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Abstract. In recent years methods for the integration of Poisson
manifolds and of Lie algebroids have been proposed, the latter be-
ing usually presented as a generalization of the former. In this note
it is shown that the latter method is actually related to (and may
be derived from) a particular case of the former if one regards dual
of Lie algebroids as special Poisson manifolds. The core of the proof
is the fact, discussed in the second part of this note, that coisotro-
pic submanifolds of a (twisted) Poisson manifold are in one-to-one
correspondence with possibly singular Lagrangian subgroupoids of
source-simply-connected (twisted) symplectic groupoids.

1. Introduction

The “infinitesimal form” Lie(G) of a Lie groupoid G (viz., the bundle
of vectors tangent to the source-fibers restricted to the manifold of
units) is naturally equipped with a Lie algebroid structure (we will
recall definitions and basic facts in Sect. 2). On the other hand, there
exist Lie algebroids that do not arise this way. The special ones in the
image of the Lie-functor are called integrable. When a Lie algebroid
is integrable, then there is a unique source-simply-connected (ssc) Lie
groupoid, up to isomorphisms [13].

The cotangent bundle of a Poisson manifold may be given the struc-
ture of a Lie algebroid with anchor map induced from the Poisson bivec-
tor field and the Lie bracket on 1-forms given by Koszul [10]. When
this Lie algebroid is integrable, one says that the Poisson manifold is
integrable. The ssc Lie groupoid can in this case be endowed with
a multiplicative symplectic form and is called a symplectic groupoid.
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2 A. S. CATTANEO

The basic example is the cotangent bundle T ∗G of a Lie group G as a
Lie groupoid over the Poisson manifold (Lie(G))∗.

As we will recall in Sect. 3, a method was introduced in [3] to in-
tegrate Poisson manifolds to symplectic groupoids by symplectic re-
duction from an infinite-dimensional manifold (the cotangent bundle
of the path space of the Poisson manifold). The symplectic quotient is
in general singular, and actually this happens iff the Poisson manifold
is not integrable. The authors of [15] and [7] independently observed
that the above method allows for a generalization to any Lie algebroid.
The main contribution of [7] is then to use this construction to charac-
terize integrable Lie algebroids in terms of an if-and-only-if criterion.
See also [8] for a general discussion of obstructions to integrability in
the context of Poisson manifolds.

The aim of this note is to show that the generalization of [15, 7] may
as well be seen as a particular case of the previous construction in [3].
The main observation is that the dual bundle A∗ of a Lie algebroid A is
naturally a Poisson manifold. Moreover, if A = Lie(G), then T ∗G can
be given a symplectic groupoid structure for the Poisson manifold A∗

[6]. As we will recall at the end of 2.4, it follows from classical results—
[11], [2]—that the integrability of the Lie algebroid A is equivalent to
the integrability of the Poisson manifold A∗. We want to show that
also the integration methods of [7, 15] and of [3] are equivalent. On
the one hand, [3] may be recovered from [7, 15] as a particular case (by
looking at the Lie algebroid of a Poisson manifold). On the other hand,
we show in Sect. 4 that [7, 15] may be obtained from [3] by observing
that to a Lie algebroid A one may naturally associate a Lagrangian
submanifold of the cotangent bundle of the path space of the Poisson
manifold A∗. Symplectic reduction then associates to it a Lagrangian
submanifold of the symplectic groupoid T ∗G of A∗ that turns out to
be (isomorphic to) the Lie groupoid G of A.

The above construction turns out to be a special case of a more
general correspondence between coisotropic submanifolds of a Poisson
manifold and Lagrangian Lie subgroupoids of its symplectic groupoid.
One direction of this correspondence (from Lagrangian subgroupoids
to coisotropic submanifolds) follows from results in [19]. The other
direction (the “integration”) is proved in Sect. 5.

Twisted Poisson manifolds [16] have recently become popular. The
results of Sect. 5 extend to the twisted case, as we discuss in Sect. 6.
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2. Preliminaries

In this Section we review some basic notions and fix notations.

2.1. Lie algebroids. A Lie algebroid (A,B, ρ, [ , ]) is a vector bun-
dle A over a manifold B together with a bundle map ρ : A → TB
(the anchor) and a Lie bracket [ , ] on the real vector space Γ(A) of
sections of A satisfying the following compatibility condition:
(2.1)

[X , fY ] = f [X , Y ] + Lρ∗Xf Y, X, Y ∈ Γ(A), f ∈ C∞(B),

where ρ∗ : Γ(A)→ X(B) is the induced map of sections and L denotes
the Lie derivative. It follows that ρ∗ is a morphism of Lie algebras. We
recall some examples of Lie algebroids:

(1) Any vector bundle with trivial anchor and Lie bracket.
(2) A Lie algebra regarded as a vector bundle over a point.
(3) The tangent bundle TB of a manifold B with the usual Lie

bracket of vector fields and ρ the identity map.
(4) An involutive subbundle A of the tangent bundle TB with the

usual Lie bracket and ρ the inclusion map.

