Two-Scale Composite Finite Element Method for the Dirichlet Problem on Complicated Domains

M. Rech ${ }^{*}$ S. Sauter ${ }^{\dagger}$ A. Smolianski ${ }^{\ddagger}$

December 3, 2003

Abstract

In this paper, we will define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary.

2000 Mathematics Subject Classification: 35J20, 65N15, 65N30
Key words and phrases: two-scale composite finite elements, Dirichlet boundary conditions, complicated domain

[^0]
1 Introduction

The problem of numerically solving partial differential equations on complicated domains arises in many physical applications such as environmental modelling, porous media flows, modelling of complex technical engines and many others. In principle, this problem can be treated with the standard finite element method; however, the usual requirement
the finite element mesh has to resolve the domain boundary
makes a coarse-scale discretization impossible. Every reasonable discretization will necessarily contain a huge number of unknowns being directly linked to the number of geometric details of the physical domain.

This is in sharp contrast to a flexible, problem-adapted, and goal-oriented discretization:

- The finite element discretization should allow the adaption to the characteristic (possibly singular) behavior of the exact solution without adding "too" many degrees of freedom but, e.g., by adapting the shape of the finite element functions to the behavior of the solution by introducing slave nodes.
- Starting from a very coarse discretization and a very crude approximation of constraints such as Dirichlet boundary conditions, an aposteriori error estimation should be used to enrich the finite element space to improve the local accuracy.

In [4], [5] the composite finite elements (CFE) have been introduced for coarse-level discretizations of boundary value problems with Neumann-type boundary conditions. The minimal number of unknowns in the method was independent of the number and size of geometric details. For functions in $H^{k}(\Omega)$, the approximation property was proven in an analogue generality as established for standard finite elements (see [4]).

Composite finite elements for an adaptive approximation of Dirichlet boundary conditions have been introduced in [7]. These finite elements can be interpreted as a generalization of standard finite elements by allowing the approximation of Dirichlet boundary conditions in a flexible adaptive manner. In this light, we will establish in this paper the approximation and convergence properties of these finite elements in the framework of an a-priori analysis.

In [8], we will introduce the combination of these finite element spaces with an a-posteriori error estimator in order to improve the approximation of Dirichlet boundary conditions in a problem-adapted way.

Related approaches in the literature can be found in [1], [6], [15].
We will introduce the composite finite element method for problems with Dirichlet boundary conditions via a two-scale discretization: One (possibly coarse) scale H describes the approximation of the solution in the interior of the domain at a proper distance to the boundary and one (possibly fine) scale h describes the local mesh size which is used for the approximation of Dirichlet boundary conditions.

As a model problem we consider the Poisson equation with homogeneous Dirichlet boundary condition

$$
\begin{align*}
-\Delta u=f & \text { in } \Omega, \tag{1.2}\\
u=0 & \text { on } \Gamma, \tag{1.3}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain with Lipschitz boundary Γ having a finite length. For the sake of simplicity, we assume that Ω is a polygonal domain, but it may still have a very complicated shape. We have to note, also, that the extension of the presented theory to general 2nd-order elliptic problems or three-dimensional problems is straightforward from the conceptional point of view.

The aim of this work is to set up a family of finite elements which possesses the optimal approximation property (up to logarithmic terms) for functions in $H_{0}^{1}(\Omega) \cap H^{1+s}(\Omega), s \in\left[\frac{1}{2}, 1\right]$. If we denote by N_{Γ} the number of line segments in Γ, the total number of unknowns in the standard FEM can be expected to be $O\left(N_{\Gamma}\right)$ or even up to $O\left(N_{\Gamma}^{2}\right)$, which may be prohibitively expensive. In this paper, we obtain the approximation space where the minimal dimension is independent of N_{Γ}; thus, the total number of unknowns should be, usually, much smaller than in the standard FEM.

To achieve this goal, we relax the condition (1.1) by introducing a twoscale grid: The coarse scale grid \mathcal{T}_{H} which contains the degrees of freedom and the fine scale grid \mathcal{T}_{h} which adaptively resolves the boundary Γ and contains only slave nodes which are used to adapt the shape functions to the Dirichlet boundary conditions. For a triangle $\tau \in \mathcal{T}_{H}$, we denote its diameter by h_{τ} and the index H in \mathcal{T}_{H} is the largest triangle diameter: $H:=\max \left\{h_{\tau}: \tau \in \mathcal{T}\right\}$. The index h in \mathcal{T}_{h} is the smallest diameter of triangles in \mathcal{T}_{h}.

The resolution condition (1.1) is replaced by the overlap condition for the mesh \mathcal{T}_{H} :

$$
\Omega \subset \bigcup_{\tau \in \mathcal{T}_{H}} \tau
$$

and hence, the number of elements n in \mathcal{T}_{H} is possibly low independent of the number and size of geometric details in Ω. The fine scale grid is concentrated locally at the boundary Γ and the required resolution is either controlled by an a-priori analysis or by an a-posteriori error estimator.

For the CFE solution of problem (1.2), (1.3), we will show, also, the optimal convergence rate with respect to H under our weakened condition on the resolution of the boundary (conditions).

The paper is organized as follows. We define the two-scale composite finite element space in Section 2 and prove the approximation error estimates in Section 3. Section 4 is devoted to the convergence analysis for the CFE solution of problem (1.2), (1.3), and Section 5 summarizes the main aspects of the presented method.

In this paper, we will use the standard notation $\|\cdot\|_{s, \Omega}$ for the norm in the Sobolev space $H^{s}(\Omega), s \geq 0$, and $|\cdot|_{k, \Omega}$ for the seminorm in $H^{k}(\Omega), k=1,2$ (i.e. $|u|_{k, \Omega}=\left(\sum_{|\alpha|=k}\left\|D^{\alpha} u\right\|_{0, \Omega}^{2}\right)^{1 / 2}$).

In order to improve readability, we have collected below the most relevant notations, while their precise definitions will be given later in the text.

Notations:

$\mathcal{T}_{H}, \Theta_{H} \quad$ Initial, overlapping coarse grid and corresponding set of vertices,
$\mathcal{T}_{\Gamma} \quad$ subset of \mathcal{T}_{H}, which contains all near-boundary triangles,
$\mathcal{T}_{H, h}, \Theta_{H, h} \quad$ two scale grid with corresponding set of grid points,
$\mathcal{T}_{H}^{\mathrm{in}}, \Theta_{\text {dof }} \quad$ inner grid of $\mathcal{T}_{H, h}$ with corresponding set of grid points (degrees of freedom),
$\Theta_{\text {slave }} \quad$ set of slave nodes $\Theta_{\text {slave }}:=\Theta_{H, h} \backslash \Theta_{\text {dof }}$;
$x^{\Gamma} \quad$ for $x \in \Theta_{\text {slave }}, x^{\Gamma} \in \Gamma$ has minimal distance to x,
Δ for $x \in \Theta_{\text {slave }}, \Delta_{x} \in \mathcal{T}_{H}^{\text {in }}$ has minimal distance to x,
$\tau \quad$ (closed) triangle,
$\mathbf{V}(\tau) \quad$ set of vertices of a triangle τ.

2 The composite finite element space

The construction of the composite finite element (CFE) space is realized in three steps. We emphasize that all steps can be incorporated easily in any standard grid refinement algorithm.

Step 1: Overlapping two-scale grid

Let $\mathcal{T}_{H}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$ denote a conforming shape regular finite element mesh (in the sense of Ciarlet [3]) consisting of (closed) triangles with maximal diameter H.

Notation 2.1 For any triangle τ, the set of vertices is denoted by $\mathbf{V}(\tau)$. The open interior of a (closed) triangle is denoted by $\operatorname{int}(\tau)$.

The assumption on the grid conformity excludes the presence of hanging nodes in \mathcal{T}_{H}. Further, we assume that \mathcal{T}_{H} is an overlapping grid, i.e.

$$
\begin{equation*}
\Omega \subset \bigcup_{\tau \in \mathcal{T}_{H}} \tau \quad \text { and } \quad \forall \tau \in \mathcal{T}_{H}: \operatorname{int}(\tau) \cap \Omega \neq \emptyset \tag{2.1}
\end{equation*}
$$

It is evident that, for any bounded domain, there exists a triangulation with very few elements which satisfies these conditions. In order to resolve the boundary (conditions) in an adaptive way, the triangles in a certain neighborhood of Γ will be refined. The width of this neighborhood is controlled by a parameter $c_{\text {dist }}>0$. We employ a simple coloring algorithm which marks two "layers" of triangles about the boundary Γ provided the distance of such triangles from the boundary is not "too" far: $\operatorname{dist}(\tau, \Gamma) \leq c_{\text {dist }} h_{\tau}$. The procedure requires as input the mesh \mathcal{T}_{H} and the output is the near-boundary part \mathcal{T}_{Γ} of the mesh. It is called by mark_near_boundary_triangles and defined by

```
procedure mark_near_boundary_triangles;
begin
    \(\mathcal{T}_{\text {temp }}:=\emptyset ; \mathcal{T}_{\Gamma}:=\emptyset ;\)
    for all \(\tau \in \mathcal{T}_{H}\) do
        if \(\operatorname{int}(\tau) \cap \Gamma \neq \emptyset\) then \(\mathcal{T}_{\text {temp }}:=\mathcal{T}_{\text {temp }} \cup\{\tau\} ;\)
    for all \(\tau \in \mathcal{T}_{\text {temp }}\) do
        for all \(t \in \mathcal{T}_{H}\) with \(t \cap \tau \neq \emptyset\) do
                if dist \((t, \Gamma) \leq c_{\text {dist }} h_{t}\) then \(\mathcal{T}_{\Gamma}:=\mathcal{T}_{\Gamma} \cup\{t\}\);
end;
```

Next, the near-boundary triangles $\tau \in \mathcal{T}_{\Gamma}$ are refined adaptively towards Γ until the fine scale triangles $t \subset \tau$ satisfy the following condition

$$
\begin{equation*}
\operatorname{dist}(t, \Gamma)>0 \vee \operatorname{stop}(t)=\text { true } \tag{2.2}
\end{equation*}
$$

where stop (\cdot) is an abstract stopping criterion which will be addressed in Remark 4.3 and Lemma 4.2 or replaced by an a-posteriori error estimation (see [8]).

