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Abstract. This note gives an overview on the construction of symplectic

groupoids as reduced phase spaces of Poisson sigma models and its generaliza-
tion in the infinite dimensional setting (before reduction).

1. Introduction

Symplectic groupoids have been studied in detail since their introduction by
Coste, Dazord and Weinstein [9] and they appear naturally in Poisson and sym-
plectic geometry, as well as in some instances of the study of topological field
theories. More precisely, in [4], it was proven that the reduced phase space of
the Poisson sigma model under certain boundary conditions and assuming it is a
smooth manifold, has the structure of a symplectic groupoid and it integrates the
cotangent bundle of a given Poisson manifold M . This is a particular instance of
the problem of integration of Lie algebroids, a generalized version of the Lie third
theorem[12] . The general question can be stated as:

• Is there a Lie groupoid (G,M) such that its infinitesimal version corre-
sponds to a given Lie algebroid (A,M)?

For the case where A = T ∗M and M is a Poisson manifold the answer is not pos-
itive in general, as there are topological obstructions encoded in what are called
the monodromy groups [10]. A Poisson manifold is called integrable if such a Lie
groupoid G exists. The properties of G are of special interest in Poisson geometry,
since it is possible to equip G with a symplectic structure ω compatible with the
multiplication map in such a way that G is a symplectic realization for (M,Π).
For the integrable case, the symplectic groupoid integrating a given Poisson man-
ifold (M,Π) is constructed explicitely in [4], as the phase space modulo gauge
equivalence of the Poisson Sigma model (PSM), a 2-dimensional field theory.

In a more recent perspective (see [7, 8]), the study of the phase space before
reduction plays a crucial role. This allows dealing with with nonintegrable Poisson
structure, for which the reduced phase space is singular, on an equal footing as the
integrable ones. This new approach differs from the stacky perspective of Zhu and
Tseng (see [16]) and seems to be better adapted to symplectic geometry and to
quantization.

In a paper in preparation [3], we introduce a more general version of a sym-
plectic groupoid, called relational symplectic groupoid. In the case at hand, it
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corresponds to an infinite dimensional weakly symplectic manifold equipped with
structure morphisms (canonical relations, i.e. immersed Lagrangian submanifolds)
compatible with the Poisson structure of M . In this work, we prove that

(1) For any Poisson manifold M (integrable or not), the relational symplectic
groupoid always exists.

(2) In the integrable case, the associated relational symplectic groupoid is
equipped with a locally embedded Lagrangian submanifold.

(3) Conjecturally, given a regular relational symplectic groupoid G over M (a
particular type of object that admits symplectic reduction), there exists a
unique Poisson structure Π on M such that the symplectic structure ω on
G and Π are compatible. This is still work in progress.

This paper is an overview of this construction and is organized as follows. Section
2 is a brief introduction to the Poisson sigma model and its reduced phase space.
Section 3 deals with the version before reduction of the phase space and the in-
troduction of the relational symplectic groupoid. An interesting issue concerning
this construction is the treatment of non integrable Poisson manifolds: even if the
reduction does not exists as a smooth manifold, the relational symplectic groupoid
always exists. One natural question at this point is:

• Can there be a finite dimensional relational symplectic groupoid equivalent
to the infinite dimensional one for an arbitrary Poisson manifold?

The answer to this question is work in progress and it will be treated in a sub-
sequent paper. Section 4 contains some comments on the quantized version of the
relational symplectic groupoid and its possible connection with geometric and de-
formation quantization.

Another aspect, which will be explored later, is the connection between the rela-
tional construction and the Poisson Sigma model with branes, where the boundary
conditions are understood as choices of coisotropic submanifolds of the Poisson man-
ifold. The relational symplectic groupoid seems to admit the existence of branes
and would explain in full generality the idea of dual pairs in the Poisson sigma
model with boundary [2, 5].
This new program might be useful for quantization as well. Using ideas from
geometric quantization, what is expected as the quantization of the relational sym-
plectic groupoid is an algebra with a special element, which fails to be a unit, but
whose action is a projector in such a way that on the image of the projector we
obtain a true unital algebra. Deformation quantization of a Poisson manifold could
be interpreted in this way.

Acknowledgments. We thank Marco Zambon, David Martinez, Pavel Mnëv and
the anonymous referee for useful comments and remarks.

