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Abstract. Given a symplectic manifold M , we may define an operad struc-
ture on the the spaces Ok of the Lagrangian submanifolds of (M )k × M via
symplectic reduction. If M is also a symplectic groupoid, then its multiplica-
tion space is an associative product in this operad. Following this idea, we pro-
vide a deformation theory for symplectic groupoids analog to the deformation
theory of algebras. It turns out that the semi-classical part of Kontsevich’s
deformation of C∞(Rd) is a deformation of the trivial symplectic groupoid
structure of T ∗

R
d.
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1. Introduction

Symplectic groupoids, in the extended symplectic category, may be thought as
the analog of associative algebras in the category of vector spaces. For the latter,
a deformation theory exists and is well known. In this article, we will present a
conceptual framework as well as an explicit deformation of the trivial symplectic
groupoid over Rd. In fact, rephrased appropriately, most constructions of the defor-
mation theory of algebras can be extended to symplectic groupoids, at least for the
trivial one over Rd. Our guide line will be the Kontsevich deformation of the usual
algebra of functions over Rd,

(
C∞(Rd), ·

)
. Namely, the usual point-wise product of

functions S2
0(f, g) = fg generates a suboperad, the product suboperad, On

S =
{
Sn

0

}
,

1
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of the endomorphism operad O of C∞(Rd), where Sn
0 is the n-multilinear map de-

fined by Sn
0 (f1, . . . , fn) = f1f2 . . . fn. For each n one may choose the vector subspace

On
def ⊂ On of n-multidifferential operators. The operad structure of O induces an

operad structure on OS + Odef , which in turns generates an operad structure on
Odef which is, however, non-linear. Then, γ is a deformation of the usual product
S2

0 , i.e., an element γ ∈ O2
def such that S2

0 +γ is still an associative product, iff γ is a
product in the induced deformation operad Odef . We may also consider the formal
version by replacing Odef by the formal power series in ǫ, ǫOdef [[ǫ]]. M. Kontsevich
in [12] gives an explicit formal deformation of the product of functions over Rd,

Sǫ = S2
0 +

∞∑

n=1

ǫn
∑

Γ∈Gn,2

WΓBΓ,

where the WΓ’s are the Kontsevich weights and the BΓ’s the Kontsevich bidifferen-
tial operators associated to the Kontsevich graphs of type (n, 2) (see [3] for a brief
introduction ).

If we consider the trivial symplectic groupoid T∗Rd over Rd, we see that the
multiplication space

∆n
2 :=

{

(p1, x), (p2, x), (p1 + p2, x) : p1, p2 ∈ R
d∗, x ∈ R

d
}

generates an operad On
∆ =

{
∆n

}
, where

∆n :=
{

(p1, x), . . . , (pn, x), (p1 + · · · + pn, x) : pi ∈ R
d∗, x ∈ R

d
}

.

∆2 is a product in this operad. The compositions are given by symplectic reduction

as the ∆n’s are Lagrangian submanifolds of (T∗Rd)n ×T∗Rd. The main difference
with the vector space case is that there is no “true” endomorphism operad where O∆

would naturally embed into. Thus, the question of finding a deformation operad
for O∆ must be taken with more care. The first remark is that the ∆n may be
expressed in terms of generating functions

Sn
0 (p1, . . . , pn, x) = (p1 + · · · + pn)x.

Namely, ∆n = graphdSn
0 . The idea is to look at the operad structure induced on

the generating functions by symplectic reduction. In fact it is possible to find a
vector space of special functions On

def for each n such that O∆ + Odef remains an
operad. The formal version of it gives a surprising result. Namely, we may find an
explicit deformation of the trivial generating function S2

0 , it is given by the formula

Sǫ = S2
0 +

∞∑

n=1

ǫn
∑

Γ∈Tn,2

WΓB̂Γ,

where the WΓ are the Kontsevich weights and the B̂Γ are the symbols of the Kont-
sevich bidifferential operators and the sum is taken over all Kontsevich trees Tn,2.
This formula may be seen as the semi-classical part of Kontsevich deformation
quantization formula.

As a last comment, note that Kontsevich derives its star product formula from
a more general result. In fact, he shows that U =

∑

n ǫ
nUn where

Un(ξ1, . . . , ξn) =
∑

Γ∈Gn

WΓBΓ(ξ1, . . . , ξn)
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for ξi ∈ Γ(∧di

TM), i = 1, . . . , d is an L∞-morphism from the multivector fields to
the multidifferential operators on Rd. In our perspective, we may still write

Ũn(ξ1, . . . , ξn) =
∑

Γ∈Tn

WΓB̂Γ(ξ1, . . . , ξn)

summing over Kontsevich trees instead of Kontsevich graphs and replacing multi-
differential operators by their symbols. Exactly, as in Kontsevich case,

Sǫ = S2
0 +

∑

n≥1

ǫnŨn(α, . . . , α)

is an associative deformation of the generating function of the trivial symplectic
groupoid T ∗Rd. However, it is still not completely clear how to define “semi-classical
L∞-morphisms”.

Organization of the article. In Section 2, we describe the endomorphism operad
O(M) = Hom(M⊗n

,M) associated to any object M in a monoidal category. We
explain what is an associative product S on M in an monoidal category and we
define the product suboperad OS(M) of O(M). If the category is further associa-
tive, we may choose a deformation operad for S, which is a choice, for each n ∈ N

of a vector subspace On
def such that OS + Odef is still an operad. We describe the

deformations of S in terms of products in Odef . As an example of this construc-
tion, we expose Kontsevich product deformation in this language. At last, we show
that the extended symplectic category, although not being a true category, exhibits
monoidal properties allowing us to carry the precedent construction up to a certain
point. Then, we focus on the trivial symplectic groupoid over R

d case and define
the product operad associated to its multiplications space. We give a deformation
operad on a local form, the local deformation operad. In particular, we show that
any local deformation of the trivial product gives rise to a local symplectic groupoid
over Rd. We conclude this Section by defining equivalence between deformations
of the trivial generating function and we show that two equivalent deformations
induce the same local symplectic groupoid.

In Section 3, we describe the combinatorial tools needed to give a formal version
of the local Lagrangian operad. As the problem consists mainly in taking Taylor’s
series of some implicit equations we need devices to keep track of all terms to all
orders. The crucial point is that these implicit equations, describing the compo-
sition in the local Lagrangian operad, have a form extremely close to a special
Runge-Kutta method: the partitioned implicit Euler method. We borrow then
some techniques form numerical analysis of ODEs to make the expansion at all
orders.

In the last Section, we describe the formal Lagrangian operad, which is the
perturbative version of the local one, in terms of composition of bipartite trees. We
give in particular the product equation in the formal deformation operad in terms
of these trees. At last, we restate the main Theorem of [3] in this language. This
tells us that the semi-classical part of Kontsevich star product on Rd is a product in
the formal deformation operad of the cotangent Lagrangian operad in d dimensions.

Article genesis and subsequent works. This article was inspired in large part by the
unpublished note [2], in which the notion of lagrangian operads first appeared, and
from the PhD thesis [6]. It was originally conceived as a development of [3], pro-
viding a framework (the theory of operads), in which the results and computations
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of the latter article could be understood in a cleaner and more conceptual manner:
each Taylor series expansion arising in [3] can be seen as a certain composition in
the formal lagrangian operad over T ∗Rn.

The combinatorics of bicolored Runge-Kutta trees was borrowed from the nu-
merical analysis of ODE (see [9]). We used it first in [3] to expand the structure
equation (also called the "SGA equation") for symplectic groupoid generating func-
tions in formal power series. Actually, this combinatorics happens to control the
compositions in the formal lagrangian operad over T ∗Rd. It is very reminiscent
of the one used, in the context of bicolored operads, to define versions of operad
morphisms "up to homotopy" (see [13] and also [14]). However, in the case of the
formal lagrangian operad over T ∗Rd, we are not dealing with weak structures or
weak maps of any kind, at least in a direct way. The actual nature of the relation-
ship between these two formally similar but contextually different combinatorics, if
any, is unknown to the to the authors’ best knowledge.

As far as geometric quantization of Poisson manifolds using symplectic groupoid
techniques is concerned, recent works seem to indicate that the language of sym-
metric monoidal categories is better suited than the one of operads: namely, the
microsymplectic category developed in [4] is a better fit than the notion of la-
grangian operads for understanding functorial aspects of geometric quantization.
At any rate, the endomorphism operad of T ∗Rd in the microsymplectic category
contains, as a suboperad, the local lagrangian operad constructed in the present
paper (see [4]).

However, there is no formal version of the microsymplectic category to date,
and the combinatorics presented here to deal with the compositions in the formal
lagrangian operad over T ∗Rd have no equivalent in terms of a "formal microsym-
plectic category"; this is, at the time of writing, still a work in progress.

2. Product in the extended symplectic category

2.1. Basic constructions and Kontsevich deformation. In this Section, we
describe, in any monoidal category, a natural generalization of an associative algebra
structure over a vector space. It is the notion of product in the endomorphism
operad O(M) of an object M in the category. If the category is further additive,
we explain what is a deformation of a product S ∈ O2(M) and construct a non-
linear operad, the deformation operad Odef(M,S) associated to S in which any
product is equivalent to a deformation of S. We present the well-known Kontsevich
deformation of the usual product of functions over Rd in this language. At last, we
see that most parts of this construction, can be applied to the extended symplectic
category, leading to the notion of Lagrangian operad.

