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Abstract

The mechanisms regulating sperm transfer, storage, and use in insects are far from clear. Even in one of the most
well-resolved systems for studying post-copulatory sexual selection, the yellow dung fly (Scathophaga stercoraria),
the process of sperm transfer is not well understood. Our aim is to model the fluid dynamics of sperm flow in the
reproductive tracts of female yellow dung flies to determine what aspects of female morphology may influence sperm
movement. We model fluid flow using computational mathematics, and investigate geometric parameters suspected
of influencing rates of ejaculate movement: the curvature of sperm storage ducts, the smoothness of the inner duct
wall (surface area), spermathecal duct length and duct diameter. Duct length does not influence the flow rate, where
duct diameter has a strong influence of up to 71% at the extremes of the natural range observed in female dung flies.
Whereas duct curvature influences the flow rate only slightly (with an effect size of 1.6% over the natural range),
the duct wall smoothness has a pronounced effect (50%). The increase in duct surface area also slightly increases
the effect of curvature, implying that these structures might act synergistically, although the small size of this effect
argues against such a synergy having evolved as an adaptation for controlling sperm flow. We discuss the implications
of our model and methods for research in sperm competition and sexual selection.
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1. Sperm displacement in yellow dung flies

The recognition that sexual selection continues
after mating has initiated tremendous research on
the mechanisms and consequences of sperm com-
petition (the competition between sperm for the
fertilization of ova, Parker (1970a) and cryptic fe-
male choice (any female-controlled trait or process
that influences the outcome of sperm competition,
Eberhard (1996)). In spite of this research focus,
the evolutionary consequences of postcopulatory
sexual selection remain poorly resolved. This is
partly because, unlike premating sexual selection,
many of the crucial events are concealed within

the reproductive tracts of females and therefore
less amenable to direct observation and manipula-
tion. In addition, postcopulatory sexual selection
involves several individuals (i.e., a female and at
least two competing males), each of which may have
multiple interests in the outcome of selection that
may or may not be congruent with the interests of
the others. These competing interests interact in
complex ways, and there are numerous examples of
manipulative interactions in which behaviours or
structures in one individual have come about in part
via manipulation by another individual (Arnqvist,
2005; Blanckenhorn et al., 2007). As a consequence,
disentangling the selective basis and functional sig-
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nificance of traits that may have evolved in the
context of postcopulatory sexual selection is diffi-
cult, even in very well studied systems.
The yellow dung fly (Scathophaga stercoraria) is a
model system for research on post-copulatory sex-
ual selection since the early 1970s (Parker, 1970a,b).
Males congregate on dung pats to which gravid
females are attracted for the purpose of oviposi-
tion (Parker, 1970b), and compete to copulate with
these females. Although females do not appear to
have any significant control over the identity of their
mates at the oviposition resource (Parker, 1970a,b),
they do seem to retain some degree of control
over insemination (Hosken et al., 2001). Females
do assist sperm movement from the intromittent
organs to the primary site of sperm storage, as evi-
denced by experiments featuring female anesthesia
(Bernasconi and Hellriegel, 2002) and radiolabelling
techniques (Simmons et al., 1999). More intrigu-
ingly, females appear to be able to sort sperm in
their multiple sperm storage organs (Bussière et al,
unpublished, Demont et al, unpublished) perhaps
in order to manipulate the paternity of their offf-
spring depending on the predicted environmental
conditions larvae will face (Ward, 2000, 2007).
Although there is strong selection on males to
achieve insemination success, (Parker, 1970a;Parker
and Simmons, 1991; Simmons and Parker, 1992;
Parker and Simmons, 1994; Simmons et al., 1999),
there is nevertheless considerable variation in the
relationship between male traits and success in
paternity (Simmons and Siva-Jothy, 1998). Such
variation might be partly attributable to female
adaptations designed to retain control over sperm
movement (Hosken et al., 1999; Arthur et al., 2008).
For example, Hosken et al. (1999) have suggested
that the convoluted nature of the spermathecal
ducts may serve to restrict sperm movement to the
spermathecae and thus assist female control over
insemination succcess. Similarly, the curvature of
ducts, acting in concert with the spermathecal in-
vagination (Hosken and Ward, 2000) may play a
prominent role in female mediated sperm transport.
Documenting the role of putative adaptations for
controlling sperm flow is made difficult both by the
small scale of the structures involved and by the po-
tential interactions between males and females that
might influence the outcome of sexual interactions.
In this manuscript we use computational mathe-
matics to examine the potential for female anatomy
to affect the flow of ejaculates through spermath-
ecal ducts. Our aim is to identify those structures

that are most likely to influence flow rates as tar-
gets of further empirical investigation on the role of
females in controlling insemination.

