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1 Introduction
The numerical computation of eigenvalues and eigenfunctions of partial differential equations
is of utmost importance in practically all fields of physical and engineering applications. In
these lecture notes we will introduce the finite element discretization of eigenvalue problems
for elliptic partial differential operators and develop its error analysis.

In this first chapter, we will consider as an introductory example the parabolic problem
time-dependent heat conduction in a physical body which leads to a sequence of elliptic
eigenvalue problems.

In Chapter 2, we will first introduce some basic concepts in functional analysis such as
Banach and Hilbert spaces, dual spaces, compact operators. Eigenvalue problems for elliptic
partial differential operators typically can be formulated as an operator eigenvalue problem
with a compact operator. Hence, we will introduce here the Fredholm-Riesz-Schauder theory
for compact operators which states the basis properties of eigenvalue problems for such ope-
rators. This material can be found in any book on functional analysis (see, e.g., [30], [10], [7],
[2]). Finally, we will introduce the variational formulation of elliptic partial differential equati-
ons, the relevant function spaces (Sobolev spaces) and the concept of weak solutions. Further,
we will state the existence and uniqueness theorems in the framework of the Lax-Milgram
lemma. Also this material is contained in any standard textbook on this topic and we refer,
e.g., to [13] or [15].

In Chapter 3, we will introduce elliptic eigenvalue problems and their finite element dis-
cretization. For doing so, we will also define finite element spaces and state their approximation
properties. Standard references for these topics are [27], [28], [15], [8], [4]. The standard refe-
rence for finite element methods for symmetric and non-symmetric elliptic eigenvalue problems
is [3].

In Chapter 4 we will develop the error analysis for finite element discretization for elliptic
eigenvalue problems. First, the min/max characterization of the eigenvalues via Rayleigh
quotients will be introduced and some monotonicity results will be proved. Then, abstract
error estimates will be derived which go back to [19], [21], [12], [25], [26], [24], [23]. Finally,
these abstract error estimates will be combined with the approximation properties of finite
element spaces resulting in estimates of the eigenvalue and -vector errors which are explicit
in the size of the eigenvalue, the spectral gap and the order of approximation.

We start here with some introductory model problem: the problem of heat conduction
in a physical body Ω ⊂ R3. We assume that the temperature is held at zero on ∂Ω for
all time and that our goal is to determine the temperature distribution u (x, t) at a point
x = (x1, x2, x3)⊺ ∈ Ω and at time t > 0. The physical law which describes heat conduction
leads to the equation

ru̇− div (A grad u) = 0 in Ω× ]0, T ] . (1.1a)
Here u̇ denotes the partial derivative with respect to time, the divergence div is defined for
sufficiently smooth vector fields w : Ω → Rd by

divw (x) =
d∑

i=1

∂w (x)
∂xi

and the gradient of a sufficiently scalar function v is ∇u = (∂iu)di=1 (the div, and grad
operators are applied only to the spatial variables and not to the variable t). The d×d matrix
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function A : Ω → Rd×d is uniformly positive definite and describes the thermal conductivity
of the material and the scalar function r : Ω → R is uniformly positive and describes the
material density times the specific heat of the material. As boundary conditions we consider
homogenous Dirichlet conditions

u (x, t) = 0 ∀x ∈ Γ, ∀t > 0 (1.1b)
and initial conditions are prescribed by

u (x, 0) = f (x) ∀x ∈ Ω (1.1c)
for some given initial temperature distribution f .

We employ the ansatz
u (x, t) = v (x)w (t)

which separates the spatial variables x ∈ Ω from the temporal variable t. This leads to the
system of differential equations

−div (A grad v) = λrv in Ω and v|∂Ω = 0 (1.2a)
and

ẇ (t) + λw (t) = 0 ∀t > 0. (1.2b)
It is well known (cf. Remark 2.33(2)) that (1.2a) has eigenvalues

0 < λ1 ≤ λ2 ≤ . . . ր ∞
and corresponding eigenfunctions vi, i ∈ N, which can be normalized according to

∫

Ω
vivjr = δi,j.

Corresponding to each λj we find a solution of (1.2b) w (t) := wj (t) = aj e−λjt. Thus, the
separated solutions are given by the formal sum

u (x, t) =
∞∑

j=1
ajvj (x) e−λjt .

The coefficients aj can be determined via the initial conditions (1.1c) by expanding f into the
eigenfunctions vj

f =
∞∑

j=1
fjvj (x) with fj :=

∫

Ω
fvjr

so that
u (x, t) =

∞∑

j=1

(∫

Ω
fvjr

)
vj (x) e−λjt . (1.3)

We note that from (1.3) and the positivity of the eigenvalues, one can show that limt→∞ u (x, t) =
0 and that the decay rate for the temperature u is governed by the factor e−λ1t.
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2 Some Basic Facts from Functional Analysis
In this chapter, we will present a few fundamental results from the area of functional analysis.
It is not intended as an introduction to functional analysis, instead we will refer to other texts
or we will give schematic proofs if we think this might help the reader’s understanding of the
subject.

2.1 Normed Spaces
With X we denote a normed, linear space over the coefficient field K ∈ {R,C}. A norm
‖ · ‖ : X → [0,∞) is a mapping with the properties

∀x ∈ X : ‖x‖ = 0 =⇒ x = 0 , (2.1a)
∀λ ∈ K : ‖λx‖ = |λ| ‖x‖ , (2.1b)

∀x, y ∈ X : ‖x+ y‖ ≤ ‖x‖+ ‖y‖ . (2.1c)
We will use the notation ‖·‖X if the space X is not clear from the context. We call the pair
(X, ‖ · ‖) a normed space.

We can define several different norms on X. Two norms ‖ · ‖1, ‖ · ‖2 on X are equivalent
if and only if

∃C > 0 : C−1 ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 ∀x ∈ X. (2.2)
Equivalent norms induce the same topology on X.
Theorem 2.1 (Nearly orthogonal element) Let X be a normed space and let Y ⊂ X be
a closed proper subspace (i.e., Y �= X, Y closed in X). For any 0 < θ < 1 (≤ 1 if X is a
Hilbert space) there exists some xθ ∈ X with

‖xθ‖X = 1 and θ ≤ dist (xθ, Y ) ≤ 1.
A proof can be found, e.g., in [30, Chap. III, Sec. 2].

2.2 Linear Operators
Let X and Y be normed spaces with the respective norms ‖ · ‖X and ‖ · ‖Y . A linear mapping
T : X → Y is called an operator. An operator T : X → Y is called bounded if

‖T‖Y←X := sup{‖Tx‖Y /‖x‖X : 0 �= x ∈ X} < ∞ . (2.3)
Here ‖T‖Y←X is the operator norm. The set of all bounded linear operators T : X → Y is
denoted by L (X, Y ) and together with

(T1 + T2)x := T1x+ T2x, (λT1)x = T1(λx), λ ∈ K (2.4)
constitutes a normed, linear space (L(X, Y ), ‖ · ‖Y←X). If X = Y we write L(X) instead of
L(X,X).
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Exercise 2.2 (a) Show that for all x ∈ X and T ∈ L(X,Y ) we have
‖Tx‖Y ≤ ‖T‖Y←X‖x‖X . (2.5)

(b) Show that for T1 ∈ L(Y,Z), T2 ∈ L(X, Y ) we have T1T2 ∈ L(X,Z) and
‖T1T2‖Z←X ≤ ‖T1‖Z←Y ‖T2‖Y←X . (2.6)

Definition 2.3 The sequence (Tn)n ⊂ L(X, Y ) converges to T if
Tn → T ⇐⇒ ‖T − Tn‖Y←X → 0 for n → ∞.

It converges pointwise to T if
∀x ∈ X : ‖Tnx− Tx‖Y → 0 for n → ∞.

2.3 Banach Spaces
The sequence {xn} ⊂ X is called Cauchy convergent if sup{‖xn − xm‖X : n,m ≥ k} → 0
for k → ∞. X is called complete if all Cauchy sequences converge to an x ∈ X. A complete,
normed, linear space is called a Banach space.
Proposition 2.4 Let X be a normed space and Y a Banach space. Then L(X, Y ) is a Banach
space.

The Banach space X is called separable if there exists a countable, dense subset A =
{an : n ∈ N} ⊂ X.

2.4 Embeddings
Let X, Y be Banach spaces with X ⊂ Y . The injection (or embedding) I : X → Y is defined
by Ix = x for all x ∈ X and is clearly linear. If I is bounded:

∀x ∈ X : ‖x‖Y ≤ C‖x‖X , (2.7)
we have I ∈ L (X,Y ). If X is also dense in Y , we call X densely and continuously embedded
in Y .

2.5 Hilbert Spaces
Let X be a vector space. A mapping (·, ·) : X ×X → K is called an inner product on X if

(x, x) > 0 ∀x ∈ X\ {0} , (2.8a)
(λx+ y, z) = λ(x, z) + (y, z) ∀λ ∈ K, x, y, z ∈ X , (2.8b)
(x, y) = (y, x) ∀x, y ∈ X . (2.8c)

A Banach space (X, ‖·‖X) is called a Hilbert space if there exists an inner product on X,
such that ‖x‖X = (x, x)1/2 for all x ∈ X.

Furthermore, from (2.8) we have the Cauchy-Schwarz inequality
|(x, y)| ≤ ‖x‖ ‖y‖ ∀x, y ∈ X. (2.9)

Two vectors x, y ∈ X are orthogonal if (x, y) = 0. We denote this by x ⊥ y. For A ⊂ X,
A⊥ := {x ∈ X | ∀a ∈ A : (x, a) = 0} is a closed subspace of X.
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Proposition 2.5 Let X be a Hilbert space and U ⊂ X a closed subspace. Then we have
X = U ⊕ U⊥, i.e.:

∀x ∈ X : x = u+ v, u ∈ U, v ∈ U⊥, ‖x‖2 = ‖u‖2 + ‖v‖2 .
A system of orthonormal vectors (vι)ι∈I in a Hilbert space X is an orthonormal basis

of X if, for every x ∈ X, the Fourier expansion
x = ∑

ι∈I
(x, vι) vι

converges.
Theorem 2.6 For every Hilbert space, there exists an orthonormal basis.

A proof can be found, e.g., in [16, Theorem 65.1].

2.6 Dual Spaces
2.6.1 Dual Space of a Normed, Linear Space
Let X be a normed, linear space over K ∈ {R,C}. The dual space X ′ of X is the space of all
bounded, linear mappings (functionals)

X ′ = L(X,K) .
X ′ is a Banach space with norm

‖x′‖X′ := ‖x′‖K←X = sup {|x′(x)| /‖x‖X : x ∈ X\ {0}} . (2.10)
For x′(x) one can also write

〈x, x′〉X×X′ = 〈x′, x〉X′×X = x′(x) , (2.11)
where 〈·, ·〉X×X′ , 〈·, ·〉X′×X are called dual forms or duality pairings.
Lemma 2.7 Let X ⊂ Y be continuously embedded. Then Y ′ ⊂ X ′ is continuously embedded.

Proof. For y′ ∈ Y ′, X ⊂ Y gives us that y′ is defined on X. We therefore have Y ′ ⊂ X ′.
Since X ⊂ Y , we have, due to (2.7), that

‖y′‖Y ′ = sup
x∈Y \{0}

{|y′(x)|/‖x‖Y } ≥ C−1 sup
x∈X\{0}

{|y′(x)|/‖x‖X} = C−1 ‖y′‖X′

and therefore that ‖y′‖X′ ≤ C‖y′‖Y ′ . This proves that the embedding Y ′ ⊂ X ′ is continuous.
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2.6.2 Dual Operator
Proposition 2.8 Let X,Y be Banach spaces and let T ∈ L(X,Y ). For y′ ∈ Y ′,

〈Tx, y′〉Y×Y ′ = 〈x, x′〉X×X′ ∀x ∈ X (2.12)
defines a unique x′ ∈ X ′. The mapping y′ → x′ is linear and defines the dual operator
T ′ : Y ′ → X ′ as given by T ′y′ = x′. Furthermore, we have T ′ ∈ L(Y ′, X ′) and

‖T ′‖X′←Y ′ = ‖T‖Y←X . (2.13)
One of the most general principles in functional analysis is the extension of continuous

linear operators which are defined on some subspace of a Banach space to the whole Banach
space. We will state here the version of the Hahn-Banach extension theorem in Banach spaces.
Theorem 2.9 Let X be a Banach space, M a subspace of X and f0 a continuous linear
functional defined on M. Then there exists a continuous linear functional f defined on X
such that i) f is an extension of f0 and ii) ‖f0‖C←M = ‖f‖C←X.

The proof can be found, e.g., in [30, Chap. IV, Sec. 5].
Corollary 2.10 Let X be a Banach space and x0 ∈ X\ {0}. Then, there exists a continuous
linear functional f0 on X such that

f0 (x0) = ‖x0‖X and ‖f0‖X′ = 1.

2.6.3 Adjoint Operator
Let X be a Hilbert space over K ∈ {R,C}. For all y ∈ X,

fy(·) := (·, y)X : X → K

is continuous and linear: We have fy(·) ∈ X ′ and ‖fy‖X′ = ‖y‖X. The converse is a result of
Riesz’ theorem.

Theorem 2.11 (Riesz Representation Theorem) Let X be a Hilbert space. For all f ∈
X ′ there exists a unique yf ∈ X such that

‖f‖X′ = ‖yf‖X and f(x) = (x, yf)X ∀x ∈ X.
Corollary 2.12 Let X be a Hilbert space. We use the same notation as in Theorem 2.11.

a) There exists a bounded, invertible conjugate linear form JX : X → X ′ with JXy =
fy, J−1X f = yf . The mapping JX is an isometry: ‖JX‖X′←X = ‖J−1X ‖X←X′ = 1.

b) X ′ is a Hilbert space with inner product (x′, y′)X′ := (J−1X x′, J−1X y′)X.
c) ‖x′‖X′ in (2.10) is equal to (x′, x′)1/2X′ .
d) X ∼= X ′′ with x(x′) := x′(x) and we identify X with X ′′. In particular, we have JX′ =

J−1X , JX = (JX)′, T ′′ = T for T ∈ L(X, Y ) if Y = Y ′′ and if both are Hilbert spaces.
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e) If K = R, the spaces X and X ′ can be identified with each other by means of the
isomorphism JX. Then we have X := X ′ =⇒ JX = I.

Definition 2.13 Let X, Y be Hilbert spaces and T ∈ L(X,Y ). The adjoint operator of T is
given by T ∗ := J−1X T ′JY ∈ L(Y,X).

We have
‖T‖Y←X = ‖T ∗‖X←Y and (Tx, y)Y = (x, T ∗y)X ∀x ∈ X, y ∈ Y. (2.14)

Definition 2.14
a. T ∈ L(X) is self adjoint if T = T ∗.
b. T ∈ L(X) is a projection if T 2 = T .

Proposition 2.15 Let X0 ⊂ X be a closed subspace of the Hilbert space X. For x ∈ X there
exists a unique x0(x) ∈ X0 with

‖x− x0‖X = min{‖x− y‖X : y ∈ X0} . (2.15)
The mapping x → x0 =: Px is an orthogonal projection.