Definition 1. An operad O consists of

(1) a collection of sets On, n ≥ 0
(2) composition laws

On ×Ok1 × · · · × Okn −→ Ok1+···+kn

(F,G1, . . . , Gn) 7→ F (G1, . . . , Gn)

satisfying the following associativity relations,

F (G1, . . . , Gn)(H11, . . . , H1k1
, . . . , Hn1, . . . , Hnkn

) =

F (G1(H11, . . . , H1k1
), . . . , Gn(Hn1, . . . , Hnkn

))



FORMAL LAGRANGIAN OPERAD 5

(3) a unit element I ∈ O1 such that F (I, . . . , I) = F for all F ∈ On

It is usually also required some equivariant action of the symmetric group. We do
not require this here.

The structure we have just defined should then be called more correctly “non
symmetric operad”. However, we will simply keep using the term “operad” instead
of “non symmetric operad” in the sequels.

Product in a monoidal category. We consider here a monoidal category C. We
denote by ⊗ : C × C −→ C the product bifunctor and by e ∈ C the neutral object.
Let us recall that we have the following canonical isomorphisms

(A⊗B) ⊗ C ≃ A⊗ (B ⊗ C) and e⊗A ≃ A⊗ e ≃ A

for all A,B,C ∈ ObjC.
Let C be a monoidal category and an object M ∈ ObjC. We define the endo-

morphism operad of M in the following way:

(1) On(M) := Hom(M⊗n,M), O0(M) := Hom(e,M)
(2) F (G1, . . . , Gn) := F ◦ (G1 ⊗ · · · ⊗Gn)
(3) the unit is given by idM ∈ O1(M).

The operad axioms follow directly from the bifunctoriality of ⊗, i.e,

(f ⊗ g) ◦ (ψ ⊗ φ) = (f ◦ ψ) ⊗ (g ◦ φ)

idM ⊗ · · · ⊗ idM = idM⊗···⊗M .

If M is an object of a monoidal category C, we may define a product on M .

Definition 2. An associative product 1on an operad O is an element S ∈ O2 such
that S(I, S) = S(S, I). An associative product on M is an associative product in
the endomorphism operad O(M). In the sequel, we will constantly use the term
product to mean in fact associative product.

Given a product S ∈ O2, the associativity of the operad implies that, for any
F ∈ Ok, G ∈ Ol and H ∈ Om we have,

S(F, S(G,H)) = S(I, S)(F,G,H)

= S(S, I)(F,G,H)

= S(S(F,G), H).

This notion is the natural generalization of an associative product on a vector
space. Namely, ifM is a vector space, O2(M) is the set of bilinear maps onM . As in
this case O0(M) = Hom(C,M) = M , we have that S : O0(M)×O0(M) −→ O0(M)
is an associative product on M .

Product deformation in a monoidal additive category. Suppose we have a product
S ∈ O2(M), where M is an object of a monoidal category C. If the category C is
further additive, we may try to deform S, i.e., to find an element γ ∈ O2(M) such
that S + γ is still a product.

At this point, the standard way is to introduce the Hochschild complex of the
linear operad O(M), to define the bilinear Gerstenhaber bracket and the Hochschild
differential associated with the product S. A deformation of S would then be a

1In [8], Gerstenhaber and Voronov call it a multiplication.
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solution of the Maurer-Cartan equation written in the Hochschild differential graded
Lie algebra controlling the deformations of S.

We will however rephrase slightly this deformation theory in a way that will
allow us to deal with categories whose hom-sets are still linear spaces but with a
morphism composition that does not respect this linear structure, as it will be the
case in the next sections.

The first step is to notice that a product S ∈ O2(M) generates a suboperad
OS(M), which we call a product operad, in O(M) with only one point in each
degrees:

O0
S(M) := ∅, O1

S(M) :=
{

I
}

, O2
S(M) :=

{

S
}

,

O3
S(M) :=

{

S(S, I)
}

, O4
S(M) :=

{

S(S(S, I), I)
}

, . . . etc

To simplify the notation we will denote by Sn
0 the unique element in On

S(M).

Remark 1. The product operad OS(M) is a suboperad of O(M) but not a linear
suboperad; namely, for each n ∈ N, On

S(M) is not a linear subspace of On(M) (it
contains only a single point).

Definition 3. Let M be an object of an additive monoidal category C and let
S ∈ O2(M) be a product. A deformation operad, Odef(M,S), for S is the data,
for each n ∈ N, of a linear subspace On

def(M,S) ⊂ On(M) such that the difference

(1) R(γ; γ1, . . . , γn) := (Sn
0 + γ)(Sk1

0 + γ1, . . . , Skn

0 + γn) − Sk1+···+kn

0

is in Ok1+···+kn

def (M,S) for all γ ∈ On
def(M,S), γi ∈ Oki

def(M,S), and i = 1, . . . , n.

Remark 2. OS + Odef is a suboperad of O(M) but not a linear one: the spaces
On

S + On
def(M,S) are not linear subspaces but affine ones.

Proposition 1. Let Odef(M,S) be a deformation operad for a product S ∈ O2(M).
Then the compositions

γ(γ1, . . . , γn) := R(γ; γ1, . . . , γn),

defined by equation (1) gives Odef(M,S) together with the unit 0 ∈ O1
def(M,S) the

structure of an operad.

Proof. The proof is direct using only equation (1) and the operad structure of the
endomorphism operad O(M). �

Remark 3. Although each of its degrees is a linear subspace, Odef(M,S) is not a
linear operad since its compositions, the Rs, are not multilinear.

Definition 4. We say that an element γ ∈ O2
def(M,S) is a deformation of the

product S w.r.t. the deformation operad Odef if S+γ is still a product in OS+Odef .

Remark 4. All what we have said still applies if we start with any linear operad
instead of the endomorphism operad of an object in an additive monoidal category.
This allows us to define a notion of product deformations in a specific class of
deformations (which is given by the data of the deformation operad) in general
linear operads.

Proposition 2. Let S ∈ O2(M) be a product. Take an element γ ∈ O2
def(M,S).

Then, γ is a deformation of the product S iff γ is a product in Odef(M,S). In
particular, 0 ∈ O2

def(M,S) is always a product in the deformation operad of S.
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Proof. γ is a deformation of S iff

(S + γ)(S + γ, I) = (S + γ)(I, S + γ),

which is equivalent to

S3
0 +R(γ; γ, 0) = S3

0 +R(γ; 0, γ).

�

From now on, we will write 01 for the identity element of the deformation operad
which is the zero of O1

def and 02 for the trivial product of the deformation operad
which is the 0 element in O2

def(M,S).
Notice that neither OS(M) nor OS(M) + Odef(M,S) is a linear operad in the

sense that, although the compositions are multilinear, the spaces for each degrees
are not vector spaces but affine spaces. On the other hand the spaces for each
degrees of the deformation operad Odef(M,S) are vector spaces but the induced
operad compositions are not linear in general.

We may however introduce the Gerstenhaber bracket of the deformation operad

[, ] : Ok
def(M,S) ×Ol

def(M,S) −→ Ok+l−1
def (M,S)

defined by

[F,G] = F ◦G− (−1)(k−1)(l−1)G ◦ F(2)

where

F ◦G =
k∑

i=1

(−1)(i−l)(l−1)R(F ; 01, . . . , 01, G︸︷︷︸
ith

, 01, . . . , 01).

This bracket is not bilinear. An important fact concerning this bracket is that,

1

2
[γ, γ] = R(γ; γ, 01) −R(γ; 01, γ),

which means that γ is a product in the deformation operad iff

1

2
[γ, γ] = 0.(3)

Moreover, we may define an equivalent of the Hochschild differential

d : On
def(M,S) −→ On+1

def (M,S),

(4) dF := [02, F ] = R(02;F, 01) + (−1)n−1R(02; 01, F )−

− (−1)n−1
n∑

i=1

(−1)i−1R(F ; 01, . . . , 01, 02
︸︷︷︸

ith

, 01, . . . , 01).

It turn out that d is still a coboundary operator.

Proposition 3. d defined by equation (4) is a coboundary operator, i.e., d2 = 0.
Moreover, γ ∈ O2

def(M,S) satisfies product equation 1
2 [γ, γ] = 0, in Odef(M,S) iff

dγ + γ(γ, S1
0 , ) − γ(S1

0 , γ) = 0.(5)
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Proof. Using equation (1) we obtain d in terms of the endomorphism compositions

dF = S2
0(F, S1

0 ) + (−1)n−1S2
0(S1

0 , F )−

− (−1)n−1
n∑

i=1

(−1)i−1F (S1
0 , . . . , S

2
0

︸︷︷︸

ith

, . . . , S1
0).

The result follows directly from the linearity of the compositions in the endomor-
phism operad. Using again equation (1) we get,

1

2
[γ, γ] = R(γ; γ, 01) −R(γ; 01, γ) = S2

0(γ, S1
0)+

+ γ(S2
0 , S

1
0) + γ(γ, S1

0) − S2
0(S1

0 , γ) − γ(S1
0 , S

2
0) − γ(S1

0 , γ),

which gives equation (5). �

A formal deformation Sǫ of S is a formal power series

Sǫ = ǫS1 + ǫ2S2 + · · · ∈ On
form(M,S) := ǫOn

def(M,S) ⊗ k[[ǫ]], n ∈ N∗,

where ǫ is a formal parameter and Odef(M,S) is a deformation operad for S, such
that S + Sǫ is a product in OS(M) + Oform(M,S).