A Lie algebroid structure on A allows one to define a differential δ
on the complex Γ(Λ•A∗), where A∗ denotes the dual bundle, by the
rules

δf := ρ∗df, f ∈ C∞(B) = Γ(Λ0A∗)

and

〈 δα , X ∧ Y 〉 := −〈α , [X , Y ] 〉+〈 δ 〈α , X 〉 , Y 〉−〈 δ 〈α , Y 〉 , X 〉 ,
X, Y ∈ Γ(A), α ∈ Γ(A∗),

where ρ∗ : Ω1(B) → Γ(A∗) is the transpose of ρ∗ and 〈 , 〉 is the
canonical pairing of sections of A∗ and A.

If we have a bundle map φ between vector bundles A → B and

Ã → B̃ with base map ϕ, we may define the pullback φ∗ : Γ(Λ•Ã∗) →
Γ(Λ•A∗) as the algebra homomorphism which is ϕ∗ in degree zero and

the induced map1 of sections φ∗ : Γ(Ã∗) → Γ(A∗) in degree one. If A

1As usual, this is defined by setting φ∗(σ)(b) = φ∗bσ(ϕ(b)), σ ∈ Γ(Ã∗), b ∈ B,
where φ∗b is the transpose of the linear map φb : Ab → Ãϕ(b).
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and Ã are Lie algebroids, a bundle map φ is said to be a morphism if
φ∗ is a chain map w.r.t. the corresponding differentials.

If we choose local coordinates {bi}i=1,...,dimB on a trivializing chart
U and pick a basis {eµ}µ=1,...,rankA on the fiber (which we also regard
as a basis of constant sections of A|U ), we may introduce the anchor
functions ρµi and the structure functions fµνσ by the equations

ρ∗(e
µ)(b) = ρµi(b)

∂

∂bi
, [ eµ , eν ](b) = fµνσ (b) eσ,

where summation over repeated indices is understood. The compati-
bility condition (2.1) corresponds locally to PDEs to be satisfied by the
anchor and structure functions.

2.2. Lie groupoids. A groupoid is a small category where all mor-
phisms are invertible. Explicitly, we have a set G of morphisms and
a set B of objects together with structure maps satisfying certain ax-
ioms. First we have the surjective source and target maps s, t : G→ B
and the identity bisection ε : B ↪→ G. Then we have the multiplication
m : G(2) → G, with G(2) := {(u, v) ∈ G×G : s(u) = t(v)}; as a short-
hand notation we will also write uv instead of m(u, v). Finally, we have
an inverse map G→ G, u 7→ u−1. The axioms to be satisfied are

s(uv) = s(v), t(uv) = t(u), ε(b)v = v, uε(b) = u, (uv)w = u(vw),

s(u−1) = t(u), t(u−1) = s(u), uu−1 = ε(t(u)), u−1u = ε(s(u)),

for all u, v, w ∈ G and b ∈ B for which the above expressions are
meaningful. The set G is usually referred to as the groupoid, while the
set B is the base. To denote a groupoid G with base B, we will often
use the notation G ⇒ B. A morphism between groupoids G ⇒ B and

G̃⇒ B̃ is just a functor, i.e., a pair of maps Φ: G→ G̃ and ϕ : B → B̃
compatible with the structure maps s, t, ε,m.

For a groupoid to be a Lie groupoid [14], one first requires that G
should be a (possibly non Hausdorff) manifold, that B should be a
Hausdorff manifold and that the source, target, identity and inverse
maps should be smooth. One further requires that the source (or equiv-
alently the target) map should be a submersion. This makes G(2) into a
manifold, too, and one eventually requires that the multiplication map
should also be smooth. One says that a Lie groupoid is source-simply-
connected (ssc) if the s-fibers are connected and simply connected. A
morphism of Lie groupoids is a smooth morphism of the underlying
groupoids.

Here are some examples of Lie groupoids:
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(1) G a vector bundle over B with s = t = the projection, ε the
zero section, multiplication (b, a)(b, a′) = (b, a+ a′) and inverse
(b, a)−1 = (b,−a).

(2) G a Lie group and B a point.
(3) G = B × B with s and t the two projections, ε the diagonal

map, multiplication (b, b′)(b′, b”) = (b, b”) and inverse (b, b′)−1 =
(b′, b).

The vector bundle ker(ds)|ε(B)
has a natural structure of a Lie al-

gebroid over B with anchor dt and Lie bracket induced by the mul-
tiplication. A morphism of Lie groupoids induces a morphism of the
corresponding Lie algebroids by taking its differential at the identity
sections.

We will denote by Lie(G) the Lie algebroid of the Lie groupoid G.
The Lie algebroids of the examples 1), 2) and 3) above are the ones
described in the previous subsection with the same numbers. It is a
fundamental fact that not all Lie algebroids arise in this way. Those
which do are usually called integrable. Other fundamental facts of the
theory of Lie groups generalize to Lie groupoids:

Lie I: Let A = Lie(G) and let Ã be a Lie subalgebroid of A. Then

there is a Lie subgroupoid of G with Ã as its Lie algebroid.

