R such that the homoge-
neous localization M, of M at p does not vanish and hence Myng, # 0. In
view of (3) we thus get d(F) > 0. We set w = d(F).

Choose py such that dimpg, (My,/poM,,) = w + 1. If we apply (3.4) to the
graded ring R,, and the graded R, -module M, we find two integers m,n
with R°D(g, ), (Myy)m # 0 and R Dig, 1, (Mp,), # 0. In view of (2) we thus
have (0,m), (w,n) € P(F). So, P(F) satisfies axiom (7).

Next, let (i,n) € P(F). In view of (2) we then find some prime p, C Ry
with R'D(g, )+ (Mp,)n # 0. By (3.4) b) and (3) we now may conclude i <
dimpg, (My,/poM,,) — 1 < w. So, axiom (73) holds for the set P(F).

Again, let (i,n) € P(F) and choose pg € Spec(Ro) such that R'Dg, ), (Mp,)n
# 0. If we apply (3.3) a) to the graded ring Ry, and the graded Ry, -module M,
with n+i+1 instead of 7, we must have some j < i with R/ D(g, ), (M, )nti+1-;
# 0. By (2) it follows (j,n+i—j+1) € P(F). So P(F) satisfies axiom (73).

The validity of axiom (74) is shown similarly on use of (3.3) b) instead of (3.3)
a).

Finally, axiom (m5) is the wellknown fact that H*(X,F(n)) = 0 for all i > 0
and all n > 0 (cf. [B-S, (20.4.6)].
0

4. TAME COHOMOLIGICAL PATTERNS
We keep all the previous notation and hypotheses. We first introduce some
notion.
4.1. Definition and Remark. A) A graded R-module T' = &,,c7T), is said
to be asymptotically gap free if

#{n€Z§0|Tn7éO, Tn+1:0}<OO.

B) Clearly all noetherian and all artinian graded R-modules are asymptotically
gap free. °

4.2. Lemma. Let the base ring Ry be semilocal and of dimension < 1. Let
i € Ny. Then, the module Hy, (M) is asymptotically gap free.

Proof Assume first that dim(Ry) = 0, so that dim(R/R,) = 0. Then Hj, (M)
is artinian (cf. [B-S, (7.1.4)]) and our claim follows from (4.1) B).
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So, let dim(Ry) = 1 and let myq, ..., mgy, be the maximal ideals of Ry. Let
Po1, - - -, Pos be the non-maximal primes of Ry. Assume first, that the set

M := {TL - ZSO | suppRO(H;z+(M)n) ,@ {mgl, . ,mgr}}

is infinite. Then, there is some index j € {0, ..., s} such that (Hp (M), )y, #
0 for infinitely many values n < 0. Now in view of the graded flat base change
property of local cohomology we have natural isomorphisms of (Rp),,-modules

(s. [B-S, (15.2.2) (iv)])
(4> (HEJF(M)n)Poj = HngOj)+(MP0j)na (Vn < Z) :

These isomorphisms show that H(iRpoj)Jr(Mpoj)n # 0 for infinitely many values
n < 0. As the base (Rp)y,, ring of the positively graded homogeneous noether-
ian ring Ry, is artinian, the previous argument shows that H(iRp o)t (Mo, )n # 0
for all n < 0. Another use of (4) shows that (Hp, (M)y)p,, 7 0 for all n < 0

and hence that Hy (M), # 0 for all n < 0. So H}, (M) is asymptotically
gap free.

Assume now, that M is finite. Choose = € (\;_; mo; \ U,_, por- Then, the
standard graded exact sequence.

Hi7 (M), — Hip, (M) — Hj, (M)=Hj, (M),

(M
in which 7, denotes the natural homomorphism (cf. [B-S, (13.1.12)]) gives rise
to a graded epimorphism H(’RJF,I)(M) — Doy (H'RL(M)) — 0. As x avoids
all minimal primes of Ry,
dim(R/(R,,x)) 2 dim(Ry/xRy) =0,

so that H{p (M) is artinian, (s. [B-S, (7.1.4)]). Therefore I'; y(Hp, (M))
is artinian, too. So I'(;)(Hp, (M)) is asymptotically gap free (s. (4.1) B)).
As M is finite and as z is contained in all maximal ideals mgy,..., mg, of
Ry, HfLF(M)n is an xRy-torsion Ry-module for all n < 0. Therefore,

Hg+(M)n = erO(Hg+(M)n) = r(x)(Hg+(M))n for all n < 0.