Equivalently, one may say that Sǫ must satisfy

[Sǫ, Sǫ] = 0,

or, thanks to equation (5) that the Si’s satisfy at each order n ∈ N∗ the following
recursive equation:

dSn +Hn(Sn−1, . . . , S1) = 0,(6)

where

Hn(Sn−1, . . . , S1) =
∑

n=i+j

Si(Sj , S
1
0) − Si(S

1
0 , Si).

The Kontsevich product deformation. Consider the category of real vector spaces.
In this category we take the real vector space M = C∞(Rd) of smooth functions
on Rd. The endomorphism operad of C∞(Rd) is

On(M) =
{

n-multilinear maps from C∞(Rd)⊗n to C∞(Rd)
}

.

The usual product of functions induces a product in O(M), namely

S2
0(F,G)(f1, . . . , fk, g1, . . . , gl) = F (f1, . . . , fk)G(g1, . . . , gl),

for F ∈ Ok(M) and G ∈ Ol(M).
The induced product operad is

On
S(M) =

{

Sn
0

}

,

where

Sn
0 (f1, . . . , fn) = f1f2 . . . fn.

As deformation operad, we take

On
def(M,S) :=

{

n-multidifferential operators on C∞(Rd)
}

.
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The induced coboundary operator on Odef(M,S) is the Hochschild coboundary
operator,

dF (f1, . . . , fn) = F (f1, . . . , fn)fn+1 + (−1)n−1f1F (f2, . . . , fn+1)−

− (−1)n−1
n∑

i=1

(−1)(i−1)F (f1, . . . , fi−1, fifi+1, fi+2, . . . , fn+1).

and the product equation

dγ + γ(γ, S1
0 , ) − γ(S1

0 , γ) = 0,

is nothing but the usual Maurer-Cartan equation.
Kontsevich in [12] shows that there exits a formal deformation

S ∈ O2
S(M) + ǫO2

def (M)[[ǫ]]

of S2
0 . He provides the explicit formula for this deformation

S = S2
0 +

∞∑

n=1

ǫn
∑

Γ∈Gn,2

WΓBΓ,

where the Gn,2 are the Kontsevich graphs of type (n, 2), WΓ their associated weight
and BΓ their associated bidifferential operator ( and [12] for more precisions).

2.2. Monoidal structure of SYM. Let us recall that the extended symplectic
“category” SYM is given by

Obj =
{

symplectic manifolds
}

Hom(M,N) =
{

L ⊂M ×N : L is Lagrangian
}

,

where M denotes the symplectic manifold M with opposite symplectic structure
−ω. The identity morphism of Hom(M,M) is the diagonal

idM := ∆M =
{

(m,m) ⊂M ×M
}

.

The composition of two morphisms L ∈ Hom(M,N) and L̃ ∈ Hom(N,P ) is given
by the composition of canonical relations,

L̃ ◦ L := πM×P

(

(L× L̃) ∩ (M × ∆N × P )
)

⊂M × P.

Everything works fine except the fact that the composition L̃ ◦ L may fail to be
a Lagrangian submanifold of M × P . It is always the case when L × L̃ intersects
M × ∆N × P cleanly (see [7] for more precisions).

Let us pretend for a while that SYM is a true category or, better, that we have
selected special symplectic manifolds and special arrows between them such that
the composition is always well-defined.

We define the tensor product between two objects M and N of SYM as the
Cartesian product

M ⊗N := M ×N,

and the tensor product between morphisms as

L1 ⊗ L2 :=
{

(m, a, n, b) : (m,n) ∈ L1

and (a, b) ∈ L2

}

∈ Hom(M ⊗A,N ⊗B),
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for L1 ∈ Hom(M,N) and L2 ∈ Hom(A,B).
The neutral object is {∗}, the one-point symplectic manifold. The following

proposition tells us that SYM would be a monoidal category if it were a true
category.

Proposition 4. The following statements hold:

(1) Consider L1 ∈ Hom(M,A), L2 ∈ Hom(N,B), L3 ∈ Hom(A,X) and L4 ∈
Hom(B, Y ). Then we have the following equality of sets

(L3 ⊗ L4) ◦ (L1 ⊗ L2) = (L3 ◦ L1) ⊗ (L4 ◦ L2).

(2) idM ⊗ idN = idM⊗N for any object M and N .
(3) (M ⊗A) ⊗X = M ⊗ (A⊗X) for any objects M , A and X
(4) (L1 ⊗ L2) ⊗ L3 = L1 ⊗ (L2 ⊗ L3) for any arrows L1 ∈ Hom(M,A), L2 ∈

Hom(N,B) and L3 ∈ Hom(P,C).
(5) {∗}⊗A ≃ A ≃ A⊗{∗} for all object A and id{∗} ⊗L ≃ L ≃ L⊗ id{∗} for all

arrows L, where A ≃ B means that the two sets A and B are in bijection.

Proof. (1)

I = (L3 ⊗ L4) ◦ (L1 ⊗ L2)

= π
((

(L1 ⊗ L2) × (L3 ⊗ L4)
)
∩ (N ×M × ∆A×B ×X × Y )

)

=
{

(m,n, x̃, ỹ) : ∃(a, b) ∈ A×B s.t. (m,n, a, b) ∈ L1 ⊗ L2 and

(a, b, x, y) ∈ L3 ⊗ L4

}

=
{

(m,n, x̃, ỹ) : ∃a ∈ A, (m, a) ∈ L1 and (a, x) ∈ L3

∃b ∈ B, (n, b) ∈ L2 and (b, y) ∈ L4

}

= (L3 ◦ L1) ⊗ (L4 ◦ L2)

(2) ∆M ⊗ ∆N =
{

(m,n,m, n) : m ∈M and n ∈ N
}

= ∆M⊗N .

(3) The associativity between objects is trivial.
(4) For morphisms, we have,

L1 ⊗ L2 =
{

(m,n, a, b) : (m, a) ∈ L1 and (n, b) ∈ L2

}

(L1 ⊗ L2) ⊗ L3 =
{

(m,n, p, a, b, c) : (m, a) ∈ L1, (n, b) ∈ L2,

(p, c) ∈ L3

}

and,

L2 ⊗ L3 =
{

(n, p, b, c) : (n, b) ∈ L2 and (p, c) ∈ L3

}

L1 ⊗ (L2 ⊗ L3) =
{

(m,n, p, a, b, c) : (m, a) ∈ L1, (n, b) ∈ L2,

(p, c) ∈ L3

}

.

(5) is trivial. �
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2.3. Lagrangian operads. If SYM were a true category, we could consider the
endomorphism operad of a symplectic manifold M . However, we may be able to
restrict to a subset of Lagrangian submanifolds On

rest(M) ⊂ On(M) for each n ≥ 0
such that the composition

Ln(Lk1
, . . . , Lkn

) := Ln ◦ (Lk1
⊗ · · · ⊗ Lkn

),

yields always a Lagrangian submanifold in Ok1+···+kn

rest (M) for every Ln ∈ On
rest(M)

and Lki
∈ Oki

rest(M), i = 1, . . . , n. For instance, there is alway the trivial choice

O1
rest(M) =

{

∆M

}

, On
rest(M) = ∅, n 6= 1.

In this way, we may get a true operad Orest(M).
The next natural question to ask is the following.

Question: What is a product in a Lagrangian operad over M?

As a first hint, take the situation where the symplectic manifold is a symplectic
groupoid G. In this case, we may generate an operad from the multiplication space
Gm ∈ O2(G) and the base G(0) ∈ O0(G), the identity being the diagonal ∆G ∈
O1(G). Remark that Gm is a product in this operad, i.e., that Gm(Gm,∆G) =
Gm(∆G, G

m). Notice that the inverse of the symplectic groupoid does not play any
role in this construction.

We will answer this question completely for the case were the symplectic manifold
is T ∗Rd and will try to develop a deformation theory for the product in this case.

Local cotangent Lagrangian operads. Remember that T∗Rd has always a structure
of a symplectic groupoid over Rd: the trivial one. The multiplication space is given
in this case by

∆2 =
{

(p1, x), (p2, x), (p1 + p2, x) : p1, p2 ∈ R
d∗, x ∈ R

d
}

.

The base is

∆0 =
{

(0, x) : x ∈ R
d
}

.

If we set further

∆n :=
{

(p1, x), . . . , (pn, x), (p1 + · · · + pn, x) : pi ∈ R
d∗, x ∈ R

d
}

,

it it immediate to see that the operad generated by ∆0 and ∆2 is exactly

On
∆(T ∗

R
d) =

{

∆n

}

,

and that ∆2 is a product in it.
Following [2], we will call this operad the cotangent Lagrangian operad over

T ∗Rd. It is the exact analog of the product operad in a monoidal category, the only
difference is that there is no true endomorphism operad to embed O∆(T∗Rd) into.
The idea now is to enlarge the cotangent Lagrangian operad, i.e., by considering
Lagrangian submanifolds close enough to ∆n for each n ∈ N in order to have still
an operad.

Notice at this point that the ∆n’s are given by generating functions. Namely,

we may identify (T ∗Rd)n × T ∗
R

d with T ∗Bn, where Bn := (Rd∗)n × R
d. Then,

∆n =

{((

p1,
∂Sn

0

∂p1
(z)

)

, . . . ,

(

pn,
∂Sn

0

∂pn

(z)

)

,

(
∂Sn

0

∂x
(z), x

))

: z = (p1, . . . , pn, x) ∈ Bn

}
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where Sn
0 is the function on Bn defined by 2

Sn
0 (p1, . . . , pn, x) =

d∑

i=1

(pi
1 + · · · + pi

n)xi.