Lie II: Let G and G̃ be Lie groupoids, and let A and Ã be the
corresponding Lie algebroids. If G is ssc, for every morphism

φ : A→ Ã there is a unique morphism Φ: G→ G̃ that induces
φ.

For more information on Lie groupoids and Lie algebroids, see [11], [2]
and [13].

2.3. Poisson manifolds. A Poisson manifold (M,π) is a smooth man-
ifold M together with a bivector field (i.e., a section of Λ2TM) π such
that the bracket of functions { f , g } := π(df, dg) satisfies the Jacobi
identity. Examples of Poisson manifolds are strong2 symplectic mani-
folds (with the usual Poisson bracket of functions) and dual spaces of
Lie algebras (with linear Poisson bracket induced by the Lie bracket).
In this paper we will only consider finite-dimensional Poisson mani-
folds.

Lie algebroids and Poisson manifolds are strict relatives as we de-
scribe in the following.

2A symplectic form on M is a closed, nondegenerate 2-form. If it induces an
isomorphism TM → T ∗M , as always happens in finite dimensions, and not just a
monomorphism, it is called strong; otherwise it is called weak.
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2.3.1. The Lie algebroid of a Poisson manifold. To each Poisson mani-
fold M one may associate a Lie algebroid structure on T ∗M with anchor
the bundle map π# : T ∗M → TM defined by π#(x)(σ) = π(x)(σ, •),
with x ∈M , σ ∈ T ∗xM , and the Koszul bracket which on exact forms is
defined by [ df , dg ] := d { f , g } and is extended to arbitrary 1-forms
using the rule (2.1).3 We will denote the Lie algebroid of the Pois-
son manifold (M,π) by T ∗πM . One says that a Poisson manifold is
integrable if its Lie algebroid is.

In local coordinates {xi}i=1,...,dimM , we have the local basis dxi of
constant 1-forms w.r.t. which the anchor functions are the components
πij and the structure functions are the partial derivatives ∂iπ

rs.

2.3.2. Lie algebroids as Poisson manifolds. If (A,B, ρ, [ , ]) is a Lie
algebroid, the dual bundle A∗ has a natural Poisson structure. This is
defined first on functions that are constant on the fibers (i.e., functions
on B) or linear on the fibers (i.e., sections of A):

{F , G } =


0 if F,G ∈ C∞(B),

Lρ∗FG if F ∈ Γ(A) and G ∈ C∞(B),

[F , G ] if F,G ∈ Γ(A).

The bracket is then extended to functions that are polynomial on the
fibers (i.e., sections of the symmetric powers of A) as a skew-symmetric
biderivation and finally to all smooth functions by completion.

If we choose local coordinates {bi}i=1,...,dimB and {αµ}µ=1,...,rankA on
A∗, then the local coordinate expression of the bivector field corre-
sponding to the above Poisson structure is

(2.2) π(b, α) = ασfµνσ (b)
∂

∂αµ
∧ ∂

∂αν
+ ρµi(b)

∂

∂αµ
∧ ∂

∂bi
,

where ρµi and fµνσ are the anchor and structure functions respectively.

2.4. Symplectic groupoids. If G is a Lie groupoid, there are three
natural maps from G(2) to G: the two projections p1 and p2 and the
multiplication m. A differential form ω on G is said to be multiplicative
if it satisfies the cocycle condition

m∗ω = p∗1ω + p∗2ω.

(If ω is a function, this simply means ω(uv) = ω(u) + ω(v) for all
u, v ∈ G(2).)

3The corresponding differential on sections of the exterior algebra of the dual
of T ∗πM (i.e., on multivector fields) is the inner derivation δ := [π , ]SN where
[ , ]SN is the Schouten–Nijenhuis bracket. So (T ∗πM,TM) is an example of Lie
bialgebroid.
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A symplectic groupoid [6, 9, 20] (G ⇒ M,ω) is then by definition a
Lie groupoid G over M endowed with a multiplicative symplectic form
ω. It follows [6] that ε : M ↪→ G is a Lagrangian embedding, that the
inverse map is an anti-symplectomorphism, and that the base manifold
M has a unique Poisson structure π such that the source and the target
maps are Poisson and anti-Poisson respectively. The Lie algebroid of
(G⇒M,ω) turns then out to be isomorphic to T ∗πM .

It is proved in [12] that, given an integrable Poisson manifold (M,π),
it is alway possible to endow a ssc Lie groupoid G such that Lie(G) =
T ∗πM with a multiplicative symplectic form such that the induced Pois-
son structure on M is π. This means that the problem of integrating a
Poisson manifold to its symplectic groupoid actually amounts just to
integrating its Lie algebroid.

We discuss one single example of symplectic groupoid, which is rel-
evant for the rest of the paper. Let G⇒ B be a Lie groupoid. Endow
T ∗G with the canonical symplectic structure ω. Let A = Lie(G); then
one can endow T ∗G with a Lie groupoid structure with base A∗ such
that ω is multiplicative and the Poisson structure on A∗ is the one de-
scribed in 2.3.2 (see [6]). Moreover, if G is ssc, then so is T ∗G. This
shows that A∗ is integrable as a Poisson manifold if A is integrable as
a Lie algebroid. The converse is also true by Lie I on page 5 since A
may be regarded as a Lie subalgebroid of T ∗A∗ (see Lemma 4.2).

