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Abstract

Infinite periodic lattices can be used as models for analyzing and under-

standing various properties of mechanical truss constructions with periodic

structures. For infinite lattices, the problems of connectivity and stability are

non-trivial from the mathematical point of view, and have not been addressed

adequately in the literature. In this paper, we will present a set of algebraic

algorithms, which are based on ideal theory, to solve such problems.

1 Introduction

Lattice models are used in many applications such as models of heterogeneous mate-
rials ([18], [8]), fracture models ([19]), porous media ([7], [4]), biophysics ([10]). For a
survey of some applications, we refer to [18] and [20]. Lattices are becoming more and
more interesting for industrial production because these materials are light, cheap,
and can be designed to prescribed stiffness requirements.

In this paper, we will investigate infinite periodic lattices which may serve as
approximations to large periodic structures. Various aspects, such as the investigation
of Green’s function for lattice equations for (infinite) periodic lattices, are addressed
in the literature (see, e.g., [9], [11], [14]). In [2], fast solution methods of equations
on finite lattices will be presented.

Fourier analysis can be naturally applied to infinite periodic lattices. Neverthe-
less questions of the connectivity and stability (rigidity) of infinite lattices become
nontrivial.

For vector problems, the stability is closely related to the rigidity of the skeletons
and frameworks. This problem is a classical one in structural mechanics and methods
for the verification of the rigidity of a lattice are presented in [5], [12], [1]. The
drawback of all these approaches is that they become very costly or even fail if the
lattices contain very long connections or are even infinite. In our paper, we will develop
algebraic algorithms which perform efficiently, especially in such cases.

We will consider scalar and vector problems on infinite periodic lattices. In a
mathematical setting which will be introduced, the problems can be formulated in a
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variational way by a bilinear form acting on grid functions which are defined at the
nodes of the lattice. Alternatively they can be expressed by finite difference operators.
Based on the periodicity of the lattice, we may associate with such finite difference
operators a matrix-valued symbol. Because the symbol and the inverse of the symbol
are related to the stability of the lattice equations and the continuous dependence of
the solution on the right-hand side, the investigation of the zeroes of the determinant
is equivalent to the analysis of the connectivity and stability. We will present purely
algebraic algorithms which decide whether the determinant of the symbol has a zero
only at the origin or whether there exist further zeroes.

The algorithms which we are going to present have purely algebraic character in
the sense that no numerical approximation is involved and they manipulate the data
in the ring of vector valued integers.

Although we will address only the lattice in the entire
� d , the results together

with the Fourier analysis approach can be used for analysis of local damages and for
an approximate solution on finite lattices (see, e.g., [13], [16], [17], [6], [8]).

The paper is structured as follows.
In Section 2, we will formulate discrete vector potentials on lattices which have

the same abstract form as problems in linear elasticity. We will discuss the problem
of stability of these potentials in terms of the symbol of the underlying difference
operator. We will see that the connectivity of the lattice and the structure of the set
of zeroes of the determinant of the symbol play an essential role in the stability.

In Section 3, we will present a purely algebraic algorithm for deciding in finite
time whether or not an infinite periodic lattice is connected.

In Section 4, an algebraic algorithm will be introduced for deciding in finite time
whether or not the discrete vector potential equations are stable. We apply these
algorithms to some characteristic model problems.

2 Discrete Vector Potentials on General Lattices

In this section, we will introduce an abstract mathematical framework for lattice
equations. We begin by introducing the geometry and the graph of the lattices.

2.1 The Geometry of Lattices

In this subsection, we will introduce periodic lattices in d dimensions.
Periodic lattices are most easily defined as periodic copies of points and edges

of a reference cell. The reference cell is a bounded domain ω ⊂ � d . To obtain a
macro-periodic structure we assume that, for given vectors t(i) ∈ � d , 1 ≤ i ≤ d, the
integer translates

ωm :=

{
y ∈ � d | ∃x ∈ ω : y = x +

d∑

i=1

mit
(i)

}
∀m ∈ � d
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are disjoint and satisfy
� d =

⋃
m∈ � d ωm. The vectors t(i) are the basis of the lattice

and form the matrix T :=
[
t(1), t(2), . . . , t(d)

]
. We assume

The d × d matrix T is regular. (2.1)

Next we define nodes and edges corresponding to the master cell. Let
{
x(κ)
}q

κ=1
⊂

ω denote a given set of pairwise different master nodes with periodic copies

x(m,κ) := x(κ) +

d∑

i=1

mit
(i) ∀m ∈ � d.

If there is no ambiguity, we write (m, κ) short for x(m,κ). As an additional assumption
we assume that the reference nodes are chosen such that all points x(m,κ), m ∈ � d,
1 ≤ κ ≤ q, are pairwise different.

Finally, rods (edges) connecting nodes in the lattice will be defined. Only the
rods connecting the nodes in the reference cell with other nodes have to be specified
because all other rods are periodic copies of them. A rod connecting a node x(κ) with
an other node x(m,λ) is denoted by the triple (κ, m, λ) ∈ Gmicro × Gmacro × Gmicro with

Gmicro := {1, 2, . . . , q} , Gmacro := � d. (2.2)

The set of all edges connected to a point x(κ) is given by

Bκ :=
{
(m, λ) ∈ Gmacro × Gmicro : There is a rod connecting x(k) and x(m,λ)

}

while the set of all edges connecting a point of type x(κ) and points of type x(·,λ) is

Bκ,λ := {m ∈ Gmacro : (m, λ) ∈ Bκ} .

hypertext

Remark 2.1 The periodicity of the lattice implies

n ∈ Bκ,λ ⇐⇒ −n ∈ Bλ,κ.

In view of Remark 2.1, we introduce (non-uniquely determined) minimal subsets
B−

µ,µ, B+
µ,µ ⊂ Bµ,µ implicitly by the conditions

Bµ,µ = B−
µ,µ ∪ B+

µ,µ and n ∈ B−
µ,µ ⇔ −n ∈ B+

µ,µ. (2.3)

Definition 2.2 The graph of the lattice consists of the nodes x(m,κ), (m, κ) ∈ Gmacro×
Gmicro and the edges

((m, κ) , (n, λ)) , m − n ∈ Bκ,λ ∪ Bλ,κ.
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Table 1: Two-dimensional lattices. Nodes are marked as balls. All other intersection
points stem from edges which lie upon each other but do not intersect in the graph.
Nodes of different type are depicted in different colors. The thin yellow frame is
drawn for visualisation purpose only. Left top: Cartesian lattice with additional
diagonal q = 1, ne = 3. Right top: Complicated lattice with q=1 and ne=4. Left
bottom: ”Honeycomb lattice” (q = 2, ne = 3), Right bottom: Lattice with internal
microstructure (q = 5, ne = 9).

