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Abstract. We extend the regularity criterion of Bayer-Stillman for a graded ideal
a of a polynomial ring K[x] := K[x0, · · · ,xr] over an infinite field K, to the situation
of a graded submodule M of a finitely generated graded module U over a noetherian
homogeneous ring R = ⊕

n≥0
Rn, whose base ring R0 has infinite residue fields. If R0

is artinian, we give a polynomial P∼U ∈ Q[x], which depends only on the Hilbert
polynomial of U such that reg(M) ≤ P∼U (max{d(M), reg(U) + 1}), where d(M) is
the generating degree of M . This extends the regularity bound of Bayer-Mumford
for a graded ideal a ⊆ K[x] over a field K to the pair M ⊆ U .

1. Introduction

Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring and let M 6= 0 be a finitely

generated graded R-module. For i ∈ N0 and n ∈ N let H i
R+

(M)n denote the n-th

graded component of the i-th local cohomology module H i
R+

(M) of M with respect to
the irrelevant ideal R+ = ⊕

n>0
Rn of R. The (Castelnuovo-Mumford) regularity reg(M)

of M is defined by

(1.1) reg(M) := inf{m ∈ Z | H i
R+

(M)m−i+1 = 0 ∀i ∈ N0}.
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Upper bounds on reg(M) in terms of other invariants of M are of fundamental sig-
nificance in algebraic geometry, commutative algebra and computational algebraic
geometry (cf [3]).

So, in the theory of Hilbert and Piccard schemes one is lead to bound the regularity
of a graded submodule M of a graded free module F over a polynomial ring in terms
of the Hilbert polynomial of M , the generating degree and the rank of F , (cf [13],
[14], [15], [22]).

On the other hand if the base ring R0 is artinian, reg(M) and various other cohomolog-
ical invariants of M may be bounded in terms of the diagonal values
lengthR0

(
H i
R+

(M)−i
)

(i = 0, 1, · · · ) of cohomology (cf [5], [6], [7]). In close rela-
tion to these bounds of diagonal type, the mere vanishing and non-vanishing of the
graded components H i

R+
(M)n is completely governed by a few simple combinatorial

conditions, if R0 is semilocal and of dimension ≤ 1 (cf [4]).

If R = K[x0, · · · ,xr] =: K[x] is a polynomial ring over a field, reg(M) gives an
upper bound on the generating degrees of the syzigies of M and hence is of crucial
significance for the classical problem of “the finitely many steps” (cf [16], [17]). In
more recent terms: reg(M) governs the computational complexity of calculating the
syzygies of the finitely generated graded K[x]-module M (cf [9]).

Let us recall that the problem of “the finitely many steps” consists in constructing in
a predictable number of steps, a minimal graded free resolution of M from a minimal
graded free presentation F1 → F0 → M → 0. This problem can be solved as the
regularity reg(M) of a graded submoduleM of the free moduleK[x]⊕s can be bounded
in terms of r, s and the generating degree d(M) of M . This was essentially shown
by Hermann [17] on use of ideas of Henzelt-Noether [16]. (Note that the bounds
calculated by Hermann are not correct; for correctly calculated bounds see [19], for
example.) In the spirit of this, Bayer and Mumford have shown that for a graded
ideal a ⊆ K[x] one has the bound (cf [1])

(1.2) reg(a) ≤ (2d(a))r! .

In [5] we have extended this bound by showing that for a graded submodule M ⊆
K[x]⊕s it holds

(1.3) reg(M) ≤ ser (2d(M))r! ,

where the numbers er are defined recursively by e0 = 0 and er := er−1·r+1, if r > 0. It
also should be noted that the bounds given in (1.2) and (1.3) still appear to be rather

far away from being sharp: namely, if Char(K) = 0 one has reg(a) ≤ (2d(a))2r−1

(cf
[11], [12]), and by the examples of Mayr and Meyer (cf [21]) this latter bound is about
to be of best possible type.

One basic aim of this paper is to extend the regularity bounds of (1.2) and (1.3) to
a much more general situation. We namely consider an arbitrary finitely generated
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graded module U over a noetherian homogeneous ring R = ⊕
n≥0

Rn with artinian base

ring R0. Then we show (cf Theorem 5.7)

There is a polynomial P∼U ∈ Q[x] (of degree dim(U)!) which depends

only on the Hilbert polynomial PUof U, such that for each graded

submodule M ⊆ Uwe have reg(M) ≤ P∼U (max{d(M), reg(U) + 1}) .
(1.4)

If in addition dim(U) = dim(R) and d(M) + reg(M) ≤ reg(U) + 1, we may replace
P∼U by a polynomial P ∗U ∈ Q[x] which is such that we get the bounds of (1.3) if we
choose R = K[x] and U = K[x]⊕s.

In [1], the bound of (1.2) is deduced on use of the regularity criterion of Bayer-
Stillman (cf [2]). In fact it turns out, that the bound (1.2), and its extension (1.3),
may be deduced without using this criterion (cf [5]). But nevertheless, our proof of
the bound (1.3) (resp. its extension (1.4)) is closely related to the regularity criterion
of Bayer-Stillman, as both rely on the technique of (saturated) filter-regular sequences
of linear forms. In section 3 we give a criterion - in terms of such sequences - for
detecting whether a graded submodule M of a finitely generated graded module U
over a homogeneous noetherian ring R = ⊕

n≥0
Rn is m-regular, (cf Theorem 3.8). If

the base ring R0 has infinite residue fields, our criterion extends the corresponding
criterion of Bayer-Stillman for a graded ideal a ⊆ K[x] to the case of a graded
submodule M ⊆ U (cf Theorem 4.7).

2. Some Preliminaries

In this section we recall a few generalities on graded rings and graded modules. We
use N0 (resp. N) to denote the set of non-negative (resp. positive) integers.