The cotangent Lagrangian operad may then be identified with

On
∆ =

{

Sn
0

}

, O0
∆ =

{

0
}

.

In order to define a deformation operad for S, a natural idea would be to consider
Lagrangian submanifolds whose generating functions are of the form

F = Sn
0 + F̃ ,

where F̃ ∈ C∞(Bn). The Lagrangian submanifold associated to F is

LF := graphdF.

As such, the idea does not work in general. In fact, we have to consider generating
functions only defined in some neighborhood. Let us be more precise.

We introduce the following notation,

B0
n = {0} × R

d ⊂ Bn,

V (B0
n) will stand for the set of all neighborhoods of B0

n in Bn.

Definition 5. We define On
loc(T

∗Rd) to be the space of germs at B0
n of smooth func-

tions F̃ (defined on an open neighborhood UF̃ ⊂ Bn of B0
n) which satisfy F̃ (0, x) = 0

and ∇pF̃ (0, x) = 0. Note that the composition will always be understood in terms
of composition of germs.

Proposition 5. Let be F ∈ On
∆ + On

loc and Gi ∈ Oki

∆ + Oki

loc for i = 1, . . . , n.
Consider the function φ defined by the formula

φ(pG, xF ) = G1 ∪ · · · ∪Gn(pG, xG) + F (pF , xF ) − xGpF(7)

pF = ∇xG1 ∪ · · · ∪Gn(pG, xG),

xG = ∇pF (pF , xF ),

where
G1 ∪ · · · ∪Gn(pG, xG) := G1(pG1

, xG1
) + · · · +Gn(pGn

, xGn
)

and pG = (pG1
, . . . , pGn

), pGi
∈ (Rd∗)ki , xGi

∈ Rd and (pGi
, xGi

) ∈ UGi
, for

i = 1, . . . , n.
Then,

φ ∈ Ok1+···+kn

∆ + Ok1+···+kn

loc , and Lφ = LF (LG1
, . . . , LGn

).

In other words, O∆ + Oloc together with the product

φ = F (G1, . . . , Gn)

is an operad.
Moreover, the induced operad structure on Oloc is given by

R(F̃ ; G̃1, . . . , G̃n) = H,

where H is the function H ∈ Ok1+···+kn

loc defined by

H(pG, xF ) = G̃(pG, xG) + F̃ (pF , xF ) −∇pF̃ (pF , xF )∇xG̃(pG, xG),

2In the sequels, we will use the shorter notation (p1+· · ·+pn)x instead of
P

d

i=1
(pi

1
+· · ·+pi

n)xi.
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pF = p0
F + ∇xG̃(pG, xG), p0

F := (pΣ
G1
, . . . , pΣ

Gn
),

xG = x0
G + ∇pF̃ (pF , xF ), x0

G := (xF , . . . , xF ).

Remark 5 (Saddle point formula). Formula (7) for Φ can be interpreted in terms
of saddle point evaluation for ~ → 0 of the following integral:

∫

e
i
~ [F (p1,...,pk,x)+

Pk
i=1(Gi(π

i1,...,πili ,yi)−pi·yi)]
k∏

i=1

dnpi dnyi

(2π~)n
=

= e
i

~
Φ(π11,...,π1l1 ,π21,...,π2l2 ,......,πk1,...,πklk ,x) (C +O(~)),

where C is some constant.

Proof of Prop. 5. To simplify the computations, we identify (T ∗Rd)n with T ∗(Rdn)
and (T ∗Rd)ki with T ∗(Rdki). With this identifications the graphs of F and Gi,
i = 1, . . . , n may be written as

LF =
{((

pF ,∇pF (pF , xF )
)
,
(
∇xF (pF , xF ), xF

))

:

(pF , xF ) ∈ UF

}

⊂ T ∗(Rdn) × T ∗
R

d,

LGi
=

{((
pGi

,∇pGi(pGi
, xGi

)
)
,
(
∇xGi(pGi

, xGi
), xGi

))

:

(pGi
, xGi

) ∈ UGi

}

⊂ T ∗(Rdki) × T ∗
R

d,

where UF ∈ V (B0
n) and UGi

∈ V (B0
ki

) for i = 1, . . . , n.
Consider now the composition,

LF (LG1
, . . . , LGn

) = LF ◦ (LG1
⊗ · · · ⊗ LGn

).

First of all, observe that,

LG := LG1
⊗ · · · ⊗ LGn

=
{((

pG,∇pG(pG, xG)
)
,
(
∇xG(pG, xG), xG

))

: (pGi
, xGi

) ∈ UGi

}

LG ⊂ T ∗(Rd(k1+···+kn)) × T ∗(Rdn).

Thus,

LF ◦ LG = π
(

(LG × LF ) ∩ (T ∗
R

d(k1+···+kn) × ∆T∗Rdn × T ∗
R

d)
)

=
{((

pG,∇pG(pG, xG)
)
,
(
∇xF (pF , xF ), xF

))

:

: xG = ∇pF (pF , xF ), pF = ∇xG(pG, xG), (pG, xF ) ∈ Ũ
}

LF ◦ LG ⊂ T ∗(Rd(k1+···+kn)) × T ∗
R

d,

where Ũ is the subset of (pG, xF ) ∈ Bk1+···+kn
such that the system,

pF = ∇xG(pG, xG),

xG = ∇pF (pF , xF ),

has a unique solution (pF , xG) and such that (pGi
, xGi

) ∈ UGi
, i = 1, . . . , n,

and (pF , xF ) ∈ UF . Let us check that Ũ always exists and is a neighborhood
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of B0
k1+···+kn

. To begin with, observe that for any (0, xF ) ∈ B0
n this system has the

unique solution (0,∇pF (0, xF )). Set now,

H(pG, xF , pF , xG) =

(
pF −∇xG(pG, xG)
xF −∇pF (pF , xF )

)

.

Thanks to the fact that G(0, x) =
∑n

i=1Gi(0, x) = 0 we get that the Jacobi matrix

DpF ,xG
H
(
(0, xf , 0,∇pF (0, xF )

)
=

(
id 0

−∇p∇pF (0, xF ) id

)

is invertible.
Thus, the implicit function theorem gives us the desired neighborhood Ũ of

B0
k1+···+kn

.
Now, take φ as defined in (7). The previous considerations tell us that φ is

exactly defined on Ũ . Let us compute its graphs,

Lφ =
{((

pG,∇pΦ(pG, xF )
)
,
(
∇xΦ(pG, xF ), xF

)
: (pG, xF ) ∈ Ũ

}

.

We have that

∇pφ(pG, xF ) = ∇pG(pG, xG) + ∇xG(pG, xG)
dxG

dp
+

+ ∇pF (pF , xF )
dpF

dp
− pF

dxG

dp
−
dpF

dp
xG = ∇pG(pG, xG).

Similarly, ∇xφ(pG, xF ) = ∇xF (pF , xF ). Thus, Lφ = LF ◦ LG.

At last, let us check that φ ∈ Ok1+···+kn

loc . First of all, remember that

F (pF , xF ) = pΣ
FxF + F̃ (pF , xF )

G(pG, xF ) =

n∑

i=1

pΣ
Gi
xGi

+ G̃(pG, xG).

Thus, we obtain immediately that

φ(pG, xF ) = pΣ
GxF +H(pG, xF ),

where H is a function only defined on Ũ by the equations,

H(pG, xF ) = G̃(pG, xG) + F̃ (pF , xF ) −∇pF̃ (pF , xF )∇xG̃(pG, xG),

pF = p0
F + ∇xG̃(pG, xG), p0

F := (pΣ
G1
, . . . , pΣ

Gn
),

xG = x0
G + ∇pF̃ (pF , xF ), x0

G := (xF , . . . , xF ).

But now, if we set pG = 0 then pF = 0, xG = x0
G + ∇pF̃ (0, xF ) and H(0, xF ) = 0.

Similarly, one easily checks that ∇pH(0, xF ) = 0.
�

We will call the operad O∆ + Oloc local cotangent Lagrangian operad over
T∗Rd or for short the local Lagrangian operad when no ambiguities arise. The
induced operad Oloc will be called the local deformation operad of O∆.
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Associative products in the local deformation operad. We say that a generating func-
tion S ∈ C∞(B2) satisfies the Symplectic Groupoid Associativity equation if
for a point (p1, p2, p3, x) ∈ B3 sufficiently close to B0

3 the following implicit system
for x̄, p̄, x̃ and p̃,

x̄ = ∇p1
S(p̄, p3, x), p̄ = ∇xS(p1, p2, x̄),

x̃ = ∇p2
S(p1, p̃, x), p̃ = ∇xS(p2, p3, x̃),

has a unique solution and if the following additional equation holds

S(p1, p2, x̄) + S(p̄, p3, x) − x̄p̄ = S(p2, p3, x̃) + S(p1, p̃, x) − x̃p̃.

If S also satisfies the Symplectic Groupoid Structure conditions, i.e., if

S(p, 0, x) = S(0, p, x) = px and S(p,−p, x) = 0

then S generates a Poisson structure

α(x) = 2
(
∇p1

k
∇p2

l
S(0, 0, x)

)d

k,l=1

on Rd together with a local symplectic groupoid integrating it, whose structure
maps are given by

ǫ(x) = (0, x) unit map
i(p, x) = (−p, x) inverse map
s(p, x) = ∇p2

S(p, 0, x) source map
t(p, x) = ∇p1

S(0, p, x) target map.

In this case, we call S a generating function of the Poisson structure α or a
generating function of the local symplectic groupoid. See [3], [6] and [7] for proofs
and explanations about generating functions of Poisson structures.