4



The following examples are illustrated in Figure 1, where q in
(
x(κ)
)q

κ=1
denotes

the number of reference nodes and ne :=
∑q

κ=1

∑q
λ=κ ]Bκ,λ the number of reference

edges.

Example 2.3 For 1 ≤ i ≤ d, let ei denote the canonical unit vector in
� d .

1. The Cartesian lattice with additional diagonal is characterized by the choice

t(i) := ei, 1 ≤ i ≤ d,

ω = (0, 1)d , Gmicro = {1} , x(1) = 0

B1 = {(ei, 1) : 1 ≤ i ≤ d} ∪
{(∑d

i=1ei, 1
)}

.

2. For the definition of the honeycomb lattice in
� 2 we choose ω as the convex hull

of the points Pi := (cos αi, sin αi)
�

with αi := (i − 1)π/3, 1 ≤ i ≤ 6. There are
two translation (basis) vectors given by

t(1) :=
1

2

(
3,
√

3
) �

, t(2) :=
(
0,
√

3
) �

.

The reference nodes are x1 := (1, 0)
�

and x2 =
(
cos π

3
, sin π

3

)
with corresponding

edges

(
1,
(

1
−1

)
, 2
)
,
(
1,
(
0
0

)
, 2
)
,
(
1,
(

0
−1

)
, 2
)
,

(
2,
(
0
0

)
, 1
)
,
(
2,
(
0
1

)
, 1
)
,
(
2,
(
−1
1

)
, 1
)
.

2.2 Bilinear Forms on General Lattices

In this subsection, we will describe discrete potentials on general lattices as they
arise, e.g., in linear elasticity. We will focus here on general vector potentials while
referring for scalar ones to [16].

We start by introducing the space consisting of vector-valued grid functions. With
every nodal point x(m,λ) we associate a d-dimensional vector u(m,λ) ∈ �

d . The set of
all mappings u : Gmicro → �

d forms the set of grid functions corresponding to the

master cell, i.e., Smicro :=
( �

d
)Gmicro and the space of grid functions is defined by

S := (Smicro)
Gmacro ∼= � � d×{1,2,...,q}×{1,2,...,d}.

If, e.g., the governing physical equations describe linear elasticity, the vector u(m,κ)

describes the displacements at the node x(m,κ). Although the lattice equations pre-
sented below might correspond to very different physical applications we will use the
terminology of linear elasticity to denote the arising quantities.
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For every rod (λ, m, µ) ∈ Bλ,µ in the lattice we associate a positive number
E(λ,m,µ) > 0 which is called the modulus of elasticity. For every E (λ,m,µ) we asso-
ciate a positive semi-definite matrix E(λ,m,µ) ∈ � d×d being formed by the dyadic
products of the rod vector

(
x(λ), x(m,µ)

)
, i.e.,

E(κ,m,λ) :=
E(κ,n,λ)

‖x(n,λ) − x(κ)‖
x(n,λ) − x(κ)

‖x(n,λ) − x(κ)‖

(
x(n,λ) − x(κ)

‖x(n,λ) − x(κ)‖

) �

. (2.4)

Here 〈·, ·〉 denotes the Euclidean scalar product in
�

d and ‖·‖ the Euclidean norm.
The bilinear form A : S × S → �

is defined by

A (u, v) :=
∑

m∈Gmacro

1

2

∑

κ,λ∈Gmicro

∑

n∈Bκ,λ

〈
um+n,λ − um,κ,E

(κ,n,λ) (vm+n,λ − vm,κ)
〉

for all u, v ∈ S.
The physical interpretation of this bilinear form in the case of linear elasticity is

that the local energy of a rod depends on the modulus of elasticity E (κ,n,λ) and the
component of the displacements um+n,λ − um,κ which is aligned with the rod.

Remark 2.4 We emphasize that the abstract form of the bilinear form A corre-
sponds to physical problems in linear elasticity. In general, we could replace the
matrix E(κ,n,λ) with a more general positive definite or positive semi-definite matrix.
However, our results on the stability of the bilinear form A rely strongly on the def-
inition (2.4) of the matrix E(λ,m,µ). The assumptions on the geometry of the lattice
could possibly be relaxed if we restrict the choice to positive definite matrices instead
of positive semi-definite matrices.

We have now all the ingredients for formulating the general lattice equations. In
order to obtain solutions with finite energy, we introduce the spaces

SA := {v ∈ S : A (v, v) < ∞} /Q

Scomp :=
{
v ∈ S | ∃R > 0, ∀ (m, λ) ∈ G>R

macro × Gmicro : vm,λ = 0
}

where Q is the six-dimensional space spanned by the rigid-body motions and

G>R
macro := {m ∈ Gmacro : ‖m‖∞ > R} .

The lattice equations are given by seeking for given right-hand side F ∈ Scomp a
function u ∈ SA such that

A (u, v) = F (v) , ∀v ∈ SA. (2.5)

The assumption F ∈ Scomp allows the application of Fourier techniques for ana-
lyzing the solvability of (2.5). We will first motivate and outline the underlying idea
of our approach and present the details in the remaining part of this paper.
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In the next section, we will compute the matrix-valued symbol σ of the bilinear
form A. Formally, we can write the solution of (2.5) as

u = F−1
(
σ−1F̂

)
,

where F̂ is the Fourier transform of F and F−1 denotes the inverse Fourier transform.
Standard equilibrium conditions on the function F guarantee that F̂ is sufficiently

smooth at the origin such that the integral for the inverse Fourier transform is well
defined in a neighborhood of the origin. For the existence of the global inverse Fourier
transform, the inverse symbol σ−1, in general, may not contain poles outside the
origin. This property is equivalent to the condition

(
det σ (t) = 0 ∧ t ∈ [−π, π[d

)
⇔ (t = 0) . (2.6)

In [15], it is proved for the case d = 3 that condition (2.6) implies the existence
and uniqueness of (2.5).

In this light, the question of existence and uniqueness of equation (2.5) is reduced
to condition (2.6) and we will develop here purely algebraic algorithms for verifying
this condition for any given infinite periodic lattice.

2.3 The Symbol of Discrete Vector Potentials

The symbol of the bilinearform A in (2.5) is obtained by the Fourier transform which,
in the case of vector valued grid functions u ∈ S, is applied componentwise, i.e., for

all κ ∈ Gmicro and 1 ≤ j ≤ d to the vector
(
(u·,κ)j

)
∈ �

Gmacro . The symbol is a

mapping σ : ]−π, π]d →
( �

Gmicro×Gmicro
)d×d

(which can be interpreted in an obvious

way as a mapping onto
( �

d×d
)Gmicro×Gmicro and as a matrix in

�
dq×dq ).