For a triangle τ, let refine (τ) denote the set of four triangles which arise by connecting the midpoints of the edges in τ. The procedure adapt_boundary successively refines the near-boundary triangles, i.e., which violate condition (2.2). In order to keep the procedure local about the boundary, we employ an active set $\mathcal{T}_{\text {active }}$ which contains level-by-level the newly generated near-boundary triangles and is updated via an auxiliary set $\mathcal{T}_{\text {temp }}$. It is called by

$$
\mathcal{T}_{H, h}:=\mathcal{T}_{H} ; \mathcal{T}_{\text {temp }}:=\mathcal{T}_{\Gamma} ; \text { adapt_boundary }
$$

and defined by

```
procedure adapt_boundary;
begin
    \(\mathcal{T}_{\text {active }}:=\left\{\tau \in \mathcal{T}_{\text {temp }}:\right.\) Condition (2.2) is violated \(\} ; \mathcal{T}_{\text {temp }}:=\emptyset ;\)
    while \(\mathcal{T}_{\text {active }} \neq \emptyset\) do begin
        for all \(\tau \in \mathcal{T}_{\text {active }}\) do begin
            \(\sigma_{\text {temp }}:=\{t \in \operatorname{refine}(\tau):|t \cap \Omega|>0\} ;\)
            \(\mathcal{T}:=\mathcal{T} \backslash\{\tau\} \cup \sigma_{\text {temp }} ;\)
            \(\mathcal{T}_{\text {temp }}:=\mathcal{T}_{\text {temp }} \cup \sigma_{\text {temp }} ;\)
        end;
        green_closure \((\mathcal{T})\);
        \(\mathcal{T}_{\text {active }}:=\left\{\tau \in \mathcal{T}_{\text {temp }}:\right.\) Condition (2.2) is violated \(\} ; \mathcal{T}_{\text {temp }}:=\emptyset ;\)
    end;
end;
```

Here, the procedure green_closure eliminates all hanging nodes in the actual triangulation \mathcal{T}. If a common triangle $\tau \in \mathcal{T} \cap \mathcal{T}_{\text {temp }}$ is subdivided by the procedure green_closure, we employ the convention that the triangle τ is replaced by the refined triangles not only in \mathcal{T} but also in the set $\mathcal{T}_{\text {temp }}$.

For any $\tau \in \mathcal{T}_{H}$, we define the set of sons by

$$
\begin{equation*}
\operatorname{sons}(\tau):=\left\{t \in \mathcal{T}_{H, h}: t \subset \tau\right\} \tag{2.3}
\end{equation*}
$$

Figure 1: Two-scale grid $\mathcal{T}_{H, h}$. The dark-shaded triangles form the inner triangulation $\mathcal{T}_{H}^{\text {in }}$ and contain the degrees of freedom. The near-boundary triangles are surrounded by dotted lines and contain the slave nodes as vertices.
and denote its number by $n_{\tau}:=\sharp$ sons (τ).
As a result of this algorithm, we obtain a new conforming and shape regular grid that is more refined than \mathcal{T}_{H} in the vicinity of Γ and does not differ from \mathcal{T}_{H} in the interior of Ω (see Figure 1).

The two-scale nature of the grid $\mathcal{T}_{H, h}$ becomes apparent: In the interior of the domain, at some distance from Γ, the submesh $\mathcal{T}_{H}^{\text {in }} \subset \mathcal{T}_{H, h}$:

$$
\mathcal{T}_{H}^{\text {in }}:=\left\{t \in \operatorname{sons}(\tau): \tau \in \mathcal{T}_{H} \backslash \mathcal{T}_{\Gamma}\right\}
$$

is characterized by the coarse-scale mesh parameter H. (Note that $\mathcal{T}_{H}^{\mathrm{in}}$ differ from $\mathcal{T}_{H} \backslash \mathcal{T}_{\Gamma}$ only by those triangles $t \in \mathcal{T}_{H} \backslash \mathcal{T}_{\Gamma}$ which are refined via the green-closure algorithm.)

In the neighborhood of Γ the two-scale mesh $\mathcal{T}_{H, h}$ is characterized by the fine-scale parameter $h:=\min \left\{h_{t}: t \in \mathcal{T}_{H, h}\right\}$ (obviously, $h \leq H$). Later
we will see that, for the optimal convergence rate of the CFE solution, the parameters should obey the correlation $h=\mathcal{O}\left(H^{s}\right)$ and the choice of s will be discussed in Section 4.

By choosing the stopping criterion (2.2) in an appropriate way, the nearboundary triangles satisfy

$$
\begin{equation*}
\operatorname{dist}(\tau, \Gamma) \leq C_{\text {dist }} h_{\tau} \quad \forall \tau \in \mathcal{T}_{H, h} \backslash \mathcal{T}_{H}^{\text {in }} \tag{2.4}
\end{equation*}
$$

(More precisely, the stopping criterion must contain (2.4).)
Remark 2.2 For the constructed grid $\mathcal{T}_{H, h}$ we can distinguish two limiting cases.
a. The number n_{τ} of subtriangles in $\tau \in \mathcal{T}_{\Gamma}$ equals 1; it means that there is no subdivision of τ and the grid $\mathcal{T}_{H, h}$ simply coincides with the coarsescale grid $\mathcal{T}_{H} \quad(h=\mathcal{O}(H)$ in this case $)$.
b. The number n_{τ} is so large, that the domain Ω is fully resolved by the grid $\mathcal{T}_{H, h}$ (the full resolution of Ω can be achieved by applying the above mentioned refinement algorithm until the connectivity components $\tau \backslash \Gamma$ can be meshed by only few triangles; then, further subdivision of $t \in$ sons (τ) into these triangles leads to the grid exactly aligned with the boundary $\Gamma)$; in this case, $h=\mathcal{O}\left(h_{\Gamma}\right)$ where h_{Γ} is the characteristic scale of Γ.

Step 2: Marking the degrees of freedom

Next, we will define the "free nodes" where the degrees of freedom will be located and the "slave nodes" where the function values are constraint. The degrees of freedom correspond to those vertices in the coarse mesh \mathcal{T}_{H} - more precisely in the inner mesh $\mathcal{T}_{H}^{\text {in }}$ - having a proper distance to the boundary. Let Θ_{H} denote the set of all vertices in \mathcal{T}_{H} and define

$$
\Theta_{\mathrm{dof}}:=\left\{x \in \mathbf{V}(\tau): \tau \in \mathcal{T}_{H}^{\mathrm{in}}\right\}
$$

All other nodes in $\mathcal{T}_{H, h}$ are slave nodes and the values of a composite finite element function is determined by its values at the nodes $x \in \Theta_{\text {dof }}$. In this light, the triangles and grid points which are generated by the procedure adapt_boundary do not increase the dimension of the finite element space
but are used for adapting the shape of the finite element functions to the Dirichlet boundary conditions.

Step 3: Definition of an extrapolation operator

The degrees of freedom of the composite finite element space are located at the inner nodes $\Theta_{\text {dof }}$ and the values at the slave nodes of the two-scale mesh $\mathcal{T}_{H, h}$ are determined via a simple extrapolation method.

Let $\Theta_{H, h}$ denote the set of all vertices of the two-scale mesh $\mathcal{T}_{H, h}$. The set of slave nodes is given by

$$
\Theta_{\text {slave }}:=\Theta_{H, h} \backslash \Theta_{\text {dof }}
$$

For a slave node $x \in \Theta_{\text {slave }}$, we determine a closest point x^{Γ} on the boundary Γ and a closest coarse grid triangle $\Delta_{x} \in \mathcal{T}_{H}^{\text {in }}$.

Remark 2.3 For $x \in \Theta_{\text {slave }}$, the computation of a closest boundary point x^{Γ} and a closest coarse grid triangle Δ_{x} can be performed efficiently by using the hierarchical structure of the two-scale mesh. The algorithmic details for this and also for the generation of the system matrix are presented in [7] while we focus here on the stability and convergence analysis.

Let $\mathbf{u}: \Theta_{\text {dof }} \rightarrow \mathbb{R}$ denote a grid function. For any $\tau \in \mathcal{T}_{H}$, there exists an uniquely determined linear function $u_{\tau}: \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ which interpolates \mathbf{u} in the vertices of τ. Here, and in the sequel, $\mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ denotes the space of bivariate polynomials on \mathbb{R}^{2} of maximal degree 1 . The values of the grid function \mathbf{u} at a slave node $x \in \Theta_{\text {slave }}$ is defined by

$$
\mathbf{u}_{x}:=u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right)
$$

This relation defines a simple extrapolation operator $\mathcal{E}: \mathbb{R}^{\Theta_{\text {dof }}} \rightarrow \mathbb{R}^{\Theta_{H, h}}$ for grid functions:

$$
(\mathcal{E} \mathbf{u})_{x}:= \begin{cases}\mathbf{u}_{x} & x \in \Theta_{\text {dof }}, \tag{2.5}\\ u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right) & x \in \Theta_{\text {slave }}\end{cases}
$$

Let S denote the continuous, piecewise linear finite element space on the mesh $\mathcal{T}_{H, h}$

$$
S:=\left\{u \in C^{0}\left(\Omega_{H, h}\right)\left|\forall \tau \in \mathcal{T}_{H, h}: u\right|_{\tau} \in \mathbb{P}_{1}\right\}
$$

where $\Omega_{H, h}:=\operatorname{int}\left(\bigcup_{\tau \in \mathcal{T}_{H, h}} \tau\right)$. The composite finite element space is a subspace of S, where the values at the slave nodes are restricted by the extrapolation.

Definition 2.4 The composite finite element space for the two-scale approximation of Dirichlet boundary conditions on the mesh $\mathcal{T}_{H, h}$ is

$$
S^{\mathrm{CFE}}:=\left\{u \in S \mid \exists \mathbf{u} \in \mathbb{R}^{\Theta_{\mathrm{dof}}} \quad \text { s.t. } u(x)=(\mathcal{E} \mathbf{u})_{x} \quad \forall x \in \Theta_{H, h}\right\} .
$$

Remark 2.5 From the viewpoint of the approximation quality of the composite finite element space, it is essential that the extrapolation from an inner triangle Δ_{x} to a slave node x is not performed over a "too" large distance. (Such a situation might appear if a slave node is located in a long outlet of the domain, far away from an inner triangle). If such situations arise, we simply modify the definition (2.5) by employing a control parameter $\eta_{\text {ext }}>0$ and using the generalized definition

$$
(\mathcal{E} \mathbf{u})_{x}:= \begin{cases}\mathbf{u}_{x} & x \in \Theta_{\text {dof }}, \tag{2.6}\\ u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right) & x \in \Theta_{\text {slave }} \wedge \operatorname{dist}\left(x, \Delta_{x}\right) \leq \eta_{\text {ext }} h_{\Delta_{x}} \\ 0 & \text { otherwise }\end{cases}
$$

Remark 2.6

1. Obviously, $S^{\mathrm{CFE}} \subset S$; since the dimension of S^{CFE} is determined only by the number of nodes in Θ_{dof}, it may be much smaller than the dimension of S, especially in the case of very complicated boundary Γ.
2. A composite finite element function $u \in S^{\mathrm{CFE}}$ is, in general, not affine inside of each triangle $\tau \in \mathcal{T}_{H}$ but continuously composed of affine pieces on triangles of $\mathcal{T}_{H, h}$. However, in the interior of the domain (i.e. on triangles $\tau \in \mathcal{T}_{H}^{\mathrm{in}}$) it is a standard finite element function being piecewise affine on these triangles.
Remark 2.7 The space S^{CFE} is, in general, non-conforming in the sense that the triangles in $\mathcal{T}_{H, h}$ might overlap the boundary Γ and, then, the functions from S^{CFE} satisfy the homogeneous boundary condition only approximately (this is not the case if the two-scale grid $\mathcal{T}_{H, h}$ completely resolves the given domain Ω, see Remark 2.2.b). However, as we will see in Section 4, a small error in the approximation of boundary conditions is harmless for the quasi-optimal (with respect to the coarse-scale parameter H) convergence rate of the CFE solution.