2.6.4 Weak Convergence
The Bolzano-Weierstraß theorem states that in K ∈ {R,C} every bounded sequence has at
least one accumulation point. This statement only holds in a weaker form when considering
infinite-dimensional function spaces. First we will need to define the concept of weak conver-
gence.
Definition 2.16 Let B be a Banach space and let B′ be its dual space. A sequence (uℓ)ℓ∈N in
B converges weakly to an element u ∈ B if

limℓ→∞ ‖f (u)− f (uℓ)‖B′ = 0 ∀f ∈ B′.

Theorem 2.17 Let the Banach space B be reflexive1 and let (uℓ)ℓ∈N be a bounded sequence
in B :

sup
ℓ∈N0

‖uℓ‖B ≤ C < ∞.
Then there exists a subsequence (uℓj

)
j∈N that converges weakly to a u ∈ B.

The proof can be found in, e.g., [16, Theorem 60.6]. In order to distinguish between the
weak convergence of a sequence (uℓ)ℓ∈N to an element u from the usual (strong) convergence,
we use the notation

uℓ ⇀ u.
1A Banach space B is reflexive if the bi-dual space B′′ is isomorphic to B.
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2.7 Compact Operators
Definition 2.18 The subset U ⊂ X of the Banach space X is called precompact if every
sequence (xn)n∈N ⊂ U has a convergent subsequence (xni)i∈N. It is compact if, furthermore,
x = limi→∞ xni ∈ U .
Definition 2.19 Let X, Y be Banach spaces. T ∈ L(X, Y ) is called compact if {Tx : x ∈
X, ‖x‖X ≤ 1} is precompact in Y . The set of all compact linear operators from X into Y is

K (X, Y ) := {T ∈ L (X, Y ) : T is compact} .
If X = Y , we simply write K (X) instead of K (X,X).

We will often consider operators that are composed of several other operators.
Lemma 2.20 Let X, Y,Z be Banach spaces, let T1 ∈ L(X, Y ), T2 ∈ L(Y, Z) and let at least
one of the operators Ti be compact. Then T = T2T1 ∈ L(X,Z) is also compact.
Lemma 2.21 T ∈ L(X, Y ) compact =⇒ T ′ ∈ L(Y ′, X ′) compact.
Definition 2.22 Let Y be a Banach space and X ⊂ Y a subspace that is continuously em-
bedded. The embedding is compact if the injection I ∈ L(X,Y ) is compact. We denote this by
X ⊂⊂ Y .
Corollary 2.23 X ⊂⊂ Y if every sequence (xi)i∈N ⊂ X with ‖xi‖X ≤ 1 has a subsequence
that converges in Y .
Remark 2.24 For dim(X) < ∞ or dim(Y ) < ∞, T ∈ L(X, Y ) is compact.
Theorem 2.25 (Heine-Borel) Let X be a normed linear space. Then

B1 (0) compact ⇐⇒ dimX < ∞.
The following lemma will later be needed for existence theorems when dealing with varia-

tional problems.
Lemma 2.26 Let X ⊂ Y ⊂ Z be Banach spaces with continuous embeddings and let X ⊂⊂
Y . Then for all ε > 0 there exists a constant Cε > 0 with

∀x ∈ X : ‖x‖Y ≤ ε ‖x‖X + Cε ‖x‖Z .

2.8 Fredholm-Riesz-Schauder Theory
Throughout this section we assume that X is a Banach space with norm ‖·‖X and that
X �= {0} holds.
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Definition 2.27 Let X be a Banach space and T ∈ L (X). The resolvent set of T is given
by

ρ (T ) := {λ ∈ C : N (λI − T ) = {0} and R (λI − T ) = X} ,
where N (·) denotes the null space of an operator and R (·) its range. The spectrum σ (T ), the
point spectrum σp (T ), the continuous spectrum σc (T ), and the residual spectrum σr (T ) are
given by

σ (T ) := C\ρ (T ) ,
σp (T ) := {λ ∈ σ (T ) : N (λI − T ) �= {0}} ,
σc (T ) :=

{
λ ∈ σ (T ) : N (λI − T ) = {0} ∧R (λI − T ) �= X ∧R (λI − T ) = X

}
,

σr (T ) :=
{
λ ∈ σ (T ) : N (λI − T ) = {0} ∧R (λI − T ) �= X

}
.

Remark 2.28
1. It holds λ ∈ ρ (T ) iff λI − T : X → X is bijective. From the inverse mapping theorem

[30, p.77] we conclude that
Rλ (T ) := (λ− T )−1 ∈ L (X)

exists. The function Rλ (T ) is the resolvent of T and — considered as a function of λ —
denoted as the resolvent function.

2. λ ∈ σp (T ) is equivalent to
∃u ∈ X\ {0} : Tu = λu.

We call λ an eigenvalue and u an eigenvector of T . The eigenspace of T correspon-
ding to λ is N (λI − T ). The eigenspace is a T -invariant subspace2.

Definition 2.29 A mapping A ∈ L (X, Y ) is a Fredholm operator if
1. R (A) is closed,
2. dimN (A) < ∞ and codimR (A) < ∞.
The index of a Fredholm operator is

ind (T ) := dimN (A)− codimR (A) .
Note that the finiteness of the co-dimension of R (A) implies that3 Y = R (A) ⊕ Y0 for

some finite-dimensional subspace Y0 ⊂ Y . We have codimR (A) := dimY0 independent of the
choice of Y0. The connection between Fredholm operators and compact operators is given by
the following theorem.

2A subspace Y ⊂ X is T -invariant if T (Y ) ⊂ Y .
3Recall that, for subspaces F,G of some vector space E, the symbol ⊕ is used in F ⊕ G instead of + if

F ∩G = {0}. G is a complementary space of F if F⊕G = E. In [16, Satz 4.1], it is shown that a complementary
space always exists. If G is a complementary space of F in E, the co-dimension codimF is defined by

codimF :=






∞ if dimG = ∞,
dimG if 1 ≤ G < ∞,
0 if F = E.

In [16, Satz 4.2], it is proved that the definition of the co-dimension of F is independent of the choice of the
complementary space G.

10



Theorem 2.30 For T ∈ K (X), the operator I − T is a Fredholm operator of index 0.
Proof. The proof consists of five parts.
1) We prove dimN (A) < ∞ with A := I − T.
Since Ax = 0 is equivalent to x = Tx we have

B1 (0) ∩N (A) ⊂ T (B1 (0)) ,
i.e., the unit ball in N (A) is precompact and, hence, N (A) finite dimensional (cf. Theorem
2.25).

2) Next, we prove R (A) is closed.
Let x ∈ R (A) and choose a sequence (xn) so that Axn → x as n → ∞. W.l.o.g., we may

assume that
‖xn‖X ≤ 2dn with dn := dist (xn, N (A)) ,

because, otherwise, we choose an ∈ N (A) with ‖xn − an‖X ≤ 2 dist (xn, N (A)) and consider
x̃n := xn − an instead of xn. Note that dist (x̃n, N (A)) = dist (xn, N (A)).

First, we assume that dn → ∞ for a subsequence. For yn := d−1n xn, we obtain Ayn =
d−1n Axn → 0 as n → ∞. Because yn is bounded and T is compact, there exists a subsequence
which satisfies Tyn → y as n → ∞. Hence,

yn = Ayn + Tyn → y
and the continuity of A implies

Ay = limn→∞Ayn = 0,
i.e., y ∈ N (A). This leads to

‖yn − y‖X ≥ dist (yn, N (A)) = dist
(xn
dn , N (A)

)
= dist (xn, N (A))

dn = 1
and this is a contradiction. Thus, we have proved that (dn)n is bounded and, consequently,
(xn)n is bounded as well. The compactness of T implies that there exists a subsequence which
satisfies Txn → z as n → ∞, i.e.,

x ← Axn = A (Axn + Txn) → A (x+ z) .
Thus, we have proved x ∈ R (A).

3) We prove
N (A) = {0} =⇒ R (A) = X.

Assume that there is some x ∈ X\R (A). Then
Anx ∈ R (An) \R (An+1) ∀n ≥ 0, (2.16)

because, otherwise, i.e. if Anx = An+1y for some y then An (x−Ay) = 0 and N (A) = {0}
would imply x− Ay = 0 by induction and, in turn, x ∈ R (A) which is a contradiction.

R (An+1) is closed because

An+1 = (I − T )n+1 = I +
n+1∑

k=1

(n + 1
k

)
(−T )k

︸ ︷︷ ︸
∈K(X)
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so that, from part 2, we may conclude that R (An+1) is closed. Hence, we may choose an+1 ∈
R (An+1) so that

‖Anx− an+1‖X ≤ 2 dist (Anx,R (An+1)) (2.16)�= 0. (2.17)
Now, consider

xn := Anx− an+1
‖Anx− an+1‖X .

We have dist (xn, R (An)) ≥ 1/2 because for y ∈ R (An+1) it holds

‖xn − y‖X = ‖Anx− (an+1 + ‖Anx− an+1‖X y)‖X
‖Anx− an+1‖X ≥ dist (Anx,R (An+1))

‖Anx− an+1‖X
(2.17)≥ 1/2.

Thus, for all m > n, we derive

‖Txn − Txm‖X =
∥∥∥∥∥∥∥
xn − (Axn + xm − Axm)︸ ︷︷ ︸

∈R(An+1)

∥∥∥∥∥∥∥X

≥ 1/2.

Hence, (Txn)n has no convergent subsequence although (xn)n is a bounded sequence and this
is a contradiction to the compactness of T .

4) We prove
codimR (A) ≤ dimN (A) . (2.18)

From 1) we obtain that n := dimN (A) is finite. Let x1, . . . , xn denote some basis for
N (A). If the assertion (2.18) is wrong, there exist linear independent vectors y1, . . . , yn such
that

span {y1, . . . , yn} ⊕R (A)
is a proper subspace of X. We choose a dual basis x′1, . . . , x′n in X ′ such that

〈xℓ, x′k〉 = δk,ℓ ∀1 ≤ k, ℓ ≤ n.
We define

T̃ x := Tx+
n∑

k=1
〈x, x′k〉 yk

and observe that T̃ ∈ K (X) because T is compact and T̃ − T has a finite dimensional range.
Furthermore, N

(
Ã
)
= {0}, where Ã := I − T̃ because Ãx = 0 implies (due to the choice of

yk) Ax = 0 and 〈x, x′k〉 = 0 for k = 1, . . . n. Hence, x ∈ N (A) and there is a representation

x =
n∑

k=1
αkxk

from which we conclude

0 = 〈x, x′ℓ〉 =
n∑

k=1
αk 〈xk, x′ℓ〉 = αℓ, i.e., x = 0.

12



We apply the statement of part 3 to the operator Ã and derive R
(
Ã
)
= X. Because of

Ãxℓ = −yℓ ∀ℓ = 1, . . . , n
and

Ã
(
x−

n∑

ℓ=1
〈x, x′ℓ〉xℓ

)
= Ax ∀x ∈ X

we obtain
X = R

(
Ã
)
⊂ span {y1, . . . , yn} ⊕R (A)

and this is the contradiction.
5) It remains to prove

n := dimN (A) ≤ codimR (A) =: m. (2.19)
According to part 4 we have m ≤ n. First, we reduce the assertion to the case m = 0.

Choose x1, . . . , xn and x′1, . . . , x′n as in part 4 and y1, . . . , ym with
X = span {y1, . . . , ym} ⊕R (A) .

As in part 4 the mapping
T̃ x := Tx+

m∑

k=1
〈xk, x′k〉 yk

is compact and Ã := I−T̃ is surjective with N
(
Ã
)
= span {xi : m < i ≤ n}. We have to prove

that N
(
Ã
)
= {0} which follows from the statement “If T ∈ K (X) and codim (I − T ) = 0,

then, N (I − T ) = {0}.” by substituting T ← T̃ therein, i.e., (2.19) for m = 0. Thus, we have
reduced the assertion to the case m = 0.

In the case m = 0 it holds R (A) = X. We assume that there is some x1 ∈ N (A) \ {0}.
Because of the surjectivity we may assume (by induction) that there is exist xn ∈ X, n ≥ 2,
such that Axn = xn−1. Then, xn ∈ N (An) \N (An−1). The theorem of the nearly orthogonal
element (Theo. 2.1) implies some yn ∈ N (An) with ‖yn‖X = 1 and dist (yn, N (An)) ≥ 1/2.
Thus, it follows for all m < n

‖Tyn − Tym‖X =
∥∥∥∥∥∥∥
yn − (Ayn + ym − Aym)︸ ︷︷ ︸

∈N(An−1)

∥∥∥∥∥∥∥X

≥ 1/2,

i.e., (Tyn)n has no convergent subsequence. However, this is a contradiction to the compactness
of T in view of the boundedness of (yn)n.

A mapping F : D → Y from an open subset D ⊂ C into a Banach space Y is complex
analytic if, for any λ0 ∈ D, there exists an open ball Br0 (λ0) ⊂ D so that F (λ) can be
represented as a Taylor series about λ0 for all λ ∈ Br0 (λ0).
Theorem 2.31 Let T ∈ L (X). ρ (T ) is open and the resolvent function R(·) (T ) is a complex
analytic mapping from ρ (T ) into L (X). It holds

‖Rλ (T )‖−1
X←X ≤ dist (λ, σ (T )) .

13



Proof. Let λ ∈ ρ (T ). For any µ ∈ C, we have
(λ− µ) I − T = (λI − T ) (I − µRλ (T ))︸ ︷︷ ︸

S(µ)
.

From the theorem on Neumann series (cf. [30, p.69]) it follows that S (µ) is invertible if
|µ| ‖Rλ (T )‖X←X < 1

which, in turn, implies that λ− µ ∈ ρ (T ) and

Rλ−µ (T ) = S (µ)−1Rλ (T ) =
∞∑

k=0
µkRλ (T )k+1 .

Hence, for d := ‖Rλ (T )‖−1
X←X, it holds Bd (λ) ⊂ ρ (T ). From this we conclude that dist (λ, σ (T )) ≥

d.
Theorem 2.32 Let T ∈ L (X). σ (T ) is compact, non-empty, and it holds

r (T ) := sup
λ∈σ(T )

|λ| = limm→∞ ‖Tm‖1/mX←X ≤ ‖T‖X←X

and r (T ) is called the spectral radius of T .
Proof. Let λ �= 0. The theorem on Neumann series implies that I − λ−1T is invertible

provided ‖λ−1T‖X←X < 1, i.e., |λ| > ‖T‖X←X and that

Rλ (T ) = λ−1 (I − λ−1T )−1 =
∞∑

k=0
λ−k−1T k. (2.20)

Thus, any λ ∈ σ (T ) must satisfy |λ| ≤ ‖T‖X←X and, hence,
r (T ) ≤ ‖T‖X←X . (2.21)

Since
λmI − Tm = (λI − T ) pm (T ) = pm (T ) (λI − T )

for
pm (T ) =

m−1∑

ℓ=0
λm−1−ℓT ℓ

we conclude that
λ ∈ σ (T ) =⇒ λm ∈ σ (Tm)

=⇒ |λm| ≤ ‖Tm‖X←X (as a consequence of (2.21))
=⇒ |λ| ≤ ‖Tm‖1/mX←X .