To compute the symbol of A, we will briefly recall some basic facts about the
Fourier transform which are well known.

For a grid function v ∈ S, the Fourier (series) transform is given formally by

v̂κ,j (t) := F
(
(v·,κ)j

)
(t) =

∑

m∈Gmacro

(vm,κ)j ei〈m,t〉 (2.7)

for all t ∈ ]−π, π]d, κ ∈ Gmicro, 1 ≤ j ≤ d. The set Sper consists of all functions

v̂ : ]−π, π]d → Smicro which have a representation as in (2.7). The inverse Fourier
transform is formally defined for functions v̂ ∈ Sper (again componentwise) by

(vm,κ)j :=
(
F−1v̂κ,j

)
m

= (2π)−d

∫

]−π,π]d
v̂κ,j (t) e−i〈m,t〉dt
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for all m ∈ Gmacro, κ ∈ Gmicro, 1 ≤ j ≤ d. Replacing u and v in (2.7) by F−1û and
F−1v̂ we get

Â (û, v̂) := a (F−1û,F−1v̂)

=
1

2

∑

κ,λ∈Gmicro

∑

n∈Bκ,λ

∫

]−π,π]d

〈
ûλ,· (t) e−i〈n,t〉 − ûκ,· (t) ,E(κ,n,λ)

(
ei〈n,t〉v̂λ,· (t) − v̂κ,· (t)

)〉
dt

=
∑

κ,λ∈Gmicro

d∑

j,k=1

∑

n∈Bκ,λ

∫

]−π,π]d

(
ûκ,j (t) − ûλ,j (t) e−i〈n,t〉

)
E

(κ,n,λ)
j,k v̂κ,k (t) dt.

Thus, the operator associated with the bilinear form Â is given by

(
Âv̂
)

κ,j
:=

∑

λ∈Gmicro

d∑

k=1

∑

n∈Bκ,λ

(
ûκ,k (t) − ûλ,k (t) e−i〈n,t〉

)
E

(κ,n,λ)
j,k .

The symbol of this operator is defined by

σµ,ν (t) := δµ,ν

∑

λ∈Gmicro

∑

n∈Bλ,µ

E(λ,n,µ) −
∑

n∈Bν,µ

E(ν,n,µ)ei〈n,t〉 (2.8)

and satisfies
a
(
F−1û,F−1v̂

)
=

∑

µ,ν∈Gmicro

〈σν,µûµ,·, v̂ν,·〉 .

For the analysis of the symbol, the representation

σµ,µ (t) =
∑

ν∈Gmicro
ν 6=µ

∑

n∈Bν,µ

E(ν,n,µ) + 4
∑

n∈B+
µ,µ

E(µ,n,µ) sin2 〈n, t〉
2

(2.9)

σµ,ν (t) = −
∑

n∈Bν,µ

E(ν,n,µ)ei〈n,t〉

will be employed as well.
As already explained at the end of Section 2.2, the well-posedness of the lattice

equations is directly linked to the properties of the symbol and its inverse. The (finite
difference) operator associated with the bilinear form A (·, ·) is an elliptic operator

of second order if the inverse of σ−1 : ]−π, π]d →
( �

d×d
)Gmicro×Gmicro has poles, if and

only if t = 0, and the order of this pole is 2.
In the remaining sections, we will develop algorithms for verifying the connectivity

of the lattice and analyzing the poles of the inverse symbol.

8



3 Connectivity of Lattices

In this section, we will develop criteria for the lattice to be connected. Tools from
algebra are employed and we recall first the relevant setting. The notation is as
introduced in the previous section

Definition 3.1 Two nodes, (n, κ) and (m, λ), are directly connected iff

m − n ∈ Bκ,λ ∪ Bλ,κ.

Definition 3.2 Two nodes, (n, κ) and (m, λ), are connected if there exists a sequence(
s(i)
)p

i=1
of directly connected pairs of nodes satisfying

(
s(1)
)
1

= (n, κ) ,
(
s(p)
)
2

= (m, λ) ,
(
s(i)
)
2

=
(
s(i+1)

)
1
, 1 ≤ i ≤ p.

Definition 3.3 A lattice is connected if every node (n, κ) is connected to every node
(m, λ) of the lattice.

In order to check the connectivity of a periodic lattice, we employ tools from ideal
theory. First, some notation will be introduced.

Definition 3.4 Let M ∈ � d×n denote a matrix and m(i) the ith column vector of M.
The span of M over the ring R ∈ { � ,

� } is given by

span
R

M =

{
n∑

i=1

αim
(i) : α ∈ Rn

}
.

Next, we will give sufficient and necessary conditions for a matrix M ∈ � d×n such
that, for all v ∈ � d, the equation

Mw = v

has a solution w ∈ � n.

Definition 3.5 Let M ∈ � d×n and 1 ≤ t ≤ min {d, n}. A matrix S ∈ � t×t is
a t × t submatrix of M if there exist indices 1 ≤ `1 < `2 < . . . < `t ≤ d and
1 ≤ k1 < k2 < . . . < kt ≤ n so that

Si,j = M`i,kj
, 1 ≤ i, j ≤ t.

The corresponding minor is detSi,j.

Definition 3.6 Let M ∈ � d×n. For 1 ≤ t ≤ min {d, n}, let It (M) denote the ideal
in � generated by all t × t minors of M.
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In other words, the determinants of all submatrices S ∈ � t×t form the set σt =
{∆1, ∆2, . . . , ∆r} of numbers (determinants) ∆i ∈ � . The set

span
�

σt =

{
r∑

i=1

zi∆i : z ∈ � r

}

is It (M). For t = 0 we put I0 (M) = � .

Theorem 3.7 Let M∈ � d×n with n ≥ d. The following statements (a) and (b) are
equivalent.

a. Id (M) = � .

b. For every v ∈ � d, the equation

Mw = v (3.1)

has a solution w∈ � n.