2. PSM and its reduced phase space.

We consider the following data

(1) A compact surface Σ, possibly with boundary, called the source space.
(2) A finite dimensional Poisson manifold (M,Π), called the target space. Re-

call that a bivector field Π ∈ Γ(TM ∧ TM) is called Poisson if the the
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bracket {, } : C∞(M)⊗ C∞(M) → C∞(M), defined by

{f, g} = Π(df, dg)

is a Lie bracket and it satisfies the Leibniz identity

{f, gh} = g{f, h}+ h{f, g},∀f, g, h ∈ C∞(M).

In local coordinates, the condition of a bivector Π to be Poisson reads as
follows

(1) Πsr(x)(∂r)Π
lk(x) + Πkr(x)(∂r)Π

sl(x) + Πlr(x)(∂r)Π
ks(x) = 0,

that is, the vanishing condition for the Schouten-Nijenhuis bracket of Π.

The space of fields for this theory is denoted with Φ and corresponds to the space of
vector bundle morphisms between TΣ and T ∗M . This space can be parametrized by
the pair (X, η), whereX is a Ck+1-map from Σ toM and η ∈ Γk(Σ, T ∗Σ⊗X∗T ∗M),
where k ∈ {0, 1, · · · } denotes the regularity type of the map.
On Φ, the following first order action is defined:

S(X, η) :=

∫
Σ

〈η, dX〉+ 1

2
〈η, (Π# ◦X)η〉,

where

• Π# is the map from T ∗M → TM induced from the Poisson bivector Π.
• dX and η are regarded as elements in Ω1(Σ, X∗(TM)) and Ω1(Σ, X∗(T ∗M)),
respectively.

• 〈 , 〉 denotes the pairing between Ω1(Σ, X∗(TM)) and Ω1(Σ, X∗(T ∗M)) in-
duced by the natural pairing between TxM and T ∗

xM , for all x ∈ M .

The integrand, called the Lagrangian, will be denoted by L. Associated to this
action, the corresponding variational problem δS = 0 induces the following space

EL = {Solutions of the Euler-Lagrange equations} ⊂ Φ,

where, using integration by parts

δS =

∫
Σ

δL
δX

δX +
δL
δη

δη + boundary terms.

The partial variations correspond to:

δL
δX

= dX + (Π# ◦X)η = 0(2)

δL
δη

= dη +
1

2
〈(∂Π# ◦X)η, η〉 = 0.(3)

Now, if we restrict to the boundary, the general space of boundary fields corre-
sponds to

Φ∂ := {vector bundle morphisms between T (∂Σ) and T ∗M}.
Following [6], Φ∂ is endowed with a symplectic form and a surjective submersion

p : Φ → Φ∂ . We define

LΣ := p(EL).

Finally, we define CΠ as the set of fields in Φ∂ which can be completed to a field
in LΣ′ , with Σ

′
:= ∂Σ× [0, ε], for some ε.
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It turns out that Φ∂ can be identified with T ∗(PM), the cotangent bundle of the
path space on M and that

CΠ := {(X, η)|dX = π#(X)η, X : ∂Σ → M, η ∈ Γ(T ∗I ⊗X∗(T ∗M))}.
Furthermore the following proposition holds

Proposition 1. [4]. The space CΠ is a coisotropic submanifold of Φ∂ .

In fact, the converse of this proposition also holds in the following sense. If we
define S(X, η) and CΠ in the same way as before, without assuming that Π satisfies
Equation (1) it can be proven that

Proposition 2. [2, 3]. If CΠ is a coisotropic submanifold of Φ∂ , then Π is a
Poisson bivector field.

The geometric interpretation of the Poisson sigma model will lead us to the
connection between Lie algebroids and Lie groupoids in Poisson geometry. First we
need some definitions.
A pair (A, ρ), where A is a vector bundle over M and ρ (called the anchor map) is
a vector bundle morphism from A to TM is called a Lie algebroid if

(1) There is Lie bracket [, ]A on Γ(A) such that the induced map ρ∗ : Γ(A) →
X(M) is a Lie algebra homomorphism.

(2) Leibniz identity:

[X, fY ]A = f [X,Y ] + ρ∗(X)(f)Y, ∀X,Y ∈ Γ(A), f ∈ C∞(M).