From this and the definition of the limes superior/inferior it follows that
r (T ) ≤ lim infm→∞ ‖Tm‖1/m .

14



Next, we will also show
r (T ) ≥ lim sup

m→∞
‖Tm‖1/mX←X .

According to Theorem 2.31, the resolvent function is a complex analytic function in C\Br (0)
(in C if σ (T ) = ∅) and Cauchy’s integral theorem (cf. [30, Chap. V.3]) implies that

1
2π i

∫

∂Bs(0)
λjRλ (T ) dλ

is, for any j ≥ 0 and s > r independent of s. By choosing s > ‖T‖X←X we derive from the
representation of Rλ (T ) as in (2.20) that this integral equals

1
2π i

∫

∂Bs(0)

( ∞∑

k=0
λj−k−1T k

)

dλ = 1
2π

∞∑

k=0
sj−k

(∫ 2π

0
ei θ(j−k) dθ

)
T k

=
∞∑

k=0
sj−kδj,kT k = T j.

Hence, we have for any j ≥ 0 and s > r the estimate
∥∥T j∥∥X←X = 1

2π
∥∥∥∥
∫

∂Bs(0)
λjRλ (T ) dλ

∥∥∥∥
X←X

≤ sj+1 sup
|λ|=s

‖Rλ (T )‖X←X

holds. Consequently, we obtain for s > r and any subsequence
∥∥T j∥∥1/j

X←X ≤ s
(
s sup
|λ|=s

‖Rλ (T )‖X←X

)1/j
j→∞→ s or 0, (2.22)

so that
lim sup
j→∞

∥∥T j∥∥1/j
X←X ≤ s.

Because this is satisfied for all s > r, the assertion on the spectral radius is proved. In the
case of σ (T ) = ∅ we raise (2.22) to the j-th power and get for j = 0 and sց 0

‖I‖X←X ≤ s
(
sup
|λ|≤1

‖Rλ (T )‖X←X

)
→ 0,

i.e., I = 0 and, hence, X = {0}.
In the following, we will investigate the spectrum of compact operators.

Remark 2.33
1. If dimX <∞ holds then σ (T ) = σp (T ).
2. If dimX = ∞ and T ∈ K (X), we have 0 ∈ σ (T ). (In general, 0 is not an eigenvalue

of T ).
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Proof. @1: For λ ∈ σ (T ), the mapping T is not bijective and — because dimX < ∞ —
not injective, i.e., λ ∈ σp (T ).

@2: Let T ∈ K (X) and 0 ∈ ρ (T ). Then, (cf. Remark 2.28(1)), T−1 ∈ L (X), and as a
consequence of Lemma 2.20 I = T−1T ∈ K (X). From Theorem 2.25 we conclude that X is
finite dimensional and this is a contradiction.

The main theorem of this section if the Riesz-Schauder theory.
Theorem 2.34 (Riesz-Schauder) For any operator T ∈ K (X) it holds

1. σ (T ) \ {0} consists of countably many (finitely or infinitely many) eigenvalues with 0 as
the only possible accumulation point.

2. For λ ∈ σ (T ) \ {0} we have
1 ≤ nλ := max{n ∈ N : N (λI − T )n−1 �= N (λI − T )n} <∞.

nλ is the index of λ and dimN (λI − T ) is the multiplicity of λ.
3. (Riesz decomposition) For λ ∈ σ (T ) \ {0} it holds

X = N ((λI − T )nλ)⊕R ((λI − T )nλ) .
Both subspaces are closed and T -invariant and N (λI − T )nλ is finite dimensional.

4. For λ ∈ σ (T ) \ {0}, let Eλ be the projection onto N ((λI − T )nλ) according to the de-
composition in (3). Then

EλEµ = δλ,µEλ ∀λ, µ ∈ σ (T ) \ {0} .
Proof. @1: Let 0 �= λ /∈ σp (T ). Then, N (I − λ−1T ) = {0}, i.e., R (I − λ−1T ) = X

(cf. proof, part 3, of Theorem 2.30). This implies λ ∈ ρ (T ), i.e., σ (T ) \ {0} ⊂ σp (T ). If
σ (T ) \ {0} is not finite we choose distinct values λn ∈ σ (T ) \ {0}, n ∈ N, and eigenvectors
en �= 0 corresponding to λn and define

Xn := span {ei : 1 ≤ i ≤ n} .
The eigenvectors are linear independent because, otherwise, if we assume that

en =
n−1∑

k=1
αkek

with linear independent vectors ek, 1 ≤ k ≤ n− 1, we would get

0 = Ten − λnen =
n−1∑

k=1
αk (Tek − λnek) =

n−1∑

k=1
αk (λk − λn) ek,

i.e., αk = 0 for k = 1, 2, . . . n − 1, i.e., en = 0 and this is a contradiction. Hence, Xn−1 is
a proper subspace of Xn. Hence, according to the theorem of a nearly orthogonal element
(Theorem 2.1), there exists some xn ∈ Xn with

‖xn‖X = 1 and dist (xn, Xn−1) ≥ 1/2.
16



Since xn = αnen+ x̃n for some αn ∈ C and some x̃n ∈ Xn−1 we conclude from the T -invariance
of the subspace Xn−1 that Txn − λnxn = T x̃n − λnx̃n ∈ Xn−1. Thus, for all m < n we have

∥∥∥∥T
(xn
λn

)
− T

(xm
λm

)∥∥∥∥X
=

∥∥∥∥∥∥∥
xn + λ−1n (Txn − λnxn)− λ−1m Txm︸ ︷︷ ︸

∈Xn−1

∥∥∥∥∥∥∥X

≥ 1/2.

Hence, the sequence (T (λ−1n xn))n∈N has no accumulation point. The compactness of T implies
that (λ−1n xn)n∈N has no bounded subsequence and hence

|λn|−1 = ∥∥λ−1n xn∥∥X n→∞→ ∞,
i.e., λn → 0 as n→∞. Hence, 0 is the only possible accumulation point of σ (T ) \ {0}. Thus,
σ (T ) \Br (0) is finite for any r > 0, i.e., σ (T ) \ {0} is countable.

@2: Let A := λI − T . Then N (An−1) ⊂ N (An) for all n. First, we assume that
N (An−1) is a proper subset of N (An) for all n ≥ 1.

Similarly as in the proof of 1) we choose — according to the theorem of the nearly orthogonal
element — some xn ∈ N (An) such that

‖xn‖X = 1 and dist (xn, N (An−1)) ≥ 1/2.
For all m < n, we obtain

‖Txn − Txm‖X =
∥∥∥∥∥∥∥
λxn − (Axn + λxm −Axm)︸ ︷︷ ︸

∈N(An−1)

∥∥∥∥∥∥∥X

≥ |λ| /2.

On the other hand (xn)n∈N is a bounded sequence which is a contradiction to the compactness
of T . Consequently, we find some n ∈ N with N (An−1) = N (An) and obtain, for m > n,

x ∈ N (Am) =⇒ Am−nx ∈ N (An) = N (An−1)

=⇒ An−1+m−nx = 0 =⇒ x ∈ N (Am−1) ,
and hence N (Am) = N (Am−1). Thus, N (Am) = N (An) for all m ≥ n by induction. Hence,
nλ <∞. From N (A) �= {0} we finally obtain nλ ≥ 1.

@3: Note that
N (Anλ)⊕R (Anλ) ⊂ X

because x ∈ N (Anλ) ∩ R (Anλ) implies that Anλx = 0 and x = Anλy for some y ∈ X. In this
case, we have A2nλy = 0, i.e., y ∈ N (A2nλ) = N (Anλ) and therefore x = Anλy = 0.

Now, Anλ can be represented as

Anλ = λnλI +
nλ∑

k=1

(nλ
k
)
λnλ−k (−T )k

︸ ︷︷ ︸
∈K(X)

.
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Therefore codimR (Anλ) ≤ dimN (Anλ) <∞ (cf. proof, part 4, of Theorem 2.30) from which
X = N (Anλ)⊕R (Anλ)

follows. Since T and A commute the operators T and Anλ commute as well. Hence, both
subspaces are T -invariant.

Let Tλ denote the restriction of T to R (Anλ). Note that Tλ ∈ K (R (Anλ)), where R (Anλ)
is a closed subspace (see proof, part 2, of Theorem 2.30) and, hence, R (Anλ) is a Banach
space. In addition it holds

N (λI − Tλ) = N (A) ∩R (Anλ) = {0}
and, hence, R (λI − Tλ) = R (Anλ) (see proof, part 2, of Theorem 2.30) and we have proved
that λ ∈ ρ (Tλ).

@4) Let µ ∈ C\ {λ}. From the previous reasoning we know that N (Anλ) is invariant under
λI − T .

Auxiliary statement: (µI − T )|N(Anλ) is injective.
Proof of auxiliary statement: x ∈ N (µI − T ) implies (λ− µ) x = Ax. If, in addition,

Amx = 0 for some m ≥ 1 it follows that
(λ− µ)Am−1x = Amx = 0

and, because of λ �= µ, Am−1x = 0. By induction we derive x = 0 and we have proved that
N (µI − T ) ∩N (Am) = {0} ∀m ≥ 1.

By setting m = nλ the auxiliary statement follows.
Since N (Anλ) is finite dimensional the restriction µI−T : N (Anλ)→ N (Anλ) is bijective.
Let λ, µ ∈ σ (T ) \ {0} with λ �= µ and set A := λI − T . We just proved that µI −

T : N (Anλ) → N (Anλ) is bijective. Consequently (µI − T )nµ : N (Anλ) → N (Anλ) is also
bijective, i.e.,

N ((λI − T )nλ) ⊂ R ((µI − T )nµ) .
In other words

R (Eλ) ⊂ N (Eµ) .
By interchanging λ and µ we obtain R (Eµ) ⊂ N (Eλ).

The property σ (T ) \ {0} ⊂ σp (T ) can be restated as the Fredholm alternative.
Theorem 2.35 (Fredholm alternative) Let T ∈ K (X) and λ �= 0. Then, either

∀y ∈ X ∃!x ∈ X : λx− Tx = y
or

∃x ∈ X\ {0} : λx− Tx = 0.
Next, we consider normal operators in Hilbert spaces. In this case, some of the previous

assertions can be strengthened.
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Definition 2.36 Let X be a Hilbert space over K. Then, T ∈ L (X) is normal if
T ∗T = TT ∗,

where T ∗ is the adjoint of T (cf. Definition 2.13).
Proposition 2.37 Let X be a Hilbert space and let T ∈ L (X) be a normal operator. Then
λI − T is normal for any λ ∈ K and it holds

T is normal ⇐⇒ ‖Tx‖X = ‖T ∗x‖X . (2.23)
Furthermore, for all λ ∈ C we have

N (λI − T ) = N (λ̄I − T ∗) .
Proof. The assertion “ =⇒ ” in (2.23) follows from

(Tx, Tx)X = (x, T ∗Tx)X = (x, TT ∗x)X = (T ∗x, T ∗x)X .
To prove “ ⇐= ” in (2.23) we start with the identity

1
4
(‖a+ b‖2X − ‖a− b‖2X

) = Re (a, b)X ∀a, b ∈ X.
This implies

Re (Tx, Ty)X = Re (T ∗x, T ∗y)X ∀x, y ∈ X.
By substituting i y for y in the case K = C we get

Im (Tx, Ty)X = Im(T ∗x, T ∗y)X ∀x, y ∈ X.
Hence,

0 = (Tx, Ty)X − (T ∗x, T ∗y)X = ((T ∗T − TT ∗)x, y)X ∀x, y ∈ X,
i.e., T ∗T = TT ∗.
Lemma 2.38 Let X be a Hilbert space over K and X �= {0}. If T ∈ L (X) is normal then

r (T ) = ‖T‖X←X .
Proof. Let T �= 0. By using Theorem 2.32 the statement is proved if we show

‖Tm‖X←X ≥ ‖T‖mX←X ∀m ≥ 0.
For m = 0, 1, this inequality is trivial. For m ≥ 1 and x ∈ X it holds

‖Tmx‖2X = (T ∗Tmx, Tm−1x)X ≤ ‖T ∗Tmx‖X
∥∥Tm−1x∥∥X

Theo 2.37= ∥∥Tm+1x∥∥X
∥∥Tm−1x∥∥X ≤ ∥∥Tm+1∥∥X←X ‖T‖m−1

X←X ‖x‖2X ,
i.e.,

‖Tm‖2X←X ≤ ∥∥Tm+1∥∥X←X ‖T‖m−1
X←X .

If we assume by induction that ‖Tm‖X←X ≥ ‖T‖mX←X, we derive
∥∥Tm+1∥∥X←X ≥ ‖Tm‖2X←X

‖T‖m−1
X←X

≥ ‖T‖2m−(m−1)
X←X = ‖T‖m+1

X←X .
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Theorem 2.39 Let X be a Hilbert space over C and let T ∈ K (X) be normal, T �= 0. Then
T has the form

Tx = ∑

k∈N
λk (x, ek)X ek (2.24)

with N ⊂ N and an orthonormal system (ek)k∈N and 0 �= λk ∈ C, where λk → 0 as k →∞ if
N is infinite. Furthermore, X has the orthogonal decomposition

X = N (T )⊕ span {ek : k ∈ N}.
The numbers λk are the eigenvalues of T corresponding to the eigenvectors ek. The values λk
may coincide for different values of k. In addition the index satisfies nλk = 1.

Proof. From the spectral theory for compact operators (Theorem 2.34) it follows that
σ (T ) \ {0} consists of eigenvalues λk, k ∈ N ⊂ N with λk → 0 as k →∞ and N is infinite. In
this ordering (which differs from the numbering in the theorem) we assume that the λk’s are
pairwise distinct. The eigenspaces Nk := N (λkI − T ) are finite dimensional. Let N0 := N (T )
and λ0 := 0. Proposition 2.37 implies

Nk = N (λkI − T ∗) ∀k ∈ N ∪ {0} .
First, we prove that the eigenspaces are pairwise orthogonal, i.e.,

Nk ⊥ Nℓ ∀k, ℓ ∈ N ∪ {0} with k �= ℓ. (2.25)
Let xk ∈ Nk and xℓ ∈ Nℓ. Then,

λk (xk, xℓ)X = (Txk, xℓ)X = (xk, T ∗xℓ)X = (xk, λℓxℓ)X = λℓ (xk, xℓ)X .
Because λk �= λℓ, we obtain (xk, xℓ)X = 0 and (2.25) is proved. Next, we will show

X = ⊕

k∈N∪{0}
Nk. (2.26)

Choose
y ∈ Y :=




⊕

k∈N∪{0}
Nk




⊥

.