Proof. (a)⇒(b): See [3, Corollary 5.35].
(b)⇒(a): If the solution of (3.1) is in � d, then It ([M | v]) = It (M) for all 0 ≤

t ≤ d and all v ∈ � d (cf. [3, Theorem 5.21]). (The matrix ([M | v]) ∈ � d×(n+1)

contains the columns of M as the first n columns, and v as the last column.) Using
the elementary properties of determinants, we get the result

It (M) = span
�

{It [M | ei] : 1 ≤ i ≤ d} ,

where ei denotes the ith standard unit vector in � d. Let Dt (M) denote the set of all
t × t minors of a matrix M. Because

Dt ([M | ei]) = Dt (M) ∪ Dt−1

(
M(i)

)
,

where M(i) is the matrix M after removing the ith row, we obtain

d⋃

i=1

Dt ([M | ei]) = Dt (M) ∪
d⋃

i=1

Dt−1

(
M(i)

)
= Dt (M) ∪ Dt−1 (M) .

This leads to

It (M) = span
�

Dt (M) = span
�

{Dt (M) ∪ Dt−1 (M)}

and we conclude that

It−1 (M) = span
�

{Dt−1 (M)} ⊂ It (M) .
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The opposite inclusion It (M) ⊂ It−1 (M) is obvious (cf. [3, p. 28]) and we proved

It−1 (M) = It (M) .

By the induction principle, we obtain

� = I0 (M) = I1 (M) = . . . = Id (M) ⊆ �

yielding Id (M) = � .

Remark 3.8 For n = d, the condition Id (M) = � is equivalent to

|detM| = 1.

Proof. See [3, Corollary 2.21].
For the general case, i.e., n ≥ d, the verification of the condition Id (M) = �

is slightly more involved. First, one computes the d × d minors resulting in the
set σ (M) = {∆1, ∆2, . . . , ∆r}. The property span � σ = � can be evaluated by
the algorithm ideal property(M) (cf. [21, Chapter II.10.2]). For s ⊂ � , we put
s• = s\ {0}.

algorithm ideal property(M);
begin

s := (σ (M))• ;
if {1,−1} ∩ s 6= ∅ then begin write(“Id (M) = � ”); stop; end;
else if ]s = 1 then begin write(“Id (M) 6= � ”); stop;end
else eliminate(s) ;

end;

The procedure eliminate is defined below.

procedure eliminate(s) ;
begin

choose ∆i ∈ s with minimal absolute value and ∆k ∈ s\ {∆i};
compute (division with remainder) p ∈ � so that

|∆k − p∆i| ≤ |∆k − q∆i| , ∀q ∈ � ;

replace ∆k ∈ s by ∆k − p∆i;
s := s•;
if {1,−1} ∩ s 6= ∅ then begin write(“Id (M) = � ”); stop; end
else if ]s = 1 then begin write(“Id (M) 6= � ”); stop; end
else eliminate(s) ;

end;

The Ideal Property is strongly related to the connectivity of the lattice as we will
see in Theorem 3.9. Recall the definition of the set B+

µ,µ as in (2.3). By introducing

a numbering in B+
µ,µ =

{
m(1), m(2), . . . , m(nµ)

}
⊂ � d, we may associate the matrix

Mµ,µ ∈ � d×nµ with B+
µ,µ having m(i), 1 ≤ i ≤ nµ, as column vectors.
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Theorem 3.9 Let q = 1 (cf. (2.2)). The lattice is connected if and only if

Id (M1,1) = � .

Proof. The lattice is connected if and only if every two nodes (m, 1) and (n, 1)
are connected, i.e., if, for all n ∈ � d, there exists w ∈ � n1 with

m +

n1∑

i=1

wim
(i) = n.

This is equivalent to the statement that, for all v ∈ � d, the equation

Mw = v

has a solution in � n1. Theorem 3.7 implies that this is equivalent to Id (M) = � .
The case q > 1 requires some additional notation. For an edge e = (a, b) of the

lattice, we denote the edge with opposite orientation by e− := (b, a).

Definition 3.10 A chain is a sequence S = (si)
p
i=1 of edges of the form

si =
((

m(i−1), κ(i−1)
)
,
(
m(i), κ(i)

))
1 ≤ i ≤ p

with
(
m(i), κ(i)

)
∈ Gmacro × Gmicro, 0 ≤ i ≤ p. The degree of S is the number of

different types of nodes in S, i.e.,

deg S := ]
{
κ(i) : 0 ≤ i ≤ p

}
.

A chain is non-degenerate if all nodes
(
m(i), κ(i)

)
, 0 ≤ i ≤ p, are of different type,

i.e., deg S = p + 1.
A chain S is a self-connection of type κ ∈ Gmicro if κ = κ(0) = κ(p). The self-

connection is non-degenerate if deg S = p.
For ` ∈ � d, the shift operator T` maps an edge ((m, κ) , (n, λ)) to the shifted edge

((m − `, κ) , (n − `, λ)).
Two chains R = (ri)

p
i=1, S = (si)

k
i=1 can be added if (rp)2 = (n, κ) and (s1)1 =

(ñ, κ) holds and we write R + S := (r1, . . . , rp, Tñ−n (s1) , . . . , Tñ−n (sk)). Two sets � ,�
of chains are compatible with respect to addition if, for any r ∈ � , s ∈ �

, the
addition r + s is defined and we put

� +
�

:= {R + S : R ∈ � , S ∈ � } .

The zero-element in the set of self-connections of type κ is ((0, κ) , (0, κ)).
The multiplication of self-connections S = (si)

p
i=1 with integers α ∈ � is defined

by

αS =





α∑

i=1

S if α ≥ 0,

α∑

i=1

S− if α < 0,
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where S− :=
(
s−p+1−i

)p
i=1

. The integer span of a set
�

= {S1, . . . , Sr} of self-
connections is

span
�

�
:=

{
r∑

i=1

αiSi | ∀1 ≤ i ≤ r : αi ∈ �
}

.

A finite subset � ⊂ � d is a frame for a (possibly infinite) set of self-connections
�

if
every

S =
((

m(i−1), κ(i−1)
)
,
(
m(i), κ(i)

))p
i=1

∈ span
�

�

satisfies m(p) − m(0) ∈ span � � .

Lemma 3.11 Let q > 1. A lattice is connected if and only if the following conditions
are satisfied:

1. x(1) is connected to any point x(m,1) for all m ∈ � d.

2. For any µ ∈ Gmicro\ {1}, there exists a sequence Θ = (κi)
p
i=1 ⊂ Gmicro such that

κ1 = 1, κp = µ, Bκi,κi+1
6= ∅ ∀1 ≤ i ≤ p − 1.

Proof. The definition of the connectivity of lattices directly implies that both
conditions are necessary. To show that these conditions are sufficient, we consider
two nodes x(m,µ), x(n,µ), and construct a connecting chain of the form

x(m,µ) → x(m̃,1) → x(ñ,1) → x(n,ν)

with suitable m̃, ñ. Let Θ = (κi)
p
i=1 denote the sequence as in Condition 2 of Lemma

3.11, connecting node 1 with node µ. Choose an associated sequence m(i) ∈ Gmacro,
1 ≤ i ≤ p, satisfying

m(p) := m, m(i+1) − m(i) ∈ Bκi+1,κi
, 1 ≤ i ≤ p − 1.