2.1. Definition and Remark. A) By a homogeneous ring we mean a (commutative
unitary) N0-graded ring R = ⊕

n≥0
Rn which is generated over its base ring R0 by linear

forms, thus with R = R0[R1]. Keep in mind that the N0-graded ring R = ⊕
n≥0

Rn is

homogeneous and noetherian, if and only if R0 is noetherian and there are finitely
many linear forms f0, · · · , fr ∈ R1 such that R = R0[f0, · · · , fr].
B) If R = ⊕

n≥0
Rn is a N0-graded ring, we shall denote by R+ the irrelevant ideal of R,

thus R+ := ⊕
n>0

Rn. Recall that R is homogeneous if and only if R+ is generated by

linear forms, thus if and only if R+ = R1 ·R.

C) If R = ⊕
n≥0

Rn is a N0-graded ring, we use Proj(R) to denote the projective spectrum

of R, e.g. the set of all graded primes p ⊆ R with R+ * p. •



4 MARKUS BRODMANN

2.2. Definition. A) Let R = ⊕
n≥0

Rn be a N0-graded ring and let T = ⊕
n∈N

Tn be a

graded R-module. We define the beginning and the end of T respectively by

beg(T ) := inf{n ∈ Z | Tn 6= 0}, end(T ) := sup{n ∈ Z | Tn 6= 0},

where “inf” and “sup” are formed in Z ∪ {±∞} with the convention that inf ∅ =∞
and sup ∅ = −∞.

B) Let R and T be as in part A) and let m ∈ Z. We define the m-th left-truncation
and the m-th right-truncation of T respectively as the following R0-submodules of T :

T≥m := ⊕
n≥m

Tn ; T≤m := ⊕
n≤m

Tn.

As R is N0-graded, T≥m is a (graded) R-submodule of T .

C) Let R and T be as above. We denote the generating degree of T by d(T ), so that

d(T ) := inf{m ∈ Z | T = T≤t ·R},

where “inf” is formed under the same convention as in part A). •

2.3. Definition and Remark. (cf [8]). A) Let R = ⊕
n≥0

Rn be a homogeneous

noetherian ring and let M = ⊕
n∈Z

Mn be a graded R-module. Then, for each i ∈ N0,

the i-th local cohomology module H i
R+

(M) of M with respect to the irrelevant ideal

R+ of R carries a natural grading. For all n ∈ Z we use H i
R+

(M)n to denote the n-th

graded component of H i
R+

(M).

B) Let R = ⊕
n≥0

Rn and M = ⊕
n∈Z

Mn be as in part A) but assume in addition that the

R-module M is finitely generated. Then, for all i ∈ N0 and all n ∈ Z the R0-module
H i
R+

(M)n is finitely generated and vanishes for all n� 0. Moreover H i
R+

(M) vanishes
for all i > dim(M). So, for each k ∈ N0 we may define the (Castelnuovo-Mumford)
regularity of M at and above level k by

regk(M) := sup{end
(
H i
R+

(M)
)

+ i | i ≥ k},

and obtain regk(M) ∈ Z ∪ {−∞}.

C) Let R and M be as in part B). The (Castelnuovo-Mumford) regularity of M is
defined as (cf (1.1))

reg(M) := reg0(M),

where reg0(M) is defined according to part B). It is important to keep in mind, that
the generating degree and the regularity of M are related by the inequality (cf [8,
15.3.1])

d(M) ≤ reg(M).
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D) Let R and M be as in part B) and let k ∈ N0,m ∈ N. Then, the following
equivalence is known to hold (cf [8, 15.2.5])

regk(M) ≤ m⇐⇒ H i
R+

(M)m−i+1 = 0 ∀i ≥ k.

If regk(M) ≤ m we say that M is m-regular at and above level k. If reg(M) ≤ m, e.g.
if M is m-regular at and above level 0, we say that M is m-regular. •

2.4. Remark. (Faithfully flat base change) A) Let R = ⊕
n≥0

Rn be a homogeneous

noetherian ring and let R′0 be a noetherian faithfully flat R0-algebra. Then, the
faithfully flat R-algebra R′0 ⊗

R0

R = ⊕
n≥0

(R′0 ⊗
R0

Rn) is a homogeneous noetherian ring in

a natural way and (R′0 ⊗
R0

R)+ = R+(R′0 ⊗
R0

R).

B) Keep the notations and hypotheses of part A), let T = ⊕
n∈Z

Tn be a graded R-module

and S = ⊕
n∈Z

Sn ⊆ T a graded submodule. Then R′0 ⊗
R0

T = ⊕
n∈Z

R′0 ⊗
R0

Tn is a graded

(R′0 ⊗
R0

R)-module in a natural way and R′0 ⊗
R0

S = ⊕
n∈Z

R′0 ⊗
R0

Sn ⊆ R′0 ⊗
R0

T becomes a

graded submodule. Clearly if T is finitely generated, then the R′0⊗
R0

R-module R′0⊗
R0

T

is finitely generated, too. Moreover d(R′0 ⊗
R0

T ) = d(T ).

C) Let R and R′0 be as in part A) and let M = ⊕
n∈Z

Mn be a finitely generated

graded R-module and let i ∈ N0. Then, the graded flat base-change property of local
cohomology yields a natural isomorphism of graded R′0 ⊗

R0

R-modules

H i
(R′0 ⊗

R0

R)+
(R′0 ⊗

R0

M) ∼= R′0 ⊗
R0

H i
R+

(M),

(cf [8, 15.2.3]). As a consequence we have

regk(R′0 ⊗
R0

M) = regk(M) ∀k ∈ N0.

D) (Replacement argument) Let R and R′0 be as above. Let M be a finitely generated
graded R-module and N ⊆M a graded submodule. Then, the previous observations
allow to replace M and N by R′0 ⊗

R0

M resp. R′0 ⊗
R0

N whenever we wish to prove a

statement on regularities and generating degrees of M and N . •

For further unexplained notation and terminology from commutative algebra we refer
to [10], [20].
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3. Filter-Regular Sequences and Regularity

Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring, let U be a finitely generated graded

R-module and let M ⊆ U be a graded submodule. Let m ∈ Z and let f1, · · · , fr ∈ R1

be a sequence of linear forms. We prove a criterion for the condition that M is m-
regular and f1, · · · , fr form a saturated filter-regular sequence with respect to U/M .