R+£E

This shows that Hfer(M ) is asymptotically gap free. O

4.3. Theorem. F Assume that the base ring Ry is semilocal and of dimension
< 1. Then, the cohomological pattern P(F) of an arbitrary coherent sheaf F
of Ox-modules is tame.

Proof In view of (3.5) it suffices to show that P(F) satisfies the axiom (mg). We
write F = M, where M is an appropriately choosen finitely generated graded
R-module. In view of the natural isomorphism H*(X, F(n)) & R'Dg, (M), of
(3.1) C) it thus suffices to show, that the graded R;-modules R'Dp, (M) are
asymptotically gap free for all i« € Ny. As M is finitely generated, this follows
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by (4.2) from the graded exact sequence M — D (M) — Hp (M) — 0
([B-S, (12.4.2)]) and the natural graded isomorphisms R'Dp, (M) = Hy! (M)
for all i € N (s. [B-S, (12.4.5) (iii)]). O
Next we show that — under certain restrictions on X —each tame cohomological

pattern can be realized as the cohomological pattern of a coherent sheaf of O x-
modules. First, we give some preliminaries.

4.4. Remark. A) If F is a coherent sheaf of O x-modules, then clearly P(F(t)) =
P(F)(t) for all t € Z.

Moreover, if G is a second coherent sheaf of Ox-modules, then P(F & G) =
P(F)UP(G).

B) If Ry = K is a field and if R = K|[xq,...,Xy]| i a polynomical ring, we
get X = P%. Then, for any coherent sheaf F of Oy-modules we have the
following equivalence (cf. [B-S, (20.4.22)])

(i,n) & P(F), Vi <w, Vn < 0 <= F is locally free.

Thus, in particular we can say:
P(F) € Puin, w(P(F)) =w=F islocally free.
Finally, we have the equivalence

{0} x Z & P(F) and
{1,...,w =1} xZ)NP(F)=0

(Indeed, the left hand side condition is equivalent to the fact that Dg, (M) is
a graded free R-module of finite rank.) °

4.5. Proposition. Let K be a field and let w € N. Let P € Ppin with w(P) =
w. Then, there is an indecomposable locally free sheaf & of Opw-modules with
rank (£) < w! and such that P(E) = P.

Proof (cf. [B-Ma-Mi, Constr. 8, Rem. 5.4]). By (2.7) there are uniquely
determined integers 1 < ro < --- < 1, such that P = P(ry,ry,...,7,). Now,
let x;,y; (i =1,...,w) be indeterminates and consider the Segre product ring
(all tensor products are to be taken over K),

} <— 3&1, e, Qp € 7 :F = @gzlopz}(ai>.

R := 0L K[X;,yi] = ®nz0 @321 K[Xi,¥iln,

which may be identified naturally with the positively graded homogeneous
noetherian domain

[([jEMXiyj |MQW] g K[le"'vxw7YI7"'7Yw]7

JEW\M

where W := {1,...,w}.
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Next, consider the finitely generated and graded R-module
M:= o (K i Yil(ri)) = oK is Yilntr s
2 (K yil(rs) = © 8 K Vil

e.g. the Segre product of the modules K[x;,y;](r;). Then by the Kiinneth-
relations (cf. [St-V, (2.10)], [F]) we get

RIDp,(M)a = @ O R Dicyig. (K[, yi] (i)
Jitetjw=ji=1

As, for each i € W,
R'D s yits (K%, i) (7)) = 0 for all 1 > 1,
R° Dty (K%, yil (ri) ) # 0 = n > =1y,
R'Dix,yis (K[Xi, yi](ri))n #0 <= n < —r; — 1,