Lie algebras, Lie algebra bundles and tangent bundles appear as natural examples
of Lie algebroids. For our purpose, the cotangent bundle of a Poisson manifold
T ∗M , where [, ]T∗M is the Koszul bracket for 1-forms, that is defined for exact
forms by

[df, dg] := d{f, g},∀f, g ∈ C∞(M),

whereas for general 1-forms it is recovered by Leibniz and the anchor map given
by Π# : T ∗M → TM , is a central example of Lie algebroids. To define a morphism
of Lie algebroids we consider the complex Λ•A∗, where A∗ is the dual bundle and
a differential δA is defined by the rules

(1)
δAf := ρ∗df, ∀f ∈ C∞(M).

(2)

〈δAα,X∧Y 〉 := −〈α, [X,Y ]A〉+〈δ〈α,X〉, Y 〉−〈δ〈α, Y 〉, X〉, ∀X,Y ∈ Γ(A), α ∈ Γ(A∗),

where 〈, 〉 is the natural pairing between Γ(A) and Γ(A∗).

A vector bundle morphism ϕ : A → B is a Lie algebroid morphism if

δAϕ
∗ = ϕ∗δB .

This condition written down in local coordinates gives rise to some PDE’s the
anchor maps and the structure functions for γ(A) and Γ(B) should satisfy. In
particular, for the case of Poisson manifolds, CΠ corresponds to the space of Lie
algebroid morphisms between T (∂Σ) and T ∗M where the Lie algebroid structure
on the left is given by the Lie bracket of vector fields on T (∂Σ) with identity anchor
map and on the right is the one induced by the Poisson structure on M .

As it was mentioned before, it can be proven that this space is a coisotropic
submanifold of T ∗PM . Its symplectic reduction, i.e. the space of leaves of its
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characteristic foliation, called the reduced phase space of the PSM, when is smooth,
has a particular feature, it is a symplectic groupoid over M [4]. More precisely, a
groupoid is a small category with invertible morphisms. When the spaces of objects
and morphisms are smooth manifolds, a Lie groupoid over M , denoted by G ⇒ M ,
can be rephrased as the following data1

G×(s,t) G
µ

// G
i // G

t

44

s
**
M

εoo

where s, t, ι, µ and ε denote the source, target, inverse, multiplication and unit
map respectively, such that the following axioms hold (denoting G(x,y) := s−1(x)∩
t−1(y)):
(A.1) s ◦ ε = t ◦ ε = idM
(A.2) If g ∈ G(x,y) and h ∈ G(y,z) then µ(g, h) ∈ G(x,z)

(A.3) µ(ε ◦ s× idG) = µ(idG × ε ◦ t) = idG
(A.4) µ(idG × i) = ε ◦ t
(A.5) µ(i× idG) = ε ◦ s
(A.6) µ(µ× idG) = µ(idG × µ).
A Lie groupoid is called symplectic if there exists a symplectic structure ω on G
such that

Grµ := {(a, b, c) ∈ G3| c = µ(a, b)}
is a lagrangian submanifold of G × G × G, where G denotes the sign reversed
symplectic strucure on G. Finally, we can state the following

Theorem 1. [4]. For the Poisson sigma model with source space homeomorphic to
a disc, the symplectic reduction CΠ of CΠ (the space of leaves of the characteristic
foliation), if it is smooth, is a symplectic groupoid over M .

The smoothness of the reduced phase space has particular interest. In [10], the
necessary and suficient conditions for integrability of Lie algebroids, i.e. whether a
Lie groupoid such that its infinitesimal version corresponds to a given Lie algebroid
exists, are stated. In [11], these conditions have been further specialized to the
Poisson case. It turns out that the reduced phase space of the PSM coincides with
the space of equivalent classes of what are called A−paths modulo A− homotopy
[10], with A = T ∗M.

3. The version before reduction.

The main motivation for introducing the relational symplectic groupoid con-
struction is the following. In general, the leaf space of a characteristic foliation
is not a smooth finite dimensional manifold and in this particular situation, the
smoothness of the space of reduced boundary fields is controlled by the integra-
bility conditions stated in [10]. In this paper, we define a groupoid object in the
extended symplectic category, where the objects are symplectic manifolds, possibly
infinite dimensional, and the morphisms are immersed Lagrangian submanifolds.
It is important to remark here that this is extended category is not properly a
category! (The composition of morphisms is not smooth in general). However, for
our construction, the corresponding morphisms will be composable.