We briefly recall the notion of filter-regular sequence.

3.1. Reminder and Remark. (cf [8, Chapt. 18]). A) Let R ⊕
n≥0

Rn be a homogeneous

noetherian ring and let T = ⊕
n∈Z

Tn be a finitely generated and graded R-module. A

homogeneous element f ∈ R is said to be (R+−) filter-regular with respect to T if it is
a non-zero divisor with respect to T/H0

R+
(T ). It is equivalent to say that f avoids all

p ∈ AssR(T )∩Proj(R). Clearly, f is filter-regular with respect to T if and only if the
annihilator 0 :

T
f of f in T is contained in H0

R+
(T ), thus if and only if end(0 :

T
f) <∞.

B) Let R and T be as in part A). A sequence of homogeneous elements f1, · · · , fr ∈ R
is called a filter-regular sequence with respect to T if fi is filter-regular with respect

to T/
i−1

Σ
j=1
fjT for all i ∈ {1, · · · , r}. If in addition f1, · · · , fr ∈ R1, we speak of a

filter-regular sequence of linear forms. If W ⊆ H0
R+

(T ) is a graded submodule, a
sequence f1, · · · , fr of homogeneous elements in R is filter-regular with respect to T
if and only if it is with respect to T/W . •

3.2. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring, let T = ⊕
n∈Z

Tn be

a finitely generated graded R-module, let f1, · · · , fr ∈ R1 be a filter-regular sequence
with respect to T and let i ∈ {0, · · · , r}. Then

a) reg
(
T/

i

Σ
j=1
fjT
)
≤ reg(T ) ;

b) end
(
H i
R+

(T )
)

+ i ≤ end
(
H0
R+

(
T/

i

Σ
j=1
fjT
))

.

Proof: “a)”: Follows from [8, (18.3.11)].

“b)”: The case i = 0 is obvious. So, let i > 0. As f2, · · · , fr is a filter-regular sequence
with respect to T/f1T , by induction

end
(
H i−1
R+

(T/f1T )
)

+ i− 1 ≤ end
(
H0
R+

(T/
i

Σ
j=1
fjT )

)
=: e.
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Let T := T/H0
R+

(T ). Then, the graded epimorphism H i−1
R+

(T/f1T ) � H i−1
R+

(T/f1T )

shows that end
(
H i−1
R+

(T/f1T )
)

+ i− 1 ≤ e. But now, the exact sequences

H i−1
R+

(T/f1T )n+1 −→ H i
R+

(T )n
f1−→ H i

R+
(T )n+1

and the vanishing of H i
R+

(T )n for all n� 0 show that

end
(
H i
R+

(T )
)
≤ end

(
H i−1
R+

(T/f1T ))
)
− 1 ≤ e− i.

In view of the graded isomorphism H i
R+

(T ) ∼= H i
R+

(T ) we get our claim. �

In order to prove and to formulate the announced regularity criterion we introduce
the notion of saturated filter-regular sequence.

3.3. Definition and Remark. A) Let R = ⊕
n≥0

Rn and T = ⊕
n∈Z

Tn be as in 3.1. A

filter-regular sequence f1, · · · , fr with respect to T is saturated if f1, · · · , fr ∈ R+ and

if T/
r

Σ
j=1
fjT is an R+-torsion module. It is equivalent to say that

r

Σ
j=1
fjR ⊆ R+ ⊆√

0 :
R
T/

r

Σ
j=1
fjT or else that

√
(0 :

R
T ) +R+ =

√
(0 :

R
T ) +

r

Σ
j=1
fjR.

B) As a consequence of this we can say (cf [8, 2.1.9]):

If f1, · · · , fr ∈ R is a saturated filter-regular sequence with respect to T , there are
natural isomorphisms H i

R+
(T ) ∼= H i

(f1,··· ,fr)(T ) for all i ∈ N0. So, in this situation we

have H i
R+

(T ) = 0 for all i > r. •

3.4. Proposition. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring, let T = ⊕
n∈Z

Tn

be a finitely generated graded R-module, let f1, · · · , fr ∈ R1 and let m ∈ Z. Then, the
following statements are equivalent:

(i) reg(T ) < m and f1, · · · , fr is a saturated filter-regular sequence with respect
to T ;

(ii) end(0 :
T/

i−1
Σ
j=1

fjT

fi) < m for all i ∈ {1, · · · , r} and end(T/
r

Σ
j=1
fjT ) < m.

Proof: “(i) =⇒ (ii)”: Assume that condition (i) holds. Then, 3.2 a) shows that

end
(
H0
R+

(T/
k

Σ
j=1
fjT )

)
≤ reg(T/

k

Σ
j=1
fjT ) ≤ reg(T ) < m for all k ∈ {1, · · · , r}. As fi is

filter-regular with respect to T/
i−1

Σ
j=1
fjT , we obtain

end(0 :
T/

i−1
Σ
j=1

fjT

fi) ≤ end
(
H0
R+

(T/
i−1

Σ
j=1
fjT )

)
< m, ∀i ∈ {1, · · · , r}.
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As the sequence f1, · · · , fr is saturated, we have T/
r

Σ
j=1
fjT = H0

R+
(T/

r

Σ
j=1
fjT ) and

hence obtain end(T/
r

Σ
j=1
fjT ) < m.

“(ii) =⇒ (i)”: Assume that condition (ii) holds. As end(0 :
T/

i−1
Σ
j=1

fjT

fi) < ∞ for

i = 1, · · · , r, it follows that the sequence f1, · · · , fr is filter-regular with respect to T .