+

and as r; < ry < --- < 1y, it follows readily

(5) R'Dp, (M), #0 <> (j,n) € P(ri,...,r,) =P
As dim(R) = w + 1, we find elements z, ...,z, € Ry such that R is a finite
integral extension of its subring S := K]zy,...,2,] and such that z, ..., z,

are algebraically independent over K. As R, = /S, by graded base ring in-
dependence (s. [B-S, (13.1.6)]) we thus get isomorphisms of graded S-modules
RIDg, (M) 2 RIDg, (M) for all j € Ny. If we apply what is said in (3.1) C)
to S and the finitely generated graded S-module M, and keep in mind that
Proj(S) = P%, the above statement (5) gives P(F) = P, where F := M is the
coherent sheaf of Opp-modules induced by M. Now, by the second observation
made in (4.2) B), F is locally free, hence a vector bundle.

It is easy to see that the Hilbert polynomial of the R-module M has degree
w and leading coefficient 1. So, the same holds for M as a graded S-module.
Therefore, F is of rank w!. Finally, by the second observation made in 4.4 A),
F must have an indecomposable factor £ with P(£) = P. O

4.6. Corollary. Let K be a field and let d € N. Let P be a tame combinatorial
pattern with w(P) < d. Then, there is a coherent sheaf F of (’)]Piz(—modules
with P(F) = P.

Proof By (2.5) there are finitely many minimal patterns Pi,..., P, € Puyin
such that P = Py U---U P,. Let w; := w(P;). Then, clearly w; < d. So,
for each i € {1,...,7} there is a subspace Py C P%. Let o; : Py — P4
be the inclusion morphism. If w; = 0, let F; = OP;?-. If w; > 0 use (4.5)
to find a locally free sheaf F; of (’)Pzi—modules such that P(F;) = P;. As
HI(PY, Fi(n)) & H (P, a;, F(n)) for all j,n € Z and all i € {1,...,7}, and
as P(P, Ops ) = {0} x Z we get P(F) = P, if we set F := ®}_uFi. O
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4.7. Corollary. Assume that one of the special fibers of the natural morphism
X — Xy is a projective space of dimension d and let P € P' be a tame
combinatorial pattern with w(P) < d. Then, there is a coherent sheaf of Ox -
modules F such that P(F) = P.

Proof By our hypothesis there is a closed point xq € X and a closed immersion
a: ]P’Z(xo) — X. By (4.5) there is a coherent sheaf of Opa -modules G with

r(zp)
P(G) = P. It suffices to choose F := ., G. O
4.8. Theorem. Assume that Ry is a noetherian semilocal ring of dimension
<1 and let d € Ny. Then, the cohomological patterns of coherent sheaves of
OP% -modules are precisely the tame combinatorial patterns of width < d.
0

Proof Easy by (4.3) and (4.7). O

4.9. Remark and Problems. A) Let K be a field and let w € N. Let
P € Ppin with w(P) = w. By (4.5) there is an indecomposable vector bundle
of rank < w! whose cohomological pattern equals P. Obviously, the rank
estimate in this statement is very rough. So, we are lead to ask the following
question:

What is the least value of rank () if £ is a locally free sheaf of Opw-modules
with P(E) = P?

B) We fix two integers u, v with u+w > v. Then P := ({w}xZ<,)U({0}xZ>,)
is a non-minimal tame cohomological pattern of width w and we have

Moreover, by the last observation made in (4.4) B), P cannot be realized by
an indecomposable coherent sheaf. So, there are tame combinatorial patterns,
which cannot be realized by an indecomposable coherent sheaf of Opw-modules.
This leads to the question:

Is there a purely combinatorial characterization of those patterns, which are
realized by locally free and indecomposable sheaves of Opw-modules? °

5. THE TAMENESS PROBLEM

We keep the previous notations and hypothesis. In (4.3) we have seen that the
cohomological pattern P(F) of an arbitrary coherent sheaf of Ox-modules F
is tame, provided that the base ring Ry is semilocal and of dimension at most
one. It appears to us, that the restriction on the dimension of R, is unnecessary
to guarantee the tameness of P(F). So, we like to pose the following problem.

5.1. Problem. Assume that the base ring Ry is semilocal. Is P(F) tame for
any coherent sheaf of Ox-modules F ¢

5.2. Remark. A) In fact, we do not know of any example at all, in which
P(F) is not tame. But in view of the example presented in [Si] it might be
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too daring to ask the question in (5.1) in case of an arbitrary noetherian base
ring Ry.