2. The role of the female in sperm

displacement

There is some evidence that female characters in
general, and the morphology of the reproductive
tract specifically, may affect the outcome of post-
copulatory sexual selection by biasing the success of
different males in reaching the sites of insemination
and fertilization (Minder et al., 2005; Miller and
Pitnick, 2002).
The reproductive tract of the yellow dung fly fe-
male is a complex collection of organs. Sperm are
transferred from the male aedeagus into a muscular
bursa copulatrix, and move from there to the sperm
storage organs, known as spermathecae (Fig. 1).
There are usually three (rarely four, Ward (2000))
spermathecae arranged into a singlet on one side of
the body and two spermathecae collectively called
the doublet on the opposite side. Each spermatheca
has its own independent narrow duct through which
sperm must travel to and from the site of sperm
storage (Hosken et al., 1999).
The duct entrances at the bursa are all close to

Fig. 1. Scathophaga stercoraria, detail of the female genital

tract (redrawn from Arthur et al. (2008)). S, spermatheca;
SD, spermathecal duct; Sm, spermoraria; MC, muscular cop-
ulatrix.

each other, and the spermathecal ducts are lined
internally with chitin that forms circular ridges
around the circumference of the ducts. This in-
ner lining is extremely irregular because it is lined
with microvilli (a characteristic which we will refer
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to as the duct’s internal surface area), especially
compared to the lining in the spermathecae (fig. 2)
(Hosken et al., 1999). We will compare fluid flow
in ducts lined with microvilli to ducts of the same
width that lack these structures.
The ducts are surrounded by longitudinal muscle
and are 672 ± 17µm long. The width of the ducts
are 13.5± 1.8µm excluding the microvillosity which
has a dimension of around 1 − 2µm (Hosken et al.
(1999)).
Another putative adaptation may be the degree

Fig. 2. Scathophaga stercoraria, left: detail of the spermath-
ecal duct wall redrawn from (Hosken et al., 1999). cw chiti-
nous wall, dw, duct wall; mv, microvilli (increased surface
area); sf, seminal fluid. right: detail of the increased surface
area as modelled by sine waves for the purpose of studying
their effects on fluid dynamics. am, aplitude of the mv; pe,
period of the mv.

of curvature exhibited by ducts. Because of the
musculature associated with ducts and observable
in live preparations, such an adaptation could pro-
vide females with more plasticity in their response
to different males if curved ducts slow the rate of
fluid flow. For example, by tightening the muscle
attached to the spermathecal invagination, females
could straighten the duct and allow more rapid
sperm flow relative to the situation in a curved duct
(which is the natural resting state).

3. Assumptions and simplifications of the

model

The physical, mathematical and numerical mod-
elling of sperm flow is an emerging field in compu-
tational biology which is far from being fully under-
stood. In this paper, we will develop a numerical so-
lution method for a two-dimensional model which
may clarify the possible role of some female repro-
ductive structures in affecting the movement of sem-
inal fluid. The concept of the model, the methods
and their implementation is designed such that more

advanced models and/or advanced numerical meth-
ods can be realized in a modular way in the future.
In the following list we describe the model assump-
tions and discuss their generality.

(i) The system is considered stationary (no time
dependence) and inertialess (Stokes flow, see
next section).

(ii) The equation system for the fluid flow is solved
on a discrete mesh of around 105 degrees of
freedom (see next section).

(iii) The increased surface area is modelled using
sine waves to simulate duct wall complexity
(Figure 2). Mathematically, this is a straight-
forward parameterization of irregular bound-
aries.

(iv) The model is two dimensional (see next sec-
tion).