As end(T/
r

Σ
j=1
fjT ) <∞ this sequence is saturated. In particular we have H i

R+
(T ) = 0

for all i > r (cf 3.3 B) ). If we apply 3.2 b) with i = 1, · · · , r we obtain reg(T ) < m.
•

3.5. Corollary. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring, let m ∈ Z, let U be

a finitely generated graded R-module such that reg(U) < m. Let M ⊆ U be a graded
submodule and let f1, · · · , fr ∈ R1. Then, the following statements are equivalent:

(i) reg(M) ≤ m and f1, · · · , fr is a saturated filter-regular sequence with respect
to U/M .

(ii)
(
(M +

i−1

Σ
j=1
fjU) :

U
fi
)
≥m = (M +

i−1

Σ
j=1
fjU)≥m for all i ∈ {1, · · · , r}

and (M +
r

Σ
j=1
fjU)≥m = U≥m.

Proof: Let T := U/M . Then, the graded exact sequence 0 → M → U → T → 0
shows that reg(M) ≤ max{reg(U), reg(T )+1} and reg(T ) ≤ max{reg(U), reg(M)−1}
(cf [8, 15.2.15]). So, statement (i) of 3.4 is equivalent to statement (i) of 3.5. It is
immediate that statement (ii) of 3.4 is equivalent to statement (ii) of 3.5. �

The announced regularity criterion turns the criterion 3.5 into a “persistency result”:
the comparison of graded components in all degrees ≥ m which appears in statement
3.5 (ii) may be replaced by a comparison in degree m. To prove this, we use the
following lemma:

3.6. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring. Let U be a finitely

generated graded R-module, let m ∈ Z and let M,N ⊆ U be two graded submodules
such that d(M), d(N) ≤ m and reg(M +N) < m. Then, d(M ∩N) ≤ m.

Proof: Write R as a graded homomorphic image of a polynomial ring R0[x] =
R0[x0, · · · ,xr] and observe that neither the generating degree nor the regularity of
a finitely generated graded R-module V change their values, if we consider V as an
R0[x]-module. Therefore we may and do assume that R = R0[x] is a polynomial ring.
Now, we may proceed as in the proof of [5, 2.4], where our result is shown in the
special case in which R is a polynomial ring over a field. Namely, as d(M), d(N) ≤ m
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there are graded epimorphisms π : F → M → 0, % : G → N → 0 in which F and
G are graded free R-modules of finite rank with d(F ), d(G) ≤ m. As reg(R) = 0 we
thus obtain reg(F ⊕G) ≤ m and the graded short exact sequence

0→ Ker(π + %)→ F ⊕G π+%−→M +N → 0

yields that reg
(
Ker(π + %)

)
≤ m, thus d

(
Ker(π + %)

)
≤ m (cf 2.3 C) ). Now, the

commutative diagram

M ⊕N σ:=idM+idN−−−−−−−→ M +Nxπ⊕% xπ+%

F ⊕G F ⊕G

shows that (π ⊕ %)
(
Ker(π + %)

)
= Ker(σ) and thus d

(
Ker(σ)

)
≤ m. In view of the

graded isomorphism M ∩N ∼= Ker(σ) we get our claim. �

3.7. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring and let m ∈ Z. Let

U be a finitely generated graded R-module, let M ⊆ U be a graded submodule and let
f ∈ R1 be filter-regular with respect to U . Assume that d(M), reg(U), reg(M + fU) ≤
m. Then, d(M :

U
f) ≤ m.

Proof: As d(fU) ≤ d(U)+1 ≤ reg(U)+1 ≤ m+1, Lemma 3.6 implies d(M ∩fU) ≤
m+ 1. As M ∩ fU = f(M :

U
f) we have a graded short exact sequence

0→ (0 :
U
f)→ (M :

U
f)→ (M ∩ fU)(1)→ 0.

As f is filter-regular with respect to U , we have (0 :
U
f) ⊆ H0

R+
(U) and hence

d(0 :
U
f) ≤ end(0 :

U
f) ≤ end

(
H0
R+

(U)
)
≤ reg(U) ≤ m. Now, the above exact

sequence yields d(M :
U
f) ≤ m. �

Now, we are ready to formulate and to prove the main result of this section.

3.8. Theorem. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring and let m ∈ Z.

Let U be a finitely generated graded R-module, let M ⊆ U be a graded submodule, let
f1, · · · , fr ∈ R1 be filter-regular elements with respect to U and assume that reg(U) <
m and d(M) ≤ m. Then, the following statements are equivalent:

(i) reg(M) ≤ m and f1, · · · , fr is a saturated filter-regular sequence with respect
to U/M ;
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(ii)
(
(M +

i−1

Σ
j=1
fjU) :

U
fi
)
m

= (M +
i−1

Σ
j=1
fjU)m for all i ∈ {1, · · · , r}

and (M +
r

Σ
j=1
fjU)m = Um.

Proof: “(i) =⇒ (ii)”: Clear by 3.5.

“(ii) =⇒ (i)”: We proceed by induction on r. First, let r = 1. By statement (ii)
we have (M + f1U)m = Um. As d(U) ≤ reg(U) ≤ m it follows (M + f1U)≥m =
U≥m, hence end

(
U/(M + f1U)

)
< m. In view of the graded short exact sequence

0 → (M + f1U) → U → U/(M + f1U) → 0 it follows reg(M + f1U) ≤ m. By
Lemma 3.7 we get d(M :

U
f1) ≤ m. By statement (ii), we have (M :

U
f1)m = Mm; it

follows (M :
U
f1)≥m = M≥m. By the implication “(ii) =⇒ (i)” of Corollary 3.5 we get

reg(M) ≤ m and that f1 constitutes a saturated filter-regular sequence with respect
to U/M .

Now, let r > 1 and assume that statement (ii) holds. As d(f1U) ≤ d(U) + 1 ≤
reg(U) + 1 ≤ m, we have d(M + f1U) ≤ m. We apply induction to the graded
submodule M + f1U ⊆ U and the sequence f2, · · · , fr ∈ R1. In doing so, we thus see
that reg(M+f1U) ≤ m and that f2, · · · , fr is a saturated filter-regular sequence with

respect to U/(M+f1U). So, by 3.5 we have
(
(M+

i−1

Σ
j=1
fjU) :

U
fi)≥m = (M+

i−1

Σ
j=1
fjU)≥m

for all i ∈ {2, · · · , r} and (M+
r

Σ
j=1
fjU)≥m = U≥m. By 3.7 we also have d(M :

U
f1) ≤ m.