The following Proposition explains what is a product in the local cotangent
Lagrangian operad.

Proposition 6. S̃ ∈ O2
loc is a product in Oloc iff S = S2

0 +S̃ satisfies the Symplectic
Groupoid Associativity equation.

Proof. We know that S̃ is a product in Oloc iff S = S2
0 +S̃ is a product in O∆+Oloc,

i.e., iff S(S, I) = S(I, S). Let us compute.

S(S, I)(p1, p2, p3, x) = S ∪ I(p1, p2, p3, x̄1, x̄2) + S(p̄1, p̄2, x) − x̄1p̄1 − p̄2x̄2

= S(p1, p2, x̄1) + p3x̄2 + S(p̄1, p̄2, x) − p̄1x̄1 − p̄2x̄2,

with

p̄1 = ∇x1
S ∪ I(p1, p2, p3, x̄1, x̄2) = ∇xG(x̄)

p̄2 = ∇x2
S ∪ I(p1, p2, p3, x̄1, x̄2) = p3

x̄1 = ∇p1
S(p̄1, p̄2, x)

x̄2 = ∇p2
S(p̄1, p̄2, x).

Then we get

S(S, I) = S(p1, p2, x̄) + S(p̄, p3, x) − p̄x̄,

x̄ = ∇p1
S(p̄, p3, x)

p̄ = ∇xS(p1, p2, x̄).

Similarly, we get

S(I, S) = S(p2, p3, x̃) + S(p1, p̃, x) − p̃x̃,
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x̃ = ∇p2
S(p1, p̃, x)

p̃ = ∇xS(p2, p3, x̃).

Hence, S̃ ∈ O2
loc(T

∗Rd) is a product iff S2
0 + S̃ satisfies the SGA equation. �

At this point, we may still introduce the Gerstenhaber bracket as in (2) and the

product equation in terms of the bracket would still be 1
2 [S̃, S̃] = 0. We may also

still write a formula for the coboundary operator. But, as this time the compositions
in O∆ +Oloc are not multilinear, we cannot develop the expression 1

2 [S̃, S̃] in terms
of the coboundary operator. Nevertheless, in Section 4, we will develop the bracket
with help of Taylor’s expansion and recover a form very close to Equations (6) in
the additive category case.

Equivalence of associative products. To each F ∈ O1
∆ + O1

loc, we may associate a
symplectomorphism ψF which is defined only on a neighborhood UF of B0

1 in T ∗Rd

and which fixes B1
0 . The composition of two such ψG and ψF , which may always

be defined on a possibly smaller neighborhood Ũ ⊂ UG of B0
1 , is exactly ψF (G)

where F (G) is the composition of F by G in the local Lagrangian operad.
We denote by F−1 ∈ O1

∆ + O1
loc the generating function of the (ψF )−1, i.e., the

generating function such that F (F−1) = F−1(F ) = I. Two associative products S

and S̃ will be called equivalent if

S̃ = F (S)(F−1, F−1)

for a certain F ∈ O1
∆ + O1

loc. It is clear that if S ∈ O1
∆ + O1

loc is an associative

product, then S̃ also is. The following questions naturally arises.

Questions: If S generates a local symplectic groupoid, does S̃ also
generate one? Are this two local groupoids isomorphic?

In fact, two equivalent associative products, which are also generating functions
of local symplectic groupoids, induce isomorphic local symplectic groupoids. The
isomorphism is given explicitly by ψF . As a consequence the induced Poisson
structures on the base are the same, i.e.,

α(x) = ∇p1
∇p2

S(0, 0, x) = ∇p1
∇p2

S̃(0, 0, x).

The following two Propositions prove these statements.

Proposition 7. Let be F ∈ O1
∆ + O1

loc. The following implicit equations,

x1 = ∇pF (p1, x2)(8)

p2 = ∇xF (p1, x2),(9)

define a symplectomorphism ψF (p1, x1) = (p2, x2) on a neighborhood UF of B0
1 =

{
(0, x) : x ∈ Rd

}
in T ∗Rd which fixes B0

1 and which is close to the identity in the

sense that F (p, x) = px + F̃ (p, x) induces the identity if F̃ = 0. Consider now ψF

and ψG defined respectively on UF and UG for F,G ∈ O1
∆ + O1

loc. Then we have
that ψG ◦ ψF = ψF (G) on UF (G).

Proof. (1) Let us check that the system (8) and (9) generates a diffeomorphism
around B0

1 . Namely one verifies that (p̄1, x̄1, p̄2, x̄2) := (0,∇pF (0, x2), 0, x2) is a
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solution of the system. Set now

H(p1, x1, p2, x2) :=

(
x1 −∇pF (p1, x2)
p2 −∇xF (p1, x2)

)

.

As

Dp1,x1
H(p̄1, x̄2, p̄2, x̄2) =

(
−∇p∇pF (0, x̄2) id
∇x∇pF (0, x̄2) 0

)

and

Dp2,x2
H(p̄1, x̄2, p̄2, x̄2) =

(
0 ∇x∇pF (0, x̄2)
id 0

)

,

the implicit function theorem gives us the result. Let us call Ũ the neighborhood
of B0

1 where ψF is defined.
(2) We check now that ψF is symplectic. From equations (8) and (9) we get the

relation

∂p2
l

∂p1
k

=
∂x1

k

∂x2
l

,

which directly implies that dψF J(dψF )∗ = J where

J =

(
0 id

− id 0

)

.

(3) Let us see that ψF (0, x) = (0, x). We have already noticed that (0,∇pF (0, x2), 0, x2)

is a solution of the system (8) and (9). But F (p, x) = px+F̃ (p, x) with ∇pF̃ (0, p) =
0 and then ∇x∇pF (0, x2) = x2.

(4) Clearly F (p, x) = px generates the identity.
(5) Recall that

LG =
{(

p1,∇pG(p1, x2),∇xG(p1, x2), x2

)

: (p1, x2) ∈ UG

}

,

LF =
{(

p2,∇pF (p2, x3),∇xF (p2, x3), x3

)

: (p2, x3) ∈ UF

}

.

Thus, LG = graphψG and LF = graphψF . The composition of these two canonical
relations yields that LF ◦ LG = graphψF ◦ ψG. On the other hand, LF ◦ LG =
LF (G) = graphψF (G). Taking care on the domain of definitions, we have that
ψF ◦ ψG = ψF (G) on UF (G). �

Proposition 8. Let S ∈ O2
∆ + O2

loc be a generating function of a symplectic
groupoid, i.e.,

S(S, I) = S(I, S), S(p, 0, x) = S(0, p, x) = px and S(p,−p, x) = 0.

Let F ∈ O1
∆ + O1

loc such that F (−p, x) = −F (p, x). Then,

S̃ := (F (S))(F−1, F−1)

is also a generating function of a symplectic groupoid. The subset of odd function
in p forms a subgroup of O1

∆ + O1
loc. Moreover, ψF is a groupoid isomorphism

between the local symplectic groupoid generated by S and the one generated by S̃.
As a consequence S and S̃ induce the same Poisson structure on the base.
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Proof. To simplify the notation, we set G = F−1. A straightforward computation
gives that

F (S)(G,G)(p1, p2, x) = S(p̄, p̃, ẋ)+

+ F (ṗ, x) +G(p1, x̄) +G(p2, x̃) − p̄x̄− p̃x̃− ẋṗ

ẋ = ∇pF (ṗ, x) x̄ = ∇p1
S(p̄, p̃, ẋ) x̃ = ∇p2

S(p̄, x̃, ẋ)

ṗ = ∇xS(p̄, p̃, ẋ) p̄ = ∇xG(p1, x̄) p̃ = ∇xG(p2, x̃)

(1) Setting p1 = p and p2 = 0, we have immediately

F (S)(G,G)(p, 0, x) = G(p, ẋ) + F (ṗ, x) − ẋṗ

with ẋ = ∇pF (ṗ, x) and ṗ = ∇xG(p, ẋ). We recognize then that

F (S)(G,G)(p, 0, x) = F (G)(p, x) = I(p, x) = px.

The case p1 = 0 and p2 = p is analog.
(2) One reads directly from the equation

px = F−1(p, ẋ) + F (ṗ, x) − ẋṗ

where ẋ = ∇pF (ṗ, x) and ṗ = ∇xF
−1(p, ẋ), that if F is odd in p then is also F−1

and reciprocally. Similarly, we check directly from the composition formula that
F (G) is odd in p if F and G both are. Thus, the odd functions form a subgroup of
O1

∆ + O1
loc.

(3) Suppose now that p1 = p and p2 = −p. G odd in p implies that p̄ = −p̃. As
S(p,−p, 0) = 0, we get immediately that x̃ = x̄ and ṗ = 0 which in turns implies
that ẋ = x. Putting everything together, we get that (F (S))(G,G)(p,−p, x) = 0

(4) Let us prove now that ψF is also a groupoid isomorphism. Consider the
multiplication space of the symplectic groupoid generated by an generating function
S, i.e,

G(m)(S) =
{
(p1,∇p1

S), (p2,∇p2
S), (∇xS, x) : p1, p2 ∈ (Rd)∗, x ∈ R

d
}
,

where the partial derivative are evaluated in (p1, p2, x).

We have to show that (ψF × ψF × ψF )
(
G(m)(S)

)
= G(m)(S̃).

A straightforward computation gives that

∇p1
S̃(p1, p2, x) = ∇pG(p1, x̄)

∇p2
S̃(p1, p2, x) = ∇pG(p2, x̃)

∇xS̃(p1, p2, x) = ∇xF (ṗ, x).