3 Approximation property

In this section we investigate the approximation property of the proposed composite finite element space. The error estimates for composite finite elements will be based on the existence of an appropriate extension operator for the given domain Ω. It is known that, for a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{d}$, there exists a continuous, linear extension operator $\mathfrak{E}: H^{k}(\Omega) \rightarrow$ $H^{k}\left(\mathbb{R}^{d}\right), k \in \mathbb{N}$, such that

$$
\forall u \in H^{k}(\Omega):\left.\quad \mathfrak{E} u\right|_{\Omega} \equiv u \quad \text { and } \quad\|\mathfrak{E} u\|_{H^{k}\left(\mathbb{R}^{d}\right)} \leq C_{\mathrm{ext}}\|u\|_{H^{k}(\Omega)}
$$

with the constant $C_{\text {ext }}$ depending only on k and Ω (cf. [12]). It is worth noting that, for domains containing a large number of holes and possibly a rough outer boundary, there exists an extension operator with the bounded norm $C_{\text {ext }}$ independent of the number of the holes and of their sizes. For all details including the characterisation of the class of domain geometries, we refer to [11].

To derive the approximation error estimates, we will need a preparatory Lemma. Let τ denote an arbitrary triangle with diameter h_{τ} and mass center M_{τ}. For $c \geq 1$, we introduce the scaled version of τ by

$$
\begin{equation*}
T_{c}:=\left\{M_{\tau}+c\left(y-M_{\tau}\right): y \in \tau\right\} \tag{3.1}
\end{equation*}
$$

Lemma 3.1 (neighborhood property) Let $u \in H^{2}\left(\mathbb{R}^{2}\right)$ and τ be an arbitrary triangle with diameter h_{τ}. Let $u_{\tau} \in \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ denote the affine interpolation of u at the vertices of τ and let T_{R} be the scaled version of τ as in (3.1) for some $R \geq 1$ about the mass center of τ. For $m \in\{0,1\}$ and $1 \leq p \leq \infty$ with the exception $(m, p) \neq(1, \infty)$, we have the error estimate

$$
\begin{equation*}
\left|u-u_{\tau}\right|_{W^{m, p}\left(T_{R}\right)} \leq C(1+R)\left(R h_{\tau}\right)^{1+\frac{2}{p}-m}|u|_{H^{2}\left(T_{R}\right)} \tag{3.2}
\end{equation*}
$$

where C only depends on the minimal angles of τ.
Proof. For $R \geq 1$, we write T short for T_{R}. Obviously τ and T are congruent and the diameter of T satisfies $h_{T}=R h_{\tau}$. For $u \in H^{2}\left(\mathbb{R}^{2}\right)$, let $\mathcal{I}_{T} u \in \mathbb{P}_{1}$ (resp. $\mathcal{I}_{\tau} u \in \mathbb{P}_{1}$) denote the affine function which interpolates u at the vertices of T (resp. τ). The projection property of \mathcal{I}_{τ} on \mathbb{P}_{1} leads to

$$
\begin{equation*}
u-\mathcal{I}_{\tau} u=\left(I-\mathcal{I}_{\tau}\right)\left(u-\mathcal{I}_{T} u\right), \tag{3.3}
\end{equation*}
$$

where I is the identity. Hence,

$$
\begin{align*}
\left|u-\mathcal{I}_{\tau} u\right|_{W^{m, p}(T)} \leq & \left|u-\mathcal{I}_{T} u\right|_{W^{m, p}(T)} \tag{3.4}\\
& +\left(\sup _{v \in C^{0}(T) \backslash\{0\}} \frac{\left|\mathcal{I}_{\tau} v\right|_{W^{m, p}(T)}}{\|v\|_{L^{\infty}(T)}}\right)\left\|u-\mathcal{I}_{T} u\right\|_{L^{\infty}(T)} .
\end{align*}
$$

The estimates

$$
\begin{equation*}
\left|u-\mathcal{I}_{T} u\right|_{W^{m, p}(T)} \leq C h_{T}^{1+\frac{2}{p}-m}|u|_{H^{2}(T)} \text { and }\left\|u-\mathcal{I}_{T} u\right\|_{L^{\infty}(T)} \leq C h_{T}|u|_{H^{2}(T)} \tag{3.5}
\end{equation*}
$$

are well known (see, e.g. [3, Theorem 3.1.6]).
Next, we will estimate the supremum in (3.4). Let $z_{i}, 1 \leq i \leq 3$, denote the vertices of τ with corresponding shape functions $b_{i} \in \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ defined by $b_{i}\left(z_{i}\right)=1$ and $b_{i}\left(z_{j}\right)=0$ for $i \neq j$.

$$
\begin{align*}
\left|\mathcal{I}_{\tau} v\right|_{W^{m, p}(T)} & =\left|\sum_{i=1}^{3} v\left(z_{i}\right) b_{i}\right|_{W^{m, p}(T)} \leq \max _{1 \leq i \leq 3}\left|v\left(z_{i}\right)\right| \sum_{i=1}^{3}\left|b_{i}\right|_{W^{m, p}(T)} \tag{3.6}\\
& \leq\|v\|_{L^{\infty}(\tau)} \sum_{i=1}^{3}\left|b_{i}\right|_{W^{m, p}(T)}
\end{align*}
$$

Since b_{i} is affine, we obtain the estimate for all $y \in T$

$$
\begin{aligned}
\left|b_{i}(y)\right| & =\left|b_{i}\left(M_{\tau}\right)+\left\langle\nabla b_{i}, y-M_{\tau}\right\rangle\right| \leq 1+\left|b_{i}\right|_{W^{1, \infty}(\tau)}\left\|y-M_{\tau}\right\| \\
& \leq 1+C h_{\tau}^{-1} h_{T} \leq 1+C R,
\end{aligned}
$$

where C only depends on the minimal angles in τ. Thus, for $m=0$, we get

$$
\left\|b_{i}\right\|_{L^{p}(T)} \leq(1+C R) h_{T}^{2 / p}
$$

The estimate for $m=1$ is simpler since ∇b_{i} is constant and an inverse inequality leads to

$$
\left|b_{i}\right|_{W^{1, p}(T)} \leq C h_{\tau}^{-1} h_{T}^{2 / p} \leq C \frac{h_{T}}{h_{\tau}} h_{T}^{2 / p-1} \leq C R h_{T}^{2 / p-1}
$$

Taking into account (3.6), we have proven

$$
\begin{equation*}
\left|\mathcal{I}_{\tau} v\right|_{W^{m, p}(T)} \leq C(1+C R) h_{T}^{2 / p-m}\|v\|_{L^{\infty}(\tau)} \tag{3.7}
\end{equation*}
$$

The combination of (3.4)-(3.7) yields the assertion

$$
\left|u-\mathcal{I}_{\tau} u\right|_{W^{m, p}(T)} \leq C(1+R) h_{T}^{1+2 / p-m}|u|_{H^{2}(T)} .
$$

Now we are able to prove the main result concerning the approximation properties of the proposed composite finite elements. In order to avoid too many technicalities, we assume that there is a constant $\eta_{\text {ext }}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(x, \Delta_{x}\right) \leq \eta_{\text {ext }} h_{\Delta_{x}} \quad \forall x \in \Theta_{\text {slave }} \tag{3.8}
\end{equation*}
$$

and, thus, definition (2.6) reduces to (2.5). The case of the extrapolation by zero (cf. (2.6)) is discussed in [10]. With Condition (3.8) one may deduce from (3.2) the estimate:

$$
\begin{equation*}
\left|u(x)-u_{\Delta_{x}}(x)\right| \leq C h_{T}|u|_{H^{2}(T)} \quad \forall x \in \Theta_{\text {slave }} \tag{3.9}
\end{equation*}
$$

where T is the minimal scaled version of Δ_{x} (cf. (3.1)) such that $x \in T$. The constant C only depends on the minimal angle in Δ_{x} and the constant $\eta_{\text {ext }}$.

In the following, we define certain geometric constants which will enter the error estimates.

1. For a triangle τ and a point $x \in \mathbb{R}^{2}$, let $T_{x, \tau}$ denote the triangle T_{R} as in Lemma 3.1, where R is chosen as the minimal number such that x, τ are contained in T_{R}.
2. For $\tau \in \mathcal{T}_{\Gamma}$, let $\mathcal{T}_{\tau}^{\text {ext }} \subset \mathcal{T}_{H}^{\text {in }}$ denote the set of triangles in $\mathcal{T}_{H}^{\text {in }}$, which are employed for the extrapolation on $\Theta_{\text {slave }} \cap \tau$:

$$
\begin{equation*}
\mathcal{T}_{\tau}^{\text {ext }}:=\left\{\Delta_{z} \mid \forall z \in \Theta_{\text {slave }} \cap \tau\right\} \tag{3.10a}
\end{equation*}
$$

The constant $N_{\text {ext }}$ is defined by

$$
\begin{equation*}
N_{\mathrm{ext}}:=\max _{\tau \in \mathcal{T}_{\Gamma}} \sharp \mathcal{T}_{\tau}^{\mathrm{ext}} \tag{3.10b}
\end{equation*}
$$

and $N_{\text {ext }} \sim 1$ expresses the fact that only triangles in a local neighborhood of τ are employed for the extrapolation.
3. Let $\tau \in \mathcal{T}_{\Gamma}$. For $t \in \operatorname{sons}(\tau)$ and any pair of vertices $x, y \in \mathbf{V}(t)$, let $Q_{t, x, y}$ denote the minimal rectangle, which contains x^{Γ}, y^{Γ}, and t with
one side being parallel to $\overline{x^{\Gamma} y^{\Gamma}}$ (if $x^{\Gamma}=y^{\Gamma}$, the alignment condition is skipped).
Let Q_{t} denote the minimal rectangle which contains $\bigcup_{x, y \in \mathbf{V}(t)} Q_{t, x, y}$ and define the constant C_{Q} by

$$
\begin{equation*}
C_{Q}:=\max _{\tau \in \mathcal{T}_{\Gamma}} \max _{t \in \operatorname{sons}(\tau)}\left(\operatorname{diam} Q_{t}\right) / h_{t} \tag{3.11}
\end{equation*}
$$

Condition (2.4) implies that $C_{Q}=O(1)$.
For $\tau \in \mathcal{T}_{\Gamma}$, the minimal ball which contains the set

$$
\tau \cup\left(\bigcup_{x \in \Theta_{\text {slave }} \cap \tau}\left(T_{x, \Delta_{x}} \cup T_{x^{\Gamma}, \Delta_{x}}\right)\right) \cup\left(\bigcup_{t \in \operatorname{sons}(\tau)} Q_{t}\right)
$$

is denoted by B_{τ}. For $\tau \in \mathcal{T}_{H}^{\text {in }}$ we set $B_{\tau}=\tau$. The constant $C_{\text {uni }}$, defined by

$$
\begin{equation*}
C_{\mathrm{uni}}:=\max _{\tau \in \mathcal{T}_{\Gamma}} \max _{\substack{t \in \mathcal{T}_{H} \\ t \cap B_{\tau} \neq \emptyset}} \frac{\operatorname{diam} B_{\tau}}{h_{t}} \tag{3.12}
\end{equation*}
$$

describes the local quasi-uniformity of the initial overlapping mesh \mathcal{T}_{H} near the boundary.