As (M :
U
f1)m = Mm and d(M) ≤ m, it follows (M :

U
f1)≥m = M≥m. Now, another

use of 3.5 gives statement (i). �

4. Extending the Regularity Criterion of Bayer-Stillman

Let K[x] = K[x0, · · · ,xt] be a polynomial ring over an infinite field K and let a ⊆
K[x] be a graded ideal. Let m ∈ N. In [2, 1.10] Bayer and Stillman proved that a
is m-regular if and only if there is a sequence of linear forms f1, · · · , fr ∈ K[x]1 such
that statement (ii) of Theorem 3.8 holds with M = a and U = K[x]. The aim of this
section is to extend this regularity criterion of Bayer-Stillman to a situation closely as
general as in 3.8. To do so, we obviously need that there are saturated filter-regular
sequences of linear forms with respect to arbitrary finitely generated modules over
the considered homogeneous noetherian ring R = ⊕

n≥0
Rn. To ensure the existence of

such sequences, we shall subject the base ring R0 to an appropriate condition.

4.1. Definition and Remark. A) A Ring R0 is said to have infinite residue fields
if the field R0/m0 is infinite for each m0 ∈ Max(R0) or - equivalently - if R0/p0 is an
infinite domain for each p0 ∈ Spec(R0).
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B) Clearly, if f : R0 → R′0 is a homomorphism of rings and R0 has infinite residue
fields, then so has R′0. In particular R0 has infinite residue fields if it contains an
infinite field. •

4.2. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 has

infinite residue fields and let Q ⊆ Proj(R) be a finite set. Then R1 *
⋃

q∈Q

q.

Proof: We may assume that Q 6= ∅. For m0 ∈ Max(R0) set Q(m0) := {q ∈ Q |
q ∩ R0 ⊆ m0}. Clearly, there is a finite set M ⊆ Max(R0) such that Q(m0) 6= ∅
for each m0 ∈ M and Q =

⋃
m0∈M

Q(m0). For each m0 ∈ M and each q ∈ Q(m0)

it follows by Nakayama that q ∩ R1 + m0R1 $ R1. So, as Q(m0) is finite and
R0/m0 is infinite, there is some vm0 ∈ R1\

⋃
q∈Q(m0)

(q1 + m0R1). For each m0 ∈ M

we find some element am0 ∈
( ⋂

n0∈M\{m0}
n0

)
\m0. With v := Σ

m0∈M
am0vm0 it follows

v ∈ R1\
⋃

m0∈M

⋃
q∈Q(m0)

(q1 + m0R1) = R1\
⋃

q∈Q

q. �

4.3. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 has

infinite residue fields and let P ⊆ Proj(R) be a finite set. Let r ∈ N and let T = ⊕
n∈Z

Tn

be a finitely generated graded R-module. Then there is a sequence (fi)i∈N ⊆ R1\
⋃

p∈P
p

such that f1, · · · , fr is a filter-regular sequence with respect to T for each r ∈ N.

Proof: If we apply 4.2 with Q := P∩Ass(T )∩Proj(R) we get an element f1 ∈ R1\
⋃

q∈P
p

which is filter-regular with respect to T . On use of this observation, a sequence (fi)i∈N
of the requested type is easily constructed by induction. �

So, if the base ring R0 has infinite residue fields, filter-regular sequence of arbitrary
length and consisting of linear forms exist. Now, the existence of saturated filter-
regular sequences follows easily.

4.4. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring and let T be a finitely

generated graded R-module. Let (fi)i∈N ⊆ R+ be a sequence such that f1, · · · , fr is a
filter-regular sequence with respect to T for each r ∈ N. Then, there is some r0 ∈ N
such that the filter-regular sequence f1, · · · , fr is saturated for each r ≥ r0.

Proof: If, for some r ∈ N, the filter-regular sequence f1, · · · , fr is non-saturated, fr+1

avoids some member of AssR(T/
r∑
i=1

fiT ), so that fr+1 /∈
r

Σ
i=1
fiR, hence

r

Σ
i=1
fiR $

r+1

Σ
i=1
fiR.

As R is noetherian, we get our claim. �
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The possible values of the number r0 in Lemma 4.4 can be bounded easily. In order
to do so, let us recall some notion.

4.5. Definition. The arithmetic rank ara(a) of an ideal a of a noetherian ring R is
defined as the minimum number of elements in R, which generate an ideal which is
radically equal to a, thus

ara(a) := min
{
r ∈ N0 | ∃a1, · · · , ar ∈ R :

√
r

Σ
i=1
aiR =

√
a
}
. •

4.6. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring, let T be a finitely

generated graded R-module and let f1, · · · , fr ∈ R+ be a filter-regular sequence with
respect to T . Then:

a) If the filter-regular sequence f1, · · · , fr is saturated, r ≥ ara
(
(R/(0 :

R
T ))+

)
.

b) If r ≥ dim(T ), the filter-regular sequence f1, · · · , fr is saturated.

c) If R0 is artinian, then the filter-regular sequence f1, · · · , fr is saturated if and
only if r ≥ dim(T ).

Proof: “a)”: Clear by 3.3 A).

“b)”: Assume that the sequence f1, · · · , fr is not saturated, so that
√

(0 :
R
T ) +R+ %√

(0 :
R
T ) +

r

Σ
j=1
fjR. Then, there is a prime p ∈ Var

(
(0 :

R
T )+

r

Σ
j=1
fjR

)
\Var(R+). Thus

f1/1, · · · fr/1 ∈ pRp is a regular sequence with respect to Tp (cf [8, 18.3.8]), so that
r ≤ depth(Tp) ≤ dim(Tp). As p $ p0 + R+ ∈ Spec(R), we have dim(Tp) < dim(T )
and hence get r < dim(T ).