From this, we check immediately that

ψG

((

p1,∇p1
S̃(p1, p2, x)

))

= (p̄,∇p1
S(p̄, p̃, ẋ))

ψG

((

p2,∇p2
S̃(p1, p2, x)

))

= (p̃,∇p2
S(p̄, p̃, ẋ))

ψF ((∇xS(p̄, p̃, ẋ), ẋ)) =
(

∇xS̃(p1, p2, x), x
)

which ends the proof. �



FORMAL LAGRANGIAN OPERAD 19

Remark 6. Suppose that S is a generating function of a local symplectic groupoid.
Let F ∈ O1

∆ + O1
loc act on S, i.e., S̃ = (F (S))(F−1, F−1). Then, the condition

S(p, 0, x) = S(0, p, x) = px is preserved by any F ∈ O1
∆ + O1

loc. However, the
condition S(p,−p, 0) is only preserved by the odd F s. Observe now that we have
imposed the inverse map to be i(p, x) = (−p, x). This implies that

((−p2,∇p2
S(p2, p1, x)) , (−p1,∇p1

S(p2, p1, x)) , (−∇xS(p2, p1, x), x)) ∈ G(m)(S),

and thus, that S(p1, p2, x) = −S(−p1,−p2, x). From this last equation, we get that
S must satisfy S(p,−p, x) = 0 and that the induced local symplectic groupoid is a
symmetric one, i.e., t(p, x) = s(−p, x). Thus, odd transformations map symmetric
groupoids to symmetric groupoids. However, they are not the only ones.

3. The combinatorics

In this Section, we present some tools which will allow us to write down at
all orders the perturbative version of the composition, Equation (7), in the local
cotangent operad. All these compositions have essentially the same form. We will
first give an abstract version of the equations describing the compositions, then we
will introduce some trees which will help us to keep track of the terms involved in
the computations and, at last, we will perform the expansion in the general case.

The tools and methods presented here are essentially the same as those used in
the Runge–Kutta theory of ODEs to determine the order conditions of a particular
numeric method. We follows approximatively the notations of [9].

3.1. The equation. Let F : Rn∗ → R and G : Rn → R be two smooth functions.
Consider the point φ ∈ R defined by

φ := G(x̄) + F (p̄) − p̄x̄,(10)

where x̄ and p̄ are defined by the implicit equations,

p̄ = ∇xG(x̄)(11)

x̄ = ∇pF (p̄).(12)

Without any assumptions on F and G, equations (11) and (12) may not have a
solution at all or the solution may be not unique. Hence, the value φ is not always
defined. However, if we assume that F and G are formal power series of the form

G(x) = p0x+

∞∑

i=1

ǫiG(i)(x), and F (p) = x0p+

∞∑

i=1

ǫiF (i)(p),

equations (11) and (12) become,

p̄ = p0 +

n∑

i=1

ǫi∇xG
(i)(x̄), and x̄ = x0 +

n∑

i=1

ǫi∇pF
(i)(p̄),

which are always recursively uniquely solvable.
Let us compute the first terms of p̄, x̄ and φ to get a feeling of what is happening:

p̄ = p0 + ǫ∇xG
(1)(x0) + ǫ2∇(2)

x G(1)(x0)∇pF
(1)(p0) + · · ·

x̄ = x0 + ǫ∇pF
(1)(x0) + ǫ2∇(2)

p F (1)(x0)∇xG
(1)(x0) + · · ·

φ = p0x0 + ǫ(G(1)(x0) + F (1)(p0)) + ǫ22∇pF
(1)(p0)∇xG

(1)(x0) + · · ·
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As we continue the expansion, the terms get more and more involved and, very
soon, expressions as such become intractable. One common strategy in physics as
in numeric analysis is to introduce some graphs to keep track of the fast growing
terms. Let us present these graphs. We mainly take our inspiration from the
book [9].

3.2. The trees.

Definition 6. -

(1) A graph t is given by a set of vertices Vt = {1, . . . , n) and a set of edges Et

which is a set of pairs of elements of Vt. We denote the number of vertices
by |t|. An isomorphism between two graphs t and t′ having the same
number of vertices is a permutation σ ∈ S|t| such that {σ(v), σ(w)} ∈ Et′ if
{v, w} ∈ Et. Two graphs are called equivalent if there is an isomorphism
between them. The symmetries of a graph are the automorphisms of the
graph. We denote the group of symmetries of a graph t by sym(t).

(2) A tree is a graph which has no cycles. Isomorphisms and symmetries are
defined the same way as for graphs

(3) A rooted tree is a tree with one distinguished vertex called root. An iso-

morphism of rooted trees is an isomorphism of graphs which sends the root
to the root. Symmetries and equivalence are defined correspondingly.

(4) A bipartite graph is a graph t together with a map ω : Vt → {◦, •} such
that ω(v) 6= ω(w) if {v, w} ∈ Et. An isomorphism of bipartite trees is an
isomorphism of graphs which respects the coloring, i.e., ω(σ(v)) = ω(v).

(5) A weighted graph is a graph t together with a weight map L : Vt → N\{0}.
An isomorphism of weighted graph is an isomorphism of graph σ which
respects the weights, i.e., σ(L(v)) = L(σ(v)). We denote by ‖t‖ the sum of
the weights on all vertices of t.

The following table summarizes some notations we will use in the sequel.

T the set of bipartite trees
RT the set of rooted bipartite trees
RT◦ the set of elements of RT with white root
RT• the set of elements of RT with black root

We will give the name Cayley trees to trees in T .
We denote by [A] the set of equivalence classes of graphs in A (ex: [RT ]). They

are called topological “A” trees. Moreover, we denote by A∞ the weighted version
of graphs in A. Notice that we will use the notation [A]∞ instead of the more
correct [A∞].

The elements of [RT ]∞ can be described recursively as follows:

(1) ◦i, •j ∈ [RT ]∞ where i = L(◦i) and j = L(•j)
(2) if t1, . . . , tm ∈ [RT◦]∞, then the tree [t1, . . . , tm]•i

∈ [RT ]∞ where [t1, . . . , tm]•i

is defined by connecting the roots of t1, . . . , tm with the weighted vertex •i

and declaring that •i is the new root. And the same if we interchange ◦
and •.

Now, let us describe in terms of trees the expressions arising in the expansions
of Subsection 3.1.
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Definition 7. Given two collections of functions F = {F (i)}∞i=1 and G = {G(j)}∞j=1,
where Fi : Rn∗ → R and Gj : Rn → R are smooth functions, we may associate to
any rooted tree t ∈ [RT ]∞ a vector field on T ∗Rd, DCt(F,G) ∈ Vect(T ∗Rd), called
the elementary differential and a function on T ∗Rd, Ct(F,G) ∈ C∞(T ∗Rd),
called the elementary function.

(1) The elementary differential DCt(F,G) is recursively defined as follows:
(a) DC◦i

(F,G)(p, x) = ∇xG
(i)(x) , DC•j

(F,G)(p, x) = ∇pF
(j)(p)

(b) DCt(F,G) = ∇
(m+1)
x G(i)(DCt1 (F,G), . . . , DCtm

(F,G)) if t = [t1, . . . , tm]◦i

(c) DCt(F,G) = ∇
(m+1)
p F (j)(DCt1 (F,G), . . . , DCtm

(F,G)) if t = [t1, . . . , tm]•j
.

(2) The elementary function Ct(F,G), are recursively defined as follows:
(a) C◦i

(F,G)(p, x) = G(i)(x) , C•j
(F,G)(p, x) = F (j)(p)

(b) Ct(F,G) = ∇
(m)
x G(i)(DCt1(F,G), . . . , DCtm

(F,G)) if t = [t1, . . . , tm]◦i
.

(c) Ct(F,G) = ∇
(m)
p F (j)(DCt1(F,G), . . . , DCtm

(F,G)) if t = [t1, . . . , tm]•j
.

The notation ∇
(m)
x (resp. ∇

(m)
p ) stands for the mth derivative in the direction x

(resp. p).

Some examples are given in the following table:

Diagram Elementary Differential Elementary Function

j

i

∇
(2)
x G(i)∇pF

(j) ∇xG
(i)∇pF

(j)

j k

i

∇
(3)
p F (i)(∇xG

(j),∇xG
(k)) ∇

(2)
p F (i)(∇xG

(j),∇xG
(k))

j k

i

l

∇
(3)
x G(i)(∇pF

(j),∇
(2)
p F (k)∇xG

(l)) ∇
(2)
x G(i)(∇pF

(j),∇
(2)
p F (k)∇xG

(l))

Remark that for elementary functions it is not important which vertex is the
root. This is not the case for elementary differentials.

Definition 8. Let u = [u1, . . . , uk], v = [v1, . . . , vl] ∈ [RT ] (resp. ∈ [RT ]∞).
Following [9], we define the Butcher product as follows:

u ◦ v :=
[
u1, . . . , uk, [v1, . . . , vl]

]
.

We have not written the obvious conditions on the ui’s and the vi’s so that the
product remains bipartite (resp. weighted bipartite).

Definition 9 (Equivalence relation on (weighted) rooted topological trees).
Recall that an equivalence relation on a set A is a special subset R of A × A. The
equivalence relations on A are moreover ordered by inclusion. It makes then sense
to consider the minimal equivalence on A containing a certain subset U ⊂ A.

We consider here the minimal equivalence relation on [RT ] (resp. on [RT ]∞))
such that u ◦ v ∼ v ◦ u.
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Properties of this relation:
It is clear that

(1) Two topological rooted trees are equivalent if it is possible to pass from one
to the other by changing the root. More precisely: t, t′ ∈ [RT ](∞), t ∼ t′ iff
there exists a representative (E, V, r) of t and a representative (E′, V ′, r′) of
t′ and a vertex r′′ ∈ V such that (E, V, r′′) and (E′, V ′, r′) are isomorphic
(weighted) rooted trees.

(2) The quotient of [RT ](∞) by this equivalence relation is exactly [T ](∞).
(3) It follows immediately from the definition that Ct(F,G) = Ct′(F,G) if t ∼ t′

for i = 1, 2.

Then, it makes sense to define the elementary functions on bipartite trees.
At last, we introduce some important functions on trees: the symmetry coeffi-

cients.

Definition 10. Let t = [t1, . . . , tm] ∈ [RT ]∞. Consider the list t̃1, . . . , t̃k of all non
isomorphic trees appearing in t1, . . . , tm. Define µi as the number of time the tree
t̃i appears in t1, . . . , tm. Then we introduce the symmetry coefficient σ(t) of t
by the following recursive definition:

σ(t) = µ1!µ2! . . . σ(t̃1) . . . σ(t̃k)

and initial condition σ(◦i) = σ(•j) = 1.

It is clear that σ(t) is the number of symmetries for each representative of t (i.e.
σ(t) = |Sym(t′)| for all t′ ∈ t).

3.3. The expansion. We give now a power series expansion for equation (10).

Proposition 9. Suppose we are given the following formal power series in ǫ,

G(x) = p0x+

∞∑

i=1

ǫiG(i)(x), and F (p) = x0p+

∞∑

j=1

ǫjF (j)(p),

where G(i) : Rn → Rn∗ and F (j) : Rn∗ → Rn are smooth functions for i, j > 0.
Define φ(p0, x0) ∈ R[[ǫ]] as

φ(p0, x0) := G(x̄) + F (p̄) − p̄x̄,

where the formal power series x̄(ǫ) and p̄(ǫ) are uniquely determined by the implicit
equations,

p̄ = p0 +

∞∑

i=1

ǫi∇xG
(i)(x̄), and x̄ = x0 +

∞∑

j=1

ǫj∇pF
(j)(p̄).

Then, we have that

φ(p0, x0) = p0x0 +
∑

t∈T∞

ǫ‖t‖

|t|!
Ct(F,G)(p0, x0).

The proof of Proposition 9 is broken into several lemmas.
The method used is essentially the same as in numerical analysis when one

wants to express the Taylor series of the numerical flow of a Runge–Kutta method.
Namely, the defining equations for p̄(ǫ) and x̄(ǫ) have a form very close to the
partioned implicit Euler method(see [9]).
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Lemma 1. There exist unique formal power series for x̄(ǫ) and for p̄(ǫ) which
satisfy equations (11) and (12). They are given by

x̄(ǫ) = x0 +
∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G),(13)

p̄(ǫ) = p0 +
∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
DCt(F,G).(14)

Proof. Uniqueness is trivial. Let us check that we have the right formal series. We
only check equation (13). The other computation is similar.

x̄(ǫ) = x0 +
∑

i≥1

ǫi∇pF
(i)(p̄)

= x0 +
∑

i≥1

ǫi
∑

m≥0

1

m!
∇(m+1)

p F (i)

(
∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
DCt(F,G), . . .

. . . ,
∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)

= x0 +
∑

i≥1

∑

m≥0

∑

t1∈[RT◦]∞

· · ·
∑

tm∈[RT◦]∞

ǫi+‖t1‖+···+‖tm‖

m!σ(t1) . . . σ(tm)
×

×∇(m+1)
p F (i)(DCt1(F,G), . . . , DCtm

(F,G))

= x0 +
∑

i≥1

∑

m≥0

∑

t1

· · ·
∑

tm

ǫ‖t‖

m!σ(t)
(µ1!µ2! . . . )DCt(F,G),

with t = [t1, . . . , tm]•i

= x0 +
∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G).

�

Lemma 2. We have the following expansion for φ(p0, x0):

φ(p0, x0) = p0x0 +
∑

t∈[RT ]∞

ǫ‖t‖

σ(t)
Ct(F,G)−

−
( ∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)( ∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)

.
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Proof. We compute the different terms arising in G(x̄)+F (p̄)− p̄x̄ in terms of trees.

G(x̄) = p0x̄+
∑

i≥1

ǫi
∑

m≥0

1

m!
∇(m)

x G(i)

(
∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G), . . .

, . . . ,
∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)

= p0x̄+
∑

i≥1

∑

m≥0

∑

t1∈[RT•]∞

· · ·
∑

tm∈[RT•]∞

ǫ‖t‖

m!σ(t)
(µ1!µ2! . . . )×

×∇(m)
x G(i)(DCt1(F,G), . . . , DCtm

(F,G)),

with t = [t1, . . . , tm]•i

= p0x̄+
∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
Ct(F,G)

By the same sort of computations we obtain,

F (p̄) = x0p̄+
∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
Ct(F,G).

Finally, we get the desired result as,

p0x̄+ x0p̄− p̄x̄ = p0x0−

−
( ∑

t∈[RT◦]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)( ∑

t∈[RT•]∞

ǫ‖t‖

σ(t)
DCt(F,G)

)

.

�

Thus, φ(p0, x0) is expressed as sums over topological weighted rooted bipartite
trees. We would like now to regroup the terms of the formula in the previous
Lemma. To do so, we express all terms in terms of topological trees (no longer
rooted).

Lemma 3. Let u ∈ [RT◦]∞ and v ∈ [RT•]∞. Then,

DCu(F,G)DCv(F,G) = Cu◦v(F,G) = Cv◦u(F,G).

Proof. Suppose u = [u1, . . . , um]◦i
, v = [v1, . . . , vl]•j

, then we get

A = DCu(F,G)DCv(F,G)

= ∇(m+1)
x G(i)(DCu1

(F,G), . . . , DCum
(F,G)).DCv(F,G)

= ∇(m+1)
x G(i)(DCu1

(F,G), . . . , DCum
(F,G), DCv(F,G))

= Cu◦v(F,G).

�

Lemma 4. Let t = (Vt, Et) ∈ T∞. For all v ∈ Vt let tv be the bipartite rooted tree
(Vt, Et, v) ∈ RT∞. For v ∈ Vt and e = {u, v} ∈ Et we have
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|sym(t)|

|sym(tv)|
= |{v′ ∈ Vt/tv′ is isomorphic to tv}|

|sym(t)|

|sym(tu)||sym(tv)|
= |{e′ ∈ Et/tu′ ⊔ tv′ is isomorphic to tu ⊔ tv}|

Proof. Consider the induced action of the symmetry group of the tree on the set of
vertices. Notice that two vertices v and w are in the same orbit iff tv is isomorphic
to tw. Then the number of vertices of t which lead to rooted tree isomorphic to tv
is exactly the cardinality of the orbit of v, which is exactly |sym(t)| divided by the
cardinality of the isotropy subgroup which fixes v. But the latter is |sym(tv)| by
definition. We then get the first statement.

For the second statement we have to consider the induced action on the edges
and apply the same type of argument. �

Lemma 5. We get

φ(p0, x0) = p0x0 +
∑

t∈T∞

ǫ‖t‖

|t|!
Ct(F,G).

Proof. Let us perform the last computation.

φ(p0, x0) = p0x0 +
∑

t∈[RT ]∞

ǫ‖t‖

σ(t)
Ct(F,G)−

−
∑

u∈[RT◦]∞

∑

v∈[RT•]∞

ǫ‖u‖+‖v‖

σ(u)σ(v)
DCu(F,G)DCv(F,G)

= p0x0 +
∑

t̄∈[T ]∞

ǫ|t̄|Ct̄(F,G)
{∑

t∈t̄

1

|sym(t)|
−

−
∑

u∈[RT•]∞,v∈[RT◦]∞
u◦v∈t̄

1

|sym(u)||sym(v)|

}

= p0x0 +
∑

t∈T∞

ǫ‖t‖

|t|!
Ct(F,G)

{ ∑

v∈Vt

|sym(t)|

|sym(tv)|

1

k(t, v)
−

−
∑

e={u,v)∈Et

|sym(t)|

|sym(tu)||sym(tv)|

1

l(t, e)

}

where k(t, v) = |{v′ ∈ Vt/tv′ is isomorphic to tv}| and l(t, e) = |{e′ ∈ Et/tu′ ⊔
tv′ is isomorphic to tu ⊔ tv)|. Using Lemma 4 and the fact that for a tree the differ-
ence between the number of vertices and the number of edges is equal to 1 we get
the desired result. �

Using now the fact that S is a formal power series we immediately get Proposition
9.

4. Deformation of a non-linear structure

4.1. The formal cotangent Lagrangian operad. The formal cotangent La-
grangian operad on T ∗

R
d is the perturbative/formal version of the local cotangent
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operad on T ∗Rd. Recall that in the latter the product for F ∈ On
∆ + On

loc and

Gi ∈ On
∆ + Oki

loc, i = 1, . . . n was expressed as in Proposition 5:

F (G1, . . . , Gn)(pG, xF ) = G1 ∪ · · · ∪Gn(pG, xG) + F (pF , xF ) − pF · xG,

pF = ∇xG1 ∪ · · · ∪Gn(pG, xG),

xF = ∇pF (pF , xF ).