We restrict ourselves to the case when C is the sometimes called Extended Sym-
plectic Category, denoted by SymExt and defined as follows:

1G×(s,t) G is a smooth manifold whenever s (or t) is a surjective submersion.
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Definition 1. SymExt is a category in which the objects are symplectic manifolds
and the morphisms are immersed canonical relations. 2 Recall that L : M 9 N
is an immersed canonical relation between two symplectic manifolds M and N
by definition if L is an immersed Lagrangian submanifold of M̄ × N . 3 SymExt

carries an involution † : (SymExt)op → SymExt that is the identity in objects and
in morphisms, for f : A 9 B, f† := {(b, a) ∈ B ×A|(a, b) ∈ f}.

This category extends the usual symplectic category in the sense that the sym-
plectomorphisms can be thought in terms of canonical relations.

Definition 2. A relational symplectic groupoid is a triple (G, L, I) where
• G is a weak symplectic manifold. 4

• L is an immersed Lagrangian submanifold of G3.
• I is an antisymplectomorphism of G

satisfying the following axioms

• A.1 L is cyclically symmetric (i.e. if (x, y, z) ∈ L, then (y, z, x) ∈ L)
• A.2 I is an involution (i.e. I2 = Id).
Notation. L is a canonical relation G×G 9 Ḡ and will be denoted by Lrel.
Since the graph of I is a Lagrangian submanifold of G ×G, I is a canonical
relation Ḡ 9 G and will be denoted by Irel.
L and I can be regarded as well as canonical relations

Ḡ × Ḡ 9 G and G 9 Ḡ

respectively and will be denoted by Lrel and Irel. The transposition

T : G × G → G × G
(x, y) 7→ (y, x)

induces canonical relations

Trel : G × G 9 G × G and Trel : Ḡ × Ḡ 9 Ḡ × Ḡ.

The identity map Id : G → G as a relation will be denoted by Idrel : G 9 G
and by Idrel : G 9 G.

• A.3 Irel ◦ Lrel = Lrel ◦ T rel ◦ (Irel ◦ Irel) : G × G 9 G.
Remark 1. Since I and T are diffeomorphisms, both sides of the equaliy
correspond to immersed Lagrangian submanifolds.

Define

L3 := Irel ◦ Lrel : G × G 9 G.
As a corollary of the previous axioms we get that

Corollary 1. Irel ◦ L3 = L3 ◦ Trel ◦ (Irel × Irel).

2This is not exactly a category because the composition of canonical relations is not in general

a smooth manifold
3Observe here that usually one considers embedded Lagrangian submanifolds, but we consider

immersed ones.
4A weak symplectic manifold M has a closed 2-form ω such that the induced map ω# : T ∗M →

TM is injective. For finite dimensional manifolds, the notion of weak symplectic and symplectic
manifolds coincides.
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• A.4 L3 ◦ (L3 × Id) = L3 ◦ (Id × L3) : G3 9 G is an immersed Lagrangian
submanifold.

The fact that the composition is Lagrangian follows from the fact that,
since I is an antisymplectomorphism, its graph is Lagrangian, therefore L3

is Lagrangian, and so (Id×L3) and (L3 × Id). The graph of the map I, as
a relation ∗ 9 G × G will be denoted by LI .

• A.5 L3 ◦ LI is an immersed Lagrangian submanifold of G.
Remark 2. It can be proven that Lagrangianity in these cases is automat-
ical if we start with a finite dimensional symplectic manifold G.

Let L1 := L3 ◦ LI : ∗ 9 G. From the definitions above we get the
following

Corollary 2.
Irel ◦ L1 = L1,

that is equivalent to
I(L1) = L1,

where L1 is regarded as an immersed Lagrangian submanifold of G.

Corollary 3.
L3 ◦ (L1 × L1) = L1.

• A.6 L3 ◦ (L1 × Id) is an immersed Lagrangian submanifold of G × G.
We define

L2 := L3 ◦ (L1 × Id) : G 9 G.

Corollary 4.
L2 = L3 ◦ (Id× L1).

Corollary 5. L2 leaves invariant L1, L2 and L3, i.e.

