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ABSTRACT. We give an explicit construction of a deformation quantiza-
tion of the algebra of functions on a Poisson manifolds, based on Kont-
sevich’s local formula. The deformed algebra of functions is realized as
the algebra of horizontal sections of a vector bundle with flat connection.

1. INTRODUCTION

LetM be a paracompact smoothd-dimensional manifold. The Lie bracket
of vector fields extends to a bracket, the Schouten–Nijenhuis bracket, on the
graded commutative algebraΓ(M,∧·TM) of multivector fields so that:

[α1 ∧ α2, α3] = α1 ∧ [α2, α3] + (−1)m2(m3−1)[α1, α3] ∧ α2,

[α1, α2] = −(−1)(m1−1)(m2−1)[α2, α1],

if αi ∈ Γ(M,∧miTM). This bracket defines a graded super Lie algebra
structure onΓ(M,∧·TM), with the shifted gradingdeg′(α) = m− 1, α ∈
Γ(M,∧mTM).

A Poisson structure onM is a bivector fieldα ∈ Γ(M,∧2TM) obeying
[α, α] = 0. This identity forα, which we can regard as a bilinear form on
the cotangent bundle, implies that{f, g} = α(df, dg) is a Poisson bracket
on the algebraC∞(M) of smooth real-valued function. If such a bivector
field is given, we say thatM is a Poisson manifold.

Following [2], we introduce the notion of (deformation) quantization of
the algebra of functions on a Poisson manifold.

Definition. A quantizationof the algebra of smooth functionsC∞(M) on
the Poisson manifoldM is a topological algebraA over the ring of formal
power seriesR[[ε]] in a formal variableε with product?, together with an
R-algebra isomorphismA/εA→ C∞(M), so that

(i) A is isomorphic toC∞(M)[[ε]] as a topologicalR[[ε]]-module.
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(ii) There is anR-linear sectiona 7→ ã of the projectionA → C∞(M)

so thatf̃ ? g̃ = f̃g +
∑∞

j=1 ε
j ˜Pj(f, g) for some bidifferential oper-

atorsPj : C∞(M)2 → C∞(M) with Pj(f, 1) = Pj(1, g) = 0 and
P1(f, g)− P1(g, f) = 2α(df, dg).

If we fix a section as in (ii), we obtain astar productonC∞(M), i.e. a
formal seriesPε = εP1 + ε2P2 + · · · whose coefficientsPj are bidifferential
operatorsC∞(M)2 → C∞(M) so thatf ?M g := fg + Pε(f, g) extends to
an associativeR[[ε]]-bilinear product onC∞(M)[[ε]] with unit 1 ∈ C∞(M)
and such thatf ?M g − g ?M f = 2εα(df, dg) mod ε2.

Remark. One can replace (i) by the equivalent condition thatA is a Haus-
dorff, complete,ε-torsion freeR[[ε]]-module, see [4], [8] and Appendix A.

M. Kontsevich gave in [9] a quantization in the case ofM = R
d, in the

form of an explicit formula for a star product, as a special case of his for-
mality theorem for the Hochschild complex of multidifferential operators.
This theorem is extended in [9] to general manifolds by abstract arguments,
yielding in principle a star product for general Poisson manifolds.

In this paper we give a more direct construction of a quantization, based
on the realization of the deformed algebra of functions as the algebra of hor-
izontal sections of a bundle of algebras. It is similar in spirit to Fedosov’s
deformation quantization of symplectic manifolds [5]. It has the advantage
of giving in principle an explicit construction of a star product on any Pois-
son manifold.

We turn to the description of our results.
We construct two vector bundles with flat connection on the Poisson man-

ifold M . The second bundle should be thought of as a quantum version of
the first.

The first bundleE0 is a bundle of Poisson algebras. It is the vector bundle
of infinite jets of functions with its canonical flat connectionD0. The fiber
overx ∈M is the commutative algebra of infinite jets of functions atx. The
Poisson structure onM induces a Poisson algebra structure on each fiber,
and the canonical mapC∞(M) → E0 is a Poisson algebra isomorphism
onto the Poisson algebraH0(E0, D0) of D0-horizontal sections ofE0.

The second bundleE is a bundle of associative algebras overR[[ε]] and
is obtained by quantization of the fibers ofE0. Its construction depends on
the choicex 7→ ϕx of an equivalence class of formal coordinate systems
ϕx : (Rd, 0) → (M,x), defined up to the action ofGL(d,R), at each point
x of M and depending smoothly onx. As a bundle ofR[[ε]]-modules,
E ' E0[[ε]] is isomorphic to the bundle of formal power series inε whose
coefficients are infinite jets of functions. The associative product on the
fiber of E over x ∈ M is defined by applying Kontsevich’s star product
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formula forRd with respect to the coordinate systemϕx. Thus the sections
of E form an algebra. We say that a connection on a bundle of algebras
is compatible if the covariant derivatives are derivations of the algebra of
sections. If a connection is compatible then horizontal sections form an
algebra. Our first main result is:

Theorem 1.1. There exists a flat compatible connectionD̄ = D0 + εD1 +
ε2D2 + · · · onE, so that the algebra of horizontal sectionsH0(E, D̄) is a
quantization ofC∞(M).

The construction of the connection is done in two steps. First one con-
structs a deformationD of the connectionD0 in terms of integrals over
configuration spaces of the upper half-plane. This connection is compatible
with the product as a consequence of Kontsevich’s formality theorem onR

d.
Moreover the same theorem gives a formula for its curvature, which is the
commutator[FM , ·]? with someE-valued two-formFM , and also implies
the Bianchi identityDFM = 0. In the second step, we use these facts to
show, following Fedosov’s method [5], that there is anE-valued one-form
γ so thatD̄ = D + [γ, ·]? is flat. This means thatγ is a solution of the
equation

(1) FM + εω +Dγ + γ ? γ = 0.

Hereω is anyE-valued two-form such thatDω = 0 and[ω, ·]? = 0.
To prove that the algebra of horizontal sections is a quantization ofC∞(M)

one constructs aquantization map

ρ : C∞(M) ' H0(E0, D0)→ H0(E, D̄),

extending to an isomorphism of topologicalR[[ε]]-modulesC∞(M)[[ε]]→
H0(E, D̄). We give two constructions of such a map. In the first construc-
tion, ρ is induced by a chain map(Ω·(E0), D0)→ (Ω·(E), D̄) between the
complexes of differential forms with values inE0 andE, respectively. In
the second construction,ρ is only defined at the level of cohomology, but
behaves well with respect to the center.

Theorem 1.2. Let Z0 = {f ∈ C∞(M) | {f, ·} = 0} be the algebra of
Casimir functions andZ = {f ∈ H0(E, D̄) | [f, ·]? = 0} be the center of
the algebraH0(E, D̄). Then there exists a quantization mapρ that restricts
to an algebra isomorphismZ0[[ε]]→ Z.

The local version of this theorem is a special case of the theorem on
compatibility of the cup product on the tangent cohomology [9]. This global
version is based on two further special cases of the formality theorem for
R
d.
By using the second quantization mapρ, we may represent the central

two-form ω asρ(ω0), whereω0 is aD0-closedE0-valued two-form which
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is Poisson central in the sense that{ω0, ·} = 0. A further advantage of
this quantization map is that it allows us to define a map from Hamiltonian
vector fields to inner derivations of the global star product.