(v) The physical quantities: We can reasonably
bound the order of all the quantities used (Ta-
ble 1).
Density and viscosity are estimated based on
properties of body fluids from other species of
insects. For example, in Manduca sexta, the
hemolymph is estimated to have a density of
between 1-10 centiPoise (D. Saunders, pers.
comm.).
The inflow velocity is estimated from the fact
that it takes less than 5 minutes for sperm to
reach the spermathecae after the onset of cop-
ulation (Hosken et al., 1999). In the discussion
we analyse the sensitivity of each of these pa-
rameters to the outcome of our tests.

Model parameter Estimated quantity

density (ρ) 1g/cm3

dynamic viscosity (µ) 0.1poise

kinematic viscosity (ν) 107µm2/s

inflow velocity (U) 2µm/s

Table 1
Estimated physical quantities for dung fly seminal fluid. The
values are either deduced from other species or approximated
by measurements described in section 3

(vi) The duct is modelled as a pipe with inflow and
outflow. The inflow is given as a velocity profile
along the inflow edge. The outflowing fluid has
zero parallel component to the outflow edge:

u = uparabolic on Γinflow, u·τ = 0 on Γoutflow,
(1)

where uparabolic is the given velocity described
in the next section and τ a unit vector perpen-
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dicular to the outflow edge. These are bound-

ary conditions for the mathematical descrip-
tion of the model (see next section).

(vii) The fluid containing the sperm filaments is
modelled as a homogeneous fluid with homoge-
nous material properties.

The last two assumptions are considered more fully
in the discussion.

4. Modelling sperm flow

In fluid dynamics there are two characteristic flow
regimes: laminar and turbulent flow. Laminar flow

means smooth flow in parallel layers (e.g. pressing
tooth paste out of the tube) where turbulent flow al-
ways includes vortices and chaotic, stochastic prop-
erty changes (e.g. water flow around a ship). To dis-
tinguish those two regimes we introduce the dimen-
sionless Reynolds number :

Re :=
L · U

ν
, (2)

where L is a characteristic length, U a character-
istic velocity and ν the kinematic viscosity of the
system. Laminar flows have a Reynolds number
smaller than 2300 and turbulent flows larger than
2300. For more details see Batchelor (1967).
Flows at very small scales are typically strongly
laminar. Since we cannot measure most of the quan-
tities needed, we must estimate them. According
to the estimates in Table 1 the Reynolds number
of the system is 10−7 for the sperm flow inside the
duct of the female yellow dung fly. We direct read-
ers to Purcell’s review Purcell (1977) of flow at low
Reynolds numbers for more information on strongly
laminar flow.
Briefly, sperm flow in yellow dung fly females be-
haves like viscous layers. Although the fluid is not
viscous (νfly sperm ≈ νolive oil), the flow is viscous:
If the system were scaled up to a magnitude in
which the ducts width was 1cm, the flow would be
even more viscous than honey pouring through the
tubes. This makes the construction of a scaled-up
model for experimental validation very difficult:
most fluids that are sufficiently viscous at a reason-
able domain size possess inappropriate properties.
Considering mathematical modelling, strongly lam-
inar flow (Stokes flow) of homogeneous fluids is well
understood in this context.
Under the given assumptions, derived from the
physical laws conservation of mass and momentum,

laminar flow can be described by the dimensionless
Stokes equations

−
∂2u1

∂2x
−

∂2u1

∂2y
+

∂p

∂x
= 0

−
∂2u2

∂2x
−

∂2u2

∂2y
+

∂p

∂y
= 0 in Ω (3)

∂u1

∂x
+

∂u2

∂y
= 0

+boundary conditions,

where (x, y) are the spacial coordinates, u(x,y) =
(u1(x, y), u2(x, y)) is the fluid velocity and p(x, y)
is the pressure in (x, y).
The first equation represents the conservation of
momentum (continuity equation), and the second
equation represents the conservation of mass. The
boundary condition describes the behavior of the
fluid at the boundary and completes the system
to have a unique solution in appropriate function
spaces.
Given the fluid properties, the boundary conditions
(such as in- and outflow) and the two-dimensional
morphology of the duct, we can calculate the veloc-
ity and the pressure of the fluid in the given domain
using the Stokes equations. Solving these equa-
tions presents mathematical and computational
challenges. Although dealing with laminar flow is
much easier than dealing with turbulent flow, one
is in general unable to analytically find the exact
solution of the Stokes equations. Therefore there
are numerous numerical methods to find a good ap-
proximation of the solution.
We use the finite element method (Girault and
Raviart, 1979; Ciarlet, 1978; Hackbusch, 1992). The
main idea behind this method is to subdivide the
domain (the spermathecal duct) in a finite num-
ber of very small subdomains called elements. In
two dimensions we use triangles as elements. Based
on this finite element mesh we construct the finite