The approximation error estimates for the near-boundary triangles $\tau \in \mathcal{T}_{\Gamma}$ will be decomposed into a sum of error estimates on the sons, $t \in \operatorname{sons}(\tau)$. For each $t \in \operatorname{sons}(\tau)$, these estimates will involve the given function in the neighborhood Q_{t} of t. As a consequence, a quantity which measures the overlap of such neighborhoods will enter the error estimates. In this light we define, for $\tau \in \mathcal{T}_{\Gamma}$ and $t \in \operatorname{sons}(\tau)$, the set

$$
\mathcal{T}_{\mathrm{ol}}(t):=\left\{\tilde{t} \in \operatorname{sons}(\tau): Q_{\tilde{t}} \cap t \neq \emptyset\right\} .
$$

The number of elements in $\mathcal{T}_{\text {ol }}(t)$ can be estimated by the following technical lemma.

Lemma 3.2 For any $\tau \in \mathcal{T}_{\Gamma}$ and $t \in \operatorname{sons}(\tau)$, we have

$$
\sharp \mathcal{T}_{\text {ol }}(t) \leq C\left(1+\log \left(h_{\tau} / h_{t}\right)\right),
$$

where C only depends on C_{Q} as in (3.11) and the shape regularity of the mesh.

Figure 2: Triangle $\tau \in \mathcal{T}_{\Gamma}$ and (black-shaded) son $t \in \operatorname{sons}(\tau)$. The concentric annular regions A_{ℓ} contain triangles \hat{t} (marked with \times), where the boxes $Q_{\tilde{t}}$ intersect t and, hence, belong to $\mathcal{T}_{\text {ol }}^{\ell}(t)$.

Proof. Fix $t \in \operatorname{sons}(\tau)$. For $R>0$, let $B_{t}(R)$ denote the disc with radius $R>0$ about the mass center of t. Obviously, there holds $\tau \subset B_{t}\left(h_{\tau}\right)$. Let L denote the smallest integer such that $2^{-L} h_{\tau} \leq 8 h_{t}$. (This implies $h_{t} \leq 2^{-2-L} h_{\tau}$ and $L \leq C\left(1+\log \left(h_{\tau} / h_{t}\right)\right)$.) We introduce annular regions about t by

$$
A_{\ell}:=B_{t}\left(2^{-\ell} h_{\tau}\right) \backslash B_{t}\left(2^{-\ell-1} h_{\tau}\right) \quad \ell=0,1, \ldots, L-1
$$

(cf. Figure 2) and set $A_{L}:=B_{t}\left(2^{-L} h_{\tau}\right)$. For $0 \leq \ell \leq L$, we define (nondisjoint) subsets $\mathcal{T}_{\text {ol }}^{\ell}(t) \subset \mathcal{T}_{\text {ol }}(t)$ by

$$
\mathcal{T}_{\mathrm{ol}}^{\ell}(t):=\left\{\tilde{t} \in \mathcal{T}_{\mathrm{ol}}(t): \tilde{t} \cap A_{\ell} \neq \emptyset\right\} .
$$

Obviously, we have $\mathcal{T}_{\mathrm{ol}}(t)=\bigcup_{\ell=0}^{L} \mathcal{T}_{\mathrm{ol}}^{\ell}(t)$. For $\ell<L$ we have

$$
\operatorname{dist}\left(A_{\ell}, t\right) \geq 2^{-\ell-1} h_{\tau}-h_{t} \geq 2^{-\ell-2} h_{\tau}
$$

while $\tilde{t} \in \mathcal{T}_{\mathrm{ol}}^{\ell}(t)$ and $Q_{\tilde{t}} \cap t \neq \emptyset$ lead to diam $Q_{\tilde{t}} \geq 2^{-\ell-2} h_{\tau}$. The definition of C_{Q} as in (3.11) yields the second estimate in

$$
2^{-\ell-2} h_{\tau} \leq \operatorname{diam} Q_{\tilde{t}} \leq C_{Q} h_{\tilde{t}}
$$

The shape regularity of the triangles leads to the estimate

$$
|\tilde{t}| \geq C C_{Q}^{-2} 2^{-2 \ell-4} h_{\tau}^{2}
$$

of the area of \tilde{t}. Since the area of A_{ℓ} is $3 \pi h_{\tau}^{2} 2^{-2 \ell-2}$, i.e., is of the same order as $|\tilde{t}|$, it is easy to see that $\sharp \mathcal{T}_{\text {ol }}^{\ell}(t) \leq C$, where C only depends on the shape regularity of the triangles and the constant C_{Q}. Hence

$$
\sum_{\ell=0}^{L-1} \sharp \mathcal{T}_{\mathrm{ol}}^{\ell}(t) \leq C L .
$$

It remains to investigate $\sharp \mathcal{T}_{\text {ol }}^{L}(t)$. First, we will show that each $\tilde{t} \in \mathcal{T}_{\text {ol }}^{L}(t)$ satisfies $h_{\tilde{t}} \geq c h_{t}$. Let

$$
U_{t}:=\left\{\tilde{t} \in \mathcal{T}_{\mathrm{ol}}^{L}(t): \tilde{t} \cap t \neq \emptyset\right\} .
$$

The shape regularity of the mesh $\mathcal{T}_{H, h}$ implies that $h_{\tilde{t}} \geq c_{1} h_{t}$ holds for all $\tilde{t} \in U_{t}$. Now consider $\tilde{t} \in \mathcal{T}_{\mathrm{ol}}^{L}(t) \backslash U_{t}$. Again from the shape regularity of the mesh $\mathcal{T}_{H, h}$ we conclude dist $(\tilde{t}, t) \geq c_{2} h_{t}$. The condition $\tilde{t} \in \mathcal{T}_{\text {ol }}^{L}(t)$ implies $Q_{\tilde{t}} \cap t \neq \emptyset$ and, by taking into account the previous estimate, $\operatorname{diam} Q_{\tilde{t}} \geq c_{3} h_{t}$. From the definition of the constant C_{Q} we conclude

$$
c_{3} h_{t} \leq \operatorname{diam} Q_{\tilde{t}} \leq C_{Q} h_{\tilde{t}}
$$

The shape regularity of the mesh directly implies for the area of \tilde{t}

$$
|\tilde{t}| \geq c_{4} h_{t}^{2} \geq c_{4} 2^{-6-2 L} h_{\tau}^{2}
$$

Since the area of A_{L} is $\pi 2^{-2 L} h_{\tau}^{2}$, i.e., of the same order as the area of \tilde{t} the number $\sharp \mathcal{T}_{\text {ol }}^{L}(\tau)$ is bounded by constant depending only on the shape regularity of the mesh and the constant C_{Q}.

In order to measure the cardinality of the set $\mathcal{T}_{\text {ol }}(t)$ globally we introduce $C_{\mathrm{ol}}^{\mathrm{I}}$ as the minimal constant such that,

$$
\sharp \mathcal{T}_{\mathrm{ol}}(\tau) \leq C_{\mathrm{ol}}^{\mathrm{I}} \max _{t \in \operatorname{sons}(\tau)}\left(1+\log \left(h_{\tau} / h_{t}\right)\right)=: \widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right) \quad \forall \tau \in \mathcal{T}_{\Gamma},
$$

holds, where $h_{\tau}^{\min }:=\min _{t \in \operatorname{sons}(\tau)} h_{t}$. For $\tau \in \mathcal{T}_{H}^{\text {in }}$, we put $\widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right):=1$. The global analogue is

$$
\widetilde{\log }(H / h):=\max \left\{\widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right): \tau \in \mathcal{T}_{\Gamma}\right\}
$$

Related to the constant C_{uni} is the second overlap constant $C_{\mathrm{ol}}^{\mathrm{II}}$ defined by

$$
C_{\mathrm{ol}}^{\mathrm{II}}:=\max _{t \in \mathcal{T}_{\Gamma}} \sharp\left\{\tau \in \mathcal{T}_{H}:\left|B_{\tau} \cap t\right|>0\right\} .
$$

Theorem 3.3 Let $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and let assumptions (2.4) and (3.8) be satisfied. Then, there exists $u^{\mathrm{CFE}} \in S^{\mathrm{CFE}}$ such that

$$
\begin{gather*}
\sqrt{\sum_{t \in \operatorname{sons}(\tau)}\left\|u-u^{\mathrm{CFE}}\right\|_{m, t}^{2}} \leq C h_{\tau}^{2-m} \widetilde{\log }^{m / 2}\left(h_{\tau} / h_{\tau}^{\min }\right)|u|_{2, B_{\tau}} \quad \forall \tau \in \mathcal{T}_{H}, \tag{3.13}\\
\left\|u-u^{\mathrm{CFE}}\right\|_{m, \Omega} \leq C H^{2-m} \widetilde{\log }^{m / 2}(H / h)\|u\|_{2, \Omega}, \tag{3.14}
\end{gather*}
$$

where $m=0,1$ and u - in the neighborhood B_{τ} of the triangle $\tau \in \mathcal{T}$ - is identified with its extension $\mathfrak{E} u$. The constant C only depends on the minimal angles in the triangulation $\mathcal{T}_{H, h}$ and $C_{\text {dist }}, \eta_{\text {ext }}, C_{\text {ext }}, N_{\text {ext }}, C_{\mathrm{uni}}, C_{\mathrm{ol}}^{\mathrm{I}}, C_{\mathrm{ol}}^{\mathrm{II}}$.

Proof. For $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, we define the grid function $\mathbf{u}: \Theta_{\text {dof }} \rightarrow \mathbb{R}$ by $\mathbf{u}_{x}:=u(x), x \in \Theta_{\text {dof }}$. Let the extension operator \mathcal{E} be as in (2.5) and let u^{CFE} be the \mathbb{P}_{1}-nodal interpolant of $\mathcal{E} \mathbf{u}$ on $\mathcal{T}_{H, h}$. We identify u with its extension $\mathfrak{E} u$.

We will show that u^{CFE} satisfies the estimates stated in the theorem.