B) Clearly, in view of the isomorphisms (3.1) C) the above tameness problem is
equivalent to ask whether the local cohomology modules H}'h(M ) are asymp-
totically gap free for all © € Ny and all finitely generated graded R-modules
M.

C) For each finitely generated graded R-module M and each i € Ny we may
consider the following statements
(i) Assp,(Hp, (M)y) is asymptotically stable for n — —oo (e.g. there is an
no € Z such that Assg, (Hp, (M),) = Assg,(Hg, (M),,) for all n < ny);
(ii) Assgy(Hp, (M)y,) is asymptotically increasing for n — —oo (e.g there is
an ng € Z such that Assg,(Hp, (M),) € Assg,(Hp, (M),41) for all n < ng);
(iti) Hy, (M) is asymptotically gap free.
Then obviously, we have the following implications (i) = (ii) = (iii). e
5.3. Notation and Remark. A) Let M be a finitely generated and graded
R-module. Then, we may consider the finiteness dimension of M relative to
R+.'

fry (M) :=inf{i € N| Hj (M) is not finitely generated} .

B) As the Ry-modules Hp, (M), are finitely generated for all i € Ny and all
n € Z and vanish for all n > 0 (s. [B-S, (15.1.5)]) we can write

fro (M) =inf{i € Ny | #{n < 0 | Hy (M), # 0} = oo} =
=inf{ie Ny | #{n € Z| Hyp, (M), # 0} = oc}.

5.4. Lemma. Assume that the base ring Ry is local. Let M be a finitely gener-
ated and graded R-module and let i € Ny be such that the R-module Hy,, (M)
is finitely generated for all j < i. Then ASSRO(Hﬁer(M)n) is asymptotically
stable for n — —o0.

Proof Let mg be the maximal ideal of Ry. Let Rj := Ro[X|m,r[x, Where x is
an indeterminate. Then, in the notation of (3.2) B), the faithful Ry-flatness
of R{ gives rise to isomorphisms of Rj-modules

Hpy (M"), 22 Hy (M), ©p, Ry forall k€ Ny and alln € Z

(s. [B-S, (15.2.2) (iv)]). These show that the Ry-module Hj,+(M’) is finitely

generated for all j < i (cf. (5.3) B)) and that Assg,(Hp, (M),) = {p; N Ry |
Py € Asst(sz;(M’)n} for all n € Z (cf. [M, (23.2) (ii)]). This allows to
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replace R and M respectively by R’ and M’ and hence to assume that Ry/my
is infinite.

Now, we prove our claim by induction on 7. The case © = 0 is clear as
Hy, (M), =0 for all n < 0. So, let i > 0. In view of the natural graded iso-
morphisms Hpy, (M) 2 Hy, (M/Tr,(M)) for all k € N (s. [B-S, (2.1.7) (iii)])
we may replace M by M/T'r, (M) and hence assume that gradey (Ry) # 0.
So, there is some element x € Ry which is M-regular (cf. [B-S, (15.1.4)]). If

we apply cohomology to the short exact sequence 0 — M(—1)—=M —
M/xM — 0, we get graded exact sequences

(6)  Hp (M) — Hp'(M/aM) — Hp, (M)(=1) — Hy (M).

These sequences first show that H{;rl(M/a:M) is finitely generated for all j < 7.
So, by induction, there is some n; € Z such that ASSRO(HEI(M/:UM),L) =
AssRO(H}il(M/a:M)m) =: A for all n < ny. Moreover, there is some ny < ny
such that HEI(M),,H = 0 for all n < ny. So, for each n < ny we have an
exact sequence of Ry-modules

0 — Hj '(M/xM)yi1 — Hp, (M), — Hp, (M)
induced by (6). This shows that

A C Asspy(Hp, (M)y) C AU Assg,(Hp, (M)y4) for all n < n,

and hence proves that

ASSRO(Hﬁer(M)n) - ASSRO(Hf%Jr(M)nH) for all n < ny.