Thus, in order to integrate a Lie algebroid A, one may first look for
the ssc symplectic groupoid of A∗ and the look for the Lagrangian Lie
subgroupoid whose Lie algebroid is A. This is not immediate as the
ssc symplectic groupoid of A∗ may not be presented as T ∗G. In Sect. 4
we will however describe a method to do this explicitly.

2.5. Symplectic reduction. Let (S, ω) be a (possibly weak) sym-
plectic manifold (see footnote 2) and C a submanifold. The orthogonal
tangent bundle T⊥C is defined as the subbundle of TCS consisting
of vectors that are ω-orthogonal to vectors tangent to C. The sub-
manifold C is called coisotropic if T⊥C ⊂ TC and—as a particular
case—Lagrangian if T⊥C = TC. Since ω is closed, the subbundle T⊥C
defines an involutive distribution (the characteristic foliation) on the co-
isotropic submanifold C whose leaves are exactly the kernel of ω. This
implies that the leaf space C, if smooth, is naturally endowed with a
symplectic form ω whose pullback to C is the restriction of ω.

If C is coisotropic, L is Lagrangian and their intersection is clean
(viz., L∩C is also a submanifold and T (L∩C) = TL∩ TC), then the
image of the projection of L∩C to C is Lagrangian in C (it may not be
an embedding but just an immersion), see [17, Lecture 3]. For this to
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hold in infinite dimensions, one has to add explicitly a further condition
(which in finite dimensions is automatically satisfied): T⊥(L ∩ C) =
TL+T⊥C. When this condition is satisfied we say that the intersection
is symplectically regular.

Even when C is not smooth, we may think of it as a singular sym-
plectic manifold and of the projection of L∩C as a singular Lagrangian
submanifold.

3. Integration of Poisson manifolds

We briefly recall the method of [3] and fix the notations. Let M
be a finite-dimensional Poisson manifold with Poisson bivector π. Let
PM := {I →M} be the path space of M and T ∗PM the manifold4 of
bundle maps TI → T ∗M . The fiber over X ∈ PM may be identified
with the space of sections Γ(T ∗I⊗X∗T ∗M). The canonical symplectic
form Ω at a point X ∈ PM , η ∈ T ∗XPM is defined by

Ω(X, η)(ξ1 ⊕ e1, ξ2 ⊕ e2) =

∫
I

〈 e1 , ξ2 〉 − 〈 e2 , ξ1 〉 ,

ξi ∈ Γ(X∗TM) = TXPM, ei ∈ Γ(T ∗I ⊗X∗T ∗M) = T ∗XPM,

where 〈 , 〉 denotes the canonical pairing between tangent and cotan-
gent fibers of M . The submanifold C(M) defined as the space of solu-
tions to the equations5

(3.1) dX = π#(X)η

is coisotropic in T ∗PM . Its characteristic foliation turns out to be
expressed in terms of an infinitesimal action of the Lie algebra

Γ0(M) := {C : I → Ω1(M) | C(0) = C(1) = 0},
where the Lie bracket is defined pointwise in terms of the Lie bracket on
Ω1(M). To describe this action, it is easier to pass to local coordinates
{xi}i=1,...,dimM on M . Then the vector field on C(X) associated to an
element C of Γ0(M) evaluated at a point (X, η) may be written as
(δX i, δηi) with

δX i = −πij(X) (CX)j,(3.2a)

δηi = −d(CX)i − ∂iπrs (CX)r ηs,(3.2b)

4A Banach manifold structure may be introduced by restricting to maps with a
given degree of differentiability. For example, as in [3], one may define T ∗PM as
the space of continuous bundle maps with C1-base maps.

5As observed in [15, 7], solutions to (3.1)—called “cotangent paths” in [8]—are
precisely Lie algebroid morphisms TI → T ∗πM , where TI is given its canonical Lie
algebroid structure.
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where CX is the section of X∗T ∗M defined by CX(t) = C(t)(X(t))
and ∂iπ

rs are the structure functions of the Lie algebroid T ∗πM (w.r.t.
the local basis {dxi} of sections). Upon using the constraint equations
(3.1), this local coordinate expression is well-defined. The leaf space
C(M) of C(M) is then the (possibly singular) ssc symplectic groupoid
of M .

4. Integration of A and A∗

We now apply the method recalled in Sect. 3 to the Poisson manifold
A∗, where A is a Lie algebroid. We denote by P(A) the manifold of
bundle maps TI → A. The central result of this paper is the following

Theorem 4.1. P(A) is a Lagrangian submanifold of T ∗PA∗, and the
projection G(A) of P(A)∩C(A∗) to C(A∗) yields the (possibly singular)
ssc Lie groupoid of A as a Lagrangian Lie subgroupoid of the symplectic
groupoid of A∗.