1. Local estimate:

For any $\tau \in \mathcal{T}_{H}^{\text {in }}$, the function $\left.u^{\mathrm{CFE}}\right|_{\tau}$ is the affine interpolant on τ of the values $(u(x))_{x \in \mathbf{V}(\tau)}$ and the estimate (3.13) is the standard interpolation estimate (see, e.g., [3]).

Next, we consider $\tau \in \mathcal{T}_{\Gamma}$. Recall the definition of the set of sons as in (2.3).

For any $t \in \operatorname{sons}(\tau)$, we can write

$$
\begin{equation*}
\left\|u-u^{\mathrm{CFE}}\right\|_{m, t} \leq\left\|u-\mathcal{I}_{t} u\right\|_{m, t}+\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{m, t}, \tag{3.15}
\end{equation*}
$$

where, as in (3.3), \mathcal{I}_{t} is the Lagrange linear interpolation operator on t, $\mathcal{I}_{t}: C^{0}(t) \rightarrow \mathbb{P}_{1}(t)$. For the first term on the right-hand side of (3.15) we have the standard interpolation estimate

$$
\begin{equation*}
\left\|u-\mathcal{I}_{t} u\right\|_{m, t} \leq C h_{t}^{2-m}|u|_{2, t}, \tag{3.16}
\end{equation*}
$$

Figure 3: Slave node x, closest boundary point x^{Γ}, and closest inner triangle Δ_{x}.
where h_{t} is the diameter of t. For the second term, we use, first, the inverse estimate (see, e.g. [2, Section 4.5]):

$$
\begin{equation*}
\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{m, t} \leq C h_{t}^{1-m}\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{L^{\infty}(t)} \tag{3.17}
\end{equation*}
$$

Now we notice that $\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{L^{\infty}(t)}=\max _{x \in \mathbf{V}(t)}\left|\mathcal{I}_{t} u(x)-u^{\mathrm{CFE}}(x)\right|$. Then, from (3.17) we obtain

$$
\begin{equation*}
\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{m, t} \leq C h_{t}^{1-m} \max _{x \in \mathbf{V}(t)}\left|u(x)-u^{\mathrm{CFE}}(x)\right| \tag{3.18}
\end{equation*}
$$

We have

$$
u^{\mathrm{CFE}}(x)= \begin{cases}u(x) & \text { if } x \in \Theta_{\text {dof }} \\ u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right) & \text { if } x \in \Theta_{\text {slave }}\end{cases}
$$

where Δ_{x} and x^{Γ} are as in (2.5). As before, the function $u_{\Delta_{x}} \in \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ denotes the unique affine function which interpolates the values of u at the vertices of Δ_{x}. While the case $x \in \Theta_{\text {dof }}$ is trivial, for the other case $x \in \Theta_{\text {slave }}$, we can write (see Figure 3)

$$
\begin{equation*}
\left|u(x)-u^{\mathrm{CFE}}(x)\right| \leq\left|u(x)-u_{\Delta_{x}}(x)\right|+\left|u\left(x^{\Gamma}\right)-u_{\Delta_{x}}\left(x^{\Gamma}\right)\right|, \tag{3.19}
\end{equation*}
$$

using the fact that $u\left(x^{\Gamma}\right)=0$. Since $\operatorname{dist}\left(x, \Delta_{x}\right) \leq \eta_{\text {ext }} h_{\Delta_{x}}(c f$. (3.8)) and $\operatorname{dist}\left(x, x^{\Gamma}\right) \leq\left(C_{\text {dist }}+1\right) h_{t}($ cf. (2.4)), we may infer that both terms on the right-hand side of (3.19) can be estimated by (3.9) and we obtain

$$
\left|u(x)-u^{\mathrm{CFE}}(x)\right| \leq C h_{T}|u|_{2, T} \quad \forall x \in \mathbf{V}(t)
$$

where T is a triangle with diameter $h_{T} \sim\left(h_{\Delta_{x}}+h_{t}\right)$ which contains x, x^{Γ}, and Δ_{x}.

In combination with (3.18), we get

$$
\begin{equation*}
\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{m, t} \leq C h_{t}^{1-m} C h_{T}|u|_{2, T} \tag{3.20}
\end{equation*}
$$

A summation over all $t \in \operatorname{sons}(\tau)$ yields:

$$
\begin{equation*}
\sum_{t \in \operatorname{sons}(\tau)}\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{m, t}^{2} \leq C h_{T}^{2}|u|_{2, T}^{2} \sum_{t \in \operatorname{sons}(\tau)} h_{t}^{2-2 m} \tag{3.21}
\end{equation*}
$$

The shape regularity of the triangles implies $h_{t}^{2} \sim|t|$ and, for $m=0$, we obtain

$$
\sum_{t \in \operatorname{sons}(\tau)} h_{t}^{2} \leq C \sum_{t \in \operatorname{sons}(\tau)}|t| \leq C|\tau| \leq C h_{\tau}^{2}
$$

Plugging this estimate into (3.21) and employing (3.12) yields

$$
\sqrt{\sum_{t \in \operatorname{sons}(\tau)}\left\|\mathcal{I}_{t} u-u^{\mathrm{CFE}}\right\|_{0, t}^{2}} \leq C h_{\tau}^{2}|u|_{2, B_{\tau}}
$$

For $m=1$, this estimate becomes too pessimistic since $\sum_{t \in \operatorname{sons}(\tau)} h_{t}^{2-2 m}$ in (3.21) equals \sharp (sons $\tau)$ and this number cannot be, in general, bounded in terms of h_{T}.

Hence, for $m=1$, we refine our analysis as follows. Let $t \in \operatorname{sons}(\tau)$ and let $z \in \mathbf{V}(t)$ be an arbitrary chosen vertex of t.

Then, the function $\left.u^{\mathrm{CFE}}\right|_{t}$ can be written in the form

$$
\begin{aligned}
\left.u^{\mathrm{CFE}}\right|_{t}:= & \sum_{x \in \mathbf{V}(t)}\left(u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right)\right) b_{x, t}=u_{\Delta_{z}}-u_{\Delta_{z}}\left(z^{\Gamma}\right) \\
& +\sum_{x \in \mathbf{V}(t)}\{\underbrace{\left\{u_{\Delta_{x}}(x)-u_{\Delta_{x}}\left(x^{\Gamma}\right)\right\}-\left\{u_{\Delta_{z}}(x)-u_{\Delta_{z}}\left(x^{\Gamma}\right)\right\}}_{d_{1}(x)} \\
& -\underbrace{\left(u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right)}_{d_{2}(x)}\} b_{x, t} .
\end{aligned}
$$

As before, for any triangle T, the function $u_{T} \in \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ is the unique affine interpolation of the values of u at the vertices $\mathbf{V}(T)$. Further, $u_{\Delta_{z}}\left(z^{\Gamma}\right)$ is
the function on t with constant value $u_{\Delta_{z}}\left(z^{\Gamma}\right)$ and $b_{x, t}$ is the finite element basis function on t corresponding to the vertex x. Note that $d_{1}(x)$ can be rewritten as

$$
d_{1}(x)=\left\langle\nabla u_{\Delta_{x}}-\nabla u_{\Delta_{z}}, x-x^{\Gamma}\right\rangle .
$$

Thus,

$$
\begin{equation*}
\left.\nabla\left(u^{\mathrm{CFE}}-u\right)\right|_{t}=\left.\nabla\left(u_{\Delta_{z}}-u\right)\right|_{t}+\sum_{x \in \mathbf{V}(t)}\left\{d_{1}(x)-d_{2}(x)\right\} \nabla b_{x, t} \tag{3.22}
\end{equation*}
$$

and we estimate all three terms separately.
For the first term in (3.22) we employ Lemma 3.1 and obtain (recall the definition of $\mathcal{T}_{\tau}^{\text {ext }}$ and $N_{\text {ext }}$ as in (3.10))

$$
\begin{aligned}
& \sum_{t \in \operatorname{sons}(\tau)}\left\|\nabla\left(u_{\Delta_{z}}-u\right)\right\|_{L^{2}(t)}^{2} \\
= & \sum_{T \in \mathcal{T}_{\tau}} \sum_{\substack{\text { ext }}}\left\|\nabla\left(u_{T}-u\right)\right\|_{L^{2}(t)}^{2} \\
\leq & \sum_{T \in \Delta_{z}}\left\|\nabla\left(u_{T}-u\right)\right\|_{L^{2}(\tau)}^{2} \leq N_{\text {ext }}\left\|\nabla\left(u_{T}-u\right)\right\|_{L^{2}(\tau)}^{2} \\
\leq & C h_{\tau}^{2}|u|_{H^{2}\left(B_{\tau}\right)}^{2} .
\end{aligned}
$$

Next, we will consider the term in (3.22) related to d_{2} :

$$
\sum_{x \in \mathbf{V}(t)}\left(u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right) \nabla b_{x, t}
$$

The case $x^{\Gamma}=z^{\Gamma}$ is trivial and we assume from now on that $z^{\Gamma} \neq x^{\Gamma}$. Condition (2.4) yields

$$
\begin{equation*}
\left\|x^{\Gamma}-z^{\Gamma}\right\| \leq\left\|x^{\Gamma}-x\right\|+\|x-z\|+\left\|z-z^{\Gamma}\right\| \leq C h_{t} . \tag{3.23}
\end{equation*}
$$

By a rotation of the coordinate system we may assume that x^{Γ} and z^{Γ} lie in the x_{1}-axes, i.e. $x^{\Gamma}=\left(x_{1}^{\Gamma}, 0\right), z^{\Gamma}=\left(z_{1}^{\Gamma}, 0\right)$, and $t, x^{\Gamma}, z^{\Gamma}$ are contained in the minimal axes-parallel rectangle $Q_{t, x, z}=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)$ of diameter $\operatorname{diam} Q_{t, x, z} \leq C h_{t}$. We employ $u\left(x^{\Gamma}\right)=u\left(z^{\Gamma}\right)=0$ and Hölder's inequality
to obtain

$$
\begin{aligned}
\left|u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right|^{2} & =\left|u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)-\left(u\left(x^{\Gamma}\right)-u\left(z^{\Gamma}\right)\right)\right|^{2} \\
& =\left|\int_{x_{1}^{\Gamma}}^{z_{1}^{\Gamma}} \partial_{1}\left(u_{\Delta_{z}}-u\right) d s\right|^{2} \\
& \leq\left|z_{1}^{\Gamma}-x_{1}^{\Gamma}\right| \int_{x_{1}^{\Gamma}}^{z_{1}^{\Gamma}}\left|\partial_{1}\left(u_{\Delta_{z}}-u\right)\right|^{2} d s \\
& \leq C h_{t} \int_{a_{1}}^{b_{1}}\left|\partial_{1}\left(u_{\Delta_{z}}-u\right)\right|^{2} d s .
\end{aligned}
$$