Our construction depends on the choice of a class of local coordinate
systemsϕaff = ([ϕx])x∈M , a Poisson centralD0-closed two-formω0 and a
solutionγ of (1). It turns out that different choices (at least within a homo-
topy class) lead to isomorphic algebra bundles with flat connection (and in
particular to isomorphic algebras of horizontal sections) if the central two-
forms are in the same cohomology class in the subcomplex of(Ω·(E0), D0)
formed by Poisson central differential forms. Thus, up to isomorphism, our
construction depends only on the cohomology class of the Poisson central
two-form. This will be the subject of a separate publication.

Also, the action of an extension of the Lie algebra of Poisson vector fields
on the deformed algebra and a discussion of special cases, such as the case
of a divergence-free Poisson bivector field [6] and the symplectic case will
be presented elsewhere.

Our construction is also inspired by the quantum field theoretical descrip-
tion [3] of deformation quantization. In that approach, the quantization is
defined by a path integral of a topological sigma model which should be
well-defined for any Poisson manifold. The star product is obtained by
a perturbation expansion in Planck’s constant which requires to consider
Taylor expansions at points ofM . This suggests that a global version of the
star product should be constructed in terms of a deformation of the bundle
of infinite jets of functions. The deformation of the transition functions can
be expressed in terms of Ward identities for the currents associated to infini-
tesimal diffeomorphisms [10]. As shown in [3], Ward identities correspond
to identities of Kontsevich’s formality theorem.

The organization of this paper is as follows. In Section 2 we recall the
main notions of formal geometry, which we use to patch together objects
defined locally. Section 3 is a short description of Kontsevich’s formality
theorem onRd. We formulate four special cases of this theorem, which are
the ingredients of our construction. We then describe the quantization using
the theory of compatible connections on bundles of algebras in Section 4,
by adapting a construction of Fedosov [5] to our situation. In particular,
we give a proof of Theorem 1.1. We study the relation between Casimir
sections ofE0 and central sections ofE, and give a proof of Theorem 1.2 in
Section 5. The notion of topologicalR[[ε]]-module, appearing in the defini-
tion of quantization, is reviewed in Appendix A. In Appendix B, we prove
some (well-known) cohomology vanishing results, by giving a canonical
homotopy, similar to Fedosov’s in the symplectic case. In particular we
give a representation of cocycles as coboundaries, giving in principle an
algorithm to compute star products of functions.
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2. FORMAL GEOMETRY

Formal geometry [7], [1] provides a convenient language to describe the
global behavior of objects defined locally in terms of coordinates. The idea
is to consider the “space of all local coordinate systems” onM with its
transitive action of the Lie algebra of formal vector fields. More precisely,
let M coor be the manifold of jets of coordinates systems onM . A point in
M coor is an infinite jet at zero of local diffeomorphisms[ϕ] : U ⊂ Rd →M
defined on some open neighborhoodU of 0 ∈ Rd. Two such maps define
the same infinite jet iff their Taylor expansions at zero (for any choice of
local coordinates on M) coincide. We have a projectionπ : M coor → M
sending[ϕ] to ϕ(0). The groupG0 of formal coordinate transformations
of Rd preserving the origin acts freely and transitively on the fibers. The
tangent space toM coor at a point[ϕ] may be identified with the Lie algebra

W =

{
d∑
j=1

vj
∂

∂yj

∣∣∣∣ vj ∈ R[[y1, . . . , yd]]

}
,

of vector fields on the formal neighborhood of the origin inRd: if ξ ∈
T[ϕ]M

coor and[ϕt] is a path inM coor with tangent vectorξ at t = 0, then

ξ̂(y) = Taylor expansion at0 of −(dϕ)(y)−1 d

dt
ϕt(y)

∣∣∣∣
t=0

is a vector field inW which only depends on the infinite jet ofϕt. We will
often omit the bracket in[ϕ] for simplicity when no confusion arises. The
mapωMC(ϕ) : ξ 7→ ξ̂ is in fact an isomorphism from the tangent space at
ϕ of M coor toW and defines theW-valuedMaurer–Cartan formωMC ∈
Ω1(M coor,W) onM coor. Its inverse defines a Lie algebra homomorphism
W 7→ {vector fields onM coor}, which means thatW acts onM coor, and is
equivalent to the fact thatωMC obeys theMaurer–Cartan equation

(2) dωMC +
1

2
[ωMC, ωMC] = 0,

where the bracket is the Lie bracket inW and the wedge product of differ-
ential forms. Moreover,ωMC isW-equivariant:

(3) Lξ̂ωMC = adξωMC, ξ ∈ W
The action ofW, restricted to the subalgebraW0 of vector fields vanishing
at the origin, can be integrated to an action ofG0. In particular, the subgroup
GL(d,R) of linear diffeomorphisms inG0 acts onM coor and we setMaff =
M coor/GL(d,R). We will need the fact that the fibers of the bundleMaff →
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M are contractible so that there exist sectionsϕaff : M → Maff . Over
M coor we have the trivial vector bundleM coor×R[[y1, . . . , yd]]. It carries a
canonical flat connection,d+ωMC, which has the property that its horizontal
sections are precisely the Taylor expansions of smooth functions onM : if
f ∈ C∞(M), thenϕ 7→ (Taylor expansion at zero off ◦ ϕ) is a horizontal
section and all horizontal sections are obtained in this way.

Since the Maurer–Cartan form isGL(d,R)-equivariant, the canonical
connection induces a connection on the vector bundleẼ0 = M coor×GL(d,R)

R[[y1, . . . , yd]] overMaff , as will be seen in detail in Lemma 4.1 below.
Let ϕaff : M → Maff be a section of the fiber bundleMaff → M . Then
E0 = ϕaffẼ0 is a vector bundle overM , with fiberR[[y1, . . . , yd]]: a point
in the fiber ofE0 over x is a GL(d,R)-orbit of pairs(ϕ, f) whereϕ is a
representative of the classϕaff(x) andf ∈ R[[y1, . . . , yd]]. The action of
g ∈ GL(d,R) id (ϕ, f) 7→ (ϕ ◦ g, f ◦ g). The pull-back of the canonical
connection is a flat connectionD0 onE0.

This vector bundle has also a description independent of the choice of
section which we turn to describe. LetJ(M) be the vector bundle of infi-
nite jets of functions onM : the fiber overx ∈ M consists of equivalence
classes of smooth functions defined on open neighborhoods ofx, where two
functions are equivalent iff they have the same Taylor series atx (with re-
spect to any coordinate system). It is easy to see that the mapJ(M)→ E0

sending the jetp at x to (ϕ,Taylor expansion at0 of (p ◦ ϕ)), ϕ ∈ ϕaff(x)
is an isomorphism. The pull-back of the connection induces a canonical
connection onJ(M) which is independent of the choice ofϕaff .