Thus S1 :=
((

m(i), κi

)
,
(
m(i−1), κi−1

))2
i=p

is a chain connecting x(m,µ) and x(m̃,1) with

m̃ := m(1). In a similar fashion, a connecting chain S2 for the points x(ñ,1) and x(n,ν)

is constructed for some ñ ∈ � d. Condition 1 implies that there is a connecting chain
T for the nodes x(m̃,1) and x(ñ,1). Thus, the chain S1 + T + S2 connects x(m,µ) and
x(n,ν).

Next, we will derive an algorithm for verifying Condition 1 in Lemma 3.11. For
1 ≤ i ≤ q, let

�
i denote the set of all non-degenerate self-connections of type 1 and

degree i and let � i be a frame of
�

i. Put � :=
⋃d

i=1 � i. Then, Condition 1 is satisfied
if and only if

span
�

� = � d. (3.2)
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This property can be verified via algorithm ideal property. Thus, it remains to
derive an algorithm for computing the frame � . The algorithm is based on a recursion
over the degrees of the self-connections.

Obviously, a frame for all self-connections of type µ and degree 1 is given by B+
µ,µ

(cf. 2.3), and we put � (1)
µ,µ := B+

µ,µ, µ ∈ Gmicro.
By the induction principle we assume that a frame of all self-connections of type

µ and degree i is already computed (and denoted by � (i)
µ,µ).

For the definition of a frame of all non-degenerate self-connections of degree i+1,
i.e., of the form

µ =: κ0 → κ1 → κ2 → . . . κi → µ =: κi+1

with mutually different κj ∈ Gmicro\ {µ} , 1 ≤ j ≤ i
(3.3)

we introduce some notation. A connection of the form (3.3) exists if all corresponding
sets Bκj−1,κj

satisfy
Bκj−1,κj

6= ∅ ∀1 ≤ j ≤ i + 1. (3.4)

The set S
(i+1)
µ,µ contains all such connections

S(i+1)
µ,µ :=

{
(κj)

i+1
j=0 ∈ Gi+2

micro : Conditions (3.3) and (3.4) are satisfied
}

.

A frame of all non-degenerate self-connections of degree i + 1 is defined by

� (i+1)
µ,µ :=

⋃

(κj)
i+1
j=0∈S

(i+1)
µ,µ

({
i+1∑

j=1

m(j) | m(j) ∈ Bκj−1,κj

}
∪

i+1⋃

j=0

� (i)
κjκj

)
.

Obviously, the requested frame in (3.2) can be chosen as � (q)
1,1.

The algorithm check ideal property (available via the internet address:
www.math.unizh.ch/compmath/software.html) is the algorithmic realization of this
definition and, in combination with the procedure ideal property, verifies the
connectivity of infinite periodic lattices.

Example 3.12 The algorithm check ideal property was employed for solving
the following problems:

(a) Find a connected lattice with q = 2 and d = 3, where ] {B11 ∪ B12 ∪ B22} is
minimal.

(b) Find a connected lattice with q = 2 and d = 3 where ] {B11 ∪ B12 ∪ B22}
is minimal under the condition: After removing an arbitrary edge (and all periodic
copies) the lattice stays connected.

The lattices for problems (a) and (b) are depicted in Figure 1.

14



Figure 1: Three dimensional lattices with q = 2. Left: Lattice with minimal number
of reference edges. Right: Minimal lattice which stays connected after removing one
arbitrary edge. The thin yellow frame is drawn only for visualization purpose.

4 Analysis of the Symbols for Discrete Potentials

Before we analyze the symbol of discrete vector potentials in Subsection 4.2, we will
briefly recapitulate the analogue properties of discrete scalar potentials as they arise,
e.g., in the physical problem of heat flow through a lattice.

4.1 Analysis of the Symbols for Discrete Scalar Potentials

In the case of heat flow through a lattice, the value of the grid function at a nodal
point represent the temperature at that point and is a scalar quantity. The space of
grid functions is given by

S1 := {u : Gmacro × Gmicro →
� } .

The conductivity of a rod (κ, m, λ) is characterized by a positive number â(κ,m,λ) > 0
and, for scaling reasons, we set a(κ,m,λ) := â(κ,m,λ)/

∥∥x(κ) − x(m,λ)
∥∥. The bilinear form

in this case has the general form

A1 (u, v) :=
∑

m∈Gmacro

1

2

∑

κ,λ∈Gmicro

∑

n∈Bκ,λ

(um+n,λ − um,κ) a(κ,n,λ) (vm+n,λ − vm,κ) ,

while the symbol σ1 : ]−π, π]d → �
Gmicro×Gmicro is given by

σ1 (t)µ,ν :=





∑

λ∈Gmicro\{µ}

∑

n∈Bλ,µ

a(λ,n,µ) + 4
∑

n∈B+
µ,µ

a(µ,n,µ) sin2 〈n, t〉
2

µ = ν,

−
∑

n∈Bν,µ

a(ν,n,µ)e−i〈n,t〉 µ 6= ν,
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for all µ, ν ∈ Gmicro and B+
µ,µ as in (2.3).

In [16, Lemma 3.2], the stability of the symbol was proved under the only as-
sumption that the lattice is connected.

Theorem 4.1 Suppose the lattice is connected.

1. There exist constants c1 and C1 > 0 which depend only on q and the coefficients
a(µ,n,ν) such that

c1 ‖t‖2 ≤ det σ (t) ≤ C1 ‖t‖2 ∀t ∈ ]−π, π]d .

2. There exist constants c2 and C2 > 0 which depend only on q and the coefficients
a(µ,n,ν) such that the inverse symbol satisfies, for all t ∈ ]−π, π]d \ {0} and
i, j ∈ Gmicro, the estimate

c2 ‖t‖−2 ≤
(
σ−1
)

i,j
(t) ≤ C ‖t‖−2 .

The following examples show that an analogous theorem cannot hold in the case
of vector potentials which are of the form (2.5).

Example 4.2 Let d = 2, q = 1, and B+
1,1 = {(1, 0)

�
, (0, 1)

�
}. Explicit calculations

yield

det σ (t) = 16E(1,(1,0),1)E(1,(0,1),1) sin2 t1
2

sin2 t2
2

and the zeroes are lying on the lines ({0} × �
) ∪ (

� × {0}) ∩ ]−π, π]2.