L2 ◦ L1 = L1

L2 ◦ L2 = L2

L2 ◦ L3 = L3.

Corollary 6.

Irel ◦ L2 = L2 ◦ Irel and L†
2 = L2.

The next set of axioms defines a particular type of relational symplectic groupoids,
in which the relation L2 plays the role of an equivalence relation and it allows to
study the case of symplectic reductions.

Definition 3. A relational symplectic groupoid (G, L, I) is called regular if the
following axioms are satisfied. Consider G as a coisotropic relation ∗ 9 G denoted
by Grel.

• A.7 L2 ◦ Grel is an immersed coisotropic relation.
Remark 3. Again in this case, the fact that this is a coisotropic relation
follows automatically in the finite dimensional setting.

Corollary 7. Setting C := L2 ◦ Grel the following corollary holds.
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(1)
C∗ = G∗ ◦ L2

(2) L2 defines an equivalence relation on C.
(3) This equivalence relation is the same as the one given by the charac-

teristic foliation on C.

• A.8 The reduction L1 = L1/L2 is a finite dimensional smooth manifold.
We will denote L1 by M .

• A.9 S := {(c, [l]) ∈ C × M : ∃l ∈ [l], g ∈ G|(l, c, g) ∈ L3} is an immersed
submanifold of G ×M .

Corollary 8.

T := {(c, [l]) ∈ C ×M : ∃l ∈ [l], g ∈ G|(c, l, g) ∈ L3}
is an immersed submanifold of G ×M .

The following conjectures (this is part of work in progress) give a con-
nection between the symplectic structure on G and Poisson structures on
M .

Conjecture 1. Let (G, L, I) be a regular relational symplectic groupoid.
Then, there exists a unique Poisson structure on M such that S is coisotropic
in G ×M.

Conjecture 2. Assume G := C/L2 is smooth. Then G is a symplectic
groupoid on M with structure maps s := S/L2, t := T/L2, µ := Lrel/L2, ι =
I, ε = L1/L2.

Definition 4. A morphism between relational symplectic groupoids (G,LG, IG)
and (H,LH , IH) is a map F from G to H satisfying the following properties:

(1) F is a Lagrangian subspace of G× H̄.
(2) F ◦ IG = IH ◦ F .
(3) F 3(LG) = LH .

Definition 5. A morphism of relational symplectic groupoids F : G → H is called
an equivalence if the transpose canonical relation F † is also a morphism.

Remark 4. For our motivational example, it can be proven that

(1) Different differentiability degrees (the Ck− type of the maps X and η) give
raise to equivalent relational symplectic groupoids.

(2) For regular relational symplectic groupoids, G and G are equivalent.

3.1. Examples. The following are natural examples of relational symplectic groupoids.

3.1.1. Symplectic groupoids: Given a Lie symplectic groupoid G over M , we can
endow it naturally with a relational symplectic structure:

G = G.

L = {(g1, g2, g3)|(g1, g2) ∈ G×(s,t) G, g3 = µ(g1, g2)}.
I = g 7→ g−1, g ∈ G.

Remark 5. In connection to the construction in the Poisson sigma model, we
can conclude that when M is integrable, the reduced space of boundary fields CΠ

is a relational symplectic groupoid.
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3.1.2. Symplectic manifolds with a given immersed Lagrangian submanifold: Let
(G,ω) be a symplectic manifold and L an immersed Lagrangian submanifold of G.
We define

G = G.

L = L × L× L.
I = {identity of G}.

It is an easy check that this construction satisfies the relational axioms and fur-
thermore

Proposition 3. The previous relational symplectic groupoid is equivalent to the
zero dimensional symplectic groupoid (a point with zero symplectic structure and
empty relations).

Proof: It is easy by checking that L is an equivalence from the zero manifold to
G .

3.1.3. Powers of symplectic groupoids: Let us denote G(1) = G, G(2) the fiber
product G ×(s,t) G, G(3) = G ×(s,t) (G ×(s,t) G) and so on . It can be proven the
following

Lemma 1. [3]. Let G ⇒ M be a symplectic groupoid.

(1) G(n) is a coisotropic submanifold of Gn.
(2) The reduced spaces G(n) are symplectomorphic to G. Furthermore, there

exists a natural symplectic groupoid structure on G(n) coming from the quo-

tient, isomorphic to the groupoid structure on G.