3. THE KONTSEVICH STAR PRODUCT AND FORMALITY THEOREM ON

R
d

Letα =
∑
αij(y) ∂

∂yi
∧ ∂
∂yj

be a Poisson structure onRd. The Kontsevich
star product of two functionsf , g onRd is given by a seriesf ? g = fg +∑∞

j=1
εj

j!
Uj(α, . . . , α)f ⊗ g. The operatorUj(α1, . . . , αj) is a multilinear

symmetric function ofj argumentsαk ∈ Γ(Rd,∧2TRd), taking values in
the space of bidifferential operatorC∞(Rd)⊗C∞(Rd)→ C∞(Rd). In fact
Uj(α1, . . . , αj) is defined more generally as a multilinear graded symmetric
function of j multivector fieldsαk ∈ Γ(Rd,∧mkTRd), with values in the
multidifferential operatorsC∞(Rd)⊗r → C∞(Rd), wherer =

∑
kmk −

2j + 2. The mapsUj are GL(d,R)-equivariant and obey a sequence of
quadratic relations (amounting to the fact that they are Taylor coefficients of
anL∞ morphism) of which the associativity of the star product is a special
case.

Let S`,n−` be the subset of the groupSn of permutations ofn letters con-
sisting of permutations such thatσ(1) < · · · < σ(`) andσ(` + 1) < · · · <
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σ(n). Forσ ∈ S`,n−` let

ε(σ) = (−1)
∑`
r=1 mσ(r)(

∑σ(r)−1
s=1 ms−

∑r−1
s=1 mσ(s)).

The formality theorem forRd is (with the signs computed in [3]):

Theorem 3.1(Kontsevich [9]). Letαj ∈ Γ(Rd,∧mjTRd), j = 1, . . . , n be
multivector fields. Letεij = (−1)(m1+···+mi−1)mi+(m1+···+mi−1+mi+1+···+mj−1)mj .

Then, for any functionsf0, . . . , fm,

n∑
`=0

m∑
k=−1

m−k∑
i=0

(−1)k(i+1)+m
∑

σ∈S`,n−`

ε(σ)U`(ασ(1), . . . , ασ(`))(f0 ⊗ · · · ⊗ fi−1

⊗Un−`(ασ(`+1), . . . , ασ(n))(fi ⊗ · · · ⊗ fi+k)⊗ fi+k+1 ⊗ · · · ⊗ fm)

=
∑
i<j

εijUn−1([αi, αj], α1, . . . , α̂i, . . . , α̂j, . . . , αn)(f0 ⊗ · · · ⊗ fm).

Here[ , ] denotes the Schouten–Nijenhuis bracket and a caret denotes omis-
sion.

Of this theorem we will need some special cases, namely the cases in-
volving vector fields and a Poisson bivector field.

Let α ∈ Γ(Rd,∧2TRd) be a Poisson bivector field andξ, η be vector
fields. Let us introduce the formal series

P (α) =
∞∑
j=0

εj

j!
Uj(α, . . . , α)

A(ξ, α) =
∞∑
j=0

εj

j!
Uj+1(ξ, α, . . . , α)

F (ξ, η, α) =
∞∑
j=0

εj

j!
Uj+2(ξ, η, α, . . . , α).

The coefficients of the seriesP , A, F are, respectively, bidifferential oper-
ators, differential operators and functions. They obey the relations of the
formality theorem. To spell out these relations it is useful to introduce the
Lie algebra cohomology differential.

Definition. A local polynomial mapfrom Γ(Rd,∧2TRd) to the space of
multidifferential operators onRd, is a mapα 7→ U(α) ∈ ⊕∞r=0C

∞(Rd) ⊗
R[∂/∂y1, . . . , ∂/∂yd]⊗r, so that the coefficients ofU(α) aty ∈ Rd are poly-
nomials in the partial derivatives of the coordinatesαij(y) of α at y. We
denote byU the space of these local polynomial maps.

The Lie algebraW of vector fields onRd acts onU and we can form
the Lie algebra cohomology complexC·(W,U) = HomR(∧·W,U). An
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element ofCk(W,U) sendsξ1 ∧ · · · ∧ ξk, for any vector fieldsξj, to a mul-
tidifferential operatorS(ξ1, . . . , ξk, α) depending polynomially onα. Then
P ∈ C0(W,U)[[ε]], A ∈ C1(W,U)[[ε]] andF ∈ C2(W,U)[[ε]]. The differ-
ential (extended to formal power series byR[[ε]]-linearity) will be denoted
by δ. If Φt

ξ denotes the flow of the vector fieldξ, we have

δS(ξ1, . . . , ξp+1, α) = −
p+1∑
i=1

(−1)i−1 d

dt

∣∣∣∣
t=0

S(ξ1, . . . , ξ̂i, . . . , ξp+1, (Φ
t
ξi

)∗α)

+
∑
i<j

(−1)i+jS([ξi, ξj], ξ1, . . . , ξ̂i, . . . , ξ̂j, . . . , ξp+1, α).

Corollary 3.2.
(i) P (α)◦ (A(ξ, α)⊗ Id + Id⊗A(ξ, α))−A(ξ, α)◦P (α) = δP (ξ, α).

(ii) P (α) ◦ (F (ξ, η, α) ⊗ Id − Id ⊗ F (ξ, η, α)) − A(ξ, α) ◦ A(η, α) +
A(η, α) ◦ A(ξ, α) = δA(ξ, η, α).

(iii) −A(ξ, α)◦F (η, ζ, α)−A(η, α)◦F (ζ, ξ, α)−A(ζ, α)◦F (ξ, η, α) =
δF (ξ, η, ζ, α).

These relations can be deduced from Theorem 3.1, by noticing that some
terms vanish owing to the Jacobi identity[α, α] = 0 and that[ξ, α] is the
Lie derivative ofα in the direction of the vector fieldξ.

Remark. The relations, together with the associativity relationsP ◦ (P ⊗
Id − Id ⊗ P ) = 0 may be written compactly in the Maurer–Cartan form
δS+ 1

2
[S, S] = 0, whereS = P +A+F and the bracket is composed of the

Gerstenhaber bracket on Hochschild cochains, see [9], and the cup product
in the Lie algebra cohomology complex.

Remark. Relation (i) gives the behavior of the Kontsevich star product un-
der coordinate transformations: if we do an infinitesimal coordinate trans-
formation, the star product changes to an equivalent product.

We will also need the form of the lowest order terms ofP , A, F and
their action on1 ∈ R[[y1, . . . , yd]]. The following results are essentially
contained in [9]. They amount to an explicit calculation of certain integrals
over configuration spaces of points in the upper half-plane.
Proposition 3.3.

(i) P (α)(f ⊗ g) = fg + εα(df, dg) +O(ε2).
(ii) A(ξ, α) = ξ + O(ε), where we viewξ as a first order differential

operator.
(iii) A(ξ, α) = ξ, if ξ is a linear vector field.
(iv) F (ξ, η, α) = O(ε)
(v) P (α)(1⊗ f) = P (α)(f ⊗ 1) = f

(vi) A(ξ, α)1 = 0.
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Remark. As the coefficients of the multidifferential operatorsUj are poly-
nomial functions of the derivatives of the coordinates of the multivector
fields, all results in this section continue to hold in the formal context,
namely if we replaceC∞(Rd) by R[[y1, . . . , yd]] and take the coordinates
of the tensorsα, ξ, η, ζ also inR[[y1, . . . , yd]].

4. DEFORMATION QUANTIZATION OF POISSON MANIFOLDS

4.1. A deformation of the canonical connection.Let Ẽ be the bundle of
R[[ε]]-modules

M coor ×GL(d,R) R[[y1, . . . , yd]][[ε]]→Maff ,

and letϕaff be a section of the projectionp : Maff → M . Such a section is
defined by a family(ϕx)x∈M of infinite jets at zero of mapsϕx : Rd → M
such thatϕx(0) = x, defined moduloGL(d,R) transformations.

LetE = (ϕaff)∗Ẽ be the pull-back bundle. As the Kontsevich product is
GL(d,R)-equivariant, it descends to a product, also denoted by?, onΓ(E).

Let us describe this product. For simplicity, we suppose that an open cov-
ering ofM , consisting, say, of contractible sets has been fixed and that rep-
resentativesϕx of theGL(d,R)-equivalence classes have been fixed on each
open set of the covering. In this way, we may pretend that the bundleE →
M is trivial with fiberR[[y1, . . . , yd]][[ε]]. Since all formulae areGL(d,R)-
equivariant, all statements will have a global meaning. A sectionf of E is
then locally a mapx 7→ fx, wherefx = fx(y) ∈ R[[y1, . . . , yd]][[ε]]. The
product of two sectionsf , g of Γ(E) is (f ? g)x = P (αx)(fx ⊗ gx), where
αx = (ϕ−1

x )∗α is the expression ofα in the coordinate systemϕx. Thus

(f ? g)x(y) = fx(y)gx(y) + ε
d∑

i,j=1

αijx (y)
∂fx(y)

∂yi
∂gx(y)

∂yj
+ · · ·

We now introduce a connectionD : Γ(E) → Ω1(M) ⊗C∞(M) Γ(E) on
Γ(E). We first assume thatM is contractible and that a sectionϕ : M →
M coor is fixed. We set

(Df)x = dxf + AMx f,

wheredxf is the de Rham differential off , viewed as a function ofx ∈ M
with values inR[[y1, . . . , yd]][[ε]], and, forξ ∈ TxM ,

AMx (ξ) = A(ξ̂x, αx), ξ̂x = ϕ∗ωMC(ξ).

Lemma 4.1. Letϕ, ϕ′ : M 7→ M coor be sections ofM coor such thatϕ′x =
ϕx ◦ g(x) for some smooth mapg : M → GL(d,R), and letD, D′ be the
corresponding connections. ThenD′(f ◦ g) = (Df) ◦ g.
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Proof: Let f : M → R[[y1, . . . , yd]] be a section and setf ′x = fx ◦g(x). We
haveD′ = dx + A(ϕ′∗ωMC(x), (ϕ′x

−1)∗α). Let us choose local coordinates
xi onU . Then the covariant derivative in the direction of∂/∂xi is

D′if
′
x =

∂

∂xi
(fx ◦ g(x)) + A(ϕ′

∗
ωMC

(
∂

∂xi

)
, (ϕ′x

−1
)∗α).

By the chain rule, we have, forx ∈ U ,

∂

∂xi
(fx(g(x)y)) =

∂fx
∂xi

(g(x)y)+θi(fx◦g(x))(y), θi(y) = g(x)−1 ∂

∂xi
g(x)y.

The vector-valued functiony 7→ θi(y) is viewed here as an element ofW.
On the other hand,

ϕ′
∗
ωMC

(
∂

∂xi

)
= (g(x)−1)∗ϕ

∗ωMC

(
∂

∂xi

)
− θi,

as can be seen from the definition of the Maurer–Cartan form. Alsoα′x =
(ϕ′x

−1)∗α = (g(x)−1)∗(ϕ
−1
x )∗α. Using theGL(d,R)-equivariance ofA, we

then obtain

D′if
′
x = (Difx) ◦ g(x) + θif

′
x − A(θi, α

′
x)f
′
x.

The point is that sinceθi is a linear vector field, we haveA(θi, α
′
x) = θi, by

Prop. 3.3, (iii).�

Let nowM be a general manifold. Suppose that a section ofMaff → M
is given. Its restriction to a contractible open setU is an equivalence class
of sectionsϕ : U → U coor, x 7→ ϕx. Two sectionsϕ, ϕ′ are equivalent
if there exists a mapg : U → GL(d,R) such thatϕ′x = ϕx ◦ g(x). If
we changeϕ to ϕ′ then the same sectionf of ϕaffẼ is described by a map
x 7→ f ′x = fx ◦ g(x). The above lemma shows thatD is independent
of the choice of representatives and therefore induces a globally defined
connection, which we also denote byD, onE = (ϕaff)∗Ẽ.

Let us extendD to theΩ·(M)-moduleΩ·(E) = Ω·(M)⊗C∞(M) Γ(E) by
the ruleD(ab) = (dxa)b+ (−1)paDb, a ∈ Ωp(M), b ∈ Ω·(E). The wedge
product onΩ·(E) and the star product on the fibers induce a product, still
denoted by?, onΩ·(E).

Proposition 4.2. Let FM ∈ Ω2(E) be theE-valued two-formx 7→ FM
x ,

with FM
x (ξ, η) = F (ξ̂x, η̂x, αx), ξ, η ∈ TxM . Then, for anyf, g ∈ Γ(E),

(i) D(f ? g) = Df ? g + f ? Dg
(ii) D2f = FM ? f − f ? FM

(iii) DFM = 0

These identities are obtained by translating the the identities of Corollary
3.2, using the following fact:
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Lemma 4.3. Let ϕ : M 7→ M coor be a section ofM coor and denote by
D the vector space of formal multidifferential operators onRd. The map
(Hom(∧·W ,U), δ)→ (Ω·(M,D), dde Rham), σ 7→ σM with

σMx (ξ1, . . . , ξp) = σ(ϕ∗ωMC(ξ1), . . . , ϕ∗ωMC(ξp), (ϕ
−1
x )∗α),

is a homomorphism of complexes.

Proof: Suppose thatσ is a homogeneous polynomial of degreek in α.
Then there exists aC∞(M)-multilinear graded symmetric, multidifferen-
tial operator-valued functionS of p vector fields andk bivector fields such
that

σ(η1, . . . , ηp, α) = S(η1, . . . , ηp, α, . . . , α).

Let us work locally and introduce coordinatesx1, . . . , xd. Letψj = ϕ∗ωMC(∂/∂xj).
The Maurer–Cartan equation (2) is then

∂

∂xµ
ψν −

∂

∂xν
ψµ + [ψµ, ψν ] = 0.

With the abbreviationαx = (ϕ−1)∗α, we then have

dde Rhamσ
M
x

(
∂

∂xµ1
, . . . ,

∂

∂xµp+1

)
=

p+1∑
j=1

(−1)j−1 ∂

∂xµj
σMx

(
∂

∂xµ1
, . . . ,

∂̂

∂xµj
, . . . ,

∂

∂xµp+1

)

=

p+1∑
i6=j=1

(−1)j−1S(ψµ1 , . . . ,
∂

∂xµj
ψµi , . . . , ψ̂µj , . . . , ψµp+1 , αx, . . . , αx)

+

p+1∑
j=1

(−1)j−1

k∑
l=1

S(ψµ1 , . . . , ψ̂µj , . . . , ψµp+1 , αx, . . . ,
∂

∂xµj
αx, . . . , αx).

The claim follows by using the Maurer–Cartan equation and the relation

∂

∂xµ
αx + [ψµ, αx] = 0.

which is an expression of the fact thatαx is the Taylor expansion of a glob-
ally defined tensor.�

By the property (i), the space of horizontal sectionsKerD is an algebra.
HoweverD has curvature, so we need to modify it in such a way as to kill
the curvature, still preserving (i). This can be done by a method similar
to the one adopted by Fedosov [5], which we turn to describe in a slightly
more general setting. We will come back to our case in Subsection 4.3.
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4.2. Connections on bundles of algebras.If E → M is a bundle of as-
sociative algebras over the ringR = R[[ε]] or R = R, then the space of
sectionsΓ(E) with fiberwise multiplication is also an associative algebra
overR and a module overC∞(M). The product of sections is denoted by
?, and we also consider the commutator[ a, b]? = a ? b − b ? a of sections.
LetD : Γ(E)→ Ω1(M)⊗C∞(M) Γ(E) be a connection onE, i.e., a linear
map obeyingD(fa) = df ⊗ a + fDa, f ∈ C∞(M), a ∈ Γ(E). Extend
D to theΩ·(M)-moduleΩ·(E) = Ω·(M)⊗C∞(M) Γ(E) in such a way that
D(βa) = (dβ)a+ (−1)pβDa if β ∈ Ωp(M), a ∈ Ω·(E). The spaceΩ·(E)
with product(β ⊗ a) ? (γ ⊗ b) = (β ∧ γ)⊗ (a ? b) is a graded algebra. We
say thatD is a compatible connection ifD(a ? b) = Da ? b+ a ?Db for all
a, b ∈ Γ(E). A connectionD is compatible iff its extension onΩ·(E) is a
(super) derivation of degree 1, i.e.,

D(a ? b) = Da ? b+ (−1)deg(a)a ? Db, a, b ∈ Ω·(E).

If this holds, then the curvatureD2 is aC∞(M)-linear derivation of the
algebraΩ·(E).

Definition. A Fedosov connectionD with Weyl curvatureF ∈ Ω2(E) is a
compatible connection on a bundle of associative algebras such thatD2a =
[F, a]? andDF = 0.

Note that the Weyl curvature of a Fedosov connection is not uniquely
determined by the connection: Weyl curvatures corresponding to the same
connection differ by a two-form with values in the center.

Proposition 4.4. If D is a Fedosov connection onE andγ ∈ Ω1(E) then
D + [ γ, ·]? is a Fedosov connection with curvature

F +Dγ + γ ? γ

Proof: Let D̄ = D + [γ, ·]?. If a ∈ Γ(E),

D̄2a = [F, a]? +D[ γ, a]? + [ γ,D(a)]? + [ γ, [ γ, a]?]?

= [F, a]? + [Dγ, a]? + [ γ, [ γ, a]?]?

= [F +Dγ +
1

2
[ γ, γ]?, a]?.

In the last step we use the Jacobi identity. Now,

D̄(F +Dγ +
1

2
[ γ, γ]?) = D2γ +

1

2
[Dγ, γ]? −

1

2
[ γ,Dγ]? + [ γ, F +Dγ]?

= [F, γ]? + [ γ, F ]? = 0.

The term[ γ, [ γ, γ]?]? vanishes by the Jacobi identity.�.

Definition. A Fedosov connection isflat if D2 = 0.
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If D is a flat Fedosov connection, we may define cohomology groups
Hj(E,D) = Ker(D : Ωj(E)→ Ωj+1(E))/Im(D : Ωj−1(E)→ Ωj(E)).

If E0 is a vector bundle overM , let E0[[ε]] be the associated bundle of
R[[ε]]-modules. Sections ofE0[[ε]] are formal power series inε whose co-
efficients are sections ofE0. Let us suppose thatE = E0[[ε]] as a bundle
of R[[ε]]-modules, and thatD is a Fedosov connection onE. Then we have
expansions

D = D0 + εD1 + ε2D2 + · · · , F = F0 + εF1 + ε2F2 + · · ·

whereD0 is a Fedosov connection on the bundle ofR-algebrasE0 with
Weyl curvatureF0.

Lemma 4.5. Suppose thatF0 = 0 and thatH2(E0, D0) = 0. Then there
exists aγ ∈ εΩ1(E) such thatD + [ γ, · ]? has zero Weyl curvature.

Proof: By Prop. 4.4, we need to solve the equationF +Dγ + γ ? γ = 0 for
γ ∈ εΩ1(E). If γ = 0 this equation holds moduloε. Assume by induction
thatγ(k) = εγ1 + · · ·+ εkγk obeys

F̄ (k) := F +Dγ(k) + γ(k) ? γ(k) = 0 mod εk+1

Then, for any choice ofγk+1 ∈ Ω1(E), F̄ (k+1) = F̄ (k) + εk+1D0γk+1

mod εk+2. By Prop. 4.4,DF̄ (k) + [ γ(k), F̄ (k)]? = 0. SinceF̄ (k) = 0
mod εk+1, we then haveD0F̄

(k) = 0 mod εk+2. Since the second co-
homology is trivial, we can chooseγk+1 so thatD0γk+1 = −ε−k−1F̄ (k)|ε=0,
and we getF̄ (k+1) = 0 mod εk+2. The induction step is proved, and
γ =

∑∞
j=1 ε

jγj has the required properties.�

If D0 is a flat connection onE0 then the differential forms with values
in the vector bundleEnd(E0) of fiber endomorphisms form a differential
graded algebraΩ·(End(E0)) acting onΩ·(E0). The differential is the super
commutatorD0(Φ) = D0 ◦ Φ− (−1)pΦ ◦D0, Φ ∈ Ωp(End(E0)).

If D = D0 + εD1 + · · · is a connection onE = E0[[ε]] then clearly
Dj ∈ Ω1(End(E0)) for j ≥ 1.

Lemma 4.6. Suppose thatD = D0 + εD1 + · · · is a flat Fedosov con-
nection onE = E0[[ε]] and thatH1(End(E0), D0) = 0. Then there ex-
ists a formal seriesρ = Id + ερ1 + ε2ρ2 + · · · , with coefficientsρi ∈
Ω0(End(E0)) which induces an isomorphism of topologicalR[[ε]]-modules
H0(E0, D0)[[ε]]→ H0(E,D). If B is an algebra (not necessarily with unit)
subbundle ofEnd(E0) so that (i)Ω·(B) is a subcomplex ofΩ·(End(E0)),
(ii) Dj ∈ Ω1(B), j ≥ 1, (iii) H1(B,D0) = 0, then theρj may chosen in
Ω0(B).

Proof: The proof is very similar to the proof of the previous lemma. We
construct recursively a solutionρ = Id + ερ1 + · · · ∈ Ω0(B)[[ε]] of the
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equation

(4) D ◦ ρ− ρ ◦D0 = 0.

Since the seriesρ starts with the identity map, it is then automatically in-
vertible as a power series with coefficients inΩ0(B) and the claim follows.