This proves our claim. O
5.5. Remark. A) Let M be a finitely generated and graded R-module and
let i € Ng. As Hp, (M) is an R -torsion module, we have Assp(Hp, (M)) C
Var(Ry) and this gives rise to a natural bijection

Assp(Hp, (M) | ) Asspy(Hp, (M)n); (p—pNRy).

neZ

B) By the above observation Assp(Hp, (M)) is finite if Assp,(Hp, (M),) is
asymptotically stable for n — —oo. We do not know, whether the converse
of this implication holds in general. °

5.6. Proposition. Let M be a finitely generated and graded R-module and
let f:= fr, (M) € N. Then ASSRO(HIJ;+(M),L) is asymptotically stable for
n — —oo.

Proof According to [B-L], the set AssR(H}’;(M)) is finite. So, by (5.5) A)
the set S = (J,cz, AssRO(H£+(M)n) is finite. Let py € S.
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Then, by the graded flat base change property the R, -module H{RPO)+(MP0)

is finitely generated for all j < f. Moreover, for each n € Z we have
o € Assp, (b, (M),) <= Po(Rolpy € Assiiroyy (Hly | (My)a)

So, if we apply (5.4) to each of the R, -modules M, , we get our claim. O

5.7. Example and Remark. A) Let x,y,z,u,v,w be indeterminates, let
Ry = Z[x,y,z] and consider the positively graded homogeneous Rj-algebra
R = Ry[u,v,w|/(ux + vy + wz) (furnished with the standard grading which
assigns the degree 1 to the images of the three generators u, v, w). Then, by
[Si], we know that #{pNZ | p € Assp(Hp, (R))} = oo. So, by (5.5) B) we see
that Assg,(H}, (R),) is not asymptotically stable for n — —oo.

B) Let R be as in part A) and let p € Spec(R)\Var(xR). Then x is invertible
in R, so that (Ry), = (u,v,w) R, = (v, w)R, and hence

Hy, (R)y = Hig,) (Ry) = H{, wyr, (Ry) = 0.

Therefore, p & Assp(Hp, (R)). If p & Var(yR) or p & Var(zR), the same
conclusion holds. Therefore, we have Assg(Hp, (R)) C Var((x,y,2)R). If we
write qo := (x,y,z)Ry we thus obtain (cf. (5.5) A))

Assp(H}, (R)) C{pZ+4qo+ Ry |p=0or pe N prime };

U Asspy(H}, (R)n) C{pZ+dqo|p=0o0r peN prime }.
neZ

C) Let S = Rylu, v, w] be graded such that u, v, w have degree 1. In view of
the graded isomorphism
H‘§)«+ (S> = RU[u_7 V_7 W_] = @ngfi’, @aﬁ:gﬁ'fzon uaVBW’YRO

(cf. [B-S, (12.4.1)]) and in view of the graded exact sequence
0 — H (R) — H3 (S)(~1) 2% HE (S) — H}, (R) — 0,

it is easy to see that Hj (R), = 0 for all n > —2 and that Assg,(Hp, (R),) =
{0} for all n < —2. The same sequences also show (after localization at Z\ {0}
and on use of the observation of part B)) that H} (R), = 0 for all n > —3
and that qo is the unique minimal member of Assg,(Hp, (R),) for all n < —3.

[ ]
5.8. Remark. A) If our base ring Ry is local, the problem whether Hj, (M)
is asymptotically gap free for a finitely generated graded R-module M as well
as the related problems of the asymptotic increasing (resp. stability) of the
sets Assp,(Hy, (M),) for n — —oo (cf. (5.2) C)) or the finiteness of the
sets Assp(Hp, (M)) (s. (5.5) B)) are all still open. Even in the special case
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M is a Cohen-Macaulay ring we have not been able to answer any

of these questions.

B) The state of the art concerning the problems mentioned in part A) is similar
to the situation for the question whether the sets Assp(H:(R)) are finite for
an arbitrary ideal a of a local CM-ring R (cf. [Hu]). The methods and results
of [He] may be used to reduce the problems mentioned in A) to more specific
cases. Notably, it would be interesting to solve the problems in the case where

the irrelevant ideal R, has at most three generators. .
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