“c)” As R0 is artinian, we have dim
(
R/(0 :

R
T )
)

= ara
(
(R/(0 :

R
T ))+

)
. Now, we

conclude by statements a) and b). �

Next, we give the announced extension of the regularity criterion of Bayer-Stillman.

4.7. Theorem. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 has

infinite residue fields. Let m ∈ Z, let U be a finitely generated graded R-module and
let M ⊆ U be a graded submodule. Assume that reg(U) < m and d(M) ≤ m. Then,
the following statements are equivalent:

(i) reg(M) ≤ m;
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(ii) there are elements f1, · · · , fr ∈ R1 which are filter-regular with respect to U
and such that(

(M +
i−1

Σ
j=1
fjU) :

U
fi)m = (M +

i−1

Σ
j=1
fjU)m ∀i ∈ {1, · · · , r}

and (
M +

r

Σ
j=1
fjU

)
m

= Um.

Proof: “(ii) =⇒ (i)”: Clear by Theorem 3.8.

“(i) =⇒ (ii)”: If we apply 4.3 with P = AssR(U) ∩ Proj(R) and keep in mind 4.4 we
get a saturated filter-regular sequence f1, · · · , fr ∈ R1 with respect to U/M such that
each fi is filter-regular with respect to U . Now, we conclude by Theorem 3.8. �

4.8. Remark. A) Keep the notations and all the hypotheses of 4.7. Let f1, · · · , fr ∈
R1 be filter-regular linear forms with respect to U . Then, in view of Theorem 3.8 the
two conditions(

(M +
i−1

Σ
j=1
fjU) :

U
fi)m = (M +

i−1

Σ
j=1
fjU)m ∀i ∈ {1, · · · , r}

and

(M +
r

Σ
j=1
fjU)m = Um

hold if and only if f1, · · · , fr is a saturated filter-regular sequence with respect to
U/M .

B) Keep the above notations and hypotheses. Assume that dim(U/M) ≤ r. Then, in
view of 4.6 b) the two conditions mentioned in part A) hold if and only if the linear
forms f1, · · · , fr form a filter-regular sequence with respect to U/M . Moreover, the
above conditions never can hold if r < ara

(
(R/(0 :

R
T ))+

)
(cf 4.6 a) ). In particular,

for each r ≥ dim(U/M) and for a “generic sequence” f1, · · · , fr ∈ R1 of linear forms,
the above two conditions hold, whereas for r < ara

(
(R/(0 :

R
T ))+

)
they never hold

simultaneously.

C) Let K[x] = K[x0, · · · ,xt] be a polynomial ring over an infinite field K, let m, s ∈
N, let U := K[x]⊕s and let M ⊆ U a graded submodule with d(M) ≤ m. As
reg(U) = 0 and as U is torsion-free, it follows from 4.7 that reg(M) ≤ m if and only
there are linear forms f1, · · · , fr ∈ K[x]1\{0} such that the above two conditions
hold. Moreover, if this is the case, these two conditions hold for a generic sequence
f1, · · · , fr of linear forms whenever r ≥ dim(U/M). This is precisely what is shown
in [18, 1.10]. Choosing s = 1, we get the regularity criterion of Bayer-Stillman. •



14 MARKUS BRODMANN

5. Extending the Regularity bound of Bayer-Mumford

Let K[x] = K[x0, · · · ,xt] be a polynomial ring over a field K and let a ⊆ K[x] be

a graded ideal. In [1, 3.8] Bayer and Mumford have shown that reg(a) ≤
(
2d(a)

)n!
.

Our aim is to extend this bounding result to the case where K[x] is replaced by an
arbitrary finitely generated graded module U over a homogeneous noetherian ring
R = ⊕

n≥0
Rn with artinian base ring R0 and a by a graded submodule M of U .

5.1. Notation and Remark. A) Let R0 be an artinian ring and let V be a finitely
generated R0-module. We use `(V ) = `R0(V ) to denote the length of V .

B) Let R0 and V be as in part A). Let m1, · · · ,mt be the different maximal ideals of
R0, let x be an indeterminate and set

R′0 :=
(
R0[x]\

t⋃
i=1

miR0[x]
)−1

R0[x].

Then, clearly R′0 is a faithfully flat artinian extension ring of R0 with the different
maximal ideals m′i = miR

′
0 (i = 1, · · · , t). Moreover we have `R′0(R′0 ⊗

R0

V ) = `R0(V ).

As R′0/m
′
i
∼= R0/mi(x) for all i ∈ {1, · · · , t}, the ring R′0 has infinite residue fields. •

5.2. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 is

artinian, let U be a finitely generated graded R-module, let M ⊆ U be a graded
submodule and let f ∈ R1 be filter-regular with respect to U and to U/M . Let k ∈ Z
be such that d(M), reg(M + fU), reg(U) + 1 ≤ k. Then

a) end
(
H i
R+

(M)
)

+ i ≤ k for all i 6= 1 ;

b) end
(
H1
R+

(M)
)
≤ `(Uk) + k − 1.

Proof: Let T := U/M . The short exact sequence 0→ (M + fU)→ U → T/fT → 0
shows that reg(T/fT ) ≤ max{reg(U), reg(M + fU)− 1} ≤ k− 1. As f ∈ R1 is filter-
regular with respect to T , it follows reg1(T ) ≤ reg(T/fT ) ≤ k − 1 (cf [8, 18.3.11])
and the graded short exact sequence 0 → M → U → T → 0 implies reg2(M) ≤
max{reg2(U), reg1(T ) + 1} ≤ k (cf [8, 15.2.15]) and hence end

(
H i
R+

(M)
)

+ i ≤ k for

all i ≥ 2. As end
(
H0
R+

(M)
)
≤ end

(
H0
R+

(U)
)
≤ reg(U) ≤ k, we have shown statement

a).