Equation (4) is clearly satisfied moduloε. Let us assume by induction
that ρ(k) = Id + ερ1 + · · · + εkρk solves the equation moduloεk+1. The
next termρk+1 must obeyΦ(k) + εk+1D0(ρk+1) ≡ 0 mod εk+2, where
Φ(k) = D◦ρ(k)−ρ(k)◦D0 ≡ 0 mod εk+1. SinceD andD0 are flat, we have
D◦Φ(k)+Φ(k)◦D0 = 0. It follows thatD0(Φ(k)) = D0◦Φ(k)+Φ(k)◦D0 ≡ 0
mod εk+2. It then follows from the vanishing ofH1(B,D0) that such aρk+1

exists.�

4.3. Deformation quantization. Let us return to our problem. Fix a sec-
tion ϕaff : M → Maff and letE = (ϕaff)∗Ẽ, as above. LetD = D0 +
εD1 + · · · be the deformed canonical connection onE defined in 4.1.

Lemma 4.7. For anyp > 0, and any section ofMaff ,Hp(E0, D0) = 0.

This result is standard, but we give a proof below in Appendix B, which
also gives an algorithm to represent canonically cycles as coboundaries.

By Prop. 4.2,D is a Fedosov connection with Weyl curvatureFM . By
Prop. 3.3, (iv), its constant term vanishes. If we add toFM a termεω with
ω ∈ Ω2(E) such thatDω = 0 and[ω, ·]? = 0, then we still get a Weyl cur-
vature forD. We can thus apply Lemma 4.5 to find a solutionγ ∈ εΩ1(E)
of (1). In particular,D̄ = D + [ γ, ·]? is flat. ThenH0(E, D̄) = Ker D̄ is
an algebra overR[[ε]]. LetBk be the subbundle ofEnd(E0) consisting of
differential operators of order≤ k vanishing on constants.

Lemma 4.8. The differential forms with values inBk form a subcomplex of
Ω·(End(E0)) and we haveHp(Bk, D0) = 0 for p > 0.

This lemma is proved in Appendix B. By using this lemma and the fact
that the mapsUj are given by multidifferential operators, we deduce that
B = ∪kBk obeys the hypotheses of Lemma 4.6. Therefore, we have a
homomorphism

ρ : H0(E0, D0) 7→ H0(E, D̄), ρ(f) = f + ερ1(f) + ε2ρ2(f) + · · · ,

with ρj ∈ Ω0(B), j = 1, 2, . . . . Composingρ with the canonical isomor-
phismC∞(M)→ H0(E0, D0) which sends a function to its Taylor expan-
sions, we get a sectiona 7→ ã of the projectionH0(E, D̄) → C∞(M),
f 7→ (x 7→ fx(0)), with the property that the constant function1 is sent to
the constant section1.

Proposition 4.9.H0(E, D̄) is a quantization of the algebra of smooth func-
tions on the Poisson manifoldM .
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Proof: The sectiona 7→ ã extends to an isomorphismC∞(M)[[ε]] →
H0(E, D̄) by Lemma 4.6. So (i) in the definition of quantization is ful-
filled.

To prove (ii), letf , g ∈ C∞(M) and denote byfx(y), gx(y) the Taylor
expansions aty = 0 of f ◦ ϕx, g ◦ ϕx, respectively. Then, by construction,
we havef̃ ? g̃ = h̃ with h of the form

h(x) =
∞∑
j=0

εj
∑
J,K

ajJ,K(x; y)∂Jy fx(y)∂Ky gx(y)

∣∣∣∣
y=0

,

(J,K are multiindices). SinceD0fx = 0 = D0gx, we may use these dif-
ferential equations to replace partial derivatives with respect toy by partial
derivatives with respect tox. Indeed,D0fx = 0 is equivalent, in local coor-
dinates, to

∂fx(y)

∂xi
=
∑
j,k

Rk
j (x, y)

∂ϕjx(y)

∂xi
∂fx(y)

∂yk
.

The matrixR is the inverse of the Jacobian matrix(∂ϕix(y)/∂yj). Differ-
entiating the identityϕjx(0) = xj, we see that the matrix(∂ϕix(y)/∂xj) is
invertible (as a matrix with coefficients inR[[y1, . . . , yd]]). Thush is ex-
pressed as a sum of bidifferential operators acting onfx(0) = f(x) and
gx(0) = g(x).

Sinceρ sends1 to 1 and 1 is the identity for the Kontsevich product
(Prop. 3.3 (v)), we deduce that1̃ ? f̃ = f̃ ? 1̃ = f̃ . Finally, by Prop. 3.3 (i),
f̃ ?g̃ = h̃, with h = fg+ε{α(df, dg)+[ρ1(fx)gx+ρ1(gx)fx−ρ1(fxgx)](y =
0)}+O(ε2). Therefore the skew-symmetric part ofP1 is α. �

This completes the proof of Theorem 1.1.

5. CASIMIR AND CENTRAL FUNCTIONS

In this section we discuss the relation between Casimir functions on the
Poisson manifolds and the center of the deformed algebra. Let us first for-
mulate a local version, due to Kontsevich, of Theorem 1.2. Suppose thatα
is a formal bivector field onRd andf is a formal function onRd. Let

R(f, α) =
∞∑
j=0

εj

j!
Uj+1(f, α, . . . , α) ∈ R[[y1, . . . , yd]][[ε]].

Theorem 5.1(Kontsevich [9]). If α is a Poisson bivector field, then the map
f 7→ R(f, α) is a ring homomorphism from the ringZ0(Rd) of Casimir
functions to the centerZ(Rd) of (R[[y1, . . . , yd]][[ε]], ?).

SinceU1(f) = f ,R is a deformation of the identity map and therefore it
extends byR[[ε]]-linearity to an isomorphism ofR[[ε]]-algebrasZ0(Rd)[[ε]]→
Z(Rd).
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To find a global version of this result, we need two more special cases of
the formality theorem 3.1.

Corollary 5.2. (Continuation of Cor. 3.2)

(iv) P (α) ◦ (R(f, α)⊗ Id− Id⊗R(f, α)) = εA([α, f ], α).
(v) A(ξ, α)R(f, α)=ε

∑∞
0

εj

j!
Uj+2([ξ, α], f, α, . . . , α) +R([ξ, f ], α) +

εF ([α, f ], ξ, α).

These universal identities may be translated to identities for objects on
the Poisson manifoldM . We fix as above a sectionϕaff of Maff and let
D denote the deformation of the canonical connectionD0 on the algebra
bundleE. We also choose locally representativesϕ : M → M coor of ϕaff ,
and setαx = (ϕ−1

x )∗α, x ∈M . Forf ∈ Ω0(E0), set

RM(f) = R(f, αx) ∈ Ω0(E).

Let Der(E0) be the Lie algebra bundle of derivations of the algebra bun-
dle E0. A section ofDer(E0) is represented locally viaϕ by a function
onM with values in the Lie algebraW of formal vector fields onRd. For
η ∈ Γ(Der(E0)), set

CM(η) = A(η, αx) ∈ Ω0(End(E))

GM(η) = F (η, ϕ∗ωMC(·), αx) ∈ Ω1(E).

Proposition 5.3. Letf ∈ Ω0(E0), g ∈ Ω·(E).

(i) DRM(f) = RM(D0f) + εGM([αx, f ])
(ii) [RM(f), g]? = εCM([αx, f ])g

The proof of this Proposition is similar to the proof of Prop. 4.2.