element space. The method leads to a system of
linear equations, the solution to which yields an
approximation of the exact solution. Finer grids
(more elements) produce better solutions, and as
the mesh width approaches zero, the approximation
approaches the continuous solution. Accordingly,
one would like to have as many elements as possi-
ble to approximate the true solution. The limiting
factor is determined by the memory and speed of
the computer and the programming language ar-
chitecture. The most demanding task for the com-
puter is to solve the arising linear system. Solving
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the problem (especially modelling flow around mi-
crostructures) in three dimensions require complex
numerical techniques. Developing such methods is
an emerging field in computational mathematics.
For the investigation we use two-dimensional finite
elements which sacrifice some realism, but by us-
ing state-of-the-art finite element technology it is
possible to discretize the spermathecal duct in two
dimensions by 105 − 107 elements.
Fluid flow in small tubes (Poiseuille flow) is well
understood (Lighthill, 1975), and a way of find-
ing the exact solutions for the Stokes problem in
straight pipes is shown in the next section. This
allows us to verify the mathematical model and use
it for our more complicated, curved ducts.

5. Stationary circular pipe flow

In this section we will derive the exact solution
(u, p) for a simple model problem.
Consider a straight (for now infinitely long) two-
dimensional pipe with the y-axis as its axisymmet-
rical center and radius a. We use a Cartesian coordi-
nate system and consider stationary flow. Note that
the flow field is constant with respect to the axial
component y since the pipe is infinitely long.
The continuity equation yields u1 = 0 in the whole
pipe. This means there is no movement in the radial
direction. Considering the radial component of the
momentum equation, it follows that the pressure p is
constant across the cross-section of the pipe. More-
over, using the axial component of the momentum
equation, we find that the pressure gradient ∂p/∂y
is constant. Finally we have simplified the momen-
tum equation to

(

∂2u2

∂2x
+

∂2u2

∂2y

)

=
∂

∂y
p = constant. (4)

This equation can be solved analytically, and by en-
forcing the no-slip boundary condition (the fluid at
the wall cannot move) we get

u2(x) = c1

∂p

∂y

(

x2 − a2
)

, (5)

where c1 := 1/2. This is the Poiseuille flow. The
formula shows that the axial flow profile is parabolic
with a maximum at the centerline. Further, the flow
velocity is proportional to the pressure gradient
∂p/∂y.
An important quantity of our tests is the flow rate
Q̇ which describes how much fluid is transported
through a cross section per second. Mathematically

Q̇ = −c2a
3
∂p

∂y
, (6)

where c2 := 2/3. This is known as Poiseuille’s law.
Using Poiseuille’s law we can compute the pressure
drop along a finite canal of length L with centerline
velocity U0. Combining (5) with (6) and the shape
of the inflow function, we find that

Q̇ =
c2

c1

aπU0 (7)

and obtain for the pressure drop due to the linearity
of p

p(L) − p(0) = L
∂p

∂y
= −L

c1U0

a2
. (8)

Thus, we derived an exact solution for the infinitely
long straight pipe. However, the spermathecal ducts
are of finite length and curved. For pipes of finite
length we can no longer give a general exact solu-
tion since the flow in the entry region is, in gen-
eral, not the same as the one in the infinitely long
pipe. There are methods to approximate the flow in
the entry region. They indicate that in flows of low
Reynolds numbers the region affected by irregulari-
ties near the entry is shorter than in flows of higher
Reynolds numbers. Therefore we ignore this effect.
As a validation we use in our tests an exact inflow
according to (5) to compare the numerical approxi-
mations with the exact solution in (8).
We cannot give an exact solution for flow in curved
pipes either. Its analysis relies strongly on numeri-
cal and physical experiments by (Dean, 1927, 1928).
These special curvature effects (centrifugal effects,
vortices) can also be directly related to the Reynolds
number. More precisely, the Dean number

De := Re

√

pipe radius

centerline curvature radius

is a measure for these effects. Since the Reynolds
number is very small in our application, we also have
De ≪ 1. Therefore these irregular flow effects in
curved parts of the duct can be neglected. Neverthe-
less, fluid flow in curved tubes is affected more by
friction at the wall of the duct. For our numerical
experiments we therefore expect a slightly smaller
flow rate in more curved tubes.

6. Methods and computer simulations

We implemented the numerical algorithm to
model the flow problems using computational math-
ematics. The strength of the software we created
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is its generality. The investigator can trace repro-
ductive tract structures from micrographs or draw
a domain of arbitrary design in the computer. In
addition, one can run two tests that are identical
with the exception of a single parameter (e.g. the
curvature of the duct) in order to evaluate the effect
of a given parameter on fluid flow.
Once one has fixed the settings, the program yields
an approximation to the solution of the described
problem. The parts of the calculations that are
costly in terms of time are parallelized using the
shared-memory technique, e.g. we solve the equa-
tion system using PARDISO (Schenk and Gärtner,
2004, 2006).

7. Numerical Experiments

In this test series we set up experiments to deter-
mine the influence of several morphological param-
eters. We will compare these results qualitatively
with those for the analytically completed solutions
of the Poiseuille flow.
For each parameter we consider how the results
would differ for a three-dimensional model relative
to our own.

Flow rate dependance on a change in duct length

Changing the length of a duct will not change the
flow rate since the pressure drop remains constant at
the same value. Nevertheless it will take each parti-
cle longer to cross the whole duct. Using our seminal
fluid velocity estimate, it takes a single sperm less
than 5 minutes, meaning a minimum rate of travel
of 2µm/s. Using this minimum flow rate, we can es-
timate that if duct was 700µm rather than 600µm,
sperm transport would require 30 seconds more from
the duct entrance to the spermatheca.

Flow rate dependance on a change in duct diameter

A change in the diameter of a straight duct will
produce a change in the flow rate. Equation (7)
shows a linear relationship between flow rate and
duct radius in two dimensions, whereas in three
dimensions the relation is quadratic. Using a range
of d = 13.5 ± 1.5µm we find that the flow rate
at d = 12µm is ≈ 0.75 times the flow rate at
d = 13.5µm, whereas the flow rate is ≈ 1.28 times
larger at a diameter of d = 15µm. Comparing the
extreme diameters, the flow rate is ≈ 71% larger at

d = 15µm than at d = 12µm.

For the following tests we fix the following param-
eters in order to assess the influence of the repro-
ductive tract curvature and roughness. We model a
spermathecal duct 600µm long with a diameter of
13.5µm. We specify the inflow as from the exact so-
lution of (5) and choose the centerline velocity U0 =
4µm/s, which is equivalent to a mean inflow speed
of (8/3) µm/s.
The resulting quantity of the computational tests is
the pressure drop in the inflow versus the outflow.
Comparing two calculations for the same diameter,
length and inflow, the flow rate is reciprocally pro-
portional to the pressure drop. If the flow encoun-
ters double the pressure loss, then, at the same force
pressing the fluid into the tube, only half of the fluid
would flow through in the same time.

Effect of increased surface area in a straight duct

The increased surface area is modelled by su-
perimposing an oscillating sine function (Figure
2). We chose sine period values of 1, 1.5 and 2µm.
For each of these values sine amplitudes of
0, 0.5, 1, 1.5 and 2µm were tested. The mean val-
ues for this range were suggested by Hosken et al.
(1999). For these 15 combined test-cases the pres-
sure drop is shown plotted against the amplitude
in Figure 3. For every sine wave it is obvious that
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Fig. 3. Pressure drop versus increased surface area amplitude
for different periods compared with the smooth narrow duct.
Since pressure drop ≈ 1/(flow rate) it shows the effect of
curvature on the flow rate (higher values mean less flow).

the case with an amplitude of 0 (the duct with a
smooth boundary) is a lower bound. As an upper
bound we consider the same smooth duct but with a
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reduced diameter as small as the minimal diameter
of the duct with increased surface area (diameter
d − 2 ∗ amp). We call this parameter set smooth

narrowed duct in Figure 3.
For a fixed amplitude the pressure drop increases
as the period decreases towards the value of the
narrow duct. For a fixed period the pressure drop
can be accurately fitted with a quadratic function.
For a moderate level of surface area (amplitude =
0.5 and period = 1.5) the pressure drop is scaled by
a factor of about 1.15 compared to the smooth duct.
Since the increased surface area is a radial parame-
ter (the effect acts in three dimensions, even though
the model is limited to 2-D), it has a quadratic ef-
fect on the flow rate in three dimensions (7). The
flow rate is estimated to be more than halved (fac-
tor 1/2.25) when applying a moderate amount of
duct roughness in three dimensions.

Effect of curvature in a smooth walled duct with a

constant total length

The model of a curved duct is chosen as follows:
We divide the centerline of the straight duct into
three parts. Each part is then modelled using a
Bezier curve of order 2. The total length is fixed
at 600µm. The curvature is parameterized by the
bottom left angle α of the artificial Bezier line (Fig-
ure 4). From the resulting smooth curve the duct
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Fig. 4. The curved duct centerline with parameter α of length
600µm.

boundary is obtained simply by orthogonal outward

projection of the centerline. We limited the angles
studied by measuring photographs of duct curva-
ture angles for natural female reproductive tracts.
The range we use represents the range of natural
angles for these ducts

α ∈ {125, 130, ..., 180} ,

where α = 180 is the straight duct (for which the
exact solution is already known).
For four different duct diameters, the computed data
is shown in Figure 5. The relative pressure drop in-
crements from α = 180 to α = 125 are presented in
Table 2. Since the increment for d = 13.5µm is only
about 1.6%, we see that curvature does not substan-
tially affect the flow. However, as predicted in the
end of section 5, there is a larger pressure loss at
more acute angles (representing more curvature).
Using the exact solution for α = 180 and a quadratic
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Fig. 5. Pressure drop versus curvature parameter α for dif-
ferent duct diameters. The circles denote the computed re-
sults and the line denotes the function δpfit. Since pressure
drop ≈ 1/(flow rate) it shows the effect of curvature on the
flow rate (higher values mean less flow).

Spermathecal duct diameter Pressure drop increment in %

12µm 1.580

13.5µm 1.610

15µm 1.580

16.5µm 1.542

Table 2
Percentage pressure drop from α = 180 to α = 125. Since
pressure drop ≈ 1/(flow rate) it describes the effect of cur-
vature on the flow rate.

fit obtained from the computational results, we de-
rive the following approximation:
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δpfit := (pin − pout)(a, α)

≈
48000

a2
(9)

∗
(

5.754 ∗ 10−6α2 − 2.037 ∗ 10−3α + 1.180
)

The quadratic coefficient in (9) is small, hence the
function is nearly linear. Using a cubic fit produces
a cubic coefficient of the order 10−9. This means
that the pressure drop depends quadratically on
the angle α. Equation (9) shows also that at fixed
angle α the pressure drop depends on 1/a2. This
leads to a linear relationship between flow rate and
diameter in curved ducts (as shown in (7)).
These results are transferable to the three-
dimensional case since the curvature of ducts occurs
primarily in one dimension.

Effect of curvature on flow in a duct with moderate

microvillosity

As seen in the previous two tests, a rough surface
affected the fluid flow by about 50% whereas the
bending of the duct only resulted in a difference of
about 1.5%. Now we will study these two parame-
ters simultaneously. We add a moderate surface area
to the same model of curvature. We test the two
cases period = 1.5/amplitude = 1 and period =
1.5/amplitude = 0.5. These values are obtained by
measurements from micrographs of spermathecal ul-
trastructure (Hosken et al., 1999).
The behaviour illustrated in figure 6 is approxi-

mately the same as that in figure 5. The drop in
pressure reacts quadratically to a decrease in the an-
gle of curvature α. As in Figure 3, the amplitude of
the surface area has the largest influence on the fluid
flow. In contrast, the curvature affects the flow only
slightly; for an amplitude of 0.5µm the effect is only
1.7%, and for an amplitude of 1µm it is only 1.8%.
The increase in surface area has slightly increased
the effect of curvature.

8. Discussion

Natural levels of curvature influence the flow rate
only slightly (with an effect size of 1.6%) whereas
increasing the surface area has a pronounced effect
(50%). The increased surface area of ducts that is a
product of microvilli slightly augments the effect of
curvature, implying that these structures might act
synergistically, althought the combined effect is only
slightly larger than that caused by microvilli alone.
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Fig. 6. Pressure drop versus curvature parame-
ter α where period = 1.5, amplitude = 1 and
period = 1.5, amplitude = 0.5. The lines are quadratic fits
for the measured data. Since pressure drop ≈ 1/(flow rate)
it shows the effect of curvature with increased surface area
on the flow rate (higher values mean less flow).

Due to the laminar behaviour of fluids in our system,
a restricted duct diameter has a similar and slightly
larger impact on flow rate as increased surface area.
The length of the duct has no influence on the flow
rate but does influence the time required for sperm
to move into the storage organs.
As mentioned in section 3, we address the last two
assumptions.

Boundary condition setting: given inflow, parallel

outflow

This assumption is a simplification of the real sit-
uation that we do not yet understand: flow may not
be constant because it may occur in both directions
(Simmons et al., 1999). The outflowing seminal fluid
is collected in the spermathecae, which gradually
become full, and there may be an accumulation or
obstruction caused by the finite volume of the sperm
storage organs. We are thus limited in our tests, but
being aware of these simplifications we can nonethe-
less model the effect of morphology on flow rate, es-
pecially in virgin flies with empty spermathecae.
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The fluid is homogeneous

Mechanics of flexible bodies in fluid are difficult
to describe (Cox, 1970; Shelley and Ueda, 2000).
One difficulty arises from the extreme length/width
ratio of the filaments, they are extremely thin com-
pared to their length. The fact that the filaments are
immersed in a flowing fluid requires a coupling tech-
nique (e.g. Cortez et al. (2004)). For the tests at this
stage we made the simplification of assuming the
fluid to be homogeneous for practical reasons. The
homogeneous approach enables using a rather sim-
ple and well-known physical description that can be
solved using computational mathematics. We hope
that this gives us already some insight in the main
dependencies of morphology and fluid dynamics.
The difference in fluid flow to the fluid containing
sperm filaments is a topic for future investigations.

As pointed out in the analyses, these results are
not sensitive to our estimates of physical param-
eters. The qualitative behaviour of the results we
found holds even if the true Reynolds number for
our system is two orders of magnitude from our
estimate which is a rather remote case.
There are at least two areas that should be the sub-
ject of future research. First, the fact that we model
the fluid homogeneously may be a gross oversimpli-
fication because the sperm filaments are very long
compared to the duct diameter. We hypothesize
that the effect of morphology on the flow rate will
increase when the filaments swimming in the fluid
are modelled. There are some physical and mathe-
matical challenges linked to this next step that are
the subject of ongoing work. Second, to understand
the process of sperm transfer, we must first under-
stand the flow of the ejaculate. Only then may we
model the spermathecal duct and the spermathecae
together and provide a more complete estimate of
the influence of morphology on sperm storage.
The flow rate of the seminal fluid is probably
strongly related to the number of sperm flowing
through the spermathecal duct. Our results show
that the irregular duct lining with its increased sur-
face area could allow females increased control over
sperm storage. Although such a structure would not
allow females to plastically manipulate the condi-
tions of insemination, it could nevertheless provide a
larger time window after intromission during which
females might influence the number and location
of sperm in storage by other means, for example,

differential transport via female reproductive tract
musculature.
However, because we found the flow rate to be
slower in a narrow duct than in the same duct with
increased surface area and the same minimum di-
ameter, narrowing the duct would seem to be a
more effective (and probably less costly in terms
of structural investment) way to slow down sperm
movement (Figure 3). Whether the increased sur-
face area has a larger impact on sperm filaments
(which might, for example, move with greater or
lesser ease through microvilli than a smooth-walled
structure) than homogenous fluid is the subject of
ongoing work.
Alternatively or additionally, it is possible that
the increased surface area is related to an absorp-
tive, secretory function, for example the creation of
negative pressure through fluid absorption or the
provision of nutrients or spermicidal compounds to
the ejaculate.
Evaluating these alternatives will require much
more detailed information on the physiology of sper-
mathecal ducts and ideally include empirical obser-
vations of the functional significance of increased
surface are for sperm movement across females that
vary in the morphology of their spermathecal ducts.
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