It remains to prove statement b). In view of the graded short exact sequence 0 →
M → U → T → 0 and as end

(
H1
R+

(U)
)
≤ reg(U)−1 ≤ k−1, it suffices to show that

end
(
H0
R+

(T )
)
≤ `(Uk) + k − 1. We have seen above that reg(T/fT ) ≤ k − 1. So, if

we apply cohomology to the graded short exact sequence 0 → T/(0 :
T
f)

f→ T (1) →
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(T/fT )(1)→ 0 we get isomorphisms

H0
R+

(
T/(0 :

T
f)
)
n
∼= H0

R+
(T )n+1, ∀n ≥ k − 1.

If we apply cohomology to the graded short exact sequence 0 → (0 :
T
f) → T →

T/(0 :
T
f) → 0 and keep in mind that (0 :

T
f) ⊆ H0

R+
(T ) (cf 3.1 A) ), we thus get

exact sequences

0→ (0 :
T
f)n → H0

R+
(T )n

πn−→ H0
R+

(T )n+1 → 0, ∀n ≥ k − 1.

By 3.7 we have d(0 :
T
f) = d(M :

U
f) ≤ k so that πm becomes an isomorphism for all

m ≥ n, provided πn is an isomorphism for some n ≥ k. From this it follows that the
length `

(
H0
R+

(T )n
)

of the R0-module H0
R+

(T )n is strictly decreasing as a function of

n in the range n ≥ k until its value becomes 0. This implies that end
(
H0
R+

(T )
)
≤

`
(
H0
R+

(T )k
)

+ k − 1. As H0
R+

(T )k is a subquotient of the R0-module Uk we get

end
(
H0
R+

(T )
)
≤ `(Uk) + k − 1. �

5.3. Lemma. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 is

artinian and dim(R) = 1. Let U be a finitely generated and graded R-module and
let M ⊆ U be a graded submodule. Let k ∈ Z be such that d(M) + reg(R) and
reg(U) + 1 ≤ k. Then, reg(M) ≤ k.

Proof: We may apply the replacement argument 2.4 D) with R′0 defined according to
5.1 B) and thus may assume that R0 has infinite residue fields. As end

(
H0
R+

(M)
)
≤

end
(
H0
R+

(U)
)
< k and as H i

R+
(M) = 0 for all i > 1 it remains to show that

end
(
H1
R+

(M)
)
≤ k − 1. Choosing P = AssR(R) ∩ Proj(R) we conclude by 4.3 that

there is a linear form f ∈ R1 which is at the same time filter-regular with respect to U
and to R. As f is filter-regular with respect to U , we have
end(0 :

U
f) ≤ end

(
H0
R+

(U)
)
< k. Therefore, the multiplication map f : Un → Un+1

is injective for all n ≥ k. As dim(R) = 1 and as f ∈ R1 avoids all minimal primes
of R we have R+ ⊆

√
Rf and R is a finitely generated graded module over its

subring R0[f ]. In particular by the graded base ring independence of local coho-
mology, reg(R) does not change if we consider R as an R0[f ]-module. In doing so
we obtain d(R) ≤ reg(R) ≤ k − d(M) so that Rn+1 = fRn for all n ≥ k − d(M).
Hence for each n ≥ k we obtain Mn+1 = Rn−d(M)+1Md(M) = fRn−d(M)Md(M) = fMn.
As f : Un → Un+1 is injective for all n ≥ k it follows that (Mn+1 :

Un
f) = Mn

for all such n. From this, we see that end(0 :
U/M

f) < k. As f ∈ R1, it fol-

lows end
(
H0
R+

(U/M)
)
< k. If we apply cohomology to the graded exact sequence

0 → M → U → U/M → 0 and keep in mind that end
(
H1
R+

(U)
)
< reg(U) < k it

follows indeed that end
(
H1
R+

(M)
)
< k. �
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In order to formulate our main result, we introduce some notation

5.4. Definition and Remark. A) Let P be the set of all polynomials P ∈ Q[x] with
the property that P (n) ∈ N0 for all integers n � 0. For P ∈ P, let ∆P ∈ P denote
the difference polynomial P (x)− P (x− 1) of P .

B) For P ∈ P we recursively define a polynomial P ∗ = P ∗(x) by

P ∗(x) :=

{
x, if deg(P ) ≤ 0

(∆P )∗(x) + P
(
(∆P )∗(x)

)
, if deg(P ) > 0.

It is easy to see, that P ∗ ∈ P, whenever P ∈ P.

C) Now, let s ∈ N and r ∈ N0. Then clearly s

(
x + r
r

)
∈ P and ∆

[
s

(
x + r
r

)]
=

s

(
x + r − 1
r − 1

)
. We write Fr(s,x) :=

[
s

(
x + r
r

)]∗
so that

F0(s,x) = x and Fr(s,x) = Fr−1(s,x) + s

(
Fr−1(s,x) + r

r

)
for all r > 0.

This means, that Fr(s,x) is as in [5, 2.5 A)]. In particular, we have (cf [5, 2.5 B)]):

Fr(s, t) < ser(2t)r!, (∀s, t ∈ N),

where the numbers er are defined inductively by

e0 := 0 and er := r · er−1 + 1 for r > 0.

D) Also, for each P ∈ P we recursively define a polynomial P∼ ∈ P by

P∼(x) :=

{
x, if P = 0

(∆P )∼(x) + P
(
(∆P )∼(x)

)
, if P 6= 0.

It is easy to see that
∼
P (k) ≥ P ∗(k) for all k � 0. •

Finally let us recall a few facts on Hilbert polynomials.

5.5. Reminder. A) Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0

is artinian and let M = ⊕
n∈Z

Mn be a finitely generated graded R-module. We denote

the Hilbert polynomial of M by PM so that (cf [8, Chap. 17])

PM(n) = `(Mn) ∀n > reg(M).

B) Also, if f ∈ R1 is filter regular with respect to M , we have short exact sequences

0→Mn−1
f→Mn → (M/fM)n → 0 for all n� 0 and these yield PM/fM = ∆PM .
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If R′0 is defined according to 5.1 B) and in the notation of 2.4 B) we have

PR′0 ⊗
R0

M = PM . •

5.6. Lemma. Let R ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 is artinian.

Let U be a finitely generated graded R-module and let k ∈ Z be such that reg(U) < k.
Then

a) k ≤ (∆PU)∗(k) ≤ P ∗U(k) ;

b) k ≤ (∆PU)∼(k) ≤ P∼U (k).