5.1. A quantization map compatible with the center. The idea is now
to look for a quantization map of the formρ(f) = RM(f) + β([α, f ]),
for someβ(η) ∈ Ω0(E), defined for Hamiltonian vector fields[α, f ] on
M . Such aρ clearly restricts to a ring homomorphism fromZ0(M) = {f ∈
C∞(M) | [α, f ] = 0} to the ring of sections ofE taking values in the center.
Let D̄ = D + [γ, ·]? be a flat deformation of the canonical connection as
above. We have to chooseβ so thatρ sendsD0-horizontal sections tōD-
horizontal sections. Then, by Prop. 5.3, we have, for anyf ∈ Ω0(E0),

(5)
D̄(RM(f)) = RM(D0f) + εGM([αx, f ]) + [γ,RM(f)]?

= RM(D0f) + εGM([αx, f ])− εCM([αx, f ])γ.

This formula suggests introducing, for anyη ∈ Γ(Der(E0)), the one-form

HM(η) = GM(η)− CM(η)γ ∈ Ω1(E).

MoreoverGM(η) ∈ εΩ1(E), see Prop. 3.3, andγ ∈ εΩ1(E), soHM(η) ∈
εΩ1(E)
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Lemma 5.4. Let η = [α, f ] be a Hamiltonian vector field onM . Let
η̄ ∈ Γ(Der(E0)) be the Taylor expansion ofη in the coordinatesϕ. Then
D̄HM(η̄) = 0.

Proof: Apply D̄ to (5).�

Remark. Lemma 5.4 holds more generally for Poisson vector fields, i.e.,
vector fields obeying[α, η] = 0.

Since the first cohomology ofD0 vanishes, we may recursively find a
solutionβ(η) ∈ εΩ0(E) of the equationD̄β(η) = −HM(η̄). The solution
is unique, if we impose the normalization condition

(6) β(η)(y = 0) = 0.

By this uniqueness,β depends linearly on the Poisson vector fieldη. In
particular, it defines a linear mapf 7→ β([α, f ]) fromC∞(M) to Ω0(E).

We thus obtain the following result.

Proposition 5.5.LetD̄ = D+[γ, ·]? be a flat connection onE as in 4.3, and
for a Poisson vector fieldη, let β(η) be the solution of̄Dβ(η) = −HM(η̄)
obeying the normalization condition(6). Then the mapρ : C∞(M) '
H0(E0, D0)→ H0(E, D̄)

f 7→ RM(f) + εβ([α, f ]) = f +O(ε2)

is a quantization map. Its restriction to the ringZ0 of Casimir functions ex-
tends to anR[[ε]]-algebra isomorphism fromZ0[[ε]] to the center ofH0(E, D̄).

Proof: It remains to prove thatρ is a quantization map, i.e., that it defines
(via the canonical identification ofC∞(M) with H0(E0, D0)) a mapf 7→
f̃ obeying the condition (ii) in the definition of quantization given in the
Introduction. We haveUj+1(1, α, . . . , α) = δj,01, as can immediately be
seen from the definition. Thusρ sends1 to 1. Also ρ(f) = f + O(ε2). So
P1(f, g) = α(df, dg).

We are left to prove that the product is given by bidifferential operators.
The normalization condition (6) is imposed by using the Fedosov homotopy
b = k−1d∗0, see (7), to solve recursively the equationD̄β(η) = −H(η̄). It is
then clear thatβ([α, f ]) is a power series whose coefficients are differential
operators acting on the Taylor series off . Since the same holds forRM , the
same reasoning as in the proof of Prop. 4.9 implies that all coefficients of
the product are given by bidifferential operators.�

In particular, Theorem 1.2 holds.

5.2. Quantization of Hamiltonian vector fields. The quantization map
ρ defined in Proposition 5.5 is compatible with the action of Hamiltonian



18 ALBERTO S. CATTANEO, GIOVANNI FELDER AND LORENZO TOMASSINI

vector fields in the following sense. For a given Poisson vector fieldξ, we
define

τ(ξ) = ερ−1 ◦ (A(ξx, αx) + [β(ξ), ]∗) ◦ ρ.
Then we have the following result.

Proposition 5.6. τ maps Hamiltonian vector fields onM to inner deriva-
tion of the star product?M .

Proof: Using Property (iv) of Corollary 5.2, we can prove for anyh, f ∈
C∞(M) that

τ([α, h])(f) = ερ−1(A([αx, hx], αx)ρ(f) + [β([α, h]), ρ(f)]?) =

= ρ−1[R(hx, αx) + εβ([α, h]), ρ(f)]? = [h, f ]?M .

From the associativity of?M , it follows then

τ([α, h])(f ?M g) = [h, f ]?M ?M g + f ?M [h, g]?M .

�

5.3. Central two-forms. The space of sectionsΓ(E0) is a Poisson alge-
bra. Denote byZ0(Γ(E0)) the subalgebra of Casimir sections. Define
Z0(Ω·(E0)) = Ω·(M)⊗C∞(M)Z0(Γ(E0)). It is easy to see thatZ0(Ω·(E0))
is a subcomplex ofΩ·(E0) with differentialD0. Similarly, we defineZ(Ω·(E)) =
Ω·(M)⊗C∞(M) Z(Γ(E)), whereZ(Γ(E)) is the algebra of central sections
of E. This is again a subcomplex ofΩ·(E) with differentialD̄. By (5),RM

establishes an isomorphism (of complexes of algebras)Z0(Ω·(E0))[[ε]] →
Z(Ω·(E)).

In particular, to each̄D-closed formω ∈ Z(Ω2(E)) considered in (1),
there corresponds a uniqueD0-closedω0 = (RM)−1(ω) in Z0(Ω2(E0)).

APPENDIX A. TOPOLOGICALk[[ε]]-MODULES

Let k[[ε]] be the ring of formal power series
∑∞

j=0 ajε
j with coefficients

aj is some fieldk. It is a topological ring with the translation invariant
topology such thatεjk[[ε]], j ≥ 1 form a basis of neighborhoods of0. Thus
a subsetU of k[[ε]] is open if and only if for everya ∈ U there exists aj ≥ 1
so thata+ εjk[[ε]] ⊂ U . With this topology, called theε-adic topology, the
ring operations are continuous. More generally, ifM is a k[[ε]]-module,
we may define a translation invariant topology onM by declaring that the
submodulesεjM form a basis of neighborhoods of0. This topology is
Hausdorff if and only ifm ∈ εjM for all j impliesm = 0. In this case the
ε-adic topology comes from a metricd onM : setd(m,m′) = ‖m − m′‖
where‖m‖ = 2−j and j is the largest integer such thatm ∈ εjM . We
say thatM is completeif it is complete as a metric space. Moreover,M is
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calledε-torsion freeif, for all j ∈ Z≥0, εjm = 0 impliesm = 0. If M is a
k[[ε]]-module, thenM/εM is a module overk = k[[ε]]/εk[[ε]].

The category of topologicalk[[ε]]-modules is the subcategory of the cat-
egory ofk[[ε]]-modules whose objects arek[[ε]]-modules and whose mor-
phisms are continuous morphisms ofk[[ε]]-modules.