We have natural canonical relations Pn : G(n) → Gn defined as:

P := {(x, α, β)|x ∈ G(n), [α] = [β] = x},

satisfying the following relations:

P † ◦ P = Gr(IdG), P ◦ P † = {(g, h) ∈ Gn|[g] = [h]}.
It can be checked that

Proposition 4. G(i) is equivalent to G(j),∀i, j ≥ 1 and the equivalence is given

by Pi ◦ P †
j .

3.1.4. The cotangent bundle of the path space of a Poisson manifold. This is the
motivational example for the construction of relational symplectic groupoids. In
this case, the coisotropic submanifold CΠ is equipped with an equivalence relation,
called T ∗M - homotopy [10], and denoted by ∼. More precisely, to points of CΠ are
∼- equivalent if they belong to the same leaf of the characteristic foliation of CΠ.
We get the following relational symplectic groupoid (where L is the restriction to
the boundary of the solutions of the Euler-Lagrange equations in the bulk)

G = T ∗(PM).

L = {(X1, η1), (X2, η2), (X3, η3) ∈ C3
Π|(X1 ∗X2, η1 ∗ η2) ∼ (X3 ∗ η3)}.

I = (X, η) 7→ (φ∗X,φ∗η)}.
Here ∗ denotes path concatenation and

φ : [0, 1] → [0, 1]

t 7→ 1− t
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Theorem 2. [3]. The relational symplectic groupoid G defined above is regular.

The improvement of Theorem 1 in terms of the relational symplectic groupoids
can be summarized as follows. L1 can be understood as the space of T ∗M - paths
that are T ∗M - homotopy equivalent to the trivial T ∗M - paths and

L1 := ∪x0∈MT ∗
(X,η)

PM ∩ L1,

where (X, η) = {(X, η)|X ≡ X0, η ∈ kerΠ#}, we can prove the following

Theorem 3. [3]. If the Poisson manifold M is integrable, then there exists a tubu-
lar neigborhood of the zero section of T ∗PM , denoted by N(Γ0(T

∗PM)) such that
L1 ∩N(Γ0(T

∗PM)) is an embedded submanifold of T ∗PM .

Theorem 4. [3]. If M is integrable, then L1∩N(Γ0(T
∗PM)), L2∩N(Γ0(T

∗PM))2

and L3 ∩N(Γ0(T
∗PM))3 are embedded Lagrangian submanifolds.

4. Quantization.

The structure of relational symplectic groupoid may be reformulated in the cate-
goryHilb of Hilbert spaces. We define a preunital Frobenius algebra as the following
data

• A Hilbert space H, equipped with an inner product 〈 , 〉 and an associative
map

m : H ⊗H → H.

• Defining

〈a, b〉H := 〈a, b〉,
where ¯ denotes complex conjugation, the following axioms holds:
(1) Cyclicity or Frobenius condition:

〈m(a, b), c〉H = 〈a,m(b, c)〉H
(2) Projectability: Choosing an orthonormal basis {ei} of H and assuming

that

e :=
∑
i

m(ei, ēi)

is a well defined element in H, the operator

P : H → H

a 7→ m(a, e)

is an orthogonal projection.

Remark 5. Under the assumptions above, (H,m, 〈 , 〉H) is not an unital algebra,
however, the image of the operator P , called the reduced algebra, is unital.

The relational symplectic groupoid may be seen as the dequantization of this
structure. The hard problem consists in going the other way around, namely, in
quantizing a relational symplectic groupoid.

In the finite dimensional examples, methods of geometric quantization might be
available, the problem being that of finding an appropriate polarization compatible
with the structures. This question, in the case of a symplectic groupoid, has been
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addressed by Weinstein [17] and Hawkins [13]. The relational structure might allow
more flexibility.

In the infinite-dimensional case, notably the example in 3.1.4., perturbative func-
tional integral techniques might be available. The reduced algebra should give back
a deformation quantization of the underlying Poisson manifold.

Finally notice that quantization might require weakening a bit the notion of pre-
unital Frobenius algebra, allowing for example nonassociative products. However,
one expects that the reduced algebra should always be associative.
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Institüt für Mathematik, Universität Zürich Irchel, Winterthurerstrasse 190, CH-
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