Then, for x ∈ Nk, k ∈ N ∪ {0}, we get
(Ty, x)X = (y, T ∗x)X = λk (y, x)X = 0.

Hence, Ty ∈ Y and Y is a T -invariant closed subspace. Consider T0 := T |Y . Since T0 is
normal, there is — provided Y �= {0} — some λ ∈ σ (T0) with |λ| = ‖T0‖X←X (cf. Lemma 2.38).
If T0 �= 0 then λ is an eigenvalue of T0 (according to Theorem 2.34(1)) and, consequently,
also an eigenvalue of T , i.e., Nk ∩ Y �= {0} for some k ∈ N and this is a contradiction to the
definition of Y . Hence, T0 = 0, i.e., Y ⊂ N (T ) = N0. But this is also a contradiction and
(2.26) is proved.

Let Ek, k ∈ N ∪ {0} denote the orthogonal projection onto Nk. Then,
x = ∑

k∈N∪{0}
Ekx ∀x ∈ X
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and
Tx = ∑

k∈N∪{0}
TEkx = ∑

k∈N
λkEkx.

From this, the representation (2.24) follows if we choose orthonormal basis (ek,ℓ)dkℓ=1 of Nk with
dk := dimNk because

Ekx =
dk∑

ℓ=1
(x, ek,ℓ)X ek,ℓ.

The representation (2.24) in particular implies that Nk = N ((λkI − T )2) because, for x ∈
N ((λkI − T )2) we have

0 = (λkI − T )2 x = ∑

j∈N∪{0}
(λk − λj)2Ejx,

i.e., Ejx = 0 for j �= k. Thus, x = Ekx ∈ Nk and we have proved nλk = 1.
Remark 2.40

1. Let X be a Hilbert space and let T ∈ L (X) be selfadjoint, i.e., T ∗ = T . Then, σp (T ) ⊂ R
and ‖T‖X←X or −‖T‖X←X is an eigenvalue.

2. If T is in addition positive semidefinite, i.e., (Tx, x)X ≥ 0 for all x ∈ X, then σp (T ) ⊂
[0,∞[ and ‖T‖X←X is an eigenvalue.

Proof. For an eigenpair (λ, x) it holds
λ ‖x‖2X = (λx, x)X = (Tx, x)X = (x, T ∗x)X = (x, Tx)X = (x, λx)X = λ̄ ‖x‖2X ,

i.e., λ = λ because x �= 0. The second statement of 1) follows from Lemma 2.38. The assump-
tion in 2) implies

λ ‖x‖2X = (Tx, x)X ≥ 0, i.e., λ ≥ 0.

2.9 Sobolev Spaces
In this subsection, we will generalize the classical notion of derivative for certain subspaces of
L2 which are denoted as Sobolev spaces.
Definition 2.41

1. For k ∈ N and p ∈ [1,∞[ the Sobolev space W k,p (Ω) and its norm is given by
W k,p (Ω) := {ϕ ∈ Lp (Ω) | ∀ |α| ≤ k : Dαϕ ∈ Lp (Ω)} ,

‖ϕ‖k,p :=




∑

|α|≤k
‖Dαϕ‖pLp(Ω)






1/p

.

Here Dαϕ = ∂α11 ∂α22 · · · ∂αdd ϕ denotes the weak derivative of ϕ.
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2. A seminorm on W k,p (Ω) is given by

|ϕ|k,p :=




∑

|α|=k
‖Dαϕ‖pLp(Ω)






1/p

.

In the case p = 2, W k,2 (Ω) is a Hilbert space and we write short Hk (Ω) instead of W k,2 (Ω)
and skip the index “2” for the corresponding norm and seminorm.
Theorem 2.42

1. The space W k,p (Ω) with norm ‖·‖k,p is a Banach space.
2. C∞ (Ω) ∩W k,p (Ω) is dense in W k,p (Ω) .
3. Hk (Ω) is a Hilbert space with scalar product

(ϕ, ψ)k :=
∑

|α|≤k

∫

Ω
DαϕDαψ.

In general, C∞0 (Ω) is not dense in W k,p (Ω). The closure of C∞0 (Ω) with respect to the
norm ‖·‖k,p defines the Sobolev space with zero boundary conditions in a “weak” sense.
Definition 2.43 W k,p

0 (Ω) is the closure of C∞0 (Ω) with respect to the W k,p (Ω)-norm. We
set Hk0 (Ω) = W k,2

0 (Ω) .
Definition 2.44 The domain Ω has a Lipschitz boundary resp. Ω is a Lipschitz domain,
if there exists N ∈ N and open sets U1, . . ., UN ⊂ Rd with the following properties:

1. ∂Ω ⊂
N⋃

i=1
Ui,

2. For any 1 ≤ i ≤ N , the intersection ∂Ω ∩ Ui can be represented as the graph of a
Lipschitz continuous function.

Remark 2.45 Let Ω be a Lipschitz domain. Then, there exists an exterior normal field almost
everywhere on ∂Ω.

A consequence of the trace theorem is the following alternative characterization of W 1,p
0 (Ω).

Theorem 2.46 W 1,p
0 (Ω) = {ϕ ∈W 1,p (Ω) | ϕ|∂Ω = 0} .

For many applications, the Friedrichs’ inequality is an essential tool for proving exi-
stence and uniqueness.
Theorem 2.47 (Friedrichs’ inequality) ‖·‖k,p and |·|k,p define equivalent norms on W k,p

0 (Ω).
Theorem 2.48 (Poincaré inequality) Let the space dimension satisfy d ≥ 2. Then, |·|1and ‖·‖1 are equivalent on V := {ϕ ∈ H1 (Ω) : ∫Ω ϕ = 0}.
Theorem 2.49 (Sobolev’s embedding theorem) Let Ω ⊂ Rd be a Lipschitz domain. For
s > d/2, the embedding

Hs (Ω) ⊂ C0 (Ω)
is continuous.
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2.10 Abstract variational problems
We will transform elliptic boundary value problems — as the starting point for their discreti-
zation — into (nearly) equivalent variational problems. We begin with the functional analytic
prerequisites.
Theorem 2.50 (Lax-Milgram) Let (X, ‖·‖X) be a Banach space, ℓ ∈ X ′ a continuous li-
near functional and a : X ×X → C a continuos sesquilinear form. Furthermore, we assume
that a is hermitian:

a (u, v) = a (v, u) ∀u, v ∈ X
and coercive: There exists α > 0 such that

a (u, u) ≥ α ‖u‖2X ∀u ∈ X.
Then, the functional J ∈ C2 (X,R),

J (u) := 1
2a (u, u)−Re ℓ (u) ,

has a unique minimizer u⋆ ∈ X. This minimizer is the unique solution of
a (u⋆, v) = ℓ (v) ∀v ∈ X. (2.27)

The proof can be found in any textbook on functional analysis and is skipped here.
Theorem 2.51 The assumptions and notations are as in Theorem 2.50. Let

A := ‖a‖C←X×X := sup
u,v∈X\{0}

|a (u, v)|
‖u‖X ‖v‖X .

Let S ⊂ X be a finite dimensional subspace of X. The unique minimizer of J in X resp. S is
denoted by u ∈ X resp. uS ∈ S.

Then:
‖u− uS‖X ≤ A

α infv∈S ‖u− v‖X . (2.28)
Let, in addition, H be a Hilbert space with scalar product (·, ·)H and norm ‖·‖H so that X
is continuously and densely embedded in H with respect to the norm ‖·‖H . For ϕ ∈ H, let
uϕ ∈ X denote the unique solution of

a (v, uϕ) = (ϕ, v)H ∀v ∈ X. (2.29)
Then:

‖u− uS‖H ≤ A ‖u− uS‖X sup
ϕ∈H\{0}

infv∈S
‖uϕ − v‖X
‖ϕ‖H .

Remark 2.52 The first part of Theorem 2.51 is known as “Céa’s Lemma”, the second part
is known as “duality argument of Aubin-Nitsche”.

The assumptions of Theorems 2.50 and 2.51 (essentially) restrict the problem class to
positive definite bilinear forms and do not cover non-symmetric problems. We will generalize
this theorem by weakening these assumptions.
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Theorem 2.53 Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces and X c→֒ Y and a0, a1 :
X × X → C two continuous sesquilinear forms. We assume that the sesquilinear form a0
is hermitian and coercive. Further, we assume for the sesquilinear form a1 that there is a
constant Ā ∈ R>0 such that

a1 (u, v) ≤ Ā ‖u‖X ‖v‖Y ∀u, v ∈ X. (2.30)
Let a := a0 + a1, i.e.,

a (u, v) := a0 (u, v) + a1 (u, v) ∀u, v ∈ X.
For all u ∈ X\ {0}, we assume

a (u, u) �= 0. (2.31)
Then, the problems

a (u, v) = ℓ (v) ∀v ∈ X (2.32)
and

a (v, u) = ℓ (v) ∀v ∈ X
have unique solutions for any continuous, linear functionals ℓ ∈ X ′.
Theorem 2.54 The assumptions and notations are as in Theorem 2.53. Let S ⊂ X be a
finite-dimensional subspace. Then, the problem

a (uS, v) = ℓ (v) ∀v ∈ S (2.33)
has a unique solution uS ∈ S for any ℓ ∈ X ′.

In addition, let a be coercive, i.e., there exists β > 0 with a (u, u) ≥ β ‖u‖2X for all u ∈ X.
Then, the unique solutions u and uS corresponding to (2.32) and (2.33) satisfy the error
estimate

‖u− uS‖X ≤ A
β infv∈S ‖u− v‖X , (2.34)

where A := ‖a‖C←X×X. Finally, let H, ϕ and uϕ be as in Theorem 2.51. Then, the error
estimate

‖u− uS‖H ≤ A ‖u− uS‖X sup
ϕ∈H\{0}

infv∈S\{0}
‖uϕ − v‖X
‖ϕ‖H (2.35)

holds.

2.11 Weak Solutions
Throughout this section, we assume that Ω ⊂ Rd is an open, bounded set with Lipschitz boun-
dary Γ := ∂Ω and exterior normal field n. We will consider scalar, linear, elliptic differential
equations of second order. The general form is

− ∑

1≤i,j≤d

∂
∂xi

(
Ai,j

∂u
∂xj

)
+

d∑

i=1
bi ∂u∂xi + cu = f in Ω, (2.36)

where the precise assumptions on f , c, b = (b1, b2, . . . , bd)⊺, and A = (Ai,j)di,j=1 will be
formulated in Assumption 2.55 and Definition 2.56.

The differential equation has to be equipped with boundary conditions and we will consider
three different types of boundary conditions
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• (homogenous) Dirichlet boundary conditions: u = 0 on Γ,
• (inhomogenous) Neumann boundary conditions: 〈An, grad u〉 = g on Γ,
• mixed Dirichlet-Neumann boundary conditions: u = 0 on ΓD and 〈An, grad u〉 =
g on ΓN .

Here, we assume that ΓD ∩ ΓN = ∅ and Γ = ΓD ∪ ΓN . For mixed boundary conditions we
will assume that ΓD has positive (d− 1)-dimensional measure. The restriction to homogeneous
Dirichlet boundary condition is not essential but avoids technical difficulties.

Let u ∈ C2 (Ω) be a solution of (2.36) with homogenous Dirichlet boundary conditions
and v ∈ C∞0 (Ω). Multiplication of (2.36) with v, integration over Ω and application of Gauß’
integral theorem leads to

∫

Ω
fv = −

∫

Ω
v div (A grad u) +

∫

Ω
〈b, grad u〉 v +

∫

Ω
cuv

=
∫

Ω
(〈grad v,A gradu〉+ 〈b, grad u〉 v + cuv) . (2.37)

Since C∞0 (Ω) is dense in H10 (Ω) it follows that u ∈ H10 (Ω) satisfies
∫

Ω
(〈∇v,A∇u〉+ 〈b,∇u〉 v + cuv) =

∫

Ω
fv ∀v ∈ H10 (Ω) . (2.38)

Vice versa, the relation (2.37) implies that a solution of (2.38) satisfies the differential equation
(2.36) provided it is sufficiently smooth, more precisely, is in C2 (Ω). In this sense, problem
(2.38) is equivalent to the differential equation (2.36) with homogeneous Dirichlet boundary
conditions.

If we consider in the previous argument also functions v ∈ C∞ (Ω), then, there arise
additional boundary terms ∫

Γ
∂u
∂ñv in (2.37), where ñ := An. If u satisfies the Neumann

boundary conditions we may substitute them in the integrand:∫
Γ
∂u
∂ñv =

∫
Γ
gv.

Hence, in this case, we will modify equation (2.38) by the additional term ∫
Γ gv on the right-

hand side. Before we define the weak solutions, we will formulate the basic assumptions on
the coefficients.
Assumption 2.55 The coefficients A, b, c in (2.38) satisfy

1.
A ∈ L∞ (Ω,Rd×d) ∧ ∀x ∈ Ω : A (x) = A⊺ (x)
0 < a := inf

x∈Ωλmin (x) ≤ sup
x∈Ω

λmax (x) =: A < ∞,

where λmin (x) denotes the smallest eigenvalue of A (x) and λmax (x) the largest one.
2.

b ∈ L∞ (Ω,Rd) ∧ divb ∈ L∞ (Ω) .
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3.
c ∈ L∞ (Ω) .

These considerations lead to the following definition.
Definition 2.56

1. u ∈ H10 (Ω) is a weak solution of the differential equation (2.36) with homogeneous
Dirichlet boundary condition if it satisfies∫

Ω
〈A∇u,∇v〉+ 〈b,∇u〉 v + cuv =

∫
Ω
fv ∀v ∈ H10 (Ω) .

2. u ∈ H1D (Ω) := {ϕ ∈ H1 (Ω) : ϕ|ΓD
= 0} is a weak solution of the differential equation

(2.36) with mixed boundary conditions if∫
Ω
〈A grad u, grad v〉+ 〈b, grad u〉 v + cuv =

∫
Ω
fv +

∫
ΓN

gv ∀v ∈ H1D (Ω) .

3. u ∈ H1 (Ω) is a weak solution of the differential equation (2.36) with Neumann boun-
dary conditions if∫

Ω
〈A gradu, grad v〉+ 〈b, gradu〉 v + cuv =

∫
Ω
fv +

∫
Γ
gv ∀v ∈ H1 (Ω) .

Theorem 2.57 (existence and uniqueness)
1. If −1

2 divb + c ≥ 0 is satisfied, then, the differential equation (2.36) with homogeneous
Dirichlet boundary conditions has a unique weak solution.

2. If −1
2 divb + c ≥ 0 and 〈b,n〉 ≥ 0 on ΓN , then, the differential equation (2.36) with

mixed boundary conditions has a unique weak solution.
3. If c ≥ c0 > 0, −1

2 divb + c ≥ 0 and 〈b,n〉 ≥ 0 on Γ, then, the differential equation
(2.36) with Neumann boundary conditions has a unique weak solution.

4. If c = 0, −1
2 divb ≥ 0 and 〈b,n〉 = 0 on Γ and ∫

Ω f + ∫
Γ g = 0, then, the differential

equation (2.36) with Neumann boundary conditions has a unique weak solution u with∫
Ω u = 0.