Proof: In view of 2.4 D) and 5.5 B) we may assume that R0 has infinite residue
fields. We now proceed by induction on deg(PU). If PU = 0, we have P ∗U = P∼U =
(∆PU)∗ = (∆PU)∼ = x, and our claims are obvious. If deg(PU) = 0 we have P ∗U =
(∆PU)∗ = (∆PU)∼ = x and P∼U = x +PU(x). As PU is a positive constant our claims
follow. Let deg(PU) > 0. As R0 has infinite residue fields there is a linear form f ∈ R1

which is filter regular with respect to U . In particular we have ∆PU = PU/fU (cf 5.5
B) ) and reg(U/fU) < k (cf 3.2 a) ). So, by induction we have k ≤ (∆PU)∗(k) and
k ≤ (∆PU)∼(k). In particular (cf 5.5 A) ) PU

(
(∆PU)∗(k)

)
= `(U(∆PU )∗(k)) ≥ 0 and

PU
(
(∆PU)∼(k)

)
= `(U(∆PU )∼(k)

)
≥ 0. Now, both claims follow from the definitions of

P ∗U and P∼U . �

Now, we prove the main result of this section.

5.7. Theorem. Let R = ⊕
n≥0

Rn be a homogeneous noetherian ring such that R0 is

artinian . Let U be a finitely generated graded R-module and let M ⊆ U be a graded
submodule. Let k ∈ Z and assume that reg(U) < k.

a) If d(M) ≤ k, then reg(M) ≤ P∼U (k).

b) If dim(R) = dim(U) and d(M) + reg(R) ≤ k, then reg(M) ≤ P ∗U(k).

Proof: In view of 2.4 D) and the last observation made in 5.5 B), we may assume that
R0 has infinite residue fields. We proceed by induction on dim(U). If dim(U) ≤ 0 we
have PU = 0 and reg(M) = end

(
H0
R+

(M)
)
≤ end

(
H0
R+

(U)
)

= reg(U) < k = 0∗(k) =
0∼(k), which proves both claims in this case. Now, let dim(U) > 0. From now on,
we prove our two claims separately.

“a)”: If we apply 4.3 with P := AssR(U/M) ∩ Proj(R), we find a linear form f ∈ R1

which is filter-regular with respect to U and U/M . As dim(U) > 0, f avoids all
minimal members of AssR(U) so that dim(U/fU) = dim(U)− 1. By 3.2 a) we have
reg(U/fU) ≤ reg(U) < k. Clearly d

(
(M + fU)/fU

)
≤ d(M) ≤ k. By 5.5 B) we also

have ∆PU = PU/fU . Now, by induction we have reg
(
(M + fU)/fU

)
≤ (∆P )∼(k).

As (0 :
f
U) ⊆ H0

R+
(U) and in view of the graded isomorphism fU ∼=

(
U/(0 :

U
f)
)
(−1)
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we get reg(fU) = reg
(
U/(0 :

U
f)
)

+ 1 ≤ reg(U) + 1 ≤ k, hence reg(fU) ≤ (∆P )∼(k),

(cf 5.6 b) ). The exact sequence 0→ fU → (M + fU)→ (M + fU)/fU → 0 yields
reg(M + fU) ≤ (∆PU)∼(k) =: m. If we keep in mind that k ≤ m we get m ≤ P∼U (m)
(cf 5.6 b) ) and `(Um) = PU(m) (cf 5.5 A) ). So, if we apply 5.2 with m instead of k we
get end

(
H i
R+

(M)
)

+ i ≤ P∼U (m) for all i 6= 1 and end
(
H1
R+

(M)
)

+ 1 ≤ PU(m) +m =

(∆PU)∼(k) + PU
(
(∆PU)∼(k)

)
= P∼U (k). Therefore reg(M) ≤ P∼U (k).

“b)”: Assume first that dim(U) = 1 and hence dim(R) = 1. Then, 5.3 and 5.6
a) show that reg(M) ≤ k ≤ P ∗U(k). So, let dim(U) > 1. Now apply 4.3 with
P = AssR(U/M) ∪AssR(R) ∩ Proj(R) in order to obtain a linear form f ∈ R1 which
is at the same time filter-regular with respect to U,U/M and R. As in the proof of
statement a) we now get dim(R/fR) = dim(U/fU) = dim(U)−1, reg(U/fU) < k and
d
(
(M + fU)/fU) + reg(R/fR) ≤ k. Again, by 5.5 B) we have ∆PU = PU/fU . Thus,

by induction we obtain reg
(
(M + fU)/fU

)
≤ (∆P )∗(k). Now, we may conclude

literally in the same way as in the proof of statement a) if we replace (∆PU)∼ by
(∆PU)∗ and P∼U by P ∗U . �

5.8. Corollary. Let R0[x] = R0[x0, · · · ,xr] be a polynomial ring over an artinian
ring R0. Let w ∈ N and let M ⊆ R0[x]⊕w be a graded submodule. Then

reg(M) ≤
(
`(R0)w

)er(
2d(M)

)r!
,

where er is defined according to 5.4 C).

Proof: If d(M) = 0, there is a graded isomorphism M ∼= M0 ⊗
R0

R0[x], so that

reg(M) = 0. Therefore we may assume that d(M) > 0. Let R := R0[x], U :=
R0[x]⊕w. Then reg(U) = reg(R) = 0, dim(R) = dim(U) = r and the fact that

PU = `(R0)w

(
x + r
r

)
allow to conclude by 5.7 b) and 5.4 C). �

5.9. Remark. If in 5.8 we choose R0 = K to be a field, we get the bound given in
[5, 2.7]. If we choose in addition w = 1, we get the bound of Bayer-Mumford [1, 3.8].

•
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