The rest of the Section is devoted to the proof of this Theorem.

Proof. We begin with an easy Lemma whose proof is left to the reader.

Lemma 4.2. Let A→ B be a vector bundle. The fiber of T ∗A∗ over a
point (b, α) ∈ A is the vector space T ∗b B ⊕ Ab. The map

ι : A → T ∗A∗

(b, a) 7→ ((b, 0), 0⊕ a)

is an injective bundle map from
A
↓
B

to
T ∗A∗

↓
A∗

.

If T ∗A∗ is given the canonical symplectic structure, then ι is a La-
grangian embedding.

If A is a Lie algebroid and T ∗A∗ is given the Lie algebroid structure
induced by the Poisson structure on A∗, then ι is a morphism of Lie
algebroids. So A is a Lagrangian Lie subalgebroid of T ∗A∗.

As a consequence, the composition of a bundle map TI → A with
ι yields a bundle map TI → T ∗A∗. So ι induces an inclusion of P(A)
into T ∗PA∗ which is also Lagrangian.

Lemma 4.3. The intersection P(A) ∩ C(A∗) consists of Lie algebroid
morphisms TI → A.

Proof. Choosing local coordinates as in Sect. 2.1, we denote an element
of T ∗PA∗ by the functions X i, αµ together with the 1-forms ηi and aµ
(observe that at different points in I we may be on different patches of



10 A. S. CATTANEO

local coordinates). Using the Poisson bivector field π defined in (2.2),
the constraint equations (3.1) read

dX i = ρµi(X)aµ,(4.1a)

dαµ = −ρµi(X)ηi − ασfµνσ (X)aν .(4.1b)

Elements of P(A) are represented by functions and 1-forms as above
with the conditions αµ = 0 and ηi = 0 ∀µ, i. So the intersection
consists of functions X i together with 1-forms aµ satisfying the first
equation above, which is precisely the local coordinate expression of
the condition that the bundle map TI → A defined by (X, a) is a
morphism of Lie algebroids. Observe finally that both sides of (4.1b)
identically vanish, so no further conditions are imposed. �

In the following we will denote by P(A) the space of Lie algebroid
morphisms TI → A. Given a second unit interval J = [0, 1], we denote
by P2(A) the space of Lie algebroid morphisms T (I × J) → A. Two
elements γ0 and γ1 of P(A) are said to be Lie algebroid homotopic,
if there exists an element of P2(A) that restricts to γu at TI × {u},
u = 0, 1, and is trivial at {v} × TJ , v ∈ ∂I.

Lemma 4.4. The foliation of C(A∗) restricted to P(A)∩C(A∗) is pre-
cisely the infinitesimal version of Lie algebroid homotopies.

Proof. The foliation is defined by (3.2). Given a map X : I → B, an
element C of the Lie algebra Γ0(A∗) yields a section CX of X∗T ∗A∗ →
I. Again choosing local coordinates, we may denote the components of
CX(t) in T ∗X(t)B by βi(t) and those in AX(t) by bµ(t), t ∈ I. The vector

field corresponding to (β, b) evaluated at a point (X,α, η, a) may be
written using (3.2) and (2.2) as (δX i, δαµ, δηi, δaµ) with

δX i = −ρµi(X)bµ,

δαµ = ρµi(X)βi + ασfµνσ (X)bν ,

δηi = −dβi − ασ∂ifµνσ (X)aµbν − ∂iρµj(X)(aµβj − ηjbµ),

δaµ = −dbµ − f νσµ (X)aνbσ.

The restriction of this foliation to P(A)∩C(A∗) is given by the first and
last equations (the remaining ones are automatically satisfied when we
impose α = η = 0 and, consequently, δα = δη = 0). If we integrate the
flow of this vector field on a time-interval (−ε, ε), these equations are
then precisely the local coordinate expressions of a morphism of Lie
algebroids T (I × (−ε, ε))→ A. �

This shows that the projection of P(A)∩ C(A∗) to C(A∗) is equal to
the quotient G(A) of P(A) by Lie algebroid morphisms. It was shown
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in [7], along the lines of [3], that G(A) has a groupoid structure and
that, if it is smooth, has A as its Lie algebroid.

Lemma 4.5. The intersection of P(A) and C(A∗) is clean and sym-
plectically regular.

Proof. The intersection P(A) ∩ C(A∗) may be given a manifold struc-
ture, see [7]. An element (X, a) in it is a solution to (4.1a). So a
tangent vector at (X, a) is a pair (Ẋ, ȧ) satisfying

(4.2) dẊ i = ρµi(X)ȧµ + Ẋj∂jρ
µi(X)aµ.

On the other hand, the tangent vector at (X,α, η, a) ∈ C(A∗) consists
of a quadruple (Ẋ, α̇, η̇, ȧ) satisfying

dẊ i = ρµi(X)ȧµ + Ẋj∂jρ
µi(X)aµ,

dα̇µ = −ρµi(X)η̇i − Ẋj∂jρ
µi(X)ηi+

− ασfµνσ (X)ȧν − α̇σfµνσ (X)aν − ασẊj∂jf
µν
σ (X)aν .