Integration over $Q_{t, x, z}$ yields, along with an inverse inequality for $\nabla b_{x, t}$,

$$
\begin{align*}
& \left\|\left(u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right) \nabla b_{x, t}\right\|_{L^{2}\left(Q_{t, x, z}\right)}^{2} \\
\leq & C h_{t}^{-2} \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}}\left|u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right|^{2} d x_{2} d x_{1} \\
\leq & C h_{t}^{-1} \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}}\left|\partial_{1}\left(u_{\Delta_{z}}-u\right)\right|^{2} d s d x_{2} d x_{1} \\
\leq & C\left|u_{\Delta_{z}}-u\right|_{H^{1}\left(Q_{t, x, z}\right)}^{2} . \tag{3.24}
\end{align*}
$$

Thus, the combination of (3.24) with (3.22) yields

$$
\begin{aligned}
& \sum_{t \in \operatorname{sons}(\tau)}\left\|\sum_{x \in \mathbf{V}(t)}\left(u_{\Delta_{z}}\left(x^{\Gamma}\right)-u_{\Delta_{z}}\left(z^{\Gamma}\right)\right) \nabla b_{x, t}\right\|_{L^{2}(t)}^{2} \\
= & \sum_{T \in \mathcal{T}_{\tau}^{\text {ext }}} \sum_{t \in \operatorname{sons}(\tau)} \sum_{T=\Delta_{z}}\left\|\sum_{x \in \mathbf{V}(t)}\left(u_{T}\left(x^{\Gamma}\right)-u_{T}\left(z^{\Gamma}\right)\right) \nabla b_{x, t}\right\|_{L^{2}(t)}^{2} \\
\leq & C \sum_{T \in \mathcal{T}_{\tau}^{\text {ext }}} \sum_{\substack{\text { esons }(\tau) \\
T=\Delta_{z}}} \sum_{x \in \mathbf{V}(t)}\left|u_{T}-u\right|_{H^{1}\left(Q_{t, x, z}\right)}^{2} \\
\leq & C \sum_{T \in \mathcal{T}_{\tau}^{\text {ext }}} \sum_{\substack{\text { esons }(\tau) \\
T=\Delta_{z}}}\left|u_{T}-u\right|_{H^{1}\left(Q_{t}\right)}^{2} \leq C \widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right) \sum_{T \in \mathcal{T}_{\tau}^{\text {ext }}}\left|u_{T}-u\right|_{H^{1}\left(B_{\tau}\right)}^{2} \\
\leq & C \widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right) \\
N_{\text {ext }} & \max _{T \in \mathcal{T}_{\tau}^{\text {ext }}}\left|u_{T}-u\right|_{H^{1}\left(B_{\tau}\right)}^{2} \leq C \widetilde{\log }\left(h_{\tau} / h_{\tau}^{\min }\right) h_{\tau}^{2}|u|_{H^{2}\left(B_{\tau}\right)}^{2} .
\end{aligned}
$$

Finally, we will estimate the term in (3.22) related to d_{1}. A triangle inequality in combination with condition (2.4) and an inverse inequality for the basis functions yields

$$
\begin{aligned}
\left|\sum_{x \in \mathbf{V}(t)} d_{1}(x) \nabla b_{x, t}\right| & =\left|\sum_{x \in \mathbf{V}(t)}\left\langle\nabla u_{\Delta_{x}}-\nabla u_{\Delta_{z}}, x-x^{\Gamma}\right\rangle \nabla b_{x, t}\right| \\
& \leq C \max _{x \in \mathbf{V}(t)}\left\|\nabla\left(u_{\Delta_{x}}-u_{\Delta_{z}}\right)\right\|
\end{aligned}
$$

where the gradients on the right-hand side are constant vectors in \mathbb{R}^{2}. Thus,

$$
\begin{aligned}
\sum_{t \in \operatorname{sons}(\tau)}\left\|\sum_{x \in \mathbf{V}(t)} d_{1}(x) \nabla b_{x, t}\right\|_{L^{2}(t)}^{2} & \leq C \sum_{t \in \operatorname{sons}(\tau)} \sum_{x \in \mathbf{V}(t)}\left\|\nabla\left(u_{\Delta_{x}}-u_{\Delta_{z}}\right)\right\|^{2}|t| \\
& \leq C \sum_{T, \tilde{T} \in \mathcal{T}_{\tau}^{\text {ext }}}\left\|\nabla\left(u_{T}-u_{\tilde{T}}\right)\right\|^{2} \sum_{\substack{t \in \operatorname{sons}(\tau) \\
\Delta_{z}=\tilde{T}}} \sum_{x \in \mathbf{V}(t)}^{\Delta_{x}=T} \\
& |t| \\
& \leq 3 C \sum_{\substack{T, \tilde{T} \in \mathcal{T}_{\tau}^{\text {ext }}}}\left\|\nabla\left(u_{T}-u_{\tilde{T}}\right)\right\|^{2}|\tau| \\
& \leq \tilde{C} N_{\text {ext }}^{2} h_{\tau}^{2} \max _{T, \tilde{T} \in \mathcal{T}_{\mathcal{T}}^{\text {ext }}}\left\|\nabla\left(u_{T}-u_{\tilde{T}}\right)\right\|^{2}
\end{aligned}
$$

The estimate

$$
\begin{aligned}
\left\|\nabla\left(u_{T}-u_{\tilde{T}}\right)\right\|^{2} & =\frac{1}{\left|B_{\tau}\right|}\left\|\nabla\left(u_{T}-u_{\tilde{T}}\right)\right\|_{L^{2}\left(B_{\tau}\right)}^{2} \\
& \leq C h_{\tau}^{-2}\left\{\left\|\nabla\left(u_{T}-u\right)\right\|_{L^{2}\left(B_{\tau}\right)}^{2}+\left\|\nabla\left(u_{\tilde{T}}-u\right)\right\|_{L^{2}\left(B_{\tau}\right)}^{2}\right\} \\
& \leq \tilde{C}|u|_{H^{2}\left(B_{\tau}\right)}^{2}
\end{aligned}
$$

follows from the neighborhood property (Lemma 3.1) and finishes the proof of the local estimate.

Global estimate:
The global estimate (3.14) follows immediately from the local one:

$$
\begin{aligned}
\left\|u-u^{\mathrm{CFE}}\right\|_{m, \Omega}^{2} & \leq \sum_{\tau \in \mathcal{T}_{H}} \sum_{t \in \mathrm{sons} \tau}\left\|u-u^{\mathrm{CFE}}\right\|_{m, t}^{2} \\
& \leq C \widetilde{\log }^{m}(H / h) \sum_{\tau \in \mathcal{T}_{H}} h_{\tau}^{2(2-m)}\|\mathcal{E} u\|_{2, B_{\tau}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C C_{\mathrm{ol}}^{\mathrm{II}} \widetilde{\log }^{m}(H / h) H^{2(2-m)} \sum_{t \in \mathcal{T}_{H}}\|\mathcal{E} u\|_{2, t}^{2} \\
& \leq C C_{\mathrm{ol}}^{\mathrm{II}} C_{\mathrm{ext}}^{2} \widetilde{\mathrm{Log}}^{m}(H / h) H^{2(2-m)}\|u\|_{2, \Omega}^{2} .
\end{aligned}
$$

Theorem 3.3 concerns the basic approximation property of the composite finite element space S^{CFE} in the case when the approximated function (we think of the exact solution to our problem) u belongs to $H^{2}(\Omega)$. However, especially when the polygonal boundary Γ is complicated, it is very likely for the exact solution of the Dirichlet problem to have a lower regularity owing to possible re-entrant corners of the boundary. Thus, we need some generalization of Theorem 3.3 for the case $u \in H^{1+s}(\Omega), 0 \leq s \leq 1$ (in fact, it would be sufficient to consider $1 / 2 \leq s \leq 1$).

First, we need the following result from the interpolation theory of Sobolev spaces.

Lemma 3.4 Let Ω be a domain with Lipschitz boundary. Let \mathcal{L} be a linear operator mapping $H^{m_{0}}(\Omega)$ to $H^{k_{0}}(\Omega)$ and, also, $H^{m_{1}}(\Omega)$ to $H^{k_{1}}(\Omega)$, where $m_{0}, m_{1}, k_{0}, k_{1}$ are arbitrary real numbers.
Then, \mathcal{L} maps $H^{(1-\theta) m_{0}+\theta m_{1}}(\Omega)$ to $H^{(1-\theta) k_{0}+\theta k_{1}}(\Omega)$ and, moreover,

$$
\|\mathcal{L}\|_{H^{(1-\theta) m_{0}+\theta m_{1}}(\Omega) \rightarrow H^{(1-\theta) k_{0}+\theta k_{1}}(\Omega)} \leq\|\mathcal{L}\|_{H^{m_{0}}(\Omega) \rightarrow H^{k_{0}}(\Omega)}^{1-\theta} \cdot\|\mathcal{L}\|_{H^{m_{1}}(\Omega) \rightarrow H^{k_{1}}(\Omega)}^{\theta}
$$

for all $\theta \in(0,1)$.
Proof. See Proposition (14.1.5) and Theorem (14.2.7) in [2].
Now we can prove the generalized approximation property of the space S^{CFE}.

Theorem 3.5

Let $u \in H_{0}^{1}(\Omega) \cap H^{1+s}(\Omega), 0 \leq s \leq 1$. Then, there exists $u^{\mathrm{CFE}} \in S^{\mathrm{CFE}}$ such that

$$
\begin{equation*}
\left\|u-u^{\mathrm{CFE}}\right\|_{m, \Omega} \leq C H^{1+s-m} \widetilde{\log }^{s m / 2}(H / h)\|u\|_{1+s, \Omega}, \tag{3.25}
\end{equation*}
$$

where $m=0,1$.
Proof. Let $m \in\{0,1\}$ and Let $\mathcal{L}_{m} u:=u-\mathcal{P}_{m}^{\mathrm{CFE}}(u)$, where $\mathcal{P}_{m}^{\mathrm{CFE}}(u)$ is the H^{m}-orthogonal projection of u onto S^{CFE}. Evidently, \mathcal{L}_{m} is a linear operator, as the projection in Hilbert spaces is a linear operation.

It follows from Theorem 3.3 that \mathcal{L}_{m} maps $H^{2}(\Omega)$ to $H^{m}(\Omega)(m=0,1)$ and

$$
\left\|\mathcal{L}_{m}\right\|_{H^{2}(\Omega) \rightarrow H^{m}(\Omega)} \leq C H^{2-m} \widetilde{\log }^{m / 2}(H / h)
$$

At the same time, \mathcal{L}_{m} also maps $H^{m}(\Omega)$ to $H^{m}(\Omega)$ and

$$
\left\|\mathcal{L}_{m}\right\|_{H^{m}(\Omega) \rightarrow H^{m}(\Omega)} \leq 1
$$

since $\left\|u-\mathcal{P}_{m}^{\mathrm{CFE}}(u)\right\|_{m, \Omega} \leq\|u-0\|_{m, \Omega}=\|u\|_{m, \Omega}$.
Then, according to Lemma 3.4, \mathcal{L}_{m} maps $H^{1+s}(\Omega), 0 \leq s \leq 1$, to $H^{m}(\Omega)$ and

$$
\left\|\mathcal{L}_{m}\right\|_{H^{1+s}(\Omega) \rightarrow H^{m}(\Omega)} \leq C H^{1+s-m} \widetilde{\log }^{s m / 2}(H / h)
$$

Remark 3.6 The approximation theorems do not pose any restriction on the fine-scale parameter h. In fact, the approximation property of the composite finite element space $S^{\text {CFE }}$ holds also when the grid $\mathcal{T}_{H, h}$ coincides with the coarse grid \mathcal{T}_{H}, i.e. in the case $h=\mathcal{O}(H)$.