The following example shows that the regularity assumption u ∈ H2 (Ω) for weak solutions
can be expected in general only under additional assumptions on the boundary Γ.
Example 2.58 Let 0 < α < 2π and Ωα denote the segment

Ωα :=
{
x = r

(cosϕ
sinϕ

)
∈ R2 : 0 < r < 1, 0 < ϕ < α

}
.

Define the function v ∈ Ωα → R by
v (x) = rπ/α sin πϕ

α with x = r (cosϕ, sinϕ)⊺ .
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Then, for any x ∈ Ωα,
∆v (x) = 1

r
∂
∂r

(
r∂v∂r

)
+ 1

r2
∂v2
∂ϕ2 = 0.

Let w ∈ C∞0 (R2,R) with suppw ⊂ B (0, 23) and w = 1 on B (0, 13).Define
u := wv, f := ∆ (v (1− w)) .

Then, there holds
−∆u = f in Ωα,
u = 0 auf ∂Ωα.

Obviously, we have (1− w) v ∈ C∞ (R2,R) and, hence, f ∈ C∞ (Ωα
). The function u satisfies

u ∈ C∞ (Ωα). Because of u = v in B (0, 13) we have
u /∈ C∞ (Ωα

) .
An easy calculation shows

u ∈ Ck (Ωα
) ⇐⇒ 0 < α ≤ π

k , k ≥ 1
and

Dku ∈ L2 (Ωα) ⇐⇒ 0 < α < π
k − 1 , k ≥ 2.

Hence, for given α, we can not expect estimates of the form
‖u‖Ck+2(Ωα) ≤ ck ‖f‖Ck(Ωα)

and
‖u‖Hk+2(Ωα) ≤ c′k ‖f‖Hk(Ωα) ,

as they would hold for ordinary differential equations.
Theorem 2.59 (regularity theorem) Let Γ be a C1 manifold or let Ω be convex and f ∈
L2 (Ω). Besides the Assumption 2.55 we assume that c ∈ C (Ω,R≥0

), b = (b1, b2, . . . , bd)⊺ ∈
C1 (Ω,Rd), and A = (Ai,j)di,j=1 ∈ C1 (Ω,Rd×d). In the case of the mixed Neumann problem
we assume that there exists a function ug ∈ H2 (Ω) so that g = ug|ΓN

.
Then, the weak solution u of the elliptic differential equation with homogeneous or mixed

or Neumann boundary conditions satisfies u ∈ H2 (Ω) and the a-priori estimate
‖u‖H2(Ω) ≤ c

{
‖f‖L2(Ω) + ‖ug‖H2(Ω)

}
holds. The constant c depends only on Ω and on the coefficients c, b, A in the differential
equation.
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3 Elliptic Eigenvalue Problems and their Discretization
3.1 Eigenvalue Problems for Elliptic Partial Differential Operators
In Definition 2.56, we have formulated the elliptic boundary value problem in the abstract
variational form: Let H,U two Hilbert spaces where the embedding H ⊂ U is compact and
let a sesquilinear form a : H ×H → C and a linear form ℓ ∈ H ′ be given which satisfy the
assumptions of Theorem 2.53. The variational problem then is given by seeking u ∈ H such
that

a (u, v) = ℓ (v) ∀v ∈ H.
In the setting of Definition 2.56(1) we have H = H10 (Ω), U = L2 (Ω), ℓ (v) := (f, v)U for some
given f ∈ L2 (Ω), and

a (u, v) :=
∫
Ω
〈A∇u,∇v〉+ 〈b,∇u〉 v + cuv.

In order to formulate a variational eigenvalue problem we assume that a further sesquilinear
form d : H ×H → C is given which satisfies

a) ∀u, v ∈ H : d (u, v) = d (v, u)
b) ‖d‖C←H×H =: Cd < ∞
c) ∀u ∈ H\ {0} : d (u, u) > 0
d) ∀ (uj)j∈N ⊂ H with ‖uj‖H ≤ C

there exists (ujk)k∈N which is Cauchy w.r.t. d (·, ·)1/2 .

(3.1)

The variationally formulated eigenvalue problem is given by
find pairs (λ, u) ∈ C×H\ {0} such that a (u, v) = λd (u, v) ∀v ∈ H. (3.2)

Next, we will formulate this problem in terms of a compact operator. Theorem 2.53 implies
that for any f ∈ H, the problem:

find u ∈ H : a (u, v) = d (f, v) ∀v ∈ H (3.3)
has a unique solution. Hence, we may define the solution operator T : H → H by

a (Tf, v) = d (f, v) ∀f, v ∈ H. (3.4)
Lemma 3.1 Let a = a0 + a1 satisfies the assumption as in Theorem 2.53 and assume that d
satisfies (3.1). Then, the operator T is compact.

Proof. The Lax-Milgram lemma implies that the problem
find uf ∈ H such that a0 (uf , v) = d (f, v)

has a unique solution for all f ∈ H. The solution operator is denoted by Kd, i.e., a0 (Kd, v) =
d (f, v) for all f, v ∈ H. The operator Kd is compact. In a similar fashion one shows that the
is a compact operator which satisfies

a0 (K1f, v) = a1 (f, v) ∀f, v ∈ H.
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Hence, (3.3) can be rewritten in the form
(I +K1) u = Kdf.

Since the homogenous equation (I +K1)w = 0 has only the trivial solution (due to (2.31)) we
may apply the Fredholm alternative to see that T = (I +K1)−1Kd is a continuous operator
in H. Because Kd is compact, Lemma 2.20 implies that T compact.

Note that (3.3) is equivalent to
find (µ, u) ∈ C×H\ {0} : Tu = µu (3.5)

in the sense of
(λ, u) is an eigenpair of (3.2) ⇐⇒

(1
λ, u

)
is an eigenpair of (3.5).

3.2 Galerkin Finite Element Method for Eigenvalue Problems
We assume that the reader has basic knowledge in the finite element method and recall here
only the main steps for the construction of finite element spaces.

3.2.1 Construction of Finite Element Spaces
Let Ω ⊂ Rd be a bounded domain with piecewise smooth boundary Γ := ∂Ω. Let T =
{τi : 1 ≤ i ≤ q} denote a finite element triangulation4 where all elements are regular images
of the d-dimensional unit simplex τ̂ .
Assumption 3.2

1. The elements τ ∈ T are closed subsets of Ω with pairwise disjoint interior and Ω = ⋃
τ∈T

τ .

2. The triangulation T has no hanging nodes.
3. The element maps of elements sharing edges, faces or higher-dimensional simplices at

their surface induce the same parametrization on that edge, face, or higher-dimensional
analogon.

4. Let hτ := diam τ and let hT := max {hτ , τ ∈ T } denote the mesh width. Any τ ∈ T is
the image of the d-dimensional unit simplex, i.e., τ = Fτ τ̂ . Each element map Fτ can
be written as Fτ = Rτ ◦ Aτ where Aτ is an affine map and the maps Rτ , Aτ satisfy for
constants Caffine, Cmetric > 0 independent of hτ

‖A′τ‖∞ ≤ Caffinehτ ,
∥∥∥(A′τ)−1∥∥∥∞

≤ Caffineh−1τ ,
∥∥∥(R′τ)−1∥∥∥L∞(Aτ (τ̂))

≤ Cmetric.
4We use the notation “triangulation” independent of the spatial dimension d and not only for the case

d = 2.
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Remark 3.3 Triangulations satisfying Assumption 3.2 can be obtained by patchwise con-
struction of the mesh: Let T macro be a fixed triangulation (with possibly curved elements) with
element maps which resolve the geometry. If the finer triangulation T is obtained by quasi-
uniform refinements of the reference element τ̂ and by mapping the subdivisions of the reference
element with the macro element maps, then, the resulting element maps satisfy Assumption
3.2.

Finite element spaces are composed by local polynomials and are subject to some global
smoothness and boundary conditions. Let Pp denote the space of polynomials in d variables
of total degree p. Then the finite element space for the mesh T and polynomial degree p is
given by

S := Sp
T := {u ∈ C0 (Ω) | ∀τ ∈ T : u|τ ◦ Fτ ∈ Pp

} ∩H.

3.2.2 Galerkin Discretization
The Galerkin discretization of the eigenvalue problem is given by

find (λS, uS) ∈ C× S\ {0} such that a (uS, v) = λSd (uS, v) ∀v ∈ S. (3.6)
By introducing the finite element basis ϕSi , 1 ≤ i ≤ N , for S, this system can be transformed
to a generalized algebraic eigenvalue problem of the form

find (λS,uS) ∈ C× CN\ {0} such that AuS = λSMuS, (3.7)
where

A : = (a (ϕSj , ϕSi
))

1≤i,j≤N , M : = (d (ϕSj , ϕSi
))

1≤i,j≤,N
and the equivalence(λS,uS) ∈ C×CN\ {0} is an eigenpair of (3.7) ⇐⇒ (λS, PuS) ∈ C×S\ {0} is an eigenpair of (3.6),
where the prolongation P : CN → S is given, for u = (ui)Ni=1 ∈ CN , by

Pu =
N∑
i=1

uiϕSi .

In these notes we do not discuss the efficient solution of the algebraic eigenvalue problem (3.7)
but refer to the lectures of D. Kressner instead.

3.2.3 Approximation Properties of Finite Element Spaces
The study of approximation properties of finite elements is a standard topic in any mathema-
tical course on finite elements. Let H denote the space which is employed for the variational
formulation of second order elliptic partial differential operators, e.g.., H = H10 (Ω) in the
case described in Definition 2.56(1). Let S = Sp

T denote a conforming finite element space,
i.e., S ⊂ H and assume that the solution of the boundary value problem is in a more regular
space W ⊂ H, where the subspace W , typically, is a higher order Sobolev space or a weighted
Sobolev space. In this case one constructs an explicit interpolation operator ΠS : W → S and
proves an estimate of the form

‖u− ΠSu‖H ≤ CuhαT ,
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where hT denotes the mesh width of the triangulation T and the maximal value of α ∈ ]0, p]
is related to the smoothness of the solution. We always assume that the triangulation T
satisfies Assumption 3.2 and all constants below may depend on the constants Caffine, Cmetric
introduced therein.
Proposition 3.4 Let Ω be a Lipschitz domain with piecewise analytic boundary and let T be
a triangulation of Ω which satisfies Assumption 3.2.

a. Let t > 1 be such that the embedding Ht (Ω) →֒ C0 (Ω) is continuous (cf. Theorem 2.49).
Then there exists a continuous interpolation IpT : H t (Ω) → Sp

T with
‖ϕ− IpT ϕ‖Hs(Ω) ≤ C hmin{t,p+1}−s

T ‖ϕ‖Ht(Ω), s ∈ {0, 1} , (3.8)
where the constant C only depends on p and on the constants Caffine, Cmetric from As-
sumption 3.2.

b. Let 0 ≤ s ≤ t ≤ 1. Then, there exists a continuous operator QT : H t (Γ) → Sp
T such

that, for every ϕ ∈ Ht (Ω), we have
‖ϕ−QT ϕ‖Hs(Ω) ≤ Cht−sT ‖ϕ‖Ht(Ω) .

The operator QT is stable for 0 ≤ s ≤ 1
‖QT ‖Hs(Ω)←Hs(Ω) ≤ C.

From this theorem it becomes clear, that the investigation of the regularity properties of the
exact solution is essential for proving a priori error estimates for finite element approximations.

The development of a regularity theory for eigenvalue problems which guarantees the
smoothness of the eigenfunctions in terms of Sobolev spaces is beyond the scope of these
lecture notes. Here, we will state some relevant results and give links to the literature.

We consider the eigenvalue problem (3.2) and always assume that the setting is as described
in Definition 2.56(1) and that Assumption 2.55 and the assumptions of Theorem 2.57 and (3.1)
are satisfied.

Let (λ, u) ∈ C × H10 (Ω) (with normalization ‖u‖H1(Ω) = 1) denote an eigenpair of (3.2)
and consider λ in what follows as a fixed parameter. Our assumptions on the bilinear form
imply λ �= 0, so that the function u is the unique solution of the elliptic equation

− div (A grad u) + 〈b, grad u〉+ cu = f in Ω,
u = 0 on ∂Ω.

with f := λu. In order to prove smoothness of u in higher order Sobolev spaces we have to
formulate corresponding smoothness assumptions on the data, i.e., on Ω, A, b, and c.
Assumption 3.5

a. Ω is a bounded domain of class C1,1.
b. The diffusion matrix satisfies A ∈ C0,1 (Ω,Rd×dsym

),
c. The coefficients b, c satisfy b ∈ L∞ (Ω,Rd) and c ∈ L∞ (Ω).
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Theorem 3.6 Let Assumptions 2.55 and 3.5, the assumptions of Theorem 2.57 and (3.1) be
satisfied. Assume that d (·, ·)1/2 is uniformly equivalent to the L2 (Ω)-norm. Then, there exists
a constant Creg which only depends on the data but not on λ such that

‖u‖H2(Ω) ≤ Creg
√λ.

This theorem follows from, e.g., from [14, Theorem 2.4.2.7]. We see that the smoothness
properties of the eigenfunctions are linked to the smoothness of the coefficients and the domain.
By raising the smoothness assumptions on the data in an appropriate way one can prove
shift theorems, i.e., regularity of the eigenfunctions in higher order Sobolev spaces (see, e.g.,
[15, Theorem 11.2.22]). We do not go into the details here but end up this section by an
example which shows that eigenvalue problems in some cases have better regularity behavior
as predicted by the regularity theory for elliptic problems.

Recall that we have constructed an example (cf. Example 2.58 for the segment Ωα), where
the behavior of the solution u for a smooth (!) right-hand side at the origin is given by

rπ/α sin πϕ
α .

This implies, e.g. for α = 3/2π, that u ∈ Hs
(
Ω3

2π
)

for any s < 1 + 2
3 but u /∈ H2

(
Ω3

2π
)

.
In the following example we show that the corresponding eigenvalue problem can have a

better regularity in some cases.
Example 3.7 Let 0 < α < 2π and Ωα denote again the segment

Ωα :=
{
x = r

(cosϕ
sinϕ

) ∈ R2 : 0 < r < 1, 0 < ϕ < α
}
.

We consider the eigenvalue problem
−∆u = λu in Ωα,

u = 0 on ∂Ωα. (3.9)
Let Jν denote the Bessel functions of order ν (cf. [1, Sec. 9]). For every k ∈ N≥1, the function
Jπk

α
(λ)

Bessel function J2/3 (λ) .
32



has infinity many zeroes λk,i, i ∈ N (cf. Fig. 3.7). The eigenvalues of (3.9) are λk,i with
corresponding eigenfunction (in polar coordinates)

êk,i (r, ϕ) = Jπk
α
(λk,ir) sin πk

α ϕ.
Again, we choose α = 3

2π and obtain

êk,i (r, ϕ) = J2
3k (λk,ir) sin

(2
3kϕ

)
.

For small arguments we have
J 2

3k (λk,ir) ∼ (λk,ir) 2
3k

Γ (2
3k + 1) .

Hence, we see that, e.g. for k = 1, the corresponding eigenfunctions have the same (low)
regularity as the solution of the elliptic problem, while, for k = 3, J2 (λk,ir) is smooth.

4 Error Analysis for the Selfadjoint Eigenvalue Problem
4.1 Setting
In order to apply the perturbation theory for compact operators we reformulate the discrete
eigenvalue problem as a discrete version of (3.5). Let TS : S → S denote the solution operator
for the problem

for given f ∈ S find uS ∈ S such that a (uS, v) = d (f, v) ∀v ∈ S,
i.e., uS = TSf . Let QS : H → S denote the Galerkin projection, i.e.,

a (QSu, v) = a (u, v) ∀v ∈ S.
Note that then, TS = QST |S. It is easy to see that the eigenvalue problem (3.6) is equivalent
to

find (µS, uS) ∈ C× S\ {0} TSuS = µSuS (4.1)
in the sense that

(λS, uS) is an eigenpair of (3.6) ⇐⇒ ( 1
λS , uS

)
is an eigenpair of (4.1).

The error analysis for symmetric bilinear forms is significantly simpler as for the non-
symmetric case. In this section, we will restrict to bilinear forms which satisfy the assumptions
of the Lax-Milgram lemma (Theo. 2.50): For a real Hilbert space H, let a : H ×H → R be a
sesquilinear form which satisfies for positive constants α,Cc > 0

a (u, v) = a (v, u) ∀u, v ∈ H, (4.2a)‖a‖R←H×H = Cc < ∞. (4.2b)
a (u, u) ≥ α ‖u‖2H ∀u ∈ H. (4.2c)
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We assume that the norm in H is chosen as ‖u‖H := a (u, u)1/2 for all u ∈ H. Let a further
bilinear form d : H × H → R be given which satisfies condition (3.1). In this section, we
consider the eigenvalue problem

find pairs (λ, u) ∈ R×H\ {0} a (u, v) = λd (u, v) ∀v ∈ H. (4.3)
From Remark 2.40, we conclude that all eigenvalues of (4.3) are tacitly real because the
symmetry of a and d implies that T — the solution operator (cf. (3.4)) for a, d which satisfy
(4.2) and (3.1) — is selfadjoint:

a (Tf, v) = d (f, v) = d (v, f) = a (Tv, f) = a (f, Tv) ∀v, f ∈ H.
Since T is compact, Theorem 2.34 implies that σ (T ) \ {0} consists of countably many

(finitely or infinitely many) eigenvalues with 0 as the only possible accumulation point. Note
that T is positive definite

a (Tu, u) = d (u, u) (3.1)> 0 ∀u ∈ H\ {0} . (4.4)
Hence all eigenvalues of T are positive and we order them according to

µ1 > µ2 > . . . > 0.
Let kj denote the multiplicity of µj and let Nj denote the corresponding eigenspace

Nj := span {uj,ℓ : 1 ≤ ℓ ≤ kj} ,
where the uj,ℓ are pairwise orthonormal and satisfy Tuj,ℓ = µjuj,ℓ. Finally, we introduce the
space

N1,j :=
j⊕

ℓ=1
Nj.

Let S ⊂ H denote a finite dimensional subspace of dimension n := dimS. We apply the
Galerkin discretization (3.6) corresponding to this subspace. The key rôle for the error analysis
of the eigenvalue approximations plays their characterization via the Rayleigh-Ritz method.
We order the spectrum of TS also in a decreasing way by taking into account their multiplicities
and group them according to the corresponding multiplicities of the exact eigenvalues

µS1,1 ≥ µS1,2 ≥ ....µS1,k1︸ ︷︷ ︸
k1 eigenvalues

≥ µS2,1 ≥ µS2,2 ≥ ... ≥ µS2,k2︸ ︷︷ ︸
k2 eigenvalues

≥ . . . ≥ µSm,1 ≥ ... ≥ µS
m,k̃m︸ ︷︷ ︸

k̃m eigenvalues

> 0,

i.e., the last group contains a number k̃m of discrete eigenvalues which differ from the multi-
plicity km of the exact eigenvalue λm only for the case that the dimension n of S does not
satisfy dimS = ∑m

ℓ=1 kj. We set
∀1 ≤ i < m : µSi := µSi,ki and µSm := µS

m,k̃m
and define the index sets

∀1 ≤ j < m : Jj := {(j, ℓ) : 1 ≤ ℓ ≤ kj} and Jm :=
{
(m, ℓ) : 1 ≤ ℓ ≤ k̃m

}

JS :=
m⋃

j=1
Jj.
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According to Theorem 2.39 we may choose for every eigenvalue µSj,ℓ a function uSj,ℓ ∈ S such
that {uSj,ℓ : (j, ℓ) ∈ JS}, forms an orthonormal (w.r.t. the a (·, ·) scalar product) basis of S and
TuSj,ℓ = µSj,ℓuSj,ℓ. We set

NSj := span{uSj,ℓ : (j, ℓ) ∈ Jj} .
Note that the definition of the spaces NSj , in general, depends on the ordering of the

eigenvectors if the multiplicity of some eigenvalue is larger than 1. Finally we set

NS1,j :=
j⊕

ℓ=1
NSℓ .

From the viewpoint of numerical discretization, the choice and the (precise) dimension of the
finite element space S, typically, is independent of the multiplicities of the exact eigenvalues
because these are not known beforehand. Once S is chosen, the natural question is how well
the n eigenvalues and eigenvectors of (3.6) resp. (3.7) approximate the continuous ones. For
this error analysis, we define m = m (n), n := dimS, as the smallest integer such that the
sum of the multiplicities satisfy m∑

j=1
kj ≥ n (4.5)

and set
∀1 ≤ j < m Ñ1,j := N1,j and Ñ1,m := Ñm ⊕

(m−1⊕

ℓ=1
Nℓ

)
, (4.6)

where Ñm := span
{
um,ℓ : 1 ≤ ℓ ≤ k̃m

}
. Also here the choice of Ñm depends on the ordering

of the eigenvectors corresponding to eigenvalue λm if k̃m �= km.
For comparing the closeness of a subspace V ⊂ H to a subspace W ⊂ H we will use the

quantity
Θ(V,W ) := maxv∈V \{0}

dist (v,W )‖v‖H . (4.7)
Remark 4.1 Note that for spaces U, V ⊂ H of same dimension dimU = dimV = n < ∞
(as for Ñ1,m and S) it holds

Θ(U, V ) = Θ (V, U) .
Proof. In any case we have Θ(U, V ) ≤ 1. Let PU : H → U and PV : H → V denote the

H-orthogonal projections onto U resp. V . If Θ(U, V ) = 1 we have
maxu∈U\{0}

‖u− PV u‖H‖u‖H = 1
and hence there exists some u ⊥ V . For n = 1, it is obvious that Θ(U, V ) = Θ (V, U) and we
assume n > 1 in the following. Let u⊥ := {w ∈ U : a (w, u) = 0}. It is clear that dimu⊥ = n−1
and, hence, we may choose some ṽ ∈ V \ {0} with ṽ ⊥ u⊥. This function v satisfies

maxv∈V \{0}
‖v − PUv‖H‖v‖H ≥ infu∈U ‖ṽ − u‖H‖ṽ‖H = infu∈u⊥ ‖ṽ − u‖H‖ṽ‖H = 1

and, thus, Θ(V,U) = 1.
It remains to consider the statement for the case Θ(U, V ) < 1 and Θ(V, U) < 1 which

follows from [17, Lemma 2.21].
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4.2 Estimates for Eigenvalues of Selfadjoint Operators
In the remaining part of the chapter we consider the following setting.
Assumption 4.2 The bilinear forms a, d satisfy (4.2), (3.1) and T is defined by (3.4) (so
that T is compact, self-adjoint and positive definite (cf. (4.4))).
Definition 4.3 (Ritz value) Let

µ1 := sup
u∈H\{0}

d (u, u)
a (u, u)

and, recursively, for n = 1, 2, ...
1. let

µn := sup
v∈H: a(v,v)=1

a(v,u1)=0
a(v,u2)=0...a(v,un−1)=0

d (v, v) (4.8)

2. if there is an element v ∈ H which satisfies
a (v, u1) = a (v, u2) = . . . = a (v, un−1) = 0
a (v, v) = 1 and d (v, v) = µn

we set un := v.
Theorem 4.4 The recursive Definition 4.3 leads to a nonincreasing sequence of eigenvalues
µ1 ≥ µ2 ≥ . . . and eigenvectors u1, u2, . . . which terminates if and only if for some n the
supremum in (4.8) is not attained or H has dimension n− 1.

Proof. a) We first prove: If there is an element u1 ∈ H for which µ1a (u1, u1) = d (u1, u1)
then

Tu1 = µ1u1.
Note that the quadratic functional γ (u, v) := µ1a (u, v) − d (u, v) is symmetric, bilinear,

and positive semidefinite
γ (v, v) ≥ 0

and, hence, γ (v, v)1/2 defines a seminorm on H. Schwarz’s inequality implies
|µ1a (v, u1)− d (v, u1)|2 = γ (v, u1)2 ≤ γ (v, v) γ (u1, u1) = 0 ∀v ∈ H

because γ (u1, u1) = µ1a (u1, u1)− d (u1, u1) = 0. We set v = µ1u1 − Tu1 and obtain
a (µ1u1 − Tu1, µ1u1 − Tu1) = a (v, µ1u1 − Tu1) = µ1a (v, u1)− d (v, u1) = 0

so that µ1u1 = Tu1. By multiplying u1 by ‖u1‖−1
H we obtain a (u1, u1) = 1.
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b) Since the eigenspaces are orthogonal (cf. (2.25)) we may define the Hilbert space V1 :=
(span {u1})⊥ := {v ∈ H : a (v, u1) = 0}. We now have

µ2 := sup
v∈V1

d (v, v)
a (v, v) .

This time we define γ2 : V1 × V1 → R by γ2 (u, v) := µ2a (u, v)− d (u, v) and the restriction to
V1 ensures that γ2 is positive semindefinite on V1. If there is some u2 such that γ2 (u2, u2) = 0
then u2 satisfies the equation γ (v, u2) = 0 for all v ∈ V1. Hence,

a (v, Tu2 − µ2u2) = d (v, u2)− µ2a (v, u2) = −γ2 (v, u2) = 0 ∀v ∈ V1. (4.9)
Now

a (Tu2 − µ2u2, u1) = a (Tu2, u1)− µ2a (u2, u1) = a (u2, Tu1)− µ2a (u2, u1)
= (µ1 − µ2) a (u2, u1) = 0

since u2 ∈ V1 (cf. (2.25)). Hence, (4.9) is valid for all v ∈ H and we may choose v = Tu2−µ2u2
to see that Tu2 = µ2u2.

c) For n > 2, the statement of the theorem follows by induction.
If the multiplicity of an eigenvalue, say, µℓ is κℓ > 1, the Ritz value µℓ occurs several times,

i.e., µℓ = µℓ+1 + ... + µℓ+κℓ−1, with different corresponding eigenvectors uℓ, uℓ+1, . . . uℓ+κℓ−1.
Note that any linear combination of these eigenvectors is again an eigenvector for µℓ.

To show that the definition of the Ritz values (Def. 4.3) gives us all the eigenvalues down
to the point where they terminate we prove the following result.
Theorem 4.5 There are no eigenvalue of T above µ1 and if µ is an eigenvalue that satisfies
µ > µn for some n, then µ = µk for some k < n, and the corresponding eigenvector is a linear
combination for those eigenvectors ui which correspond to the eigenvalue µk.

Proof. We first observe that if Tu = µu then d (u, u) = µa (u, u). Hence, by definition of
µ1, µ ≤ µ1. Now if µ > µn for some n, then there is a k ≤ n− 1 such that

µk+1 < µ ≤ µk.
If µ < µk we see from (2.25) that a (u, u1) = ... = a (u, uk) = 0 and, hence, by the definition
of the Ritz values that µ ≤ µk+1, which gives a contradiction. Therefore µ = µk.

If u is not a linear combination for those ui which correspond to µk, we can produce a
linear combination of u and these ui which is orthogonal to u1, . . . , uk and which is again
an eigenvector corresponding to µ. But this would again make µ ≤ µk+1 and thus give a
contradiction.

An important monotonicity principle for the eigenvalue problem (3.6) is stated in the next
theorem.
Theorem 4.6 (Rayleigh-Ritz method) Let µ1 ≥ µ2 ≥ . . . ≥ be the Ritz values for the
Rayleigh quotient d (u, u) /a (u, u) in H. Let ϕSi , 1 ≤ i ≤ k, denote k linear independent
vectors in H. Let the eigenvalues of the matrix eigenvalue problem (3.7) be

µ′1 ≥ µ′2 ≥ . . . ≥ µ′k.
Then

µ′i ≤ µi ∀1 ≤ i ≤ k.
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This theorem is a consequence of the first monotonicity principle and the Poincaré principle
which we will state and prove first.
Theorem 4.7 (Poincaré principle) Let the eigenvalues µ1 ≥ µ2 ≥ . . . be the Ritz values as
in Definition 4.3 with the convention that if µn is not attained, we put µn = µn+1 = µn+2 = · · · .
Then

µn = sup
S=span{ϕS

i :1≤i≤n}⊂H
dimS=n

min
c=(ci)ni=1⊂Rn\{0}

d (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi
)

a (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi ) . (4.10)

Proof. Let S = span{ϕSi : 1 ≤ i ≤ n} ⊂ H with dimS = n. Then, there exists at least one
nontrivial linear combination ϕ = ∑n

i=1 biϕSi which satisfies the n− 1 orthogonality condition
a (ϕ, u1) = . . . a (ϕ, un−1) = 0. Hence, by Definition 4.3

d (∑n
i=1 biϕSi ,∑n

i=1 biϕSi
)

a (∑n
i=1 biϕSi ,∑n

i=1 biϕSi ) ≤ µn. (4.11)

(If the sequence of eigenvalues µ1 ≥ µ2 ≥ · · · terminates at µk for some k < n so that the
values µk+1 = · · · = µn is not attained, we reach the same conclusion by making ϕ orthogonal
to u1, · · · , uk.)

Since the ϕSi are linearly independent, the set of ci, for which a (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi
) = 1

holds, is closed and bounded. Hence, a (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi
) takes on its minimum on this

set. We see from (4.11) that

min
c=(ci)ni=1⊂Rn\{0}

d (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi
)

a (∑n
i=1 ciϕSi ,∑n

i=1 ciϕSi ) ≤ µn

for any set of linear independent elements ϕSi , 1 ≤ i ≤ n. If the eigenvalue µn is attained, the
choice ϕSi = ui, 1 ≤ i ≤ n, makes the left-hand side equal to µn so that (4.10) is verified. If
µn is not attained then it belongs to the essential spectrum. Hence, there exists a sequence
(vi)i∈N with the properties

a (vℓ, vm) = δℓ,m,
d (vℓ, vm) = 0 ∀ℓ �= m,

limℓ→∞ d (vℓ, vℓ) = µn.
We choose the ϕSi from the sequence with the above properties to obtain (4.10).

The following mapping principle serves as the basis for several approximation methods.
Let H1 and H2 denote Hilbert spaces with norm a1 (·, ·)1/2 and a2 (·, ·)1/2, respectively and

let d1 (·, ·) and d2 (·, ·) denote bounded quadratic functionals on H1 and H2, respectively. We
definite µ(1)

1 ≥ µ(1)
2 ≥ . . . to be the eigenvalues of the Rayleigh quotient d1 (u, u) /a1 (u, u) and

µ(2)
1 ≥ µ(2)

2 ≥ ... to be the eigenvalues of d2 (u, u) /a2 (u, u) on H2. We shall prove an inequality
between these eigenvalues under some conditions.
Theorem 4.8 (Mapping Principle) Let M be a linear transformation from a subspace S1
of H1 into H2. For i = 1, 2, let ρi (u) := di (u, u) /ai (u, u). Suppose that for some nondecrea-
sing functions f and g the inequalities

f (ρ1 (u)) ≤ ρ2 (Mu) (4.12)
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and
g (ρ1 (u)) ≤ a2 (Mu,Mu)

a1 (u, u) (4.13)
hold for all nonzero u ∈ S1.

If S1 contains the eigenfunctions u(1)
1 , u(1)

2 , . . . , u(1)n corresponding to µ(1)
1 , µ(1)

2 , . . . , µ(1)n and
if

g (µ(1)n
) > 0,

then
f (µ(1)n

) ≤ µ(2)n .

Proof. Let Tn := span
{
u(1)
1 , u(1)

2 , . . . , u(1)n
}

, which is, by hypotheses, a subspace of S1.
Then

d1 (u, u) ≥ µ(1)n a1 (u, u) ∀u ∈ Tn.
Since g

(
µ(1)n

)
> 0, we obtain by (4.13) that for any nonzero u ∈ Tn, we have a2 (Mu,Mu) > 0

and, hence, Mu �= 0. This implies that the elements Mu(1)
1 , Mu(1)

2 , . . . ,Mu(1)n are linearly
independent.

Therefore, by the Poincaré principle

µ(2)n ≥ minu∈Tn\{0}
d2 (Mu,Mu)
a2 (Mu,Mu) ≥ minu∈Tn\{0}

f
(d1 (u, u)
a1 (u, u)

) ≥ f (µ(1)n
) .

Let V1 be a subspace of V2, set a1 (u, u) = a2 (u, u) = a (u, u) and d1 (u, u) = d2 (u, u) =
d (u, u) and let M be the trivial injection M : V1 →֒ V2. Then, the hypothesis (4.12) and (4.13)
are satisfied when f (ξ) := ξ and g (ξ) ≡ 1, and the mapping theorem becomes the following
theorem.
Theorem 4.9 (First monotonicity principle) Let H2 be a Hilbert space with the norm
a (u, u)1/2 and let d (u, u) be a bounded quadratic functional on H2. Let H1 ⊂ H2 be a subspace.
If µ(2)

1 ≥ µ(2)
2 ≥ . . . are the Ritz values of the Rayleigh quotient d (u, u) /a (u, u) on H2 and

µ(1)
1 ≥ µ(1)

2 ≥ . . . are the Ritz values of the same Rayleigh quotient with u restricted to V1,
then,

µ(1)n ≤ µ(2)n , n = 1, 2, . . . .
Proof of Theorem 4.6. We choose V2 = H and let V1 be the space spanned by ϕSi ,

1 ≤ i ≤ k, and apply Theorem 4.9.
Theorem 4.10 (Knyazev) Let Assumption 4.2 be satisfied. Let m be chosen as in (4.5) and
let Ñ1,j be defined by (4.6). Then, for all 1 ≤ j ≤ m

0 ≤ µj − µSj
µj

≤ Θ2
(
Ñ1,m, S

)
, (4.14)

where Θ
(
Ñ1,m, S

)
is as in (4.7).
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Before we will prove this theorem, we will show its application to the Dirichlet problem.
Let H := H10 (Ω), U := L2 (Ω), and

a (u, v) :=
∫

Ω
〈A∇u,∇v〉+ cuv, d (u, v) := (u, v)L2(Ω) ,

where A, c satisfy the relevant conditions in Assumption 2.55 and Definition 2.57 (for b = 0).
Let S := Sp

T denote the finite element space as introduced in Subsection 3.2 with mesh width
hT . If we assume that Ñ1,m ⊂ Hs (Ω) for some 1 < s ≤ p+1, then, the approximation property
can be split into

Θ
(
Ñ1,m, S

)
≤


 sup

w∈Hs(Ω)
‖w‖Hs(Ω)=1

inf
uS∈S

∥∥w − uS∥∥H

×


 sup

u∈N1,m
‖u‖H=1

‖u‖Hs(Ω)


 .

The first factor is independent from the fact that we are dealing with eigenvalue problems but
related to the approximation property of finite elements for higher order Sobolev spaces. The
estimate of the second factor requires a regularity result for eigenvalue problems. Under the
conditions of Theorem 3.6 we obtain s = 2

sup
u∈Ñ1,m‖u‖H1(Ω)=1

‖u‖H2(Ω) ≤ C√λm.

For the approximation property of the space S1T of continuous, piecewise affine finite elements
we employ Proposition 3.4 to obtain

sup
w∈H2(Ω)

‖w‖H2(Ω)=1
inf
uS∈S

∥∥w − uS∥∥H1(Ω) ≤ ChT .

Hence,
Θ
(
Ñ1,m, S1T

)
≤ C√λmhT

and the eigenvalue error estimate becomes

0 ≤ µj − µSj
µj ≤ Cλmh2T .

Proof of Theorem 4.10.
The estimate µj ≥ µSj directly follows from the Theorem 4.6 on the Rayleigh-Ritz method

and µj > 0 is a consequence of (4.4). In the case that Θ
(
S, Ñ1,m

)
= 1, the right-hand side

estimate in (4.14) directly follows from the positivity of the eigenvalues µj and µSj .
It remains to prove the right-hand inequality in (4.14) for Θ

(
S, Ñ1,m

)
< 1 (Recall that

Θ := Θ
(
S, Ñ1,m

)
= Θ

(
Ñ1,m, S

)
(cf. Remark 4.1)).

Let P : H → Ñ1,m be the orthogonal projection w.r.t. the a (·, ·) scalar product. The
condition

Θ
(
S, Ñ1,m

)
= maxu∈S\{0}

‖u− Pu‖H
‖u‖H < 1
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implies that for u �= 0 the projection satisfies Pu �= 0. Since dim Ñ1,m = dimS we have that
P : S → Ñ1,m is one-to-one. Note that for any µ < 0

γ (u, v) := d (u, v)− µa (u, v)
is a scalar product. For any u ∈ H, there exist coefficients α(j,ℓ), (j, ℓ) ∈ JS, such that
Pu = ∑

(j,ℓ)∈JS αj,ℓuj,ℓ and, hence,

γ (Pu, uj′,ℓ′) = d (Pu, uj′,ℓ′)− µa (Pu, uj′,ℓ′) =
∑

(j,ℓ)∈JS
αj,ℓd (uj,ℓ, uj′,ℓ′)− µa (u, uj′,ℓ′)

= ∑
(j,ℓ)∈JS

αj,ℓµja (uj,ℓ, uj′,ℓ′)− µa (u, uj′,ℓ′) = αj′,ℓ′ (µj − µ) .

On the other hand, there is some u⊥ ∈ Ñ⊥1,m such that u = Pu+ u⊥. Thus,
γ (u, uj′,ℓ′) = αj′,ℓ′ (µj − µ)

and P is orthogonal also with respect to the γ-scalar product.
Let u ∈ S\ {0} so that also Pu ∈ Ñ1,m\ {0}. The Rayleigh quotient for d (·, ·) and a (·, ·)

is denoted by ρ (u) := d (u, u) /a (u, u). Note that from Pythagoras’ theorem we get
a (Pu, Pu) = a (u, u)− a (Pu− u, Pu− u) ≥ a (u, u)− ‖Pu− u‖2H

≥ a (u, u) (1−Θ2)
and, because P is an γ-orthogonal projection, we have

γ (Pu, Pu) ≤ γ (u, u) .
This leads to

ρ (Pu)− µ = γ (Pu, Pu)
a (Pu, Pu) ≤ γ (u, u)

(1−Θ2) a (u, u) =
ρ (u)− µ
1−Θ2 .

Hence, we may apply the mapping principle (Theorem 4.8) with S1 := H1 := Ñ1,m, H2 := S,
ρ1 (u) := ρ2 (u) := ρ (u), f (ξ) := (1−Θ2) ξ, g (ξ) := 1, M = P−1, a1 = a2 = a, d1 = d2 = γ,
µ(1)
ℓ := µℓ, µ(2)

ℓ := µSℓ to obtain (1−Θ2) (µℓ − µ) ≤ (µSℓ − µ) .
Since both sides depend continuously on µ < 0 (for sufficiently small µ) the estimate holds
also for µ = 0 and we obtain

µℓ − µSℓ
µℓ ≤ Θ2.

We finish off this section with some remarks concerning various generalizations of Theorem
4.10.

In [12] the estimate
0 ≤ µj − µSj

µj ≤ Θ2
(
Ñ1,j, S

)
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has been proved for 1 ≤ j ≤ n := dimS, where µj, µSj , 1 ≤ j ≤ n, denote the largest n
eigenvalues of T resp. TS by taking into account their multiplicity. This can be expressed in
terms of the eigenvalues λj := µ−1j , λSj := (µSj )−1 as

0 ≤ λSj − λj
λSj ≤ Θ2j with Θj := Θ2

(
Ñ1,j, S

)
.

For Θj < 1 we derive from this the estimate for the relative error
λSj − λj

λj ≤ Θ2j
1−Θ2j

.

We made the assumptions that the operator T is positive definite just to simplify the
arguments. Typically, a scalar shift T̃ := T + αI and T̃S := TS + αI can be chosen so that
T̃ , T̃S are positive definite. The eigenfunctions do not change and the eigenvalues are simply
shifted by α and the adaption of the error analysis is straightforward.

4.3 Estimates of Eigenvector Approximations for Selfadjoint Ei-
genproblems

We come to the estimates of the eigenvector approximation. We consider the continuous
problem in the form (3.5) Tu = µu, where T is a compact operator and the discrete problem
in the form (4.1) TSuS = µSuS. The eigenspace corresponding to a continuous eigenvalue µ
is denoted by N (µ) ⊂ H and NS

(µS) ⊂ S is the eigenspace corresponding to a discrete
eigenvalue µS.

We will prove the following convergence theorem only for the case that all eigenvalues of
T have multiplicity 1, i.e.,

µ1 > µ2 > . . . > 0. (4.15)
Theorem 4.11 (Saad) Let (4.15) be satisfied. Let (µi, ui), 1 ≤ i ≤ dimS be the i-th eigen-
pair of (3.2) with normalization ‖ui‖H = 1. Let di,S := min{∣∣µi − µS∣∣ : µS ∈ σ (TS) \{µSi }}.Then, there exists some uSi ∈ NS

(µSi ) such that
∥∥ui − uSi

∥∥H ≤
(
1 + ‖(I − PS)TPS‖2H←H

d2i,S

)1/2
infv∈S ‖ui − v‖H , (4.16)

where PS denotes the a (·, ·)-orthogonal projection onto S.
Proof. 1. We first prove the statement: There exists uSi ∈ NS

(µSi ) such that
∥∥PSui − uSi

∥∥H ≤ rS
di,S ‖(I − PS)ui‖H , (4.17)

where rS := ‖(I − PS)TPS‖H←H .
Let µS1 , . . . , µSm denote the distinct eigenvalues of TS and let P Si denote the associated

eigenprojection P Si : H → NS
(µSi ) characterized by

a (P Si u, v
) = a (u, v) ∀v ∈ NS

(µSi ) .
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From Theorem 2.34 and (2.26) for finite dimensional spaces, it follows

P Si P Sj = δi,jP Sj and
m∑
j=1

P Sj = PS. (4.18)

Hence (PST − µiI)PSui = (PST − µiI)∑m
j=1 P Sj ui and

(PST − µiI)PSui =
m∑
j=1

(µSj − µi)P Sj ui.

Multiplying the two sides by I − P Si results in
(I − P Si

) (PST − µiI)PSui =
m∑
j=1

(µSj − µi) (I − P Si
)P Sj ui. (4.19)

In view of (4.18) this last term is equal to
m∑
j �=i

(µSj − µi)P Sj ui.

Taking the norms of the two sides of equation (4.19) gives∥∥(I − P Si
) (PST − µiI)PSui∥∥2

H = ∑
j �=i

(µSj − µi)2 ∥∥P Sj ui
∥∥2
H . (4.20)

For the right-hand side we get the inequality∑
j �=i

(µSj − µi)2 ∥∥P Sj ui
∥∥2
H ≥ d2i,S

∑
j �=i

∥∥P Sj ui
∥∥2
H . (4.21)

But (4.18) shows that ∑
j �=i

∥∥P Sj ui
∥∥2
H = ∥∥(PS − P Si

)ui∥∥2
H .

For the left-hand side of (4.20) we get∥∥(I − P Si
) (PST − µiI)PSui∥∥2

H ≤ ∥∥I − P Si
∥∥2
H ‖PS (T − µiI)PSui‖2H

≤ ‖PS (T − µiI) (ui − (I − PS) ui)‖2H
= ‖PS (T − µiI) (I − PS) (I − PS)ui‖2H
≤ ‖PS (T − µiI) (I − PS)‖2H←H ‖(I − PS)ui‖2H .

Note that ‖PS (T − µiI) (I − PS)‖H←H = ‖PST (I − PS)‖H←H = ‖(I − PS)TPS‖H←H becau-
se all operators are self-adjoint. Thus,∥∥(I − P Si

) (PST − µiI)PSui∥∥2
H ≤ r2n ‖(I − PS)ui‖2H . (4.22)

Now, using (4.20), (4.21), and (4.22) yields the stated inequality (4.17).
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2. Inequality (4.16) is obtained from the decomposition(I − P Si
) ui = (I − PS)ui + (PS − P Si

) ui,
where the two vectors in the right-hand side are orthogonal. Thus∥∥(I − P Si

)ui∥∥2
H = ‖(I − PS)ui‖2H + ∥∥(PS − P Si

)ui∥∥2
H

which, by (4.17), gives (4.16) and completes the proof.
Estimate (4.16) only makes sense if di,S > 0. This condition can be replaced by a stronger

condition which employs the error estimate for the eigenvalue approximation. For j �= i,
Theorem 4.10 (with Θ := Θ

(
Ñ1,m, S

)
) implies the estimate

∣∣µi − µSj
∣∣ ≥ |µi − µj| − ∣∣µj − µSj

∣∣ ≥ |µi − µj| − µjΘ2

≥ |µi − µj| (1−Θ2)− µiΘ2.
Hence,

di,S ≥ (1−Θ2) d (T, µi)− |µi|Θ2,
where

d (T, µi) := min {|µi − µ| : µ ∈ σ (T ) \ {µi}}
denotes the spectral gap of µi for the operator T . By

drel (T, µi) := d (T, µi)
µi

we denote its relative version. In the following, we will rewrite the gap in terms of the eigen-
values λi = µ−1i of (3.2). Note that the set of eigenvalues of (3.2) equals σ (T−1).

For µj > µi we obtain

µj − µi = λ−1j − λ−1i = λ−1i
λi − λj

λj ≥ λ−1i
λi − λj

λi
and, for µj < µi, it holds

µi − µj = λ−1i
λj − λi

λj = λ−1i
λj − λi

λi + (λj − λi) .

Hence,
|µi − µj| ≥ λ−1i

|λi−λj|
λi

1 + |λi−λj |
λi

.

Because the function x
1+x is monotonously increasing we get

d (T, µi) ≥ λ−1i
drel (T−1, λi)

1 + drel (T−1, λi) . (4.23)

To the best of our knowledge, sharp lower estimates for the spectral gap are not available
in the literature. The study of the asymptotic distribution of eigenvalues of elliptic operators
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goes back to H. Weyl [29] and was refined e.g., by [9, Sec. VI, § 4, Satz 17 and 19], [6], [5],
[22, Theorem 13.1]. The main result reads

limt→∞
N (t)
td/2 = Casymptotic

d , (4.24)
where N : R → R is a function which satisfies for all eigenvalues λ of (3.2)

N (λ) = card
{
λ̃ is an eigenvalue of (3.2) and λ̃ ≤ λ

}
.

This implies that for t large enough, we have
N (t) ≤ Cdtd/2. (4.25a)

Cd in (4.25a) is a positive constant which only depends on the space dimension d. Since
the values of N are fixed only for the (discrete) eigenvalues λ we may assume that N ∈ C1 (R)
and that N is strictly monotonously increasing. The gap between an eigenvalue λ and the
next larger one λ+ is

λ+ − λ = N−1 (N (λ) + 1)− λ.
A Taylor argument yields

λ+ − λ = 1
N ′ (N−1 (N (λ) + ξ)) for some ξ ∈ [0, 1] .

To the best of knowledge bounds of N ′ are not available in the literature. If we assume the
hypotheses

N−1 (y) ≤ C̃dy2/d ∀y ∈ [N (λ) , N (λ) + 1]
N ′ (t) ≤ cdtd/2−1 ∀t ∈ [λ,N−1 (N (λ) + 1)] (4.25b)

we obtain
λ+ − λ ≥ 1

cd (N−1 (N (λ) + ξ))d/2−1 .
For d = 1, 2, we conclude from the monotonicity of N−1 and N that

λ+ − λ ≥ λ1−d/2

cd
holds, while for d ≥ 3 and λ large enough so that Cdλd/2 ≥ 1, we get

λ+ − λ ≥ 1
cd (N−1 (N (λ) + 1))d/2−1 ≥ 1

cd
(
C̃dC2/d

d λ
(
1 + 1

Cdλd/2
)2/d)d/2−1

≥ Ĉdλ1−d/2.
By repeating these arguments for the closest smaller eigenvalue λ−, we have derived that the
assumptions (4.25) on λ imply that the relative spectral gap satisfies

drel (T−1, λ) ≥ čdλ−d/2. (4.26)
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From (4.23) we conclude for this situation that

d (T, µi) ≥ λ−1i
čdλ−d/2

i
1 + čdλ−d/2

i
≥ Cd,Tλ−1−d/2

i ,

where Cd,T only depends on the spatial dimension and the minimal eigenvalue λ0 of (3.2).
This leads to the following corollary of Theorem 4.11.

Corollary 4.12 We assume that all eigenvalues of T are simple, i.e., (4.15) holds. Let
(µi, ui), 1 ≤ i ≤ dimS be the i-th eigenpair of (3.2) with normalization ‖ui‖H = 1. Let
the finite element S be chosen such that

Θ2
(
Ñ1,i, S

)
≤ min

{
cd,Tλ−d/2

i , 1/2
}

with cd,T := 1
λ−d/2
0 + 2C−1

d,T
.

Then, there exists some uSi ∈ NS
(µSi ) such that

∥∥ui − uSi
∥∥H ≤

(
1 + 4λ

1+d/2
i ‖(I − PS)TPS‖H←H

Cd,T

)
infv∈S ‖ui − v‖H .

Let the assumptions of Proposition 3.4 and Theorem 3.6 be satisfied and let (4.26) be valid
for λi. In the case of piecewise linear finite elements S = S1T we obtain under the condition
λ1+d/2
i h2T ≪ 1 the eigenfunction error estimate

∥∥ui − uSi
∥∥H ≤

(
1 + Cλ1+d/2

i h
)√λihT .

The restriction to simple eigenvalues for the eigenvector error estimates is quite strong.
The error estimates have been generalized in [20] and [23] to the case of clustered eigenvalues.
Theorem 4.13 Let Assumption 4.2 be satisfied. Let I denote an invariant subspace of T and
σI the spectrum of T restricted to I. Let IS denote an invariant subspace of TS and σIS the
spectrum of TS|IS . Assume that5

δ (I, IS) := dist (σ (TS) \σIS , conv σI) > 0.
Then, for any u ∈ I there exists some uS ∈ IS such that

‖u− uS‖H ≤
(
1 + ‖(I − PS)TPS‖2H←H

δ2 (I, IS)
)
Θ(I, S) .

5 Error Analysis for the Non-Selfadjoint Eigenvalue Pro-
blem

The error analysis for non-selfadjoint eigenvalue problems is based on the representation of the
spectral projections as contour integrals and we follow the approach which was developed in

5conv (·) denotes the convex hull of a set.
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[3]. We only sketch the main steps and will not prove all statements. A complete development
of this theory can be found in [10], [11], [18], [3].

We restrict here to the case where T : H → H is a compact operator on a complex
Hilbert space H with norm ‖·‖H which satisfies the assumption of Theorem 2.54. The relation
between T and a (·, ·) is given by (3.4). We assume that the bilinear form d (·, ·) satisfies (3.1)
and consider the eigenvalue problem (3.2) in the form

Tu = µu
and its discretization by (3.6) in the form

TSuS = µSuS.
Recall the definition of the index nµ of an eigenvalue (cf. Theo. 2.34). We denote by

N∗ (µ) := N ((µ− T )nµ)
the space of generalized eigenfunctions. Next, we will characterize the spectral projection
associated with T and µ by a contour integral. Since all µ ∈ σ (T ) \ {0} ⊂ C are discrete, we
may choose a circle Γ ⊂ C about µ which lies in the resolvent set ρ (T ) and which encloses no
other point of σ (T ). The spectral projection E = E (µ) : H → N∗ (µ) is surjective and given
by

E = 1
2π i

∫
Γ
Rz (T ) dz.

We choose S “rich” enough (cf.(4.7)), (e.g., the mesh width small enough) such that
Θ(H,S) is small enough such that Γ ⊂ ρ (TS) (5.1)

and the discrete spectral projection

ES = ES (µ) = 1
2π i

∫
Γ
Rz (TS) dz

converges to E in norm and dimR (ES (µ)) = dimR (E (µ)) = m. ES is the spectral projection
associated with TS and the eigenvalues of TS which lie in Γ and is a projection onto the direct
sum of the spaces of generalized eigenvectors corresponding to these eigenvalues, i.e.,

R (ES) =
⊕

µS∈σ(TS)
µS inside Γ

N ((µSI − TS)nµS ) .

Thus, counting according to the algebraic multiplicities there are m eigenvalues of TS in Γ;
we denote these by µS1 , µS2 , . . . , µSm.
Theorem 5.1 Let S be such that (5.1) is satisfied. Then, there is a constant C independent
of S such that

Θ(R (E) , R (ES)) ≤ C
∥∥∥(T − TS)|R(E)

∥∥∥H←H
.
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Proof. For f ∈ R (E) we have
‖f − ESf‖H = ‖(E −ES) f‖H =

∥∥∥∥ 1
2π i

∫
Γ
(Rz (T )−Rz (TS)) fdz

∥∥∥∥H
=

∥∥∥∥ 1
2π i

∫
Γ
Rz (TS) (T − TS)Rz (T ) fdz

∥∥∥∥H
and hence,

‖f − ESf‖H ≤ Length (Γ)
2π sup

z∈Γ
‖Rz (TS)‖H←H

∥∥∥(T − TS)|R(E)
∥∥∥H←H

sup
z∈Γ

‖Rz (T )‖H←H .
The stability condition on S ensures that supz∈Γ ‖Rz (TS)‖H←H ≤ C uniformly as S → H.
From this, the assertion follows.
Remark 5.2 The proof of Theorem 5.1 also shows that∥∥∥(E −ES)|R(E)

∥∥∥H←H
≤ C

∥∥∥(T − TS)|R(E)
∥∥∥H←H

.
Although each of the eigenvalues µS1 , µS2 , . . . , µSm is close to µ their arithmetic mean is

generally a closer approximation to µ. We define

µ̂S := 1
m

m∑
j=1

µSj .

Let ϕ1, . . . , ϕm be any basis for R (E) and let ϕ′1, . . . , ϕ′m be the corresponding dual basis
in R (E)′ which is the dual space of R (E). We can extend each ϕ′j to X as follows. Since
X = R (E)⊕N (E), any f ∈ X can be written as f = g + h with g ∈ R (E) and h ∈ N (E).
Define 〈f, ϕ′j

〉 = 〈g, ϕ′j
〉. Clearly ϕ′j is bounded, i.e., ϕ′j ∈ X ′. Now 〈f, (µI − T ′)nµ ϕ′j

〉 =〈(µI − T )α f, ϕ′j
〉 for f ∈ R (E) = N∗ (µ) and it vanishes for f ∈ N (E) since N (E) is

invariant for µI − T . Thus, we have shown that ϕ′1, . . . , ϕ′m ∈ R (E ′).
Theorem 5.3 Let ϕ1, . . . , ϕm be any basis for R (E) and let ϕ′1, . . . , ϕ′m be the dual basis in
R (E ′) as defined above. Then, there is a constant C, uniformly as S → H, such that∣∣∣µ− µ̂S

∣∣∣ ≤ 1
m

m∑
j=1

∣∣〈(T − TS)ϕj, ϕ′j
〉∣∣ + C

∥∥∥(T − TS)|R(E)
∥∥∥H←H

∥∥∥(T ′ − T ′S)|R(E′)
∥∥∥H←H

.

Proof. If condition (5.1) is satisfied, the operator ES|R(E) : R (E) → R (ES) is one-to-one
since ‖E −ES‖H←H → 0 and ESf = 0, f ∈ R (E) implies

‖f‖H = ‖Ef −ESf‖H ≤ ‖E − ES‖H←H ‖f‖H ,
and ES|R(E) is surjective since

dimR (ES) = dimR (E) = m.
Thus, ES|−1

R(E) : R (ES) → R (E) is well-defined. We write E−1S short for
(
ES|R(E)

)−1. For
Θ(H,S) sufficiently small and f ∈ R (E) with ‖f‖H = 1 we have

1− ‖ESf‖H = ‖Ef‖H − ‖ESf‖H ≤ ‖E − ES‖H←H ≤ 1/2
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and, hence, ‖ESf‖H ≥ 1/2 ‖f‖H . This implies that ∥∥E−1S
∥∥H←H is bounded uniformly as

S → H. We note that ESE−1S is the identity on R (ES) and E−1S ES is the identity on R (E).
Now, we define

T̂S := E−1S TS ES|R(E) : R (E) → R (E) .
Using the fact that R (ES) is invariant for TS we see that σ

(
T̂S

)
= {µS1 , . . . , µSm} and that

the algebraic (geometric, resp.) multiplicity of any µSj as an eigenvalue of T̂S is equal to its
algebraic (geometric, resp.) multiplicity as an eigenvalue of TS. Letting T̂ = T |R(E) we see
that σ

(
T̂
)
= {µ}. Thus trace

(
T̂
)
= mµ and trace

(
T̂S

)
= mµ̂S and, since T̂ and T̂S act on

the same space we can write
µ− µ̂S = 1

m trace
(
T̂ − T̂S

)
. (5.2)

Let ϕ1, . . . , ϕm be a basis for R (E) and let ϕ′1, . . . , ϕ′m be the dual basis to ϕ1, . . . , ϕm. Then,
from (5.2) we get

µ− µ̂S = 1
m trace

(
T̂ − T̂S

)
= 1

m
m∑
j=1

〈(
T̂ − T̂S

)
ϕj, ϕ′j

〉
. (5.3)

Using the facts that TSES = ESTS and E−1S ES is the identity on R (E), we have〈(
T̂ − T̂S

)
ϕj, ϕ′j

〉
= 〈Tϕj −E−1S TSESϕj, ϕ′j

〉
= 〈E−1S ES (T − TS)ϕj, ϕ′j

〉
= 〈(T − TS)ϕj, ϕ′j

〉+ 〈(E−1S ES − I) (T − TS)ϕj, ϕ′j
〉 . (5.4)

Note that LS := E−1S ES is the projection on R (E) along N (ES). Hence, L′S is the projection
on N (ES)⊥ = R (E ′S) along R (E)⊥ = N (E ′). Thus〈(E−1S ES − I) (T − TS)ϕj, ϕ′j

〉 = 〈(LS − I) (T − TS)ϕj, (E ′ − E ′S)ϕ′j
〉 . (5.5)

From (5.5), the boundedness of LS and Remark 5.2 (applied to T ′ and T ′S) we get∣∣〈(E−1S ES − I) (T − TS)ϕj, ϕ′j
〉∣∣

≤ ‖LS − I‖H←H
∥∥∥(T − TS)|R(E)

∥∥∥H←H

∥∥∥(E ′ −E ′S)|R(E)
∥∥∥H←H ‖ϕj‖H

∥∥ϕ′j
∥∥H

≤ C
∥∥∥(T − TS)|R(E)

∥∥∥H←H

∥∥∥(T ′ − T ′S)|R(E′)
∥∥∥H←H

. (5.6)
Finally (5.3), (5.4), and (5.6) yield the desired result.

The following theorem which is proved in [3, Theorem 7.3] shows that error estimate for
the eigenvalues itself (instead of the average µ̂S) converge at a reduced rate if the index is
larger than one.
Theorem 5.4 Let nµ be the index of µ − T . Let ϕ1, . . . , ϕm be any basis for R (E) and let
ϕ′1, . . . ϕ′m be the dual basis. Then there is a constant C such that
∣∣µ− µSj

∣∣ ≤ C
{ m∑
i,k=1

〈(T − TS)ϕi, ϕ′k〉+
∥∥∥(T − TS)|R(E)

∥∥∥H←H

∥∥∥(T ′ − T ′S)|R(E′)
∥∥∥H←H

} 1
nµ

,

for all j = 1, 2, . . . , m.
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