At an intersection point with P(A) we have to set α = 0 and η = 0,
and intersecting with TP(A) means setting α̇ = 0 and η̇ = 0; so we
recover (4.2). This shows that the intersection in clean.

Elements of TP(A) + TC(A∗) at a point (X, 0, 0, a) ∈ P(A) ∩ C(A∗)
are vectors of the form (Ẋ, δα, δη, ȧ) where Ẋ and ȧ are arbitrary while

δαµ = ρµi(X)βi,

δηi = −dβi − ∂iρµj(X)aµβj.

An explicit, though lengthy, computation shows that these are precisely
all possible vectors in T⊥(P(A) ∩ C(A∗)). �

By the discussion in 2.5 we conclude the proof of the Theorem. �

If we recall that the Lie groupoid of A must appear as a Lagrangian
Lie subgroupoid of the symplectic groupoid of A∗ (see the end of 2.4),
we may interpret the above result as a way of deriving the method of
[15, 7] from the one of [3].

Finally observe that, with the above notation, C(M) = P(T ∗πM) and
C(M) = G(T ∗πM), so the method of [3] may also be recovered as a
particular case of [15, 7].

5. Integration of coisotropic submanifolds

Let (M,π) be a Poisson manifold. A submanifold C is called coiso-
tropic if π#(N∗C) ⊂ TC, where N∗C denotes the conormal bundle of
C (viz., the subbundle of T ∗CM of covectors that vanish when applied to
a vector tangent to C). In case the Poisson structure of M comes from
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a strong symplectic structure, this definition coincides with the usual
one recalled in 2.5 since, in this case, π# establishes an isomorphism
between N∗C and T⊥C.

The theory of coisotropic submanifolds of Poisson manifolds [18] gen-
eralizes many properties of the corresponding theory in the symplectic
case (e.g., one may generalize symplectic reduction to the Poisson case
as it turns out that π#(N∗C) is an integrable distribution on the coiso-
tropic submanifold C and that the leaf space inherits a Poisson struc-
ture). Moreover, coisotropic submanifolds label the possible boundary
conditions of the Poisson sigma model yielding the beginning of a the-
ory of quantum reduction in the deformation quantization context [4].

From the point of view of the present paper, coisotropic submani-
folds are important because of their relations with the theory of Lie
algebroids. Namely:

Proposition 5.1. A submanifold C of (M,π) is coisotropic iff N∗C is
a Lie subalgebroid of T ∗πM .

Proposition 5.2. Let A be a Lie algebroid and A∗ its dual regarded as
a Poisson manifold. Then the zero section of A∗ is coisotropic and its
conormal bundle is the inclusion ι of A as a Lagrangian Lie subalgebroid
of T ∗A∗ described in Lemma 4.2.

Proof of Prop. 5.1. If N∗C is a Lie subalgebroid, in particular its an-
chor N∗C → TC is the restriction of π# to N∗C; this immediately
shows that C is coisotropic.

The converse is true by Corollary 3.1.5 in [18], but for completeness
we give a proof here. Assume that C is coisotropic. By definition, the
restriction of π# to N∗C maps it to TC and so it defines an anchor.
It remains only to prove that the Koszul bracket induces a bracket on
sections of N∗C. Let U be a trivializing chart on M intersecting C.
We choose adapted local coordinates {xI}I=1,...,dimM so that U ∩ C is
determined by xI = 0, I = dimC + 1, . . . , dimM . To make the no-
tation more transparent, we will use small Latin indices to denote the
first dimC coordinates (the tangential ones) and small Greek indices
to denote the remaining (transversal) ones; when we do not want to
distinguish them, we will use capital Latin indices. So the above con-
ditions may be written xµ = 0. If C is coisotropic, then πµν(x) = 0 for
all x ∈ U ∩ C, and as a consequence ∂iπ

µν(x) = 0 for all x ∈ U ∩ C.
This implies that

[ dxµ , dxν ](x) = ∂Kπ
µν(x) dxK = ∂µπ

µν(x) dxµ, ∀x ∈ U ∩ C.

This concludes the proof. �
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Proof of Prop. 5.2. Using coordinates (b, α) as in 2.3.2, we see that on
the zero section α = 0 only the mixed components of the bivector field
in (2.2) survive. This shows that the zero section is coisotropic. Its
conormal bundle consists of elements in T ∗A∗ of the form ((b, 0), 0⊕a),
so it is ι(A). �

Observe that the conormal bundles of submanifolds of M are all
possible Lagrangian subbundles of T ∗M with its canonical symplectic
structure. So Prop. 5.1 may also be rephrased as

Proposition 5.3. The set of coisotropic submanifolds of M is isomor-
phic to the set of Lagrangian Lie subalgebroids of T ∗πM .

In [19, Sect. 4] coisotropic subgroupoids of Poisson–Lie groupoids
are studied. It follows from Prop. 4.10 there, as a particular case,
that the Lie algebroid of a Lagrangian Lie subgroupoid of the sym-
plectic groupoid of the Poisson manifold (M,π) is a Lagrangian Lie
subalgebroid of T ∗πM . We want to prove that also the converse of this
statement is true.