Example 4.3 Let d = 2, q = 1, and B+
1,1 = {(1, 0)

�
, (0, 1)

�
, (2, 0)

�
}. Explicit calcu-

lations yield

det σ (t) = 16E(1,(0,1),1)

(
E(1,(1,0),1) + 4E(1,(2,0),1) sin2 t1

2

)
sin2 t1

2
sin2 t2

2

and the zeroes of det σ (t) are as in Example 4.2.

In both examples, the zeroes of the determinant of the symbol are lying on the
union of linear manifolds through the origin. The next example shows that the set
of zeroes of the determinant can be a discrete set.

Example 4.4 Let d = 3 and q = 1. Let

B+
1,1 :=

{
m(i) : 1 ≤ i ≤ 5

}
:=








4
0
0


 ,




0
1
0


 ,




0
0
1


 ,




1
1
1


 ,




2
1
3





 .
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Figure 2: Connected but non-rigid, three-dimensional lattice with q = 1.

From the procedure check ideal property we conclude that this mesh is connected.
Lemma 4.8 below implies

det σ (t) =
∑

1≤i<j<k≤5

γi,j,k sin2

〈
m(i), t

〉

2
sin2

〈
m(j), t

〉

2
sin2

〈
m(k), t

〉

2

with some positive numbers γi,j,k. Some combinatorial manipulations result in
{
t ∈ ]−π, π]3 : det σ (t) = 0

}
= {(0, 0, 0)

�
, (π/2, 0, 0)

�
} .

The physical interpretation of a discrete non-zero root ts of the symbol is as follows.
There exists a non-zero vector ϕ ∈ Smicro such that 〈σ (ts) ϕ, ϕ〉 = 0. Hence, the cor-
responding displacement field um := e〈m,ts〉ϕ, induces no strain energy, i.e., preserves
the lengths of connecting rods. The mesh is depicted in Figure 2.

4.2 Analysis of the Symbol of Discrete Vector Potentials

It turns out that the analysis of the symbol for vector potentials is much more involved
than for scalar potentials. In [15], it is shown that Theorem 4.1 also holds for the
discrete vector potentials under consideration, provided (a) the lattice is connected
and (b) the lattice is locally rigid (cf.[15]). Condition (b), however, is only sufficient
and the algorithm presented in [15], in general, does not answer the question of local
rigidity in finite time.

We will present here an algorithm which, for the case q = 1, serves as a sufficient
and necessary condition such that Theorem 4.1 holds for the vector potentials under
consideration as well. The restriction to the case q = 1 means that the master cell
contains exactly one node.

For q = 1, the symbol has the form:

σ (t) = 4
∑

n∈B+
1,1

E(1,n,1) sin2 〈n, t〉
2

. (4.1)
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Definition 4.5 Let q = 1, and let the lattice be characterized by the set B+
1,1. The

lattice is rigid iff the condition

(
∃t ∈ ]−π, π]d : det σ (t) = 0

)
⇔ (t = 0) (4.2)

holds.

In this section, we develop an algorithm for verifying the rigidity of a lattice with
q = 1.

Some necessary conditions for (4.2) are described below in Corollaries 4.10, 4.11,
and Proposition 4.12.

In order to derive a representation of the determinant of the symbol, we will
introduce some additional notation.

Notation 4.6 For a matrix B, the ith column vector is denoted by b(i).

Let T ∈ � d×d denote the matrix formed by the basis of the lattice t(i), 1 ≤ i ≤ d,
(cf. (2.1)), i.e., T =

[
t(1), t(2), . . . , t(d)

]
.

Notation 4.7 The space � d×d/π is the quotient space of � d×d, where all matri-
ces which have the same set of column vectors (only the ordering of the column
vectors may differ) form the equivalence classes. For k ≥ d and a subset S ={
m(1), m(2), . . . , m(k)

}
⊂ � d, we introduce the set of matrices

M (S) :=
{
M ∈ � d×d/π : M is regular and, for all 1 ≤ i ≤ d, m(i) ∈ S

}
.

For m ∈ � d, we write m̂ short for Tm and, for a matrix M with column vectors m(i),

we define M̂ as the matrix with column vectors m̂(i).

Lemma 4.8 The determinant of the symbol has the representation:

det σ (t) = 4d
∑

M∈M(B+
1,1)

γM

(
det M̂

)2

(4.3)

where the non-negative numbers γM are given by

γM =

d∏

i=1

E(1,m(i),1)
∥∥∥m̂(i)

∥∥∥
3 sin2

〈
m(i), t

〉

2
. (4.4)

Proof. From λ = κ = 1 we conclude that
∥∥x(n,λ) − x(κ)

∥∥ = n̂. Hence, E(1,n,1) =
E(1,n,1)

‖n̂‖3 n̂n̂
�
. We introduce the abbreviation en := en (t) := 4E(1,n,1)/ ‖n̂‖3 sin2 〈n,t〉

2
to

obtain
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σ (t) :=
∑

n∈B+
1,1

enn̂n̂
�
.

Expanding the determinant of the symbol with respect to the first row yields

det σ (t) =
d∑

i=1

(−1)i
∑

n∈B+
1,1

enn̂1n̂i det


 ∑

m∈B+
1,1

emm̂(1)
(
m̂(i)

) �


 ,

where, for a vector w ∈ � k and given set of integers ι ⊂ � , we set wι := (wi)
k
i=1
i/∈ι

.

Lemma 4.9 implies

det σ (t) =

d∑

i=1

(−1)i
∑

`∈B+
1,1

e`
ˆ̀
1

(
ˆ̀
1

)
i

∑

`2,`3,...`d∈B+
1,1

(
d∏

j=2

(
ˆ̀
j

)
j
e`j

)
det
[
ˆ̀(i)
2 , ˆ̀(i)

3 , . . . , ˆ̀(i)
d

]

=
∑

`∈B+
1,1

e`1
ˆ̀
1

∑

`2,`3,...`d∈B+
1,1

(
d∏

j=2

(
ˆ̀
j

)
j
e`j

)
d∑

i=1

(−1)i
(

ˆ̀
1

)
i
det
[
ˆ̀(i)
2 , ˆ̀(i)

3 , . . . , ˆ̀(i)
d

]

=
∑

`1,`2,,...`d∈B+
1,1

(
d∏

j=1

(
ˆ̀
j

)
j
e`j

)
det
[
ˆ̀
1, ˆ̀

2, ˆ̀
3, . . . , ˆ̀

d

]
.

Because determinants are in alternating multilinear form, we obtain

det σ (t) =
∑

[`1,`2,,...`d]∈M(B+
1,1)

(
d∏

j=1

e`j

)
det2

[
ˆ̀
1, ˆ̀

2, . . . , ˆ̀
d

]
.

The proof of the auxiliary Lemma 4.9 is elementary linear algebra and we include
the proof for completeness.

Lemma 4.9 For k ∈ {1, 2, . . . , d}, let Mk := {1, 2, . . . , k} and Nk ⊂ Md with ]Nk =
k. Then, for k ≤ d − 1,

det
∑

`∈B+
1,1

e`
ˆ̀Mk

(
ˆ̀Nk

) �

=
∑

`k+1,`k+2,...`d∈B+
1,1

(
d∏

j=k+1

(
ˆ̀
j

)
j
e`j

)
det
[
ˆ̀Nk

k+1,
ˆ̀Nk

k+2, . . . ,
ˆ̀Nk

d

]
.

(4.5)

Proof. The proof is by induction from k = d − 1 down to 1. For k = d − 1, we

obtain that the determinant (of the 1 × 1-matrix
∑

`∈B+
1,1

e`
ˆ̀Md−1

(
ˆ̀Nd−1

) �

) has the

representation as in (4.5)

det
∑

`∈B+
1,1

e`
ˆ̀Md−1

(
ˆ̀Nd−1

) �

=
∑

`∈B+
1,1

e`
ˆ̀
d
ˆ̀
j
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with {j} = Md\Nd−1.
Assume the assertion is proved for k+1. Expanding the determinant with respect

to the first row yields

det
∑

`∈B+
1,1

e`
ˆ̀Mk

(
ˆ̀Nk

) �

=

d∑

i=1
i/∈Nk

(−1)i
∑

`∈B+
1,1

e`
ˆ̀
k+1

ˆ̀
i det


 ∑

m∈B+
1,1

emm̂Mk+1

(
m̂N

(i)
k+1

)



�

with N
(i)
k+1 := Nk ∪ {i}. We employ the result for k + 1 to obtain

det
∑

`∈B+
1,1

e`
ˆ̀Mk

(
ˆ̀Nk

) �

=
∑

`k+1,`k+2,...`d∈B+
1,1

(
d∏

j=k+1

(
ˆ̀
j

)
j
e`j

)
d∑

i=1
i/∈Nk

(−1)i
(

ˆ̀
k+1

)
i
det

[
ˆ̀N

(i)
k+1

k+2 , ˆ̀N
(i)
k+1

k+3 , . . . , ˆ̀N
(i)
k+1

d

]

=
∑

`k+1,`k+2,...`d∈B+
1,1

(
d∏

j=k+1

(
ˆ̀
j

)
j
e`j

)
det
[
ˆ̀Nk

k+1,
ˆ̀Nk

k+2, . . . ,
ˆ̀Nk

d

]

and this is the assertion for k.
The determinant of the symbol is zero if all summation terms in (4.3) vanish or

M
(
B+

1,1

)
is the empty set. M

(
B+

1,1

)
is the empty set, if all subsets

(
B+

1,1

)′ ⊂ B+
1,1

with ]
(
B+

1,1

)′
= d are linearly dependent.

Corollary 4.10 The connectivity of the lattice implies M
(
B+

1,1

)
6= ∅.

For a given set B+
1,1, the recursive procedure check det verifies the condition

(
∃s? ∈ ]−1, 1]d ∀M ∈ M

(
B+

1,1

)
∃m ∈ Col (M) :

〈m, s?〉
2

∈ �
)
⇔ (s? = 0) ,

(4.6)
where Col (·) denotes the set of column vectors of a matrix. Clearly, Condition (4.6)
is equivalent to Condition (4.2).

The procedure is called by check det
(
B+

1,1, 1
)

and defined by

procedure check det(B, i);
begin

for all m(i) ∈ B do
if i = d then

if zero is the only solution
(
m(1), . . . , m(d)

)
= false then begin

write(“condition (4.2) does not hold”);stop;
end

else begin
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B′ :=
{
v ∈ B : Rank

{
m(1), m(2), . . . , m(i), v

}
= i
}
;

if Rank B′ = d then check det(B ′, i + 1)
else write(“condition (4.2) does not hold”);stop;

end;
if i = 1 then write(“condition (4.2) holds”);

end.

The function zero is the only solution is defined by

function zero is the only solution
(
m(j) : 1 ≤ j ≤ d

)
;

begin
zero is the only solution:=true;
for all k ∈

{
µ ∈ � d | ∀1 ≤ j ≤ d : 2 |kj| ≤

∥∥m(j)
∥∥

`1

}
do begin

s := 2
([

m(1), m(2), . . . , m(d)
])−1

k;

if s ∈ ]−1, 1]d \ {0} and Rank
{

m ∈ B+
1,1 : 〈m,s〉

2
/∈ �
}

< d then

zero is the only solution:=false;
end;

end;

A PASCAL implementation of procedure check det is available in electronic
form from the www-address www.math.unizh.ch/compmath/software.html

Corollary 4.11 Condition (4.2) implies ]B+
1,1 ≥ 2d − 1.

Proof. Indirect: Let ]B+
1,1 ≤ 2d − 2. Choose any subset

(
B+

1,1

)′ ⊂ B+
1,1 with

]B+
1,1 ≤ d−1. Hence, there exists t ∈ ]−π, π]d \ {0} with 〈m, t〉 = 0 for all m ∈

(
B+

1,1

)′
.

Any matrix M ∈ M
(
B+

1,1

)
contains at least one row m ∈

(
B+

1,1

)′
and, thus, condition

(4.2) is violated.
The following Proposition provides a criterion to determine whether the case k 6= 0

is irrelevant in the function zero is the only solution.

Proposition 4.12 Let M ∈ � d×d satisfy |detM| = 1. Then,

{
t ∈ ]−1, 1]d | ∀m ∈ Col (M) :

〈m, t〉
2

∈ �
}

= {0} .

Proof. Condition detM = ±1 implies that (M
�
)−1 ∈ � d×d. For any k ∈ � d, the

solution of M
�
t = 2k has only even components and the condition t ∈ ]−1, 1]d yields

t = 0.

Example 4.13 Let d = 2, q = 1, and B+
1,1 = {(1, 0)

�
, (0, 1)

�
, (1, 1)

�
}. Procedure

check det implies that det σ (t) = 0 if and only if t = 0.
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Figure 3: Minimal three-dimensional lattice which is connected and rigid.

Example 4.14 Consider the Cartesian lattice as in Example 2.3.