Lemma A.1. A topologicalk[[ε]]-moduleM is isomorphic to a module of
the formM0[[ε]] for somek-vector spaceM0 if and only ifM is Hausdorff,
complete andε-torsion free.

Proof: LetM0 be ak-vector space and letM = M0[[ε]]. ThenM is clearly
ε-torsion free. It is Hausdorff: ifa =

∑
ajε

j 6= b =
∑
bjε

j thena ∈ U =∑N
j=1 ajε

j+εN+1M andb ∈ V =
∑N

j=1 bjε
j+εN+1M are open sets, which

are disjoint ifN is large enough. A sequencex1, x2, · · · ∈ M is Cauchy iff
for any givenN , xn − xm ∈ εNM0 for all sufficiently largen,m. Then
x = x1 + (x2−x1) + (x3−x2) + (x4−x3) + . . . is a well-defined element
of M , since the coefficient ofεj, for anyj, is determined by finitely many
summands. Since, for anyn, x = xn + (xn+1 − xn) + . . . , it follows that
xn converges tox. ThusM is complete.

Conversely, suppose thatM is a Hausdorff, complete,ε-torsion freek[[ε]]-
module. LetM0 = M/εM and denote byp : M → M0 the canonical pro-
jection. Let us choose ak-linear section i.e. ak-linear maps : M0 → M
such thatp ◦ s = id. Thens extends to a continuousk[[ε]]-linear map

s : M0[[ε]]→M,
∞∑
j=0

ajε
j 7→

∞∑
j=0

s(aj)ε
j.

The series on the right converges since the partial sums form a Cauchy
sequence andM is complete.

The kernel ofs is trivial, sinceM is ε-torsion free: if0 6= a ∈ Ker(s),
then, for somej, a = εj(aj + εaj+1 + · · · ) with aj 6= 0 andεj(s(aj) +
εs(aj+1) + · · · ) = 0. Thenm = s(aj) + εs(aj+1) + · · · = 0 and thus
p(m) = aj = 0, a contradiction.

The image ofs isM , sinceM is Hausdorff: letm ∈ M and suppose in-
ductively that there exista0, . . . , aj ∈ M0 so thatm = s(xj) mod εj+1M

wherexj =
∑j

i=0 aiε
i. Thusm− s(xj) = εj+1r for somer ∈M . If we set

aj+1 = p(r), thenm = s(xj+1) mod εj+2M . It follows thatx =
∑∞

j=0 ajε

obeyss(x)−m ∈ εjM for all j. Thuss(x) = m. �

To appreciate the meaning of this lemma, it is instructive to have coun-
terexamples if one of the hypotheses is removed. Here they are: The mod-
ule of formal Laurent seriesM = k((ε)) is ε-torsion free but not Haus-
dorff, since every Laurent series belongs to∩j≥0ε

jM . If M0 is an infinite-
dimensionalk-vector space, thenM = k[[ε]]⊗kM0 is Hausdorff,ε-torsion
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free, but not complete: ife1, e2, · · · ∈ M0 are linearly independent, the
sums

∑n
1 ejε

j form a divergent Cauchy sequence. Finally,k[[ε]]/εNk[[ε]] is
Hausdorff, complete, but notε-torsion free.

Definition. A topological algebraoverk[[ε]] is an algebra overk[[ε]] with
continuous productA× A→ A.

If A = A0[[ε]] for somek-moduleA0, then anyk-bilinear mapA0 ×
A0 → A extends uniquely to ak[[ε]]-bilinear mapA × A → A, which is
then continuous. Thus a topological algebra structure on thek[[ε]]-module
A0[[ε]] with unit 1 ∈ A0 is the same as a seriesP = P0 + εP1 + ε2P2 +
· · · whose coefficientsPj arek-bilinear mapsA0 × A0 → A0 obeying the
relations

∑m
j=0 Pm−j(Pj(f, g), h) =

∑m
j=0 Pm−j(f, Pj(g, h)), Pm(1, f) =

δm,0f = Pm(1, f), for all f, g, h ∈ A0,m ∈ {0, 1, 2, . . . }.

APPENDIX B. VANISHING OF THE COHOMOLOGY

We compute the cohomology ofΩ·(E0) andΩ·(Bk), in particular proving
Lemma 4.7 and Lemma 4.8. Let us start withE0. For k = 0, 1, . . . , let
R[[y1, . . . , yd]]k be the space of power seriesa vanishing at zero to order at
leastk, i.e., such thata(ty1, . . . , tyd) is divisible bytk. These subspaces are
stable underGL(d,R) and form a filtration. Thus we have a filtration

E0 = E0
0 ⊃ E1

0 ⊃ E2
0 ⊃ · · · .

From the local coordinate expression of the differential

D0 = dxi
(
∂

∂xi
−Rj

k(x, y)
∂ϕkx(y)

∂xi
∂

∂yj

)
, R(x, y)−1 = (∂ϕix(y)/∂yj)i,j=1,...,d,

(sum over repeated indices) expanded in powers ofy, we see that most
terms do not decrease the degree iny except the constant part of the second
expression, which decreases the degree by one. It follows that the spaces

F kΩp(E0) = Ωp(Ek−p
0 ), k = p, p+ 1, . . .

form a decreasing filtration of subcomplexes ofΩ·(E0). The first term in the
associated spectral sequence is the cohomology of⊕kF kΩ·(E0)/F k−1Ω·(E0).
Thek-th summand may be identified locally, upon choosing a representa-
tive in the classϕaff , with the space of differential forms with values in the
homogeneous polynomials of degreek, with differential

d0 =
∑
i

dxiRj
i (x, 0)

∂

∂yj
.

As in [5], we introduce a homotopy (fork > 0): let

(7) d∗0 =
∑
i,j

yi
∂ϕjx(0)

∂yi
ι(

∂

∂xj
),
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whereι denotes interior multiplication. Thend0d
∗
0 + d∗0d0 = k Id; so if

d0a = 0, thena = d0b, with b = k−1d∗0a. Moreoverk−1d∗0 is compatible
with the action ofGL(d,R) and is thus defined independently of the choice
of representative ofϕaff . Thus the cohomology ofd0 is concentrated in
degree 0 and the spectral sequence collapses. In degree0, cocycles are
sections that are constant as functions ofy. Thus

Hp(E0, D0) =

{
C∞(M), p = 0,

0, p > 0.

The calculation of the cohomology ofΩ·(Bk) to prove Lemma 4.8 is sim-
ilar. We first use the filtrationBk ⊃ Bk−1 ⊃ · · · ⊃ B0 = 0, by the order
of the differential operator, which leads us to computingH·(Bj/Bj−1, D0),
1 ≤ j ≤ k. AsBj/Bj−1 may be canonically identified with thejth sym-
metric power of the tangent bundle, the complex isΩ·(M,SjT (Rd)), with
differentialdde Rham+ L, where the value of the one-formL on ξ ∈ TxM is
the Lie derivative in the direction ofϕ∗ωMC(ξ). By using the filtration by
the degree of the coefficients as above, we obtainHp(Bj/Bj−1, D0) = 0
for p ≥ 1, j ≥ 1. It follows thatHp(Bk, D0) = 0 for all k ≥ 0, p ≥ 1.
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