Theorem 5.4. Let (M,π) be an integrable Poisson manifold and C(M)
its ssc symplectic groupoid. Then there is a one-to-one correspondence
between Lagrangian Lie subgroupoids of C(M) and coisotropic subman-
ifolds of M .

One direction of the isomorphism follows from the cited Prop. 4.10
of [19] together with Prop. 5.3 above. We have then to construct an
inverse map from coisotropic submanifolds of M to Lagrangian Lie
subgroupoids of C(M). We do it using the technique of [3] recalled in
Sect. 3 and actually prove a more general statement:

Proposition 5.5. To each coisotropic submanifold C of M there cor-
responds a (possibly singular) Lagrangian Lie subgroupoid (isomorphic
to G(N∗C) as a groupoid) of C(M).

Observe then that, thanks to Prop. 5.2, Thm. 4.1 is now a particular
case of this Proposition. To prove the Proposition we introduce

(5.1) L(C) := {(X, η) ∈ T ∗PM : X ∈ PC, η ∈ Γ(T ∗I ⊗X∗N∗C)}.
It is easy to see that L(C) is a Lagrangian submanifold of T ∗PM
and that L(C) ∩ C(C) is the manifold P(N∗C) of Lie algebroid mor-
phisms TI → N∗C. To complete the proof of Prop. 5.5 (and hence
of Thm. 5.4), by the discussion in 2.5 we only need the following two
Lemmata:

Lemma 5.6. The restriction to L(C) ∩ C(C) of the characteristic fo-
liation of C(C) is the infinitesimal form of Lie algebroid homotopies
P2(N∗C).
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Lemma 5.7. The intersection L(C)∩C(C) is clean and symplectically
regular.

Proof of Lemma 5.6. For simplicity we use adapted local coordinates
as in the proof of Prop. 5.1 (again observe that at different points in
I we may be on different patches of adapted local coordinates). The
intersection of the foliation (3.2) with L(C) amounts to the constraints
δXµ = 0 and δηi = 0. On L(C) we have ηi = 0 and πµν(X) = 0; so

δηi = −d(CX)i − ∂iπRS ηR (CX)S = −d(CX)i − ∂iπµk ηµ (CX)k,

and the condition δηi = 0 together with the boundary conditions on
CX implies (CX)i = 0. Then δXµ = −πµj(X) (CX)j automatically
vanishes. Moreover, we get

δX i = −πiµ(X) (CX)µ,(5.2)

δηµ = −d(CX)µ − ∂µπντ (CX)ν ητ .(5.3)

The local flow of this vector field on a time interval (−ε, ε) precisely
defines a Lie algebroid morphism T (I × (−ε, ε))→ N∗C. �

Proof of Lemma 5.7. As already recalled L(C) ∩ C(C) = P(N∗C) is
a manifold, see [7]. Let now (X, η) ∈ L(C). Using again adapted
local coordinates, we see that a vector (Ẋ, η̇) ∈ T(X,η)T

∗PM belongs
to T(X,η)C(M) iff

dẊI = πIK(X) η̇K + ẊJ∂Jπ
Iν(X) ην ,

where we have used ηi = 0. The intersection of T(X,η)L(C) with

T(X,η)C(M) is then determined by also imposing the equations Ẋµ =
η̇i = 0 (which express belonging to T(X,η)L(C)); viz.,

dẊ i = πiν(X) η̇ν + Ẋj∂jπ
iν(X) ην ,

dẊµ = πµν(X) η̇ν + Ẋj∂jπ
µν(X) ην .

The first equation says that (Ẋ i, η̇µ) belongs to T(X,η)(L(C) ∩ C(C)).

The condition Ẋµ = 0 implies dẊµ = 0, but thanks to πµν(X) = 0
and ∂jπ

µν(X) = 0 the second equation set to zero does not put extra

conditions on (Ẋ i, η̇µ). This shows that the intersection is clean.
An explicit but lengthy computation shows that the intersection is

also symplectically regular and in particular that the elements of

T(X,η)(L(C) ∩ C(C)) = T(X,η)L(C) + T(X,η)C(C),
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(X, η) ∈ L(C) ∩ C(C), are of the form (Ẋ i, δXµ, δηi, η̇µ) with

δXµ = −πµj(X) (CX)j,

δηi = −d(CX)i − ∂iπrν (CX)r ην ,

and Ẋ i and η̇µ arbitrary. �

6. The twisted case

A twisted symplectic manifold is a manifold endowed with a nonde-
generate 2-form. A twisted Poisson manifold (M,π, φ) is a manifold M
endowed with a bivector field π and a closed 3-form φ such that

[ π , π ] =
1

2
∧3 π#φ.