1. For d = 2, the determinant of the symbol is zero if and only if t = 0.

2. For d ≥ 3, we have ]B+
1,1 = d + 1 < 2d − 1 and the determinant of the symbol

has zeroes for some t ∈ ]−π, π]d \ {0}.
In three dimensions, at least 5 rods are necessary so that the determinant of the

symbol is zero if and only if t = 0. Let us consider the Cartesian lattice in three
dimensions and define the set of all possible connections which stay within one cell

C :=








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




1
1
0


 ,




1
0
1


 ,




0
1
1


 ,




1
1
1





 .

The assertions of the following example are derived by applying procedure check det.

Example 4.15 (a) For B+
1,1 = C, Condition (4.2) is satisfied.

(b) For any B+
1,1 ⊂ C with ]B+

1,1 = 5, Condition (4.2) is violated.
(c) For

B+
1,1 =








1
0
1


 ,




1
0
−1


 ,




0
1
1


 ,




0
1
−1


 ,




1
1
1





 ,

condition (4.2) is satisfied. This lattice is depicted in Figure 3.

Example 4.16 (Exotic lattice). Choose d = 2 and q = 1. Put B+
1,1 = {(8, 63)

�
, (1, 8)

�
, (a, b)

�
}.

The lattice is connected since det

[
8 1
63 8

]
= 1. Choose a and b so that

det

[
8 a
63 b

]
= 1 and det

[
1 a
8 b

]
= 1.

(The unique solution is a = −7 and b = −55.) Then, the determinant of the symbol
is zero if and only if t = 0.
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Figure 4: Three-dimensional lattices with q = 1. Left: Minimal lattice which is
connected and rigid. Right: Minimal lattice which stays rigid after removing one
arbitrary edge.

Example 4.17 The algorithm check det was employed for solving the following
problems.

(a) Find a connected lattice with q = 1, d = 3 satisfying (4.2), where ne := ]B+
11

is minimal.
(b) Find a lattice with q = 1, d = 3 satisfying (4.2) where ne := ]B+

11 is minimal
under the condition: After removing an arbitrary edge (and all periodic copies) the
lattice stays connected.

The lattices for problems (a) and (b) are depicted Figure 4.

Lemma 4.18 Let Condition (4.2) be satisfied. Then, det σ (t) has a zero of order 2d
at t = 0.

Proof. Let S1 denote the unit sphere in
� d . We define γ = γ

(
B+

1,1

)
by

γ := inf
ξ∈S1

sup
M∈M(B+

1,1)
inf

1≤i≤d

∣∣〈m(i), ξ
〉∣∣ .

First, we will prove γ > 0.
Clearly γ ≥ 0. Because S1 is compact, it is sufficient to show that, for all ξ ∈ S1,

there is M ∈ M
(
B+

1,1

)
such that, for all 1 ≤ j ≤ d:

〈
m(j), ξ

〉
6= 0.

Because ξ ∈ S1 ⊂ [−π, π]d \ {0} we know that the determinant of the symbol is
positive. Formula (4.3) along with Condition (4.2) imply that there exists M ∈
M
(
B+

1,1

)
such that 〈

m(j), ξ
〉

2
6= 0, ∀1 ≤ j ≤ d.

Thus, the auxiliary statement γ > 0 is proven.
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Let t ∈ [−π, π]d \ {0}. Choose ξ ∈ S1 so that t = ‖t‖ ξ and M = M (ξ) as before.
Hence,

C ‖t‖ ≥
∣∣〈m(i), t

〉∣∣ ≥ γ ‖t‖ , ∀1 ≤ i ≤ d

with
C := max

m∈B+
1,1

‖m‖ .

For sufficiently small ‖t‖, we can estimate

γM ≥ c

d∏

i=1

E(1,m(i),1)
∥∥∥m̂(i)

∥∥∥

(∥∥∥m̂(i)

∥∥∥
−1

cγ ‖t‖
)2

≥ c (cγ)2d min
1≤i≤d

(
E(1,m(i),1)

∥∥∥m̂(i)

∥∥∥
−3
)d

‖t‖2d

resulting in

det σ (t) ≥





c
(
det M̂

)2


(2γc)2 min

1≤i≤d

E(1,m(i),1)
∥∥∥m̂(i)

∥∥∥
3




d


‖t‖2d .

The matrix M̂ depends on ξ and therefore on t. To obtain an estimate of the expres-
sion in brackets {. . .} which is independent of t, we define

δ := min
M∈M(B+

1,1)





c
(
det M̂

)2


(2γc)2 min

1≤i≤d

E(1,m(i),1)
∥∥∥m̂(i)

∥∥∥




d




.

Obviously δ > 0, leading to
det σ (t) ≥ δ ‖t‖2d

for sufficiently small ‖t‖. The estimate from above is derived in a similar fashion.

4.3 The inverse of the symbol (q = 1 and general d)

We have proven that the symbol has the representation:

σ (t) = 4
∑

n∈B+
1,1

E(1,n,1) sin2 〈n, t〉
2

.

The estimate of the inverse symbol is obtained by Cramer’s rule.

Theorem 4.19 Let q = 1 and let Condition (4.2) be satisfied. Then, the coefficients
of the inverse symbol satisfy:

∣∣∣
(
σ−1
)

i,j
(t)
∣∣∣ ≤ C ‖t‖−2 , ∀t ∈ [−π, π]d \ {0} .
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Proof. Every coefficient of the symbol matrix σ (t) can be estimated by

|σi,j (t)| ≤ C ‖t‖2 .

The definition of the adjugate matrix σ(i,j) implies

∣∣det σ(i,j) (t)
∣∣ ≤ C ‖t‖2d−2 .

Cramer’s rule in combination with Lemma 4.18 yields
∣∣∣
(
σ−1
)

i,j
(t)
∣∣∣ ≤ C ‖t‖−2 .
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[16] P. Martinsson and I. Babuška. Discrete Potential Theory I: Scalar Equations.
Technical report, TICAM, Univ. Texas,Austin, USA, 2001, submitted.

[17] A. Noor. Continuum modelling for repetitive lattice structures. Appl. Mech.
Rev., 41(7):285–296, 1988.

[18] M. Ostoja-Starzewski. Lattice Models in Micromechanics. App. Mech. Review,
55(1):35–60, 2002.

[19] M. Ostoja-Starzewski, P. Y. Shang, and K. Alzebdoh. Spring Network Models
in Elasticity and Fractures of Composites and Polycristals. Comp. Math. Sci.,
7:89–93, 1996.

[20] G. I. Pshenichnov. Theory of Lattice Plates and Shells. World Scientific, Singa-
pure, 1993.
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