4 Convergence estimates for the composite finite element solution

The given Dirichlet problem (1.2), (1.3) can be recast in the following variational form: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a(u, v):=\int_{\Omega}\langle\nabla u, \nabla v\rangle d x, \quad(f, v):=\int_{\Omega} f v d x . \tag{4.2}
\end{equation*}
$$

We assume that $f \in L^{2}(\Omega)$; then, problem (4.1) has a unique solution.
The approximation of (4.1) with the composite finite elements leads to the discrete problem: Find $u^{\mathrm{CFE}} \in S^{\mathrm{CFE}}$ such that

$$
\begin{equation*}
a\left(u^{\mathrm{CFE}}, v\right)=(f, v) \quad \forall v \in S^{\mathrm{CFE}} \tag{4.3}
\end{equation*}
$$

The unique solvability of problem (4.3) for any mesh width $H \in(0,1)$ would immediately follow from the Lax-Milgram lemma, if we could show the uniform coercivity of the bilinear form $a(\cdot, \cdot)$ on S^{CFE}, i.e.

$$
\begin{equation*}
\exists \gamma>0 \quad \text { s.t. } \quad \gamma\|v\|_{1, \Omega}^{2} \leq a(v, v) \quad \forall v \in S^{\mathrm{CFE}}, \tag{4.4}
\end{equation*}
$$

with the constant γ independent of the mesh parameters H and h.
We prove this result with the help of the following two Lemmas.
Lemma 4.1 Let Ω be a bounded connected domain with Lipschitz boundary Γ. Then, there exists a positive constant C depending only on Ω such that

$$
\|u\|_{1, \Omega} \leq C\left(|u|_{1, \Omega}+\left|\int_{\Gamma} u d s\right|\right) \quad \forall u \in H^{1}(\Omega)
$$

Proof. See, e.g., Lemma (10.2.20) in [2].
The uniform coercivity will rely on the local mesh width of the triangles $t \in \mathcal{T}_{H, h}$, which intersect the boundary Γ. In this light, for $\tau \in \mathcal{T}_{\Gamma}$, we introduce the set $\operatorname{sons}_{\Gamma}(\tau):=\{t \in \operatorname{sons}(\tau):|t \cap \Gamma|>0\}$; here $|t \cap \Gamma|$ is the length of $t \cap \Gamma$.

Lemma 4.2 Suppose that inside of each element $\tau \in \mathcal{T}_{\Gamma}$ the following conditions are satisfied:

$$
\begin{align*}
& |\tau \cap \Gamma| \leq C h_{\tau}^{\beta_{\tau}} \tag{4.5}\\
& h_{t} \leq C h_{\tau}^{\alpha_{\tau}} \quad \forall t \in \operatorname{sons}_{\Gamma}(\tau) \tag{4.6}
\end{align*}
$$

with some parameters $\beta_{\tau}>0$ and $\alpha_{\tau} \geq 1$.
Then, we have

$$
\begin{equation*}
\|v\|_{L^{2}(\Gamma)} \leq C|v|_{1, \Omega} \quad \forall v \in S^{\mathrm{CFE}} \tag{4.7}
\end{equation*}
$$

and if, for all $\tau \in \mathcal{T}_{\Gamma}$, it holds $\alpha_{\tau} \geq \max \left\{1,2-\frac{\beta_{\tau}}{2}\right\}$, we have

$$
\begin{equation*}
\|v\|_{L^{2}(\Gamma)} \leq C H|v|_{1, \Omega} \quad \forall v \in S^{\mathrm{CFE}} \tag{4.8}
\end{equation*}
$$

where the constant C is independent of v and the mesh parameters H and h.
Proof. We have for any $v \in S^{\mathrm{CFE}}$:

$$
\begin{equation*}
\|v\|_{L^{2}(\Gamma)}^{2}=\sum_{\tau \in \mathcal{T}_{\Gamma}} \sum_{t \in \operatorname{sons}_{\Gamma}(\tau)}\|v\|_{L^{2}(t \cap \Gamma)}^{2} \leq \sum_{\tau \in \mathcal{T}_{\Gamma}} \sum_{t \in \operatorname{sons}_{\Gamma}(\tau)}|t \cap \Gamma|\|v\|_{L^{\infty}(t)}^{2} \tag{4.9}
\end{equation*}
$$

In order to evaluate $\|v\|_{L^{\infty}(t)}$, we may note that $\|v\|_{L^{\infty}(t)}=\max _{x \in \mathbf{V}(t)}|v(x)|$. According to the definition of the space S^{CFE}, for any node $x \in \Theta_{\text {slave }}$, we have

$$
v(x)=v_{\Delta_{x}}(x)-v_{\Delta_{x}}\left(x^{\Gamma}\right)
$$

where $\Delta_{x} \in \mathcal{T}_{H}^{\text {in }}$ is a nearest triangle and $v_{\Delta_{x}} \in \mathbb{P}_{1}\left(\mathbb{R}^{2}\right)$ the analytic (i.e. affine) extension of $\left.v\right|_{\Delta_{x}}$ onto \mathbb{R}^{2}. This implies

$$
\begin{equation*}
v(x)=\left\langle\nabla v_{\Delta_{x}}, x-x^{\Gamma}\right\rangle \tag{4.10}
\end{equation*}
$$

Next, we fix a triangle $\tau \in \mathcal{T}_{\Gamma}$. Since $x \in t \in \mathcal{T}_{H, h} \backslash \mathcal{T}_{H}^{\text {in }}$ we have $\left|x-x^{\Gamma}\right| \leq$ h_{t} (cf. (2.4)) and, from (4.10),

$$
|v(x)| \leq h_{t}\|\nabla v\|_{L^{\infty}\left(\Delta_{x}\right)}
$$

By using an inverse inequality and the local quasi-uniformity (cf. (3.12)), we get

$$
\begin{equation*}
|v(x)| \leq C \frac{h_{t}}{h_{\tau}}\|\nabla v\|_{L^{2}\left(\Delta_{x}\right)} \tag{4.11}
\end{equation*}
$$

Now we denote by $T_{\tau} \in \mathcal{T}_{\tau}^{\text {ext }}$ the triangle characterized by

$$
\|\nabla v\|_{L^{2}\left(T_{\tau}\right)}=\max _{T \in \mathcal{T}_{\tau}^{\text {ext }}}\|\nabla v\|_{L^{2}(T)}
$$

Then, from (4.11) we obtain the estimate

$$
\|v\|_{L^{\infty}(t)} \leq C \frac{h_{t}}{h_{\tau}}\|\nabla v\|_{L^{2}\left(T_{\tau}\right)} \quad \forall t \in \operatorname{sons}_{\Gamma}(\tau)
$$

This estimate and (4.9) imply

$$
\|v\|_{L^{2}(\Gamma)}^{2} \leq C \sum_{\tau \in \mathcal{T}_{\Gamma}}\|\nabla v\|_{L^{2}\left(T_{\tau}\right)}^{2} \sum_{t \in \operatorname{sons}_{\Gamma}(\tau)}|t \cap \Gamma|\left(\frac{h_{t}}{h_{\tau}}\right)^{2} .
$$

Using the assumption (4.6) and, then, (4.5), we derive with

$$
\delta:=\min \left\{2 \alpha_{\tau}+\beta_{\tau}-2: \tau \in \mathcal{T}_{\Gamma}\right\}
$$

the estimate

$$
\begin{aligned}
\|v\|_{L^{2}(\Gamma)}^{2} & \leq C \sum_{\tau \in \mathcal{T}_{\Gamma}} h_{\tau}^{2 \alpha_{\tau}+\beta_{\tau}-2}\|\nabla v\|_{L^{2}\left(T_{\tau}\right)}^{2} \\
& \leq C H^{\delta} \sum_{\tau \in \mathcal{T}_{\Gamma}}\|\nabla v\|_{L^{2}\left(T_{\tau}\right)}^{2} \leq C C_{\mathrm{ol}}^{\mathrm{II}} H^{\delta}\|\nabla v\|_{L^{2}(\Omega)}^{2},
\end{aligned}
$$

which immediately yields (4.7) (since, for all $\tau \in \mathcal{T}_{\Gamma}$, we assumed $\beta_{\tau}>0$, $\left.\alpha_{\tau} \geq 1\right)$ and (4.8), if $\alpha_{\tau} \geq \max \left\{1,2-\frac{\beta_{\tau}}{2}: \tau \in \mathcal{T}_{\Gamma}\right\}$.

Remark 4.3

1. The condition $\alpha_{\tau} \geq 1$ in (4.6) is always satisfied, as $h_{t} \leq h_{\tau} \leq H$ holds for all $t \in \operatorname{sons}(\tau)$.
2. The condition $\beta_{\tau}>0$ in (4.5) is obvious, if Γ has a finite length, but it is possible to show that, in fact, $\beta_{\tau} \geq 1$ for all $\tau \in \mathcal{T}_{\Gamma}$. To sketch the idea, we consider the quasi-uniform case, where the diameter of all triangles in \mathcal{T}_{H} are of order H. We argue as follows: Let n_{Γ} be the number of elements in \mathcal{T}_{Γ}; it is clear that n_{Γ} is not less than $\mathcal{O}\left(H^{-1}\right)$, i.e., in general, $n_{\Gamma}=\mathcal{O}\left(H^{-\beta}\right)$, where $\beta \geq 1$; since $|\Gamma| / n_{\Gamma}=$: average_length $(\tau \cap \Gamma)$ and the length of Γ is independent of H, we obtain average_length $(\tau \cap \Gamma)=\mathcal{O}\left(|\Gamma| H^{\beta}\right)$ with $\beta \geq 1$.
In this light, and if we assume that the length $|\Gamma|$ is moderately bounded, condition (4.5) in Lemma 4.2 is satisfied with $\beta_{\tau} \geq 1$. Hence, if we choose (4.6) with $\alpha_{\tau}=\max \left\{1,2-\beta_{\tau} / 2\right\} \leq 3 / 2$ as the stopping criterion in (2.2), the estimate (4.8) will always hold true.

Now we are able to prove the uniform coercivity of the bilinear form $a(\cdot, \cdot)$ on S^{CFE}.