One may still define a bracket on functions by { f , g } = π(df, dg), but
the Jacobi identity will not be satisfied. A twisted strong symplectic
manifold (M,ω) provides an example of twisted Poisson manifold by
setting π to be the inverse of ω and φ = dω. The cotangent bundle
of a twisted Poisson manifold is a Lie algebroid with π# as its anchor
and a Lie bracket that on exact 1-forms reads [ df , dg ] = d { f , g }+
ιπ#df ιπ#dgφ. We will denote this Lie algebroid by T ∗π,φM .

A twisted symplectic groupoid (G⇒ M,ω, φ) is a Lie groupoid G⇒
M endowed with a nondegenerate, multiplicative 2-form ω on G and
with a closed 3-form φ on M such that the cocycle condition dω =
s∗φ− t∗φ holds. It turns out [5] that a twisted Poisson structure (π, φ)
is induced on the base M such that Lie(G) is isomorphic to T ∗π,φM .

Symplectic reduction may be generalized to the twisted case. Let
(S, ω) be a twisted symplectic manifold. A submanifold C is called
coisotropic if T⊥C ⊂ TC and the restriction ωC of ω to C is invariant
(viz., LXωC = 0 for any X ∈ Γ(T⊥C)). A Lagrangian submanifold is
a submanifold L such that T⊥L = TL, and it is automatically coiso-
tropic. It turns out that T⊥C defines a foliation on the coisotropic
submanifold C and that the leaf space C inherits a twisted symplectic
structure (if smooth). Moreover, if L is Lagrangian and the intersection
L ∩ C is clean and symplectically regular, the image of the projection
of L ∩ C to C is also Lagrangian.

We now recall the method introduced in [5] to integrate twisted
Poisson manifolds to (possibly singular) twisted symplectic groupoids
by modifying the method of [3]. One considers again the submanifold
C(M) of T ∗PM as in Sect. 3. This is not coisotropic w.r.t. the canonical
symplectic form Ω of T ∗PM , but it is so w.r.t. the twisted symplectic
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form Ω̃ := Ω + Ω̂ with

Ω̂(X, η)(ξ1 ⊕ e1, ξ2 ⊕ e2) =
1

2

∫
I

φ(X)(π#(X)η, ξ1, ξ2),

ξ1, ξ2 ∈ Γ(X∗TM), e1, e2 ∈ Γ(T ∗I ⊗X∗T ∗M). The twisted symplectic
groupoid of M turns then out to be the leaf space C(M).

Finally, we want to generalize the results of Sect. 5. We say that a
submanifold C is coisotropic in the twisted Poisson manifold (M,π, φ)
if π#(N∗C) ⊂ TC and the restriction φC of φ to C is horizontal (viz.,
ιXφC = 0 for any X ∈ Γ(N∗C)). If the twisted Poisson structure
comes from a twisted strong symplectic structure, then this definition
coincides with the one given in the twisted symplectic case.

One may easily see (along the lines of Sect. 5) that, if C is coisotropic,
N∗C is a Lie subalgebroid of T ∗π,φM and that the leaf space C inherits
the structure of a twisted Poisson manifold. However, N∗C might be
a Lie subalgebroid of T ∗π,φM in more general instances. Thus, we no
longer have a one-to-one correspondence between coisotropic submani-
folds of (M,π, φ) and Lagrangian Lie subalgebroids of T ∗π,φM if on T ∗M

we put the canonical symplectic structure ω = dpi dx
i. On the other

hand, if we put on T ∗M the twisted symplectic structure6 ω̃ := ω + ω̂
with 2 ω̂ = piπ

ijφjkl dx
k dxl, it turns out that N∗C is Lagrangian in

(T ∗M, ω̃) iff φC is horizontal; so Prop. 5.3 generalizes to the twisted
case, provided one twists the symplectic form on T ∗M . One may finally
generalize Prop. 5.5 to the twisted case since L(C), defined as in (5.1),

turns out to be Lagrangian in (T ∗PM, Ω̃) if C is coisotropic, and it is
possible to show Lemmata 5.6 and 5.7 in this case (with very similar
proofs).

A further modification of the integration methods of [3, 5] is con-
sidered in [1] to integrate (twisted) Dirac structures, a common gen-
eralization of (twisted) symplectic and Poisson structures. It would
be interesting to know if any of the ideas in the present paper have a
generalization in that context.

6In [5] it is observed that (T ∗π,φM,TM) is actually an example of quasi Lie
bialgebroid (cf. footnote 3 on page 6) as there is a derivation δ of Ω•(M) (which
deforms the exterior derivative) such that

δ[σ , τ ] = [ δσ , τ ] + [σ , δτ ], ∀σ, τ ∈ Ω1(M),

and that δ2 = [φ , • ] (where we have extended the Lie bracket to the whole of
Ω•(M) as a biderivation). This corresponds to having a quasi (i.e., no Jacobi) Lie
algebroid structure on TM that is compatible with the one on T ∗π,φM . This quasi
Lie algebroid structure determines a twisted Poisson structure on T ∗M , and as this
turns out to be nondegenerate, it corresponds to a twisted symplectic structure
that is precisely ω̃.
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propriétés locales et globales, C. R. Acad. Sci. Paris, Série A 263 (1966),
907–910.
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