If we consider pG and xF as parameters in the previous equations, we have then
that,

G(pG, ·) : R
nd −→ R, and F (·, xF ) : (Rnd)∗ −→ R,

Suppose now that the F and Gi, i = 1, . . . , n, are formal series of the form

F (pF , xF ) = pΣ
F · xF +

∞∑

i=1

ǫiF (i)(pF , xF )

Gl(pGl
, xGl

) = pΣ
Gl

· xGl
+

∞∑

i=1

ǫiG
(i)
l (pGl

, xGl
)

where

pΣ :=

n∑

i=1

pi for p = (p1, . . . , pn) ∈ (Rdn)∗.

We may rewrite F and G as,

F (pF , xF ) = xF
0 pF +

∞∑

i=1

ǫiF (i)(pF , xF )

G(pG, xG) = pG
0 xG +

∞∑

i=1

ǫiG(i)(pG, xG)

where xF
0 = (xF , . . . , xF ) ∈ Rdn and pG

0 = (pΣ
G1
, . . . , pΣ

Gn
) ∈ (Rnd)∗ for xG ∈ Rdn

and pF ∈ (Rdn)∗.
Applying now Proposition 9, we obtain for the compositions the following ex-

pansion:

(15) F (G1, . . . , Gn)(pG, xG) = pΣ
G · xF +

+
∑

t∈T∞

ǫ||t||

|t|!
Ct

(

F (·, xF ), G1 ∪ · · · ∪Gn(pG, ·)
)

(pG
0 , x

F
0 ).

This motivates to define the formal deformation space of the cotangent La-
grangian operad O∆(T∗Rd) as

On
form(T∗

R
d,∆) :=

{ ∞∑

i=1

ǫiF (i) : F (i) ∈ Pn
i (T ∗

R
d)
}

,

where Pn
i (T ∗Rd) stands for the vector space of functions F : Bn −→ R such that

(1) F (p, x) is a polynomial in the variables p = (p1, . . . , pn),
(2) F (µp, x) = µi+1F (p, x).
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One may think of Oloc + Oform as the Taylor series of functions in O∆ + Oloc

The compositions are given by formula (15), which also tells us that O∆ + Oloc is
an operad. The unit is

I(p, x) = px, I ∈ O∆ + O1
form.

The induced operad structure on Oform is then given by,

I ∈ O1
form, I(p, x) = 0,

On
form =

{ ∞∑

i=1

ǫiF (i) : F (i) ∈ Pn
i (T ∗

R
d)
}

F (G1, . . . , Gn)(pG, xF ) =
∑

t∈T∞

ǫ||t||

|t|!
Ct

(
F,G1 ∪ · · · ∪Gn

)
.

This operad will be called the formal deformation operad of the cotangent
Lagrangian operad O∆.

4.2. Product in the formal deformation operad. Exactly as for the local
deformation operad, Sǫ is a product in Oform iff S2

0 +Sǫ satisfies formally the SGA
equation. Moreover, if S2

0 + Sǫ satisfies the SGS conditions, then S2
0 + Sǫ is the

generating function of a formal symplectic groupoid over Rd.
Again, the zero of O2

form is a product in Oform. We will stick to the conventions
introduced for Oloc. Namely, 01 will stand for the zero of O1

form, which is also the
identity of the operad and 02 will stand for the zero of O2

form, which is the trivial
product of the operad.

Thanks to the composition formula (15), we are now able to rewrite the product
equation in Oform as a cohomological equation, exactly as the deformation equation
of a product in an additive category. Note that the Taylor expansion plays the same
role as the linear expansion played in the additive case.

Let us define the Gerstenhaber bracket in Oform as follows:

[F,G] = F ◦G− (−1)(k−1)(l−1)G ◦ F,

where

F ◦G =

k∑

i=1

(−1)(i−l)(l−1)F{01, . . . , 01, G︸︷︷︸
ith

, 01 . . . , 01),

for F ∈ Ok
form and G ∈ Ol

form.
We are now able to define a true coboundary operator.

Proposition 10. Consider d : On
form → On+1

form

dF := [02, F ].

Then, d may be written as

dF (p1, . . . , pn+1) = F (p1, . . . , pn, x)+

+

n∑

j=1

(−1)n+j−1F (p1, . . . , pj + pj+1, . . . , pn, x) + (−1)n−1F (p2, . . . , pn+1, x)

Moreover, d is linear and d2 = 0
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Proof. For more clarity, let us break our convention and write Ĩ instead of 01 and
S̃ instead of 02. We have that [S̃, F ] = S̃ ◦ F − (−1)n−1F ◦ S̃. As S̃ = 0, only the
trees ◦i and •j will contribute to the product. Then we have,

I1 = S̃ ◦ F (p1, . . . , pn+1, x)

=
∑

i≥1

ǫi

(

C•i

(

S̃(·, x), F ∪ Ĩ(p, ·)

)(

(

n∑

1

pl, pn+1), (x, x)
)

+

+(−1)n−1C•i

(

S̃(·, x), Ĩ ∪ F (p, ·)

)(

(p1,

n+1∑

2

pl), (x, x)
)
)

=
∑

i≥1

ǫi
(

F (i)(p1, . . . , pn, x) + (−1)n−1F (i)(p2, . . . , pn+1, x)
)

and

I2 = F ◦ S̃(p1, . . . , pn+1)

=

n∑

j=1

(−1)j−1
∑

i≥1

ǫiC◦i

(

F (·, x), (Ĩ ∪ . . . Ĩ ∪ S̃
︸︷︷︸

jth

∪Ĩ . . .

· · · ∪ Ĩ)(p, ·)

)(

(p1, . . . , pj + pj+1, . . . , pn+1), (x, . . . , x)
)

=

n∑

j=1

(−1)j−1
∑

i≥1

ǫiF (i)(p1, . . . , pj + pj+1, . . . , pn+1, x),

which gives the desired formula. The check that d2 = 0 is straightforward. �

We have then a complex
(

C• = ⊕n≥0O
n
form, d

)

.

This complex is exactly the Hochschild complex of (formal) multi-differential oper-
ators lifted on the level of symbols ( see for instance [1]). This remark gives us the
cohomology of the complex,

Hn(C•) ≃ ǫVn(Rd)[[ǫ]],

where Vn(Rd) is the space of n-multi-vector fields on Rd.
We come now to the question of finding a product Sǫ in the formal deformation

operad of O∆ This is exactly the same problem as deforming the trivial generating
function S2

0 in O∆ + Oform. We are thus looking for an element Sǫ ∈ O2
form of the

form

Sǫ = ǫS1 + ǫ2S2 + . . .

such that

[Sǫ, Sǫ] = 0.(16)

Equation (16) becomes, on the level of trees,

∑

t∈T∞

ǫ‖t‖

|t|!

(

Ct(Sǫ, Sǫ ∪ I) − Ct(Sǫ, I ∪ Sǫ)
)

= 0.(17)
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One sees immediately that this equation is equivalent to the following infinite
set of recursive equations,

dSn +Hn(Sn−1, . . . , S1) = 0,

where

Hn(Sn−1, . . . , S1) =
∑

t∈T k,n
∞

2≤|k|≤n

1

|t|!

(

Ct(Sǫ, Sǫ ∪ I) − Ct(Sǫ, I ∪ Sǫ)
)

,

where T k,n
∞ is the subset of trees in T k,n

∞ with k vertices and such that ‖t‖ = n.
These recursive equations are the exact analog of Equations (6).

4.3. Formal symplectic groupoid generating function. We restate now the
main Theorem of [3], Theorem 1, in terms of the new structures defined in this
article.

Theorem 1. For each Poisson structure α on Rd, we have that

Sǫ(α) =

∞∑

n=1

ǫn

n!

∑

Γ∈Tn,2

WΓB̂Γ(α)

is a product in the formal deformation operad Oform(T∗Rd,∆) of the cotangent
Lagrangian operad O∆(T∗

R
d). Moreover, Sǫ(α) is the unique natural product in

Oform(T∗Rd,∆) whose first order is ǫα.

In the above Theorem, the Tn,2 stand for the set of Kontsevich trees of type

(n, 2), WΓ is the Kontsevich weight of Γ and B̂Γ is the symbol of the bidifferential
operator BΓ associated to Γ. We refer the reader to [3] for exact definitions of
Kontsevich trees, weights, operators and naturallity.

We called Sǫ(α) the (formal) symplectic groupoid generating function be-
cause, as shown in [3], it generates a “geometric object”, a (formal) symplectic
groupoid over Rd associated to the Poisson structure α whose structure maps are
explicitly given by

ǫǫ(x) = (0, x) unit map
iǫ(p, x) = (−p, x) inverse map
sǫ(p, x) = x+ ∇p2

Sǫ(α)(p, 0, x) source map
tǫ(p, x) = x+ ∇p1

Sǫ(α)(0, p, x) target map.

This exhibits a strong relationship between star products and symplectic groupoids
already foreseen by Costes, Dazord, Weinstein, Karasev, Maslov and Zakrzewski
in respectively [5], [11] and [15] . Recently and from a completely different point
of view, Karabegov in [10] went still a step further by showing how to associate a
kind of “formal symplectic groupoid” to any star product.

In [6] and [7], we prove that the product Sǫ(α) has a non-zero convergence
radius provided that the Poisson structure α is analytic. In this case, the generated
formal symplectic groupoid is the local one. We also compared compared this local
symplectic groupoid with the one constructed by Karasev and Maslov in [11] and
we proved that this two local symplectic groupoids are not only isomorphic as they
should but exactly identical.
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