Theorem 4.4 Let the assumptions of Lemma 4.2 be satisfied. The bilinear form a (\cdot, \cdot) defined in (4.2) is uniformly coercive on $S^{\text {CFE }}$, that is (4.4) holds with the constant γ independent of H and h.

Proof. Without loss of generality, we assume that Ω is a connected domain. Then, for any function $v \in S^{\mathrm{CFE}}$, we have from Lemma 4.1

$$
\begin{equation*}
\|v\|_{1, \Omega} \leq C_{1}\left(|v|_{1, \Omega}+\left|\int_{\Gamma} v d s\right|\right) \tag{4.12}
\end{equation*}
$$

since $S^{\mathrm{CFE}} \subset H^{1}(\Omega)$, and from Lemma 4.2

$$
\begin{equation*}
\|v\|_{L^{2}(\Gamma)} \leq C_{2}|v|_{1, \Omega} \tag{4.13}
\end{equation*}
$$

with the constants C_{1} and C_{2} independent of v, H and h. Noticing that

$$
\left|\int_{\Gamma} v d s\right| \leq|\Gamma|^{1 / 2}\|v\|_{L^{2}(\Gamma)},
$$

where $|\Gamma|$ is the length of Γ, and combining (4.12) and (4.13), we obtain (4.4) with the constant $\gamma=\frac{1}{C_{1}^{2}\left(1+|\Gamma|^{1 / 2} C_{2}\right)^{2}}$.

To analyze the rate of convergence of the composite finite element solution u^{CFE} to the exact solution u, we need the following abstract Lemma.

Lemma 4.5 Let V and V_{h} be subspaces of a Hilbert space W. Assume that $a(\cdot, \cdot)$ is a continuous bilinear form on W which is coercive on V_{h}, with respective continuity and coercivity constants K and γ. Let $u \in V$ solve

$$
a(u, v)=F(v) \quad \forall v \in V,
$$

where $F \in W^{\prime}$. Let $u_{h} \in V_{h}$ solve

$$
a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h} .
$$

Then

$$
\left\|u-u_{h}\right\|_{W} \leq\left(1+\frac{K}{\gamma}\right) \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{W}+\frac{1}{\gamma} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{\left|a\left(u-u_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{W}}
$$

Proof. See Lemma (10.1.1) in [2].
In our case, W is the space $H^{1}(\Omega), V$ is $H_{0}^{1}(\Omega), V_{h}$ is S^{CFE}, and the continuity constant K equals 1 . Lemma 4.5 shows that the error in the energy norm consists of two parts: the approximation error and the error stemming from the non-conformity (i.e. from the violation of the Galerkin orthogonality), since, in general, $S^{\mathrm{CFE}} \nsubseteq H_{0}^{1}(\Omega)$.

Using this Lemma we can prove the main result on the convergence of the CFE solution u^{CFE}.

Theorem 4.6 Let the exact solution u to problem (4.1) belong to $H_{0}^{1}(\Omega) \cap$ $H^{1+s}(\Omega), 1 / 2 \leq s \leq 1$. Let the conditions of Lemma 4.2 be satisfied with $\alpha_{\tau}=\max \left\{1,2-\frac{\beta_{\tau}}{2}: \tau \in \mathcal{T}_{\Gamma}\right\}$.
Then, for sufficiently small H, there holds

$$
\left\|u-u^{\mathrm{CFE}}\right\|_{1, \Omega} \leq C H^{s} \widetilde{\log }^{s / 2}(H / h)\|u\|_{1+s, \Omega}
$$

Proof. The approximation error can be immediately estimated by virtue of Theorem 3.5 as

$$
\begin{equation*}
\inf _{v \in S^{\mathrm{CFE}}}\|u-v\|_{1, \Omega} \leq C H^{s} \widetilde{\log }^{s / 2}(H / h)\|u\|_{1+s, \Omega} \tag{4.14}
\end{equation*}
$$

To estimate the non-conformity error, we first note that, for all $w \in S^{\mathrm{CFE}} \subset$ $H^{1}(\Omega)$, we have

$$
\begin{aligned}
a\left(u-u^{\mathrm{CFE}}, w\right)=a(u, w)-(f, w)= & \int_{\Omega}(-\Delta u) w d x+\int_{\Gamma} \frac{\partial u}{\partial n} w d s \\
& -\int_{\Omega} f w d x=\int_{\Gamma} \frac{\partial u}{\partial n} w d s
\end{aligned}
$$

Thus, using the Cauchy-Schwarz inequality, we get

$$
\left|a\left(u-u^{\mathrm{CFE}}, w\right)\right| \leq\left\|\frac{\partial u}{\partial n}\right\|_{L^{2}(\Gamma)}\|w\|_{L^{2}(\Gamma)}
$$

and, with the trace theorem,

$$
\left|a\left(u-u^{\mathrm{CFE}}, w\right)\right| \leq C\|u\|_{3 / 2, \Omega}\|w\|_{L^{2}(\Gamma)} \quad \forall w \in S^{\mathrm{CFE}}
$$

Combining the latter inequality and (4.8) of Lemma 4.2, we derive the estimate for the non-conformity error:

$$
\begin{equation*}
\sup _{w \in S^{\mathrm{CFE}} \backslash\{0\}} \frac{\left|a\left(u-u^{\mathrm{CFE}}, w\right)\right|}{\|w\|_{1, \Omega}} \leq C H\|u\|_{3 / 2, \Omega} \tag{4.15}
\end{equation*}
$$

The result of the Theorem follows from Lemma 4.5, (4.14) and (4.15).

Remark 4.7

1. Since we assume $f \in L^{2}(\Omega)$, the regularity of the exact solution $u \in$ $H^{1+s}(\Omega), 1 / 2 \leq s \leq 1$, is typical for the two-dimensional Dirichlet problem on a polygonal domain. The maximal possible regularity $u \in$ $H^{2}(\Omega)$ may deteriorate to $u \in H^{3 / 2}(\Omega)$ because of the boundary's reentrant corners whose angles are close to 2π.
2. In the situation described in Remark 4.3, the conditions of Lemma 4.2 are always satisfied and (4.8) holds true, if the stopping criterion in (2.2) is chosen such that the smallest triangles in $\mathcal{T}_{H, h}$, which are used for the resolution of the boundary, satisfy $h \leq \mathrm{CH}^{3 / 2}$. Thus, the latter condition is sufficient to obtain the quasi-optimal error-estimate of Theorem 4.6.

5 Concluding remarks

We have presented the two-scale composite finite element method for approximating the Dirichlet problem on a domain whose boundary may contain a large number of geometric details. The dimension of the proposed approximation space does not depend on the number or size of the geometric details and is characterized by the coarse-scale parameter H only. The refined triangulation in the near-boundary region is governed by the fine-scale parameter h and is intended to improve the approximation of the boundary condition; the nodes in this region are not, however, the degrees of freedom, as the function values at these nodes are obtained by using the boundary condition and the information on the behavior of the solution in the interior of the domain. The total number of degrees of freedom in our method is $\mathcal{O}\left(H^{-2}\right)$, while in the standard finite element method it rises up to $\mathcal{O}\left(H^{-2}+n \frac{|\Gamma|}{h}\right)$, where n corresponds to the number of elements in the direction normal to the boundary Γ in the near-boundary region. Since h must be of order of H^{2} in the standard FEM, and the boundary length $|\Gamma|$ can be very large (also, in the worst case n can be of order of H^{-1}), the dimension of the standard finite element space is, usually, much greater than the CFE-space dimension. In addition, with the CFE method a weakened condition $h=\mathcal{O}\left(H^{3 / 2}\right)$ (in contrast to classical $h=\mathcal{O}\left(H^{2}\right)$, see [13]) on the closeness of the actual and the mesh boundaries yields the optimal convergence rate of the approximate solution with respect to H.

We have also shown that the composite finite element space has the optimal approximation property (up to logarithmic terms) independently of the fine-scale parameter h. The efficient algorithmic realization of our approach will be presented in $[7]$ and we will show that CFE stiffness matrix can be obtained by a simple modification of the stiffness matrix corresponding to the problem with the homogeneous Neumann boundary condition. The latter fact indicates the simplicity of the implementation of the proposed method.

The presented a-priori analysis concerns the asymptotic behavior of the approximation when the mesh parameter H is sufficiently small. For concrete values of the mesh parameter, it would be, however, more advantageous to consider the a-posteriori error estimation that delivers also the necessary information on the local error distribution, which, in its turn, can be used to adaptively improve the approximation. In [9] we have developed the aposteriori error estimator for non-conforming approximations of the Dirichlet problem, and the work on combining this estimator with the proposed CFE
method is currently under way.
Acknowledgement: The first author was supported by the Swiss National Science Foundation, Grant 21-67946.04.

References

[1] R.E. Bank and J. Xu. An Algorithm for Coarsening Unstructured Meshes. Numer. Math. 73 (1996), no. 1, 1-36.
[2] S. Brenner and L.R. Scott. The mathematical theory of finite element methods. Springer, New York, 2nd edition, 2002.
[3] P. Ciarlet. The finite element method for elliptic problems. NorthHolland, 1987.
[4] W. Hackbusch and S. Sauter. Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75 (1997), no. 4, 447-472.
[5] W. Hackbusch and S. Sauter. Composite finite elements for problems containing small geometric details. Part II: Implementation and numerical results. Computing and Visualization in Science 1 (1997), no. 1, 15-25.
[6] R. Kornhuber and H. Yserentant. Multilevel Methods for Elliptic Problems on Domains not Resolved by the Coarse Grid. Contemporary Mathematics 180 (1994), 49-60.
[7] M. Rech, S. Sauter and A. Smolianski: Composite finite elements for the Dirichlet problem allowing an adaptive approximation of the boundary conditions (planned for 2003).
[8] M. Rech, S. Repin, S. Sauter and A. Smolianski: Composite finite elements for the Dirichlet problem with an a-posteriori controlled, adaptive approximation of the boundary condition (planned for 2004).
[9] S. Repin, S. Sauter and A. Smolianski. A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003), 205-233.
[10] S. Sauter. Composite finite elements for problems with complicated boundary. Part III: Essential boundary conditions. Technical Report 97-16, Mathematisches Seminar Kiel, University of Kiel, 1997.
[11] S. Sauter and R. Warnke. Extension operators and approximation on domains containing small geometric details. East-West J. Numer. Math. 7 (1999), no. 1, 61-78.
[12] E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970.
[13] G. Strang and G.J. Fix. An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[14] R. Verfürth. A review of a posteriori error estimation and adaptive meshrefinement techniques. Wiley-Teubner, Chichester, 1996.
[15] H. Yserentant. Coarse grid spaces for domains with a complicated boundary. Numerical Algorithms 21 (1999), 387-392

[^0]: *(rech@math.unizh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
 ${ }^{\dagger}$ (stas@amath.unizh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
 \ddagger (antsmol@